1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keithw@vmware.com>
30   */
31 
32 #include <sys/stat.h>
33 #include <fcntl.h>
34 
35 #include "brw_eu_defines.h"
36 #include "brw_eu.h"
37 #include "brw_shader.h"
38 #include "brw_gen_enum.h"
39 #include "dev/gen_debug.h"
40 
41 #include "util/ralloc.h"
42 
43 /* Returns a conditional modifier that negates the condition. */
44 enum brw_conditional_mod
brw_negate_cmod(enum brw_conditional_mod cmod)45 brw_negate_cmod(enum brw_conditional_mod cmod)
46 {
47    switch (cmod) {
48    case BRW_CONDITIONAL_Z:
49       return BRW_CONDITIONAL_NZ;
50    case BRW_CONDITIONAL_NZ:
51       return BRW_CONDITIONAL_Z;
52    case BRW_CONDITIONAL_G:
53       return BRW_CONDITIONAL_LE;
54    case BRW_CONDITIONAL_GE:
55       return BRW_CONDITIONAL_L;
56    case BRW_CONDITIONAL_L:
57       return BRW_CONDITIONAL_GE;
58    case BRW_CONDITIONAL_LE:
59       return BRW_CONDITIONAL_G;
60    default:
61       unreachable("Can't negate this cmod");
62    }
63 }
64 
65 /* Returns the corresponding conditional mod for swapping src0 and
66  * src1 in e.g. CMP.
67  */
68 enum brw_conditional_mod
brw_swap_cmod(enum brw_conditional_mod cmod)69 brw_swap_cmod(enum brw_conditional_mod cmod)
70 {
71    switch (cmod) {
72    case BRW_CONDITIONAL_Z:
73    case BRW_CONDITIONAL_NZ:
74       return cmod;
75    case BRW_CONDITIONAL_G:
76       return BRW_CONDITIONAL_L;
77    case BRW_CONDITIONAL_GE:
78       return BRW_CONDITIONAL_LE;
79    case BRW_CONDITIONAL_L:
80       return BRW_CONDITIONAL_G;
81    case BRW_CONDITIONAL_LE:
82       return BRW_CONDITIONAL_GE;
83    default:
84       return BRW_CONDITIONAL_NONE;
85    }
86 }
87 
88 /**
89  * Get the least significant bit offset of the i+1-th component of immediate
90  * type \p type.  For \p i equal to the two's complement of j, return the
91  * offset of the j-th component starting from the end of the vector.  For
92  * scalar register types return zero.
93  */
94 static unsigned
imm_shift(enum brw_reg_type type,unsigned i)95 imm_shift(enum brw_reg_type type, unsigned i)
96 {
97    assert(type != BRW_REGISTER_TYPE_UV && type != BRW_REGISTER_TYPE_V &&
98           "Not implemented.");
99 
100    if (type == BRW_REGISTER_TYPE_VF)
101       return 8 * (i & 3);
102    else
103       return 0;
104 }
105 
106 /**
107  * Swizzle an arbitrary immediate \p x of the given type according to the
108  * permutation specified as \p swz.
109  */
110 uint32_t
brw_swizzle_immediate(enum brw_reg_type type,uint32_t x,unsigned swz)111 brw_swizzle_immediate(enum brw_reg_type type, uint32_t x, unsigned swz)
112 {
113    if (imm_shift(type, 1)) {
114       const unsigned n = 32 / imm_shift(type, 1);
115       uint32_t y = 0;
116 
117       for (unsigned i = 0; i < n; i++) {
118          /* Shift the specified component all the way to the right and left to
119           * discard any undesired L/MSBs, then shift it right into component i.
120           */
121          y |= x >> imm_shift(type, (i & ~3) + BRW_GET_SWZ(swz, i & 3))
122                 << imm_shift(type, ~0u)
123                 >> imm_shift(type, ~0u - i);
124       }
125 
126       return y;
127    } else {
128       return x;
129    }
130 }
131 
132 unsigned
brw_get_default_exec_size(struct brw_codegen * p)133 brw_get_default_exec_size(struct brw_codegen *p)
134 {
135    return p->current->exec_size;
136 }
137 
138 unsigned
brw_get_default_group(struct brw_codegen * p)139 brw_get_default_group(struct brw_codegen *p)
140 {
141    return p->current->group;
142 }
143 
144 unsigned
brw_get_default_access_mode(struct brw_codegen * p)145 brw_get_default_access_mode(struct brw_codegen *p)
146 {
147    return p->current->access_mode;
148 }
149 
150 tgl_swsb
brw_get_default_swsb(struct brw_codegen * p)151 brw_get_default_swsb(struct brw_codegen *p)
152 {
153    return p->current->swsb;
154 }
155 
156 void
brw_set_default_exec_size(struct brw_codegen * p,unsigned value)157 brw_set_default_exec_size(struct brw_codegen *p, unsigned value)
158 {
159    p->current->exec_size = value;
160 }
161 
brw_set_default_predicate_control(struct brw_codegen * p,enum brw_predicate pc)162 void brw_set_default_predicate_control(struct brw_codegen *p, enum brw_predicate pc)
163 {
164    p->current->predicate = pc;
165 }
166 
brw_set_default_predicate_inverse(struct brw_codegen * p,bool predicate_inverse)167 void brw_set_default_predicate_inverse(struct brw_codegen *p, bool predicate_inverse)
168 {
169    p->current->pred_inv = predicate_inverse;
170 }
171 
brw_set_default_flag_reg(struct brw_codegen * p,int reg,int subreg)172 void brw_set_default_flag_reg(struct brw_codegen *p, int reg, int subreg)
173 {
174    assert(subreg < 2);
175    p->current->flag_subreg = reg * 2 + subreg;
176 }
177 
brw_set_default_access_mode(struct brw_codegen * p,unsigned access_mode)178 void brw_set_default_access_mode( struct brw_codegen *p, unsigned access_mode )
179 {
180    p->current->access_mode = access_mode;
181 }
182 
183 void
brw_set_default_compression_control(struct brw_codegen * p,enum brw_compression compression_control)184 brw_set_default_compression_control(struct brw_codegen *p,
185 			    enum brw_compression compression_control)
186 {
187    switch (compression_control) {
188    case BRW_COMPRESSION_NONE:
189       /* This is the "use the first set of bits of dmask/vmask/arf
190        * according to execsize" option.
191        */
192       p->current->group = 0;
193       break;
194    case BRW_COMPRESSION_2NDHALF:
195       /* For SIMD8, this is "use the second set of 8 bits." */
196       p->current->group = 8;
197       break;
198    case BRW_COMPRESSION_COMPRESSED:
199       /* For SIMD16 instruction compression, use the first set of 16 bits
200        * since we don't do SIMD32 dispatch.
201        */
202       p->current->group = 0;
203       break;
204    default:
205       unreachable("not reached");
206    }
207 
208    if (p->devinfo->gen <= 6) {
209       p->current->compressed =
210          (compression_control == BRW_COMPRESSION_COMPRESSED);
211    }
212 }
213 
214 /**
215  * Enable or disable instruction compression on the given instruction leaving
216  * the currently selected channel enable group untouched.
217  */
218 void
brw_inst_set_compression(const struct gen_device_info * devinfo,brw_inst * inst,bool on)219 brw_inst_set_compression(const struct gen_device_info *devinfo,
220                          brw_inst *inst, bool on)
221 {
222    if (devinfo->gen >= 6) {
223       /* No-op, the EU will figure out for us whether the instruction needs to
224        * be compressed.
225        */
226    } else {
227       /* The channel group and compression controls are non-orthogonal, there
228        * are two possible representations for uncompressed instructions and we
229        * may need to preserve the current one to avoid changing the selected
230        * channel group inadvertently.
231        */
232       if (on)
233          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_COMPRESSED);
234       else if (brw_inst_qtr_control(devinfo, inst)
235                == BRW_COMPRESSION_COMPRESSED)
236          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
237    }
238 }
239 
240 void
brw_set_default_compression(struct brw_codegen * p,bool on)241 brw_set_default_compression(struct brw_codegen *p, bool on)
242 {
243    p->current->compressed = on;
244 }
245 
246 /**
247  * Apply the range of channel enable signals given by
248  * [group, group + exec_size) to the instruction passed as argument.
249  */
250 void
brw_inst_set_group(const struct gen_device_info * devinfo,brw_inst * inst,unsigned group)251 brw_inst_set_group(const struct gen_device_info *devinfo,
252                    brw_inst *inst, unsigned group)
253 {
254    if (devinfo->gen >= 7) {
255       assert(group % 4 == 0 && group < 32);
256       brw_inst_set_qtr_control(devinfo, inst, group / 8);
257       brw_inst_set_nib_control(devinfo, inst, (group / 4) % 2);
258 
259    } else if (devinfo->gen == 6) {
260       assert(group % 8 == 0 && group < 32);
261       brw_inst_set_qtr_control(devinfo, inst, group / 8);
262 
263    } else {
264       assert(group % 8 == 0 && group < 16);
265       /* The channel group and compression controls are non-orthogonal, there
266        * are two possible representations for group zero and we may need to
267        * preserve the current one to avoid changing the selected compression
268        * enable inadvertently.
269        */
270       if (group == 8)
271          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_2NDHALF);
272       else if (brw_inst_qtr_control(devinfo, inst) == BRW_COMPRESSION_2NDHALF)
273          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
274    }
275 }
276 
277 void
brw_set_default_group(struct brw_codegen * p,unsigned group)278 brw_set_default_group(struct brw_codegen *p, unsigned group)
279 {
280    p->current->group = group;
281 }
282 
brw_set_default_mask_control(struct brw_codegen * p,unsigned value)283 void brw_set_default_mask_control( struct brw_codegen *p, unsigned value )
284 {
285    p->current->mask_control = value;
286 }
287 
brw_set_default_saturate(struct brw_codegen * p,bool enable)288 void brw_set_default_saturate( struct brw_codegen *p, bool enable )
289 {
290    p->current->saturate = enable;
291 }
292 
brw_set_default_acc_write_control(struct brw_codegen * p,unsigned value)293 void brw_set_default_acc_write_control(struct brw_codegen *p, unsigned value)
294 {
295    p->current->acc_wr_control = value;
296 }
297 
brw_set_default_swsb(struct brw_codegen * p,tgl_swsb value)298 void brw_set_default_swsb(struct brw_codegen *p, tgl_swsb value)
299 {
300    p->current->swsb = value;
301 }
302 
brw_push_insn_state(struct brw_codegen * p)303 void brw_push_insn_state( struct brw_codegen *p )
304 {
305    assert(p->current != &p->stack[BRW_EU_MAX_INSN_STACK-1]);
306    *(p->current + 1) = *p->current;
307    p->current++;
308 }
309 
brw_pop_insn_state(struct brw_codegen * p)310 void brw_pop_insn_state( struct brw_codegen *p )
311 {
312    assert(p->current != p->stack);
313    p->current--;
314 }
315 
316 
317 /***********************************************************************
318  */
319 void
brw_init_codegen(const struct gen_device_info * devinfo,struct brw_codegen * p,void * mem_ctx)320 brw_init_codegen(const struct gen_device_info *devinfo,
321                  struct brw_codegen *p, void *mem_ctx)
322 {
323    memset(p, 0, sizeof(*p));
324 
325    p->devinfo = devinfo;
326    p->automatic_exec_sizes = true;
327    /*
328     * Set the initial instruction store array size to 1024, if found that
329     * isn't enough, then it will double the store size at brw_next_insn()
330     * until out of memory.
331     */
332    p->store_size = 1024;
333    p->store = rzalloc_array(mem_ctx, brw_inst, p->store_size);
334    p->nr_insn = 0;
335    p->current = p->stack;
336    memset(p->current, 0, sizeof(p->current[0]));
337 
338    p->mem_ctx = mem_ctx;
339 
340    /* Some defaults?
341     */
342    brw_set_default_exec_size(p, BRW_EXECUTE_8);
343    brw_set_default_mask_control(p, BRW_MASK_ENABLE); /* what does this do? */
344    brw_set_default_saturate(p, 0);
345    brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
346 
347    /* Set up control flow stack */
348    p->if_stack_depth = 0;
349    p->if_stack_array_size = 16;
350    p->if_stack = rzalloc_array(mem_ctx, int, p->if_stack_array_size);
351 
352    p->loop_stack_depth = 0;
353    p->loop_stack_array_size = 16;
354    p->loop_stack = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
355    p->if_depth_in_loop = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
356 }
357 
358 
brw_get_program(struct brw_codegen * p,unsigned * sz)359 const unsigned *brw_get_program( struct brw_codegen *p,
360 			       unsigned *sz )
361 {
362    *sz = p->next_insn_offset;
363    return (const unsigned *)p->store;
364 }
365 
brw_try_override_assembly(struct brw_codegen * p,int start_offset,const char * identifier)366 bool brw_try_override_assembly(struct brw_codegen *p, int start_offset,
367                                const char *identifier)
368 {
369    const char *read_path = getenv("INTEL_SHADER_ASM_READ_PATH");
370    if (!read_path) {
371       return false;
372    }
373 
374    char *name = ralloc_asprintf(NULL, "%s/%s.bin", read_path, identifier);
375 
376    int fd = open(name, O_RDONLY);
377    ralloc_free(name);
378 
379    if (fd == -1) {
380       return false;
381    }
382 
383    struct stat sb;
384    if (fstat(fd, &sb) != 0 || (!S_ISREG(sb.st_mode))) {
385       close(fd);
386       return false;
387    }
388 
389    p->nr_insn -= (p->next_insn_offset - start_offset) / sizeof(brw_inst);
390    p->nr_insn += sb.st_size / sizeof(brw_inst);
391 
392    p->next_insn_offset = start_offset + sb.st_size;
393    p->store_size = (start_offset + sb.st_size) / sizeof(brw_inst);
394    p->store = (brw_inst *)reralloc_size(p->mem_ctx, p->store, p->next_insn_offset);
395    assert(p->store);
396 
397    ssize_t ret = read(fd, (char *)p->store + start_offset, sb.st_size);
398    close(fd);
399    if (ret != sb.st_size) {
400       return false;
401    }
402 
403    ASSERTED bool valid =
404       brw_validate_instructions(p->devinfo, p->store,
405                                 start_offset, p->next_insn_offset,
406                                 NULL);
407    assert(valid);
408 
409    return true;
410 }
411 
412 void
brw_disassemble(const struct gen_device_info * devinfo,const void * assembly,int start,int end,FILE * out)413 brw_disassemble(const struct gen_device_info *devinfo,
414                 const void *assembly, int start, int end, FILE *out)
415 {
416    bool dump_hex = (INTEL_DEBUG & DEBUG_HEX) != 0;
417 
418    for (int offset = start; offset < end;) {
419       const brw_inst *insn = (const brw_inst *)((char *)assembly + offset);
420       brw_inst uncompacted;
421       bool compacted = brw_inst_cmpt_control(devinfo, insn);
422       if (0)
423          fprintf(out, "0x%08x: ", offset);
424 
425       if (compacted) {
426          brw_compact_inst *compacted = (brw_compact_inst *)insn;
427          if (dump_hex) {
428             unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
429             const unsigned int blank_spaces = 24;
430             for (int i = 0 ; i < 8; i = i + 4) {
431                fprintf(out, "%02x %02x %02x %02x ",
432                        insn_ptr[i],
433                        insn_ptr[i + 1],
434                        insn_ptr[i + 2],
435                        insn_ptr[i + 3]);
436             }
437             /* Make compacted instructions hex value output vertically aligned
438              * with uncompacted instructions hex value
439              */
440             fprintf(out, "%*c", blank_spaces, ' ');
441          }
442 
443          brw_uncompact_instruction(devinfo, &uncompacted, compacted);
444          insn = &uncompacted;
445          offset += 8;
446       } else {
447          if (dump_hex) {
448             unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
449             for (int i = 0 ; i < 16; i = i + 4) {
450                fprintf(out, "%02x %02x %02x %02x ",
451                        insn_ptr[i],
452                        insn_ptr[i + 1],
453                        insn_ptr[i + 2],
454                        insn_ptr[i + 3]);
455             }
456          }
457          offset += 16;
458       }
459 
460       brw_disassemble_inst(out, devinfo, insn, compacted);
461    }
462 }
463 
464 static const struct opcode_desc opcode_descs[] = {
465    /* IR,                 HW,  name,      nsrc, ndst, gens */
466    { BRW_OPCODE_ILLEGAL,  0,   "illegal", 0,    0,    GEN_ALL },
467    { BRW_OPCODE_SYNC,     1,   "sync",    1,    0,    GEN_GE(GEN12) },
468    { BRW_OPCODE_MOV,      1,   "mov",     1,    1,    GEN_LT(GEN12) },
469    { BRW_OPCODE_MOV,      97,  "mov",     1,    1,    GEN_GE(GEN12) },
470    { BRW_OPCODE_SEL,      2,   "sel",     2,    1,    GEN_LT(GEN12) },
471    { BRW_OPCODE_SEL,      98,  "sel",     2,    1,    GEN_GE(GEN12) },
472    { BRW_OPCODE_MOVI,     3,   "movi",    2,    1,    GEN_GE(GEN45) & GEN_LT(GEN12) },
473    { BRW_OPCODE_MOVI,     99,  "movi",    2,    1,    GEN_GE(GEN12) },
474    { BRW_OPCODE_NOT,      4,   "not",     1,    1,    GEN_LT(GEN12) },
475    { BRW_OPCODE_NOT,      100, "not",     1,    1,    GEN_GE(GEN12) },
476    { BRW_OPCODE_AND,      5,   "and",     2,    1,    GEN_LT(GEN12) },
477    { BRW_OPCODE_AND,      101, "and",     2,    1,    GEN_GE(GEN12) },
478    { BRW_OPCODE_OR,       6,   "or",      2,    1,    GEN_LT(GEN12) },
479    { BRW_OPCODE_OR,       102, "or",      2,    1,    GEN_GE(GEN12) },
480    { BRW_OPCODE_XOR,      7,   "xor",     2,    1,    GEN_LT(GEN12) },
481    { BRW_OPCODE_XOR,      103, "xor",     2,    1,    GEN_GE(GEN12) },
482    { BRW_OPCODE_SHR,      8,   "shr",     2,    1,    GEN_LT(GEN12) },
483    { BRW_OPCODE_SHR,      104, "shr",     2,    1,    GEN_GE(GEN12) },
484    { BRW_OPCODE_SHL,      9,   "shl",     2,    1,    GEN_LT(GEN12) },
485    { BRW_OPCODE_SHL,      105, "shl",     2,    1,    GEN_GE(GEN12) },
486    { BRW_OPCODE_DIM,      10,  "dim",     1,    1,    GEN75 },
487    { BRW_OPCODE_SMOV,     10,  "smov",    0,    0,    GEN_GE(GEN8) & GEN_LT(GEN12) },
488    { BRW_OPCODE_SMOV,     106, "smov",    0,    0,    GEN_GE(GEN12) },
489    { BRW_OPCODE_ASR,      12,  "asr",     2,    1,    GEN_LT(GEN12) },
490    { BRW_OPCODE_ASR,      108, "asr",     2,    1,    GEN_GE(GEN12) },
491    { BRW_OPCODE_ROR,      14,  "ror",     2,    1,    GEN11 },
492    { BRW_OPCODE_ROR,      110, "ror",     2,    1,    GEN_GE(GEN12) },
493    { BRW_OPCODE_ROL,      15,  "rol",     2,    1,    GEN11 },
494    { BRW_OPCODE_ROL,      111, "rol",     2,    1,    GEN_GE(GEN12) },
495    { BRW_OPCODE_CMP,      16,  "cmp",     2,    1,    GEN_LT(GEN12) },
496    { BRW_OPCODE_CMP,      112, "cmp",     2,    1,    GEN_GE(GEN12) },
497    { BRW_OPCODE_CMPN,     17,  "cmpn",    2,    1,    GEN_LT(GEN12) },
498    { BRW_OPCODE_CMPN,     113, "cmpn",    2,    1,    GEN_GE(GEN12) },
499    { BRW_OPCODE_CSEL,     18,  "csel",    3,    1,    GEN_GE(GEN8) & GEN_LT(GEN12) },
500    { BRW_OPCODE_CSEL,     114, "csel",    3,    1,    GEN_GE(GEN12) },
501    { BRW_OPCODE_F32TO16,  19,  "f32to16", 1,    1,    GEN7 | GEN75 },
502    { BRW_OPCODE_F16TO32,  20,  "f16to32", 1,    1,    GEN7 | GEN75 },
503    { BRW_OPCODE_BFREV,    23,  "bfrev",   1,    1,    GEN_GE(GEN7) & GEN_LT(GEN12) },
504    { BRW_OPCODE_BFREV,    119, "bfrev",   1,    1,    GEN_GE(GEN12) },
505    { BRW_OPCODE_BFE,      24,  "bfe",     3,    1,    GEN_GE(GEN7) & GEN_LT(GEN12) },
506    { BRW_OPCODE_BFE,      120, "bfe",     3,    1,    GEN_GE(GEN12) },
507    { BRW_OPCODE_BFI1,     25,  "bfi1",    2,    1,    GEN_GE(GEN7) & GEN_LT(GEN12) },
508    { BRW_OPCODE_BFI1,     121, "bfi1",    2,    1,    GEN_GE(GEN12) },
509    { BRW_OPCODE_BFI2,     26,  "bfi2",    3,    1,    GEN_GE(GEN7) & GEN_LT(GEN12) },
510    { BRW_OPCODE_BFI2,     122, "bfi2",    3,    1,    GEN_GE(GEN12) },
511    { BRW_OPCODE_JMPI,     32,  "jmpi",    0,    0,    GEN_ALL },
512    { BRW_OPCODE_BRD,      33,  "brd",     0,    0,    GEN_GE(GEN7) },
513    { BRW_OPCODE_IF,       34,  "if",      0,    0,    GEN_ALL },
514    { BRW_OPCODE_IFF,      35,  "iff",     0,    0,    GEN_LE(GEN5) },
515    { BRW_OPCODE_BRC,      35,  "brc",     0,    0,    GEN_GE(GEN7) },
516    { BRW_OPCODE_ELSE,     36,  "else",    0,    0,    GEN_ALL },
517    { BRW_OPCODE_ENDIF,    37,  "endif",   0,    0,    GEN_ALL },
518    { BRW_OPCODE_DO,       38,  "do",      0,    0,    GEN_LE(GEN5) },
519    { BRW_OPCODE_CASE,     38,  "case",    0,    0,    GEN6 },
520    { BRW_OPCODE_WHILE,    39,  "while",   0,    0,    GEN_ALL },
521    { BRW_OPCODE_BREAK,    40,  "break",   0,    0,    GEN_ALL },
522    { BRW_OPCODE_CONTINUE, 41,  "cont",    0,    0,    GEN_ALL },
523    { BRW_OPCODE_HALT,     42,  "halt",    0,    0,    GEN_ALL },
524    { BRW_OPCODE_CALLA,    43,  "calla",   0,    0,    GEN_GE(GEN75) },
525    { BRW_OPCODE_MSAVE,    44,  "msave",   0,    0,    GEN_LE(GEN5) },
526    { BRW_OPCODE_CALL,     44,  "call",    0,    0,    GEN_GE(GEN6) },
527    { BRW_OPCODE_MREST,    45,  "mrest",   0,    0,    GEN_LE(GEN5) },
528    { BRW_OPCODE_RET,      45,  "ret",     0,    0,    GEN_GE(GEN6) },
529    { BRW_OPCODE_PUSH,     46,  "push",    0,    0,    GEN_LE(GEN5) },
530    { BRW_OPCODE_FORK,     46,  "fork",    0,    0,    GEN6 },
531    { BRW_OPCODE_GOTO,     46,  "goto",    0,    0,    GEN_GE(GEN8) },
532    { BRW_OPCODE_POP,      47,  "pop",     2,    0,    GEN_LE(GEN5) },
533    { BRW_OPCODE_WAIT,     48,  "wait",    1,    0,    GEN_LT(GEN12) },
534    { BRW_OPCODE_SEND,     49,  "send",    1,    1,    GEN_LT(GEN12) },
535    { BRW_OPCODE_SENDC,    50,  "sendc",   1,    1,    GEN_LT(GEN12) },
536    { BRW_OPCODE_SEND,     49,  "send",    2,    1,    GEN_GE(GEN12) },
537    { BRW_OPCODE_SENDC,    50,  "sendc",   2,    1,    GEN_GE(GEN12) },
538    { BRW_OPCODE_SENDS,    51,  "sends",   2,    1,    GEN_GE(GEN9) & GEN_LT(GEN12) },
539    { BRW_OPCODE_SENDSC,   52,  "sendsc",  2,    1,    GEN_GE(GEN9) & GEN_LT(GEN12) },
540    { BRW_OPCODE_MATH,     56,  "math",    2,    1,    GEN_GE(GEN6) },
541    { BRW_OPCODE_ADD,      64,  "add",     2,    1,    GEN_ALL },
542    { BRW_OPCODE_MUL,      65,  "mul",     2,    1,    GEN_ALL },
543    { BRW_OPCODE_AVG,      66,  "avg",     2,    1,    GEN_ALL },
544    { BRW_OPCODE_FRC,      67,  "frc",     1,    1,    GEN_ALL },
545    { BRW_OPCODE_RNDU,     68,  "rndu",    1,    1,    GEN_ALL },
546    { BRW_OPCODE_RNDD,     69,  "rndd",    1,    1,    GEN_ALL },
547    { BRW_OPCODE_RNDE,     70,  "rnde",    1,    1,    GEN_ALL },
548    { BRW_OPCODE_RNDZ,     71,  "rndz",    1,    1,    GEN_ALL },
549    { BRW_OPCODE_MAC,      72,  "mac",     2,    1,    GEN_ALL },
550    { BRW_OPCODE_MACH,     73,  "mach",    2,    1,    GEN_ALL },
551    { BRW_OPCODE_LZD,      74,  "lzd",     1,    1,    GEN_ALL },
552    { BRW_OPCODE_FBH,      75,  "fbh",     1,    1,    GEN_GE(GEN7) },
553    { BRW_OPCODE_FBL,      76,  "fbl",     1,    1,    GEN_GE(GEN7) },
554    { BRW_OPCODE_CBIT,     77,  "cbit",    1,    1,    GEN_GE(GEN7) },
555    { BRW_OPCODE_ADDC,     78,  "addc",    2,    1,    GEN_GE(GEN7) },
556    { BRW_OPCODE_SUBB,     79,  "subb",    2,    1,    GEN_GE(GEN7) },
557    { BRW_OPCODE_SAD2,     80,  "sad2",    2,    1,    GEN_ALL },
558    { BRW_OPCODE_SADA2,    81,  "sada2",   2,    1,    GEN_ALL },
559    { BRW_OPCODE_DP4,      84,  "dp4",     2,    1,    GEN_LT(GEN11) },
560    { BRW_OPCODE_DPH,      85,  "dph",     2,    1,    GEN_LT(GEN11) },
561    { BRW_OPCODE_DP3,      86,  "dp3",     2,    1,    GEN_LT(GEN11) },
562    { BRW_OPCODE_DP2,      87,  "dp2",     2,    1,    GEN_LT(GEN11) },
563    { BRW_OPCODE_LINE,     89,  "line",    2,    1,    GEN_LE(GEN10) },
564    { BRW_OPCODE_PLN,      90,  "pln",     2,    1,    GEN_GE(GEN45) & GEN_LE(GEN10) },
565    { BRW_OPCODE_MAD,      91,  "mad",     3,    1,    GEN_GE(GEN6) },
566    { BRW_OPCODE_LRP,      92,  "lrp",     3,    1,    GEN_GE(GEN6) & GEN_LE(GEN10) },
567    { BRW_OPCODE_MADM,     93,  "madm",    3,    1,    GEN_GE(GEN8) },
568    { BRW_OPCODE_NENOP,    125, "nenop",   0,    0,    GEN45 },
569    { BRW_OPCODE_NOP,      126, "nop",     0,    0,    GEN_LT(GEN12) },
570    { BRW_OPCODE_NOP,      96,  "nop",     0,    0,    GEN_GE(GEN12) }
571 };
572 
573 /**
574  * Look up the opcode_descs[] entry with \p key member matching \p k which is
575  * supported by the device specified by \p devinfo, or NULL if there is no
576  * matching entry.
577  *
578  * This is implemented by using an index data structure (storage for which is
579  * provided by the caller as \p index_gen and \p index_descs) in order to
580  * provide efficient constant-time look-up.
581  */
582 static const opcode_desc *
lookup_opcode_desc(gen * index_gen,const opcode_desc ** index_descs,unsigned index_size,unsigned opcode_desc::* key,const gen_device_info * devinfo,unsigned k)583 lookup_opcode_desc(gen *index_gen,
584                    const opcode_desc **index_descs,
585                    unsigned index_size,
586                    unsigned opcode_desc::*key,
587                    const gen_device_info *devinfo,
588                    unsigned k)
589 {
590    if (*index_gen != gen_from_devinfo(devinfo)) {
591       *index_gen = gen_from_devinfo(devinfo);
592 
593       for (unsigned l = 0; l < index_size; l++)
594          index_descs[l] = NULL;
595 
596       for (unsigned i = 0; i < ARRAY_SIZE(opcode_descs); i++) {
597          if (opcode_descs[i].gens & *index_gen) {
598             const unsigned l = opcode_descs[i].*key;
599             assert(l < index_size && !index_descs[l]);
600             index_descs[l] = &opcode_descs[i];
601          }
602       }
603    }
604 
605    if (k < index_size)
606       return index_descs[k];
607    else
608       return NULL;
609 }
610 
611 /**
612  * Return the matching opcode_desc for the specified IR opcode and hardware
613  * generation, or NULL if the opcode is not supported by the device.
614  */
615 const struct opcode_desc *
brw_opcode_desc(const struct gen_device_info * devinfo,enum opcode opcode)616 brw_opcode_desc(const struct gen_device_info *devinfo, enum opcode opcode)
617 {
618    static __thread gen index_gen = {};
619    static __thread const opcode_desc *index_descs[NUM_BRW_OPCODES];
620    return lookup_opcode_desc(&index_gen, index_descs, ARRAY_SIZE(index_descs),
621                              &opcode_desc::ir, devinfo, opcode);
622 }
623 
624 /**
625  * Return the matching opcode_desc for the specified HW opcode and hardware
626  * generation, or NULL if the opcode is not supported by the device.
627  */
628 const struct opcode_desc *
brw_opcode_desc_from_hw(const struct gen_device_info * devinfo,unsigned hw)629 brw_opcode_desc_from_hw(const struct gen_device_info *devinfo, unsigned hw)
630 {
631    static __thread gen index_gen = {};
632    static __thread const opcode_desc *index_descs[128];
633    return lookup_opcode_desc(&index_gen, index_descs, ARRAY_SIZE(index_descs),
634                              &opcode_desc::hw, devinfo, hw);
635 }
636