1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 
30 #include "util/mesa-sha1.h"
31 #include "vk_util.h"
32 
33 #include "anv_private.h"
34 
35 /*
36  * Descriptor set layouts.
37  */
38 
39 static enum anv_descriptor_data
anv_descriptor_data_for_type(const struct anv_physical_device * device,VkDescriptorType type)40 anv_descriptor_data_for_type(const struct anv_physical_device *device,
41                              VkDescriptorType type)
42 {
43    enum anv_descriptor_data data = 0;
44 
45    switch (type) {
46    case VK_DESCRIPTOR_TYPE_SAMPLER:
47       data = ANV_DESCRIPTOR_SAMPLER_STATE;
48       if (device->has_bindless_samplers)
49          data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
50       break;
51 
52    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
53       data = ANV_DESCRIPTOR_SURFACE_STATE |
54              ANV_DESCRIPTOR_SAMPLER_STATE;
55       if (device->has_bindless_images || device->has_bindless_samplers)
56          data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
57       break;
58 
59    case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
60    case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
61       data = ANV_DESCRIPTOR_SURFACE_STATE;
62       if (device->has_bindless_images)
63          data |= ANV_DESCRIPTOR_SAMPLED_IMAGE;
64       break;
65 
66    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
67       data = ANV_DESCRIPTOR_SURFACE_STATE;
68       break;
69 
70    case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
71    case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
72       data = ANV_DESCRIPTOR_SURFACE_STATE;
73       if (device->info.gen < 9)
74          data |= ANV_DESCRIPTOR_IMAGE_PARAM;
75       if (device->has_bindless_images)
76          data |= ANV_DESCRIPTOR_STORAGE_IMAGE;
77       break;
78 
79    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
80    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
81       data = ANV_DESCRIPTOR_SURFACE_STATE |
82              ANV_DESCRIPTOR_BUFFER_VIEW;
83       break;
84 
85    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
86    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
87       data = ANV_DESCRIPTOR_SURFACE_STATE;
88       break;
89 
90    case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
91       data = ANV_DESCRIPTOR_INLINE_UNIFORM;
92       break;
93 
94    default:
95       unreachable("Unsupported descriptor type");
96    }
97 
98    /* On gen8 and above when we have softpin enabled, we also need to push
99     * SSBO address ranges so that we can use A64 messages in the shader.
100     */
101    if (device->has_a64_buffer_access &&
102        (type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER ||
103         type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC))
104       data |= ANV_DESCRIPTOR_ADDRESS_RANGE;
105 
106    /* On Ivy Bridge and Bay Trail, we need swizzles textures in the shader
107     * Do not handle VK_DESCRIPTOR_TYPE_STORAGE_IMAGE and
108     * VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT because they already must
109     * have identity swizzle.
110     */
111    if (device->info.gen == 7 && !device->info.is_haswell &&
112        (type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE ||
113         type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER))
114       data |= ANV_DESCRIPTOR_TEXTURE_SWIZZLE;
115 
116    return data;
117 }
118 
119 static unsigned
anv_descriptor_data_size(enum anv_descriptor_data data)120 anv_descriptor_data_size(enum anv_descriptor_data data)
121 {
122    unsigned size = 0;
123 
124    if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE)
125       size += sizeof(struct anv_sampled_image_descriptor);
126 
127    if (data & ANV_DESCRIPTOR_STORAGE_IMAGE)
128       size += sizeof(struct anv_storage_image_descriptor);
129 
130    if (data & ANV_DESCRIPTOR_IMAGE_PARAM)
131       size += BRW_IMAGE_PARAM_SIZE * 4;
132 
133    if (data & ANV_DESCRIPTOR_ADDRESS_RANGE)
134       size += sizeof(struct anv_address_range_descriptor);
135 
136    if (data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE)
137       size += sizeof(struct anv_texture_swizzle_descriptor);
138 
139    return size;
140 }
141 
142 static bool
anv_needs_descriptor_buffer(VkDescriptorType desc_type,enum anv_descriptor_data desc_data)143 anv_needs_descriptor_buffer(VkDescriptorType desc_type,
144                             enum anv_descriptor_data desc_data)
145 {
146    if (desc_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT ||
147        anv_descriptor_data_size(desc_data) > 0)
148       return true;
149    return false;
150 }
151 
152 /** Returns the size in bytes of each descriptor with the given layout */
153 unsigned
anv_descriptor_size(const struct anv_descriptor_set_binding_layout * layout)154 anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout)
155 {
156    if (layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
157       assert(layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
158       return layout->array_size;
159    }
160 
161    unsigned size = anv_descriptor_data_size(layout->data);
162 
163    /* For multi-planar bindings, we make every descriptor consume the maximum
164     * number of planes so we don't have to bother with walking arrays and
165     * adding things up every time.  Fortunately, YCbCr samplers aren't all
166     * that common and likely won't be in the middle of big arrays.
167     */
168    if (layout->max_plane_count > 1)
169       size *= layout->max_plane_count;
170 
171    return size;
172 }
173 
174 /** Returns the size in bytes of each descriptor of the given type
175  *
176  * This version of the function does not have access to the entire layout so
177  * it may only work on certain descriptor types where the descriptor size is
178  * entirely determined by the descriptor type.  Whenever possible, code should
179  * use anv_descriptor_size() instead.
180  */
181 unsigned
anv_descriptor_type_size(const struct anv_physical_device * pdevice,VkDescriptorType type)182 anv_descriptor_type_size(const struct anv_physical_device *pdevice,
183                          VkDescriptorType type)
184 {
185    assert(type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT &&
186           type != VK_DESCRIPTOR_TYPE_SAMPLER &&
187           type != VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE &&
188           type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
189 
190    return anv_descriptor_data_size(anv_descriptor_data_for_type(pdevice, type));
191 }
192 
193 static bool
anv_descriptor_data_supports_bindless(const struct anv_physical_device * pdevice,enum anv_descriptor_data data,bool sampler)194 anv_descriptor_data_supports_bindless(const struct anv_physical_device *pdevice,
195                                       enum anv_descriptor_data data,
196                                       bool sampler)
197 {
198    if (data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
199       assert(pdevice->has_a64_buffer_access);
200       return true;
201    }
202 
203    if (data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
204       assert(pdevice->has_bindless_images || pdevice->has_bindless_samplers);
205       return sampler ? pdevice->has_bindless_samplers :
206                        pdevice->has_bindless_images;
207    }
208 
209    if (data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
210       assert(pdevice->has_bindless_images);
211       return true;
212    }
213 
214    return false;
215 }
216 
217 bool
anv_descriptor_supports_bindless(const struct anv_physical_device * pdevice,const struct anv_descriptor_set_binding_layout * binding,bool sampler)218 anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
219                                  const struct anv_descriptor_set_binding_layout *binding,
220                                  bool sampler)
221 {
222    return anv_descriptor_data_supports_bindless(pdevice, binding->data,
223                                                 sampler);
224 }
225 
226 bool
anv_descriptor_requires_bindless(const struct anv_physical_device * pdevice,const struct anv_descriptor_set_binding_layout * binding,bool sampler)227 anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
228                                  const struct anv_descriptor_set_binding_layout *binding,
229                                  bool sampler)
230 {
231    if (pdevice->always_use_bindless)
232       return anv_descriptor_supports_bindless(pdevice, binding, sampler);
233 
234    static const VkDescriptorBindingFlagBitsEXT flags_requiring_bindless =
235       VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT |
236       VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT |
237       VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT;
238 
239    return (binding->flags & flags_requiring_bindless) != 0;
240 }
241 
anv_GetDescriptorSetLayoutSupport(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport)242 void anv_GetDescriptorSetLayoutSupport(
243     VkDevice                                    _device,
244     const VkDescriptorSetLayoutCreateInfo*      pCreateInfo,
245     VkDescriptorSetLayoutSupport*               pSupport)
246 {
247    ANV_FROM_HANDLE(anv_device, device, _device);
248    const struct anv_physical_device *pdevice = device->physical;
249 
250    uint32_t surface_count[MESA_SHADER_STAGES] = { 0, };
251    bool needs_descriptor_buffer = false;
252 
253    for (uint32_t b = 0; b < pCreateInfo->bindingCount; b++) {
254       const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[b];
255 
256       enum anv_descriptor_data desc_data =
257          anv_descriptor_data_for_type(pdevice, binding->descriptorType);
258 
259       if (anv_needs_descriptor_buffer(binding->descriptorType, desc_data))
260          needs_descriptor_buffer = true;
261 
262       switch (binding->descriptorType) {
263       case VK_DESCRIPTOR_TYPE_SAMPLER:
264          /* There is no real limit on samplers */
265          break;
266 
267       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
268          /* Inline uniforms don't use a binding */
269          break;
270 
271       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
272          if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
273             break;
274 
275          if (binding->pImmutableSamplers) {
276             for (uint32_t i = 0; i < binding->descriptorCount; i++) {
277                ANV_FROM_HANDLE(anv_sampler, sampler,
278                                binding->pImmutableSamplers[i]);
279                anv_foreach_stage(s, binding->stageFlags)
280                   surface_count[s] += sampler->n_planes;
281             }
282          } else {
283             anv_foreach_stage(s, binding->stageFlags)
284                surface_count[s] += binding->descriptorCount;
285          }
286          break;
287 
288       default:
289          if (anv_descriptor_data_supports_bindless(pdevice, desc_data, false))
290             break;
291 
292          anv_foreach_stage(s, binding->stageFlags)
293             surface_count[s] += binding->descriptorCount;
294          break;
295       }
296    }
297 
298    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
299       if (needs_descriptor_buffer)
300          surface_count[s] += 1;
301    }
302 
303    bool supported = true;
304    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
305       /* Our maximum binding table size is 240 and we need to reserve 8 for
306        * render targets.
307        */
308       if (surface_count[s] > MAX_BINDING_TABLE_SIZE - MAX_RTS)
309          supported = false;
310    }
311 
312    pSupport->supported = supported;
313 }
314 
anv_CreateDescriptorSetLayout(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorSetLayout * pSetLayout)315 VkResult anv_CreateDescriptorSetLayout(
316     VkDevice                                    _device,
317     const VkDescriptorSetLayoutCreateInfo*      pCreateInfo,
318     const VkAllocationCallbacks*                pAllocator,
319     VkDescriptorSetLayout*                      pSetLayout)
320 {
321    ANV_FROM_HANDLE(anv_device, device, _device);
322 
323    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
324 
325    uint32_t max_binding = 0;
326    uint32_t immutable_sampler_count = 0;
327    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
328       max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding);
329 
330       /* From the Vulkan 1.1.97 spec for VkDescriptorSetLayoutBinding:
331        *
332        *    "If descriptorType specifies a VK_DESCRIPTOR_TYPE_SAMPLER or
333        *    VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER type descriptor, then
334        *    pImmutableSamplers can be used to initialize a set of immutable
335        *    samplers. [...]  If descriptorType is not one of these descriptor
336        *    types, then pImmutableSamplers is ignored.
337        *
338        * We need to be careful here and only parse pImmutableSamplers if we
339        * have one of the right descriptor types.
340        */
341       VkDescriptorType desc_type = pCreateInfo->pBindings[j].descriptorType;
342       if ((desc_type == VK_DESCRIPTOR_TYPE_SAMPLER ||
343            desc_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) &&
344           pCreateInfo->pBindings[j].pImmutableSamplers)
345          immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
346    }
347 
348    struct anv_descriptor_set_layout *set_layout;
349    struct anv_descriptor_set_binding_layout *bindings;
350    struct anv_sampler **samplers;
351 
352    /* We need to allocate decriptor set layouts off the device allocator
353     * with DEVICE scope because they are reference counted and may not be
354     * destroyed when vkDestroyDescriptorSetLayout is called.
355     */
356    ANV_MULTIALLOC(ma);
357    anv_multialloc_add(&ma, &set_layout, 1);
358    anv_multialloc_add(&ma, &bindings, max_binding + 1);
359    anv_multialloc_add(&ma, &samplers, immutable_sampler_count);
360 
361    if (!anv_multialloc_alloc(&ma, &device->vk.alloc,
362                              VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
363       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
364 
365    memset(set_layout, 0, sizeof(*set_layout));
366    vk_object_base_init(&device->vk, &set_layout->base,
367                        VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT);
368    set_layout->ref_cnt = 1;
369    set_layout->binding_count = max_binding + 1;
370 
371    for (uint32_t b = 0; b <= max_binding; b++) {
372       /* Initialize all binding_layout entries to -1 */
373       memset(&set_layout->binding[b], -1, sizeof(set_layout->binding[b]));
374 
375       set_layout->binding[b].flags = 0;
376       set_layout->binding[b].data = 0;
377       set_layout->binding[b].max_plane_count = 0;
378       set_layout->binding[b].array_size = 0;
379       set_layout->binding[b].immutable_samplers = NULL;
380    }
381 
382    /* Initialize all samplers to 0 */
383    memset(samplers, 0, immutable_sampler_count * sizeof(*samplers));
384 
385    uint32_t buffer_view_count = 0;
386    uint32_t dynamic_offset_count = 0;
387    uint32_t descriptor_buffer_size = 0;
388 
389    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
390       const VkDescriptorSetLayoutBinding *binding = &pCreateInfo->pBindings[j];
391       uint32_t b = binding->binding;
392       /* We temporarily store pCreateInfo->pBindings[] index (plus one) in the
393        * immutable_samplers pointer.  This provides us with a quick-and-dirty
394        * way to sort the bindings by binding number.
395        */
396       set_layout->binding[b].immutable_samplers = (void *)(uintptr_t)(j + 1);
397    }
398 
399    const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *binding_flags_info =
400       vk_find_struct_const(pCreateInfo->pNext,
401                            DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT);
402 
403    for (uint32_t b = 0; b <= max_binding; b++) {
404       /* We stashed the pCreateInfo->pBindings[] index (plus one) in the
405        * immutable_samplers pointer.  Check for NULL (empty binding) and then
406        * reset it and compute the index.
407        */
408       if (set_layout->binding[b].immutable_samplers == NULL)
409          continue;
410       const uint32_t info_idx =
411          (uintptr_t)(void *)set_layout->binding[b].immutable_samplers - 1;
412       set_layout->binding[b].immutable_samplers = NULL;
413 
414       const VkDescriptorSetLayoutBinding *binding =
415          &pCreateInfo->pBindings[info_idx];
416 
417       if (binding->descriptorCount == 0)
418          continue;
419 
420 #ifndef NDEBUG
421       set_layout->binding[b].type = binding->descriptorType;
422 #endif
423 
424       if (binding_flags_info && binding_flags_info->bindingCount > 0) {
425          assert(binding_flags_info->bindingCount == pCreateInfo->bindingCount);
426          set_layout->binding[b].flags =
427             binding_flags_info->pBindingFlags[info_idx];
428       }
429 
430       set_layout->binding[b].data =
431          anv_descriptor_data_for_type(device->physical,
432                                       binding->descriptorType);
433       set_layout->binding[b].array_size = binding->descriptorCount;
434       set_layout->binding[b].descriptor_index = set_layout->size;
435       set_layout->size += binding->descriptorCount;
436 
437       if (set_layout->binding[b].data & ANV_DESCRIPTOR_BUFFER_VIEW) {
438          set_layout->binding[b].buffer_view_index = buffer_view_count;
439          buffer_view_count += binding->descriptorCount;
440       }
441 
442       switch (binding->descriptorType) {
443       case VK_DESCRIPTOR_TYPE_SAMPLER:
444       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
445          set_layout->binding[b].max_plane_count = 1;
446          if (binding->pImmutableSamplers) {
447             set_layout->binding[b].immutable_samplers = samplers;
448             samplers += binding->descriptorCount;
449 
450             for (uint32_t i = 0; i < binding->descriptorCount; i++) {
451                ANV_FROM_HANDLE(anv_sampler, sampler,
452                                binding->pImmutableSamplers[i]);
453 
454                set_layout->binding[b].immutable_samplers[i] = sampler;
455                if (set_layout->binding[b].max_plane_count < sampler->n_planes)
456                   set_layout->binding[b].max_plane_count = sampler->n_planes;
457             }
458          }
459          break;
460 
461       case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
462          set_layout->binding[b].max_plane_count = 1;
463          break;
464 
465       default:
466          break;
467       }
468 
469       switch (binding->descriptorType) {
470       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
471       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
472          set_layout->binding[b].dynamic_offset_index = dynamic_offset_count;
473          anv_foreach_stage(s, binding->stageFlags) {
474             STATIC_ASSERT(MAX_DYNAMIC_BUFFERS <=
475                           sizeof(set_layout->stage_dynamic_offsets[s]) * 8);
476             set_layout->stage_dynamic_offsets[s] |=
477                BITFIELD_RANGE(set_layout->binding[b].dynamic_offset_index,
478                               binding->descriptorCount);
479          }
480          dynamic_offset_count += binding->descriptorCount;
481          assert(dynamic_offset_count < MAX_DYNAMIC_BUFFERS);
482          break;
483 
484       default:
485          break;
486       }
487 
488       if (binding->descriptorType ==
489           VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
490          /* Inline uniform blocks are specified to use the descriptor array
491           * size as the size in bytes of the block.
492           */
493          descriptor_buffer_size = align_u32(descriptor_buffer_size, 32);
494          set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
495          descriptor_buffer_size += binding->descriptorCount;
496       } else {
497          set_layout->binding[b].descriptor_offset = descriptor_buffer_size;
498          descriptor_buffer_size += anv_descriptor_size(&set_layout->binding[b]) *
499                                    binding->descriptorCount;
500       }
501 
502       set_layout->shader_stages |= binding->stageFlags;
503    }
504 
505    set_layout->buffer_view_count = buffer_view_count;
506    set_layout->dynamic_offset_count = dynamic_offset_count;
507    set_layout->descriptor_buffer_size = descriptor_buffer_size;
508 
509    *pSetLayout = anv_descriptor_set_layout_to_handle(set_layout);
510 
511    return VK_SUCCESS;
512 }
513 
514 void
anv_descriptor_set_layout_destroy(struct anv_device * device,struct anv_descriptor_set_layout * layout)515 anv_descriptor_set_layout_destroy(struct anv_device *device,
516                                   struct anv_descriptor_set_layout *layout)
517 {
518    assert(layout->ref_cnt == 0);
519    vk_object_base_finish(&layout->base);
520    vk_free(&device->vk.alloc, layout);
521 }
522 
anv_DestroyDescriptorSetLayout(VkDevice _device,VkDescriptorSetLayout _set_layout,const VkAllocationCallbacks * pAllocator)523 void anv_DestroyDescriptorSetLayout(
524     VkDevice                                    _device,
525     VkDescriptorSetLayout                       _set_layout,
526     const VkAllocationCallbacks*                pAllocator)
527 {
528    ANV_FROM_HANDLE(anv_device, device, _device);
529    ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout, _set_layout);
530 
531    if (!set_layout)
532       return;
533 
534    anv_descriptor_set_layout_unref(device, set_layout);
535 }
536 
537 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
538 
539 static void
sha1_update_immutable_sampler(struct mesa_sha1 * ctx,const struct anv_sampler * sampler)540 sha1_update_immutable_sampler(struct mesa_sha1 *ctx,
541                               const struct anv_sampler *sampler)
542 {
543    if (!sampler->conversion)
544       return;
545 
546    /* The only thing that affects the shader is ycbcr conversion */
547    _mesa_sha1_update(ctx, sampler->conversion,
548                      sizeof(*sampler->conversion));
549 }
550 
551 static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 * ctx,const struct anv_descriptor_set_binding_layout * layout)552 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
553    const struct anv_descriptor_set_binding_layout *layout)
554 {
555    SHA1_UPDATE_VALUE(ctx, layout->flags);
556    SHA1_UPDATE_VALUE(ctx, layout->data);
557    SHA1_UPDATE_VALUE(ctx, layout->max_plane_count);
558    SHA1_UPDATE_VALUE(ctx, layout->array_size);
559    SHA1_UPDATE_VALUE(ctx, layout->descriptor_index);
560    SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_index);
561    SHA1_UPDATE_VALUE(ctx, layout->buffer_view_index);
562    SHA1_UPDATE_VALUE(ctx, layout->descriptor_offset);
563 
564    if (layout->immutable_samplers) {
565       for (uint16_t i = 0; i < layout->array_size; i++)
566          sha1_update_immutable_sampler(ctx, layout->immutable_samplers[i]);
567    }
568 }
569 
570 static void
sha1_update_descriptor_set_layout(struct mesa_sha1 * ctx,const struct anv_descriptor_set_layout * layout)571 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
572                                   const struct anv_descriptor_set_layout *layout)
573 {
574    SHA1_UPDATE_VALUE(ctx, layout->binding_count);
575    SHA1_UPDATE_VALUE(ctx, layout->size);
576    SHA1_UPDATE_VALUE(ctx, layout->shader_stages);
577    SHA1_UPDATE_VALUE(ctx, layout->buffer_view_count);
578    SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_count);
579    SHA1_UPDATE_VALUE(ctx, layout->descriptor_buffer_size);
580 
581    for (uint16_t i = 0; i < layout->binding_count; i++)
582       sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i]);
583 }
584 
585 /*
586  * Pipeline layouts.  These have nothing to do with the pipeline.  They are
587  * just multiple descriptor set layouts pasted together
588  */
589 
anv_CreatePipelineLayout(VkDevice _device,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout)590 VkResult anv_CreatePipelineLayout(
591     VkDevice                                    _device,
592     const VkPipelineLayoutCreateInfo*           pCreateInfo,
593     const VkAllocationCallbacks*                pAllocator,
594     VkPipelineLayout*                           pPipelineLayout)
595 {
596    ANV_FROM_HANDLE(anv_device, device, _device);
597    struct anv_pipeline_layout *layout;
598 
599    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
600 
601    layout = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*layout), 8,
602                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
603    if (layout == NULL)
604       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
605 
606    vk_object_base_init(&device->vk, &layout->base,
607                        VK_OBJECT_TYPE_PIPELINE_LAYOUT);
608    layout->num_sets = pCreateInfo->setLayoutCount;
609 
610    unsigned dynamic_offset_count = 0;
611 
612    for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
613       ANV_FROM_HANDLE(anv_descriptor_set_layout, set_layout,
614                       pCreateInfo->pSetLayouts[set]);
615       layout->set[set].layout = set_layout;
616       anv_descriptor_set_layout_ref(set_layout);
617 
618       layout->set[set].dynamic_offset_start = dynamic_offset_count;
619       for (uint32_t b = 0; b < set_layout->binding_count; b++) {
620          if (set_layout->binding[b].dynamic_offset_index < 0)
621             continue;
622 
623          dynamic_offset_count += set_layout->binding[b].array_size;
624       }
625    }
626    assert(dynamic_offset_count < MAX_DYNAMIC_BUFFERS);
627 
628    struct mesa_sha1 ctx;
629    _mesa_sha1_init(&ctx);
630    for (unsigned s = 0; s < layout->num_sets; s++) {
631       sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
632       _mesa_sha1_update(&ctx, &layout->set[s].dynamic_offset_start,
633                         sizeof(layout->set[s].dynamic_offset_start));
634    }
635    _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
636    _mesa_sha1_final(&ctx, layout->sha1);
637 
638    *pPipelineLayout = anv_pipeline_layout_to_handle(layout);
639 
640    return VK_SUCCESS;
641 }
642 
anv_DestroyPipelineLayout(VkDevice _device,VkPipelineLayout _pipelineLayout,const VkAllocationCallbacks * pAllocator)643 void anv_DestroyPipelineLayout(
644     VkDevice                                    _device,
645     VkPipelineLayout                            _pipelineLayout,
646     const VkAllocationCallbacks*                pAllocator)
647 {
648    ANV_FROM_HANDLE(anv_device, device, _device);
649    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, _pipelineLayout);
650 
651    if (!pipeline_layout)
652       return;
653 
654    for (uint32_t i = 0; i < pipeline_layout->num_sets; i++)
655       anv_descriptor_set_layout_unref(device, pipeline_layout->set[i].layout);
656 
657    vk_object_base_finish(&pipeline_layout->base);
658    vk_free2(&device->vk.alloc, pAllocator, pipeline_layout);
659 }
660 
661 /*
662  * Descriptor pools.
663  *
664  * These are implemented using a big pool of memory and a free-list for the
665  * host memory allocations and a state_stream and a free list for the buffer
666  * view surface state. The spec allows us to fail to allocate due to
667  * fragmentation in all cases but two: 1) after pool reset, allocating up
668  * until the pool size with no freeing must succeed and 2) allocating and
669  * freeing only descriptor sets with the same layout. Case 1) is easy enogh,
670  * and the free lists lets us recycle blocks for case 2).
671  */
672 
673 /* The vma heap reserves 0 to mean NULL; we have to offset by some ammount to
674  * ensure we can allocate the entire BO without hitting zero.  The actual
675  * amount doesn't matter.
676  */
677 #define POOL_HEAP_OFFSET 64
678 
679 #define EMPTY 1
680 
anv_CreateDescriptorPool(VkDevice _device,const VkDescriptorPoolCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorPool * pDescriptorPool)681 VkResult anv_CreateDescriptorPool(
682     VkDevice                                    _device,
683     const VkDescriptorPoolCreateInfo*           pCreateInfo,
684     const VkAllocationCallbacks*                pAllocator,
685     VkDescriptorPool*                           pDescriptorPool)
686 {
687    ANV_FROM_HANDLE(anv_device, device, _device);
688    struct anv_descriptor_pool *pool;
689 
690    const VkDescriptorPoolInlineUniformBlockCreateInfoEXT *inline_info =
691       vk_find_struct_const(pCreateInfo->pNext,
692                            DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT);
693 
694    uint32_t descriptor_count = 0;
695    uint32_t buffer_view_count = 0;
696    uint32_t descriptor_bo_size = 0;
697    for (uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) {
698       enum anv_descriptor_data desc_data =
699          anv_descriptor_data_for_type(device->physical,
700                                       pCreateInfo->pPoolSizes[i].type);
701 
702       if (desc_data & ANV_DESCRIPTOR_BUFFER_VIEW)
703          buffer_view_count += pCreateInfo->pPoolSizes[i].descriptorCount;
704 
705       unsigned desc_data_size = anv_descriptor_data_size(desc_data) *
706                                 pCreateInfo->pPoolSizes[i].descriptorCount;
707 
708       /* Combined image sampler descriptors can take up to 3 slots if they
709        * hold a YCbCr image.
710        */
711       if (pCreateInfo->pPoolSizes[i].type ==
712           VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
713          desc_data_size *= 3;
714 
715       if (pCreateInfo->pPoolSizes[i].type ==
716           VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
717          /* Inline uniform blocks are specified to use the descriptor array
718           * size as the size in bytes of the block.
719           */
720          assert(inline_info);
721          desc_data_size += pCreateInfo->pPoolSizes[i].descriptorCount;
722       }
723 
724       descriptor_bo_size += desc_data_size;
725 
726       descriptor_count += pCreateInfo->pPoolSizes[i].descriptorCount;
727    }
728    /* We have to align descriptor buffer allocations to 32B so that we can
729     * push descriptor buffers.  This means that each descriptor buffer
730     * allocated may burn up to 32B of extra space to get the right alignment.
731     * (Technically, it's at most 28B because we're always going to start at
732     * least 4B aligned but we're being conservative here.)  Allocate enough
733     * extra space that we can chop it into maxSets pieces and align each one
734     * of them to 32B.
735     */
736    descriptor_bo_size += 32 * pCreateInfo->maxSets;
737    /* We align inline uniform blocks to 32B */
738    if (inline_info)
739       descriptor_bo_size += 32 * inline_info->maxInlineUniformBlockBindings;
740    descriptor_bo_size = ALIGN(descriptor_bo_size, 4096);
741 
742    const size_t pool_size =
743       pCreateInfo->maxSets * sizeof(struct anv_descriptor_set) +
744       descriptor_count * sizeof(struct anv_descriptor) +
745       buffer_view_count * sizeof(struct anv_buffer_view);
746    const size_t total_size = sizeof(*pool) + pool_size;
747 
748    pool = vk_alloc2(&device->vk.alloc, pAllocator, total_size, 8,
749                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
750    if (!pool)
751       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
752 
753    vk_object_base_init(&device->vk, &pool->base,
754                        VK_OBJECT_TYPE_DESCRIPTOR_POOL);
755    pool->size = pool_size;
756    pool->next = 0;
757    pool->free_list = EMPTY;
758 
759    if (descriptor_bo_size > 0) {
760       VkResult result = anv_device_alloc_bo(device,
761                                             descriptor_bo_size,
762                                             ANV_BO_ALLOC_MAPPED |
763                                             ANV_BO_ALLOC_SNOOPED,
764                                             0 /* explicit_address */,
765                                             &pool->bo);
766       if (result != VK_SUCCESS) {
767          vk_free2(&device->vk.alloc, pAllocator, pool);
768          return result;
769       }
770 
771       util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, descriptor_bo_size);
772    } else {
773       pool->bo = NULL;
774    }
775 
776    anv_state_stream_init(&pool->surface_state_stream,
777                          &device->surface_state_pool, 4096);
778    pool->surface_state_free_list = NULL;
779 
780    list_inithead(&pool->desc_sets);
781 
782    *pDescriptorPool = anv_descriptor_pool_to_handle(pool);
783 
784    return VK_SUCCESS;
785 }
786 
anv_DestroyDescriptorPool(VkDevice _device,VkDescriptorPool _pool,const VkAllocationCallbacks * pAllocator)787 void anv_DestroyDescriptorPool(
788     VkDevice                                    _device,
789     VkDescriptorPool                            _pool,
790     const VkAllocationCallbacks*                pAllocator)
791 {
792    ANV_FROM_HANDLE(anv_device, device, _device);
793    ANV_FROM_HANDLE(anv_descriptor_pool, pool, _pool);
794 
795    if (!pool)
796       return;
797 
798    list_for_each_entry_safe(struct anv_descriptor_set, set,
799                             &pool->desc_sets, pool_link) {
800       anv_descriptor_set_layout_unref(device, set->layout);
801    }
802 
803    if (pool->bo)
804       anv_device_release_bo(device, pool->bo);
805    anv_state_stream_finish(&pool->surface_state_stream);
806 
807    vk_object_base_finish(&pool->base);
808    vk_free2(&device->vk.alloc, pAllocator, pool);
809 }
810 
anv_ResetDescriptorPool(VkDevice _device,VkDescriptorPool descriptorPool,VkDescriptorPoolResetFlags flags)811 VkResult anv_ResetDescriptorPool(
812     VkDevice                                    _device,
813     VkDescriptorPool                            descriptorPool,
814     VkDescriptorPoolResetFlags                  flags)
815 {
816    ANV_FROM_HANDLE(anv_device, device, _device);
817    ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
818 
819    list_for_each_entry_safe(struct anv_descriptor_set, set,
820                             &pool->desc_sets, pool_link) {
821       anv_descriptor_set_layout_unref(device, set->layout);
822    }
823    list_inithead(&pool->desc_sets);
824 
825    pool->next = 0;
826    pool->free_list = EMPTY;
827 
828    if (pool->bo) {
829       util_vma_heap_finish(&pool->bo_heap);
830       util_vma_heap_init(&pool->bo_heap, POOL_HEAP_OFFSET, pool->bo->size);
831    }
832 
833    anv_state_stream_finish(&pool->surface_state_stream);
834    anv_state_stream_init(&pool->surface_state_stream,
835                          &device->surface_state_pool, 4096);
836    pool->surface_state_free_list = NULL;
837 
838    return VK_SUCCESS;
839 }
840 
841 struct pool_free_list_entry {
842    uint32_t next;
843    uint32_t size;
844 };
845 
846 static VkResult
anv_descriptor_pool_alloc_set(struct anv_descriptor_pool * pool,uint32_t size,struct anv_descriptor_set ** set)847 anv_descriptor_pool_alloc_set(struct anv_descriptor_pool *pool,
848                               uint32_t size,
849                               struct anv_descriptor_set **set)
850 {
851    if (size <= pool->size - pool->next) {
852       *set = (struct anv_descriptor_set *) (pool->data + pool->next);
853       (*set)->size = size;
854       pool->next += size;
855       return VK_SUCCESS;
856    } else {
857       struct pool_free_list_entry *entry;
858       uint32_t *link = &pool->free_list;
859       for (uint32_t f = pool->free_list; f != EMPTY; f = entry->next) {
860          entry = (struct pool_free_list_entry *) (pool->data + f);
861          if (size <= entry->size) {
862             *link = entry->next;
863             *set = (struct anv_descriptor_set *) entry;
864             (*set)->size = entry->size;
865             return VK_SUCCESS;
866          }
867          link = &entry->next;
868       }
869 
870       if (pool->free_list != EMPTY) {
871          return vk_error(VK_ERROR_FRAGMENTED_POOL);
872       } else {
873          return vk_error(VK_ERROR_OUT_OF_POOL_MEMORY);
874       }
875    }
876 }
877 
878 static void
anv_descriptor_pool_free_set(struct anv_descriptor_pool * pool,struct anv_descriptor_set * set)879 anv_descriptor_pool_free_set(struct anv_descriptor_pool *pool,
880                              struct anv_descriptor_set *set)
881 {
882    /* Put the descriptor set allocation back on the free list. */
883    const uint32_t index = (char *) set - pool->data;
884    if (index + set->size == pool->next) {
885       pool->next = index;
886    } else {
887       struct pool_free_list_entry *entry = (struct pool_free_list_entry *) set;
888       entry->next = pool->free_list;
889       entry->size = set->size;
890       pool->free_list = (char *) entry - pool->data;
891    }
892 }
893 
894 struct surface_state_free_list_entry {
895    void *next;
896    struct anv_state state;
897 };
898 
899 static struct anv_state
anv_descriptor_pool_alloc_state(struct anv_descriptor_pool * pool)900 anv_descriptor_pool_alloc_state(struct anv_descriptor_pool *pool)
901 {
902    struct surface_state_free_list_entry *entry =
903       pool->surface_state_free_list;
904 
905    if (entry) {
906       struct anv_state state = entry->state;
907       pool->surface_state_free_list = entry->next;
908       assert(state.alloc_size == 64);
909       return state;
910    } else {
911       return anv_state_stream_alloc(&pool->surface_state_stream, 64, 64);
912    }
913 }
914 
915 static void
anv_descriptor_pool_free_state(struct anv_descriptor_pool * pool,struct anv_state state)916 anv_descriptor_pool_free_state(struct anv_descriptor_pool *pool,
917                                struct anv_state state)
918 {
919    /* Put the buffer view surface state back on the free list. */
920    struct surface_state_free_list_entry *entry = state.map;
921    entry->next = pool->surface_state_free_list;
922    entry->state = state;
923    pool->surface_state_free_list = entry;
924 }
925 
926 size_t
anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout * layout)927 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout)
928 {
929    return
930       sizeof(struct anv_descriptor_set) +
931       layout->size * sizeof(struct anv_descriptor) +
932       layout->buffer_view_count * sizeof(struct anv_buffer_view);
933 }
934 
935 VkResult
anv_descriptor_set_create(struct anv_device * device,struct anv_descriptor_pool * pool,struct anv_descriptor_set_layout * layout,struct anv_descriptor_set ** out_set)936 anv_descriptor_set_create(struct anv_device *device,
937                           struct anv_descriptor_pool *pool,
938                           struct anv_descriptor_set_layout *layout,
939                           struct anv_descriptor_set **out_set)
940 {
941    struct anv_descriptor_set *set;
942    const size_t size = anv_descriptor_set_layout_size(layout);
943 
944    VkResult result = anv_descriptor_pool_alloc_set(pool, size, &set);
945    if (result != VK_SUCCESS)
946       return result;
947 
948    if (layout->descriptor_buffer_size) {
949       /* Align the size to 32 so that alignment gaps don't cause extra holes
950        * in the heap which can lead to bad performance.
951        */
952       uint32_t set_buffer_size = ALIGN(layout->descriptor_buffer_size, 32);
953       uint64_t pool_vma_offset =
954          util_vma_heap_alloc(&pool->bo_heap, set_buffer_size, 32);
955       if (pool_vma_offset == 0) {
956          anv_descriptor_pool_free_set(pool, set);
957          return vk_error(VK_ERROR_FRAGMENTED_POOL);
958       }
959       assert(pool_vma_offset >= POOL_HEAP_OFFSET &&
960              pool_vma_offset - POOL_HEAP_OFFSET <= INT32_MAX);
961       set->desc_mem.offset = pool_vma_offset - POOL_HEAP_OFFSET;
962       set->desc_mem.alloc_size = set_buffer_size;
963       set->desc_mem.map = pool->bo->map + set->desc_mem.offset;
964 
965       set->desc_surface_state = anv_descriptor_pool_alloc_state(pool);
966       anv_fill_buffer_surface_state(device, set->desc_surface_state,
967                                     ISL_FORMAT_R32G32B32A32_FLOAT,
968                                     (struct anv_address) {
969                                        .bo = pool->bo,
970                                        .offset = set->desc_mem.offset,
971                                     },
972                                     layout->descriptor_buffer_size, 1);
973    } else {
974       set->desc_mem = ANV_STATE_NULL;
975       set->desc_surface_state = ANV_STATE_NULL;
976    }
977 
978    vk_object_base_init(&device->vk, &set->base,
979                        VK_OBJECT_TYPE_DESCRIPTOR_SET);
980    set->pool = pool;
981    set->layout = layout;
982    anv_descriptor_set_layout_ref(layout);
983 
984    set->buffer_views =
985       (struct anv_buffer_view *) &set->descriptors[layout->size];
986    set->buffer_view_count = layout->buffer_view_count;
987 
988    /* By defining the descriptors to be zero now, we can later verify that
989     * a descriptor has not been populated with user data.
990     */
991    memset(set->descriptors, 0, sizeof(struct anv_descriptor) * layout->size);
992 
993    /* Go through and fill out immutable samplers if we have any */
994    struct anv_descriptor *desc = set->descriptors;
995    for (uint32_t b = 0; b < layout->binding_count; b++) {
996       if (layout->binding[b].immutable_samplers) {
997          for (uint32_t i = 0; i < layout->binding[b].array_size; i++) {
998             /* The type will get changed to COMBINED_IMAGE_SAMPLER in
999              * UpdateDescriptorSets if needed.  However, if the descriptor
1000              * set has an immutable sampler, UpdateDescriptorSets may never
1001              * touch it, so we need to make sure it's 100% valid now.
1002              *
1003              * We don't need to actually provide a sampler because the helper
1004              * will always write in the immutable sampler regardless of what
1005              * is in the sampler parameter.
1006              */
1007             VkDescriptorImageInfo info = { };
1008             anv_descriptor_set_write_image_view(device, set, &info,
1009                                                 VK_DESCRIPTOR_TYPE_SAMPLER,
1010                                                 b, i);
1011          }
1012       }
1013       desc += layout->binding[b].array_size;
1014    }
1015 
1016    /* Allocate surface state for the buffer views. */
1017    for (uint32_t b = 0; b < layout->buffer_view_count; b++) {
1018       set->buffer_views[b].surface_state =
1019          anv_descriptor_pool_alloc_state(pool);
1020    }
1021 
1022    list_addtail(&set->pool_link, &pool->desc_sets);
1023 
1024    *out_set = set;
1025 
1026    return VK_SUCCESS;
1027 }
1028 
1029 void
anv_descriptor_set_destroy(struct anv_device * device,struct anv_descriptor_pool * pool,struct anv_descriptor_set * set)1030 anv_descriptor_set_destroy(struct anv_device *device,
1031                            struct anv_descriptor_pool *pool,
1032                            struct anv_descriptor_set *set)
1033 {
1034    anv_descriptor_set_layout_unref(device, set->layout);
1035 
1036    if (set->desc_mem.alloc_size) {
1037       util_vma_heap_free(&pool->bo_heap,
1038                          (uint64_t)set->desc_mem.offset + POOL_HEAP_OFFSET,
1039                          set->desc_mem.alloc_size);
1040       anv_descriptor_pool_free_state(pool, set->desc_surface_state);
1041    }
1042 
1043    for (uint32_t b = 0; b < set->buffer_view_count; b++)
1044       anv_descriptor_pool_free_state(pool, set->buffer_views[b].surface_state);
1045 
1046    list_del(&set->pool_link);
1047 
1048    vk_object_base_finish(&set->base);
1049    anv_descriptor_pool_free_set(pool, set);
1050 }
1051 
anv_AllocateDescriptorSets(VkDevice _device,const VkDescriptorSetAllocateInfo * pAllocateInfo,VkDescriptorSet * pDescriptorSets)1052 VkResult anv_AllocateDescriptorSets(
1053     VkDevice                                    _device,
1054     const VkDescriptorSetAllocateInfo*          pAllocateInfo,
1055     VkDescriptorSet*                            pDescriptorSets)
1056 {
1057    ANV_FROM_HANDLE(anv_device, device, _device);
1058    ANV_FROM_HANDLE(anv_descriptor_pool, pool, pAllocateInfo->descriptorPool);
1059 
1060    VkResult result = VK_SUCCESS;
1061    struct anv_descriptor_set *set;
1062    uint32_t i;
1063 
1064    for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
1065       ANV_FROM_HANDLE(anv_descriptor_set_layout, layout,
1066                       pAllocateInfo->pSetLayouts[i]);
1067 
1068       result = anv_descriptor_set_create(device, pool, layout, &set);
1069       if (result != VK_SUCCESS)
1070          break;
1071 
1072       pDescriptorSets[i] = anv_descriptor_set_to_handle(set);
1073    }
1074 
1075    if (result != VK_SUCCESS)
1076       anv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
1077                              i, pDescriptorSets);
1078 
1079    return result;
1080 }
1081 
anv_FreeDescriptorSets(VkDevice _device,VkDescriptorPool descriptorPool,uint32_t count,const VkDescriptorSet * pDescriptorSets)1082 VkResult anv_FreeDescriptorSets(
1083     VkDevice                                    _device,
1084     VkDescriptorPool                            descriptorPool,
1085     uint32_t                                    count,
1086     const VkDescriptorSet*                      pDescriptorSets)
1087 {
1088    ANV_FROM_HANDLE(anv_device, device, _device);
1089    ANV_FROM_HANDLE(anv_descriptor_pool, pool, descriptorPool);
1090 
1091    for (uint32_t i = 0; i < count; i++) {
1092       ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
1093 
1094       if (!set)
1095          continue;
1096 
1097       anv_descriptor_set_destroy(device, pool, set);
1098    }
1099 
1100    return VK_SUCCESS;
1101 }
1102 
1103 static void
anv_descriptor_set_write_image_param(uint32_t * param_desc_map,const struct brw_image_param * param)1104 anv_descriptor_set_write_image_param(uint32_t *param_desc_map,
1105                                      const struct brw_image_param *param)
1106 {
1107 #define WRITE_PARAM_FIELD(field, FIELD) \
1108    for (unsigned i = 0; i < ARRAY_SIZE(param->field); i++) \
1109       param_desc_map[BRW_IMAGE_PARAM_##FIELD##_OFFSET + i] = param->field[i]
1110 
1111    WRITE_PARAM_FIELD(offset, OFFSET);
1112    WRITE_PARAM_FIELD(size, SIZE);
1113    WRITE_PARAM_FIELD(stride, STRIDE);
1114    WRITE_PARAM_FIELD(tiling, TILING);
1115    WRITE_PARAM_FIELD(swizzling, SWIZZLING);
1116    WRITE_PARAM_FIELD(size, SIZE);
1117 
1118 #undef WRITE_PARAM_FIELD
1119 }
1120 
1121 static uint32_t
anv_surface_state_to_handle(struct anv_state state)1122 anv_surface_state_to_handle(struct anv_state state)
1123 {
1124    /* Bits 31:12 of the bindless surface offset in the extended message
1125     * descriptor is bits 25:6 of the byte-based address.
1126     */
1127    assert(state.offset >= 0);
1128    uint32_t offset = state.offset;
1129    assert((offset & 0x3f) == 0 && offset < (1 << 26));
1130    return offset << 6;
1131 }
1132 
1133 void
anv_descriptor_set_write_image_view(struct anv_device * device,struct anv_descriptor_set * set,const VkDescriptorImageInfo * const info,VkDescriptorType type,uint32_t binding,uint32_t element)1134 anv_descriptor_set_write_image_view(struct anv_device *device,
1135                                     struct anv_descriptor_set *set,
1136                                     const VkDescriptorImageInfo * const info,
1137                                     VkDescriptorType type,
1138                                     uint32_t binding,
1139                                     uint32_t element)
1140 {
1141    const struct anv_descriptor_set_binding_layout *bind_layout =
1142       &set->layout->binding[binding];
1143    struct anv_descriptor *desc =
1144       &set->descriptors[bind_layout->descriptor_index + element];
1145    struct anv_image_view *image_view = NULL;
1146    struct anv_sampler *sampler = NULL;
1147 
1148    /* We get called with just VK_DESCRIPTOR_TYPE_SAMPLER as part of descriptor
1149     * set initialization to set the bindless samplers.
1150     */
1151    assert(type == bind_layout->type ||
1152           type == VK_DESCRIPTOR_TYPE_SAMPLER);
1153 
1154    switch (type) {
1155    case VK_DESCRIPTOR_TYPE_SAMPLER:
1156       sampler = bind_layout->immutable_samplers ?
1157                 bind_layout->immutable_samplers[element] :
1158                 anv_sampler_from_handle(info->sampler);
1159       break;
1160 
1161    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1162       image_view = anv_image_view_from_handle(info->imageView);
1163       sampler = bind_layout->immutable_samplers ?
1164                 bind_layout->immutable_samplers[element] :
1165                 anv_sampler_from_handle(info->sampler);
1166       break;
1167 
1168    case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1169    case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1170    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1171       image_view = anv_image_view_from_handle(info->imageView);
1172       break;
1173 
1174    default:
1175       unreachable("invalid descriptor type");
1176    }
1177 
1178    *desc = (struct anv_descriptor) {
1179       .type = type,
1180       .layout = info->imageLayout,
1181       .image_view = image_view,
1182       .sampler = sampler,
1183    };
1184 
1185    void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1186                     element * anv_descriptor_size(bind_layout);
1187    memset(desc_map, 0, anv_descriptor_size(bind_layout));
1188 
1189    if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
1190       struct anv_sampled_image_descriptor desc_data[3];
1191       memset(desc_data, 0, sizeof(desc_data));
1192 
1193       if (image_view) {
1194          for (unsigned p = 0; p < image_view->n_planes; p++) {
1195             struct anv_surface_state sstate =
1196                (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1197                image_view->planes[p].general_sampler_surface_state :
1198                image_view->planes[p].optimal_sampler_surface_state;
1199             desc_data[p].image = anv_surface_state_to_handle(sstate.state);
1200          }
1201       }
1202 
1203       if (sampler) {
1204          for (unsigned p = 0; p < sampler->n_planes; p++)
1205             desc_data[p].sampler = sampler->bindless_state.offset + p * 32;
1206       }
1207 
1208       /* We may have max_plane_count < 0 if this isn't a sampled image but it
1209        * can be no more than the size of our array of handles.
1210        */
1211       assert(bind_layout->max_plane_count <= ARRAY_SIZE(desc_data));
1212       memcpy(desc_map, desc_data,
1213              MAX2(1, bind_layout->max_plane_count) * sizeof(desc_data[0]));
1214    }
1215 
1216    if (image_view == NULL)
1217       return;
1218 
1219    if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
1220       assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
1221       assert(image_view->n_planes == 1);
1222       struct anv_storage_image_descriptor desc_data = {
1223          .read_write = anv_surface_state_to_handle(
1224                            image_view->planes[0].storage_surface_state.state),
1225          .write_only = anv_surface_state_to_handle(
1226                            image_view->planes[0].writeonly_storage_surface_state.state),
1227       };
1228       memcpy(desc_map, &desc_data, sizeof(desc_data));
1229    }
1230 
1231    if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
1232       /* Storage images can only ever have one plane */
1233       assert(image_view->n_planes == 1);
1234       const struct brw_image_param *image_param =
1235          &image_view->planes[0].storage_image_param;
1236 
1237       anv_descriptor_set_write_image_param(desc_map, image_param);
1238    }
1239 
1240    if (bind_layout->data & ANV_DESCRIPTOR_TEXTURE_SWIZZLE) {
1241       assert(!(bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE));
1242       assert(image_view);
1243       struct anv_texture_swizzle_descriptor desc_data[3];
1244       memset(desc_data, 0, sizeof(desc_data));
1245 
1246       for (unsigned p = 0; p < image_view->n_planes; p++) {
1247          desc_data[p] = (struct anv_texture_swizzle_descriptor) {
1248             .swizzle = {
1249                (uint8_t)image_view->planes[p].isl.swizzle.r,
1250                (uint8_t)image_view->planes[p].isl.swizzle.g,
1251                (uint8_t)image_view->planes[p].isl.swizzle.b,
1252                (uint8_t)image_view->planes[p].isl.swizzle.a,
1253             },
1254          };
1255       }
1256       memcpy(desc_map, desc_data,
1257              MAX2(1, bind_layout->max_plane_count) * sizeof(desc_data[0]));
1258    }
1259 }
1260 
1261 void
anv_descriptor_set_write_buffer_view(struct anv_device * device,struct anv_descriptor_set * set,VkDescriptorType type,struct anv_buffer_view * buffer_view,uint32_t binding,uint32_t element)1262 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1263                                      struct anv_descriptor_set *set,
1264                                      VkDescriptorType type,
1265                                      struct anv_buffer_view *buffer_view,
1266                                      uint32_t binding,
1267                                      uint32_t element)
1268 {
1269    const struct anv_descriptor_set_binding_layout *bind_layout =
1270       &set->layout->binding[binding];
1271    struct anv_descriptor *desc =
1272       &set->descriptors[bind_layout->descriptor_index + element];
1273 
1274    assert(type == bind_layout->type);
1275 
1276    void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1277                     element * anv_descriptor_size(bind_layout);
1278 
1279    if (buffer_view == NULL) {
1280       *desc = (struct anv_descriptor) { .type = type, };
1281       memset(desc_map, 0, anv_descriptor_size(bind_layout));
1282       return;
1283    }
1284 
1285    *desc = (struct anv_descriptor) {
1286       .type = type,
1287       .buffer_view = buffer_view,
1288    };
1289 
1290    if (bind_layout->data & ANV_DESCRIPTOR_SAMPLED_IMAGE) {
1291       struct anv_sampled_image_descriptor desc_data = {
1292          .image = anv_surface_state_to_handle(buffer_view->surface_state),
1293       };
1294       memcpy(desc_map, &desc_data, sizeof(desc_data));
1295    }
1296 
1297    if (bind_layout->data & ANV_DESCRIPTOR_STORAGE_IMAGE) {
1298       assert(!(bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM));
1299       struct anv_storage_image_descriptor desc_data = {
1300          .read_write = anv_surface_state_to_handle(
1301                            buffer_view->storage_surface_state),
1302          .write_only = anv_surface_state_to_handle(
1303                            buffer_view->writeonly_storage_surface_state),
1304       };
1305       memcpy(desc_map, &desc_data, sizeof(desc_data));
1306    }
1307 
1308    if (bind_layout->data & ANV_DESCRIPTOR_IMAGE_PARAM) {
1309       anv_descriptor_set_write_image_param(desc_map,
1310                                            &buffer_view->storage_image_param);
1311    }
1312 }
1313 
1314 void
anv_descriptor_set_write_buffer(struct anv_device * device,struct anv_descriptor_set * set,struct anv_state_stream * alloc_stream,VkDescriptorType type,struct anv_buffer * buffer,uint32_t binding,uint32_t element,VkDeviceSize offset,VkDeviceSize range)1315 anv_descriptor_set_write_buffer(struct anv_device *device,
1316                                 struct anv_descriptor_set *set,
1317                                 struct anv_state_stream *alloc_stream,
1318                                 VkDescriptorType type,
1319                                 struct anv_buffer *buffer,
1320                                 uint32_t binding,
1321                                 uint32_t element,
1322                                 VkDeviceSize offset,
1323                                 VkDeviceSize range)
1324 {
1325    const struct anv_descriptor_set_binding_layout *bind_layout =
1326       &set->layout->binding[binding];
1327    struct anv_descriptor *desc =
1328       &set->descriptors[bind_layout->descriptor_index + element];
1329 
1330    assert(type == bind_layout->type);
1331 
1332    void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset +
1333                     element * anv_descriptor_size(bind_layout);
1334 
1335    if (buffer == NULL) {
1336       *desc = (struct anv_descriptor) { .type = type, };
1337       memset(desc_map, 0, anv_descriptor_size(bind_layout));
1338       return;
1339    }
1340 
1341    struct anv_address bind_addr = anv_address_add(buffer->address, offset);
1342    uint64_t bind_range = anv_buffer_get_range(buffer, offset, range);
1343 
1344    /* We report a bounds checking alignment of 32B for the sake of block
1345     * messages which read an entire register worth at a time.
1346     */
1347    if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER ||
1348        type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
1349       bind_range = align_u64(bind_range, ANV_UBO_ALIGNMENT);
1350 
1351    if (type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1352        type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1353       *desc = (struct anv_descriptor) {
1354          .type = type,
1355          .buffer = buffer,
1356          .offset = offset,
1357          .range = range,
1358       };
1359    } else {
1360       assert(bind_layout->data & ANV_DESCRIPTOR_BUFFER_VIEW);
1361       struct anv_buffer_view *bview =
1362          &set->buffer_views[bind_layout->buffer_view_index + element];
1363 
1364       bview->format = anv_isl_format_for_descriptor_type(type);
1365       bview->range = bind_range;
1366       bview->address = bind_addr;
1367 
1368       /* If we're writing descriptors through a push command, we need to
1369        * allocate the surface state from the command buffer. Otherwise it will
1370        * be allocated by the descriptor pool when calling
1371        * vkAllocateDescriptorSets. */
1372       if (alloc_stream)
1373          bview->surface_state = anv_state_stream_alloc(alloc_stream, 64, 64);
1374 
1375       anv_fill_buffer_surface_state(device, bview->surface_state,
1376                                     bview->format, bind_addr, bind_range, 1);
1377 
1378       *desc = (struct anv_descriptor) {
1379          .type = type,
1380          .buffer_view = bview,
1381       };
1382    }
1383 
1384    if (bind_layout->data & ANV_DESCRIPTOR_ADDRESS_RANGE) {
1385       struct anv_address_range_descriptor desc_data = {
1386          .address = anv_address_physical(bind_addr),
1387          .range = bind_range,
1388       };
1389       memcpy(desc_map, &desc_data, sizeof(desc_data));
1390    }
1391 }
1392 
1393 void
anv_descriptor_set_write_inline_uniform_data(struct anv_device * device,struct anv_descriptor_set * set,uint32_t binding,const void * data,size_t offset,size_t size)1394 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1395                                              struct anv_descriptor_set *set,
1396                                              uint32_t binding,
1397                                              const void *data,
1398                                              size_t offset,
1399                                              size_t size)
1400 {
1401    const struct anv_descriptor_set_binding_layout *bind_layout =
1402       &set->layout->binding[binding];
1403 
1404    assert(bind_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM);
1405 
1406    void *desc_map = set->desc_mem.map + bind_layout->descriptor_offset;
1407 
1408    memcpy(desc_map + offset, data, size);
1409 }
1410 
anv_UpdateDescriptorSets(VkDevice _device,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1411 void anv_UpdateDescriptorSets(
1412     VkDevice                                    _device,
1413     uint32_t                                    descriptorWriteCount,
1414     const VkWriteDescriptorSet*                 pDescriptorWrites,
1415     uint32_t                                    descriptorCopyCount,
1416     const VkCopyDescriptorSet*                  pDescriptorCopies)
1417 {
1418    ANV_FROM_HANDLE(anv_device, device, _device);
1419 
1420    for (uint32_t i = 0; i < descriptorWriteCount; i++) {
1421       const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
1422       ANV_FROM_HANDLE(anv_descriptor_set, set, write->dstSet);
1423 
1424       switch (write->descriptorType) {
1425       case VK_DESCRIPTOR_TYPE_SAMPLER:
1426       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1427       case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1428       case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1429       case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1430          for (uint32_t j = 0; j < write->descriptorCount; j++) {
1431             anv_descriptor_set_write_image_view(device, set,
1432                                                 write->pImageInfo + j,
1433                                                 write->descriptorType,
1434                                                 write->dstBinding,
1435                                                 write->dstArrayElement + j);
1436          }
1437          break;
1438 
1439       case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1440       case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1441          for (uint32_t j = 0; j < write->descriptorCount; j++) {
1442             ANV_FROM_HANDLE(anv_buffer_view, bview,
1443                             write->pTexelBufferView[j]);
1444 
1445             anv_descriptor_set_write_buffer_view(device, set,
1446                                                  write->descriptorType,
1447                                                  bview,
1448                                                  write->dstBinding,
1449                                                  write->dstArrayElement + j);
1450          }
1451          break;
1452 
1453       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1454       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1455       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1456       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1457          for (uint32_t j = 0; j < write->descriptorCount; j++) {
1458             ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
1459 
1460             anv_descriptor_set_write_buffer(device, set,
1461                                             NULL,
1462                                             write->descriptorType,
1463                                             buffer,
1464                                             write->dstBinding,
1465                                             write->dstArrayElement + j,
1466                                             write->pBufferInfo[j].offset,
1467                                             write->pBufferInfo[j].range);
1468          }
1469          break;
1470 
1471       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: {
1472          const VkWriteDescriptorSetInlineUniformBlockEXT *inline_write =
1473             vk_find_struct_const(write->pNext,
1474                                  WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT);
1475          assert(inline_write->dataSize == write->descriptorCount);
1476          anv_descriptor_set_write_inline_uniform_data(device, set,
1477                                                       write->dstBinding,
1478                                                       inline_write->pData,
1479                                                       write->dstArrayElement,
1480                                                       inline_write->dataSize);
1481          break;
1482       }
1483 
1484       default:
1485          break;
1486       }
1487    }
1488 
1489    for (uint32_t i = 0; i < descriptorCopyCount; i++) {
1490       const VkCopyDescriptorSet *copy = &pDescriptorCopies[i];
1491       ANV_FROM_HANDLE(anv_descriptor_set, src, copy->srcSet);
1492       ANV_FROM_HANDLE(anv_descriptor_set, dst, copy->dstSet);
1493 
1494       const struct anv_descriptor_set_binding_layout *src_layout =
1495          &src->layout->binding[copy->srcBinding];
1496       struct anv_descriptor *src_desc =
1497          &src->descriptors[src_layout->descriptor_index];
1498       src_desc += copy->srcArrayElement;
1499 
1500       const struct anv_descriptor_set_binding_layout *dst_layout =
1501          &dst->layout->binding[copy->dstBinding];
1502       struct anv_descriptor *dst_desc =
1503          &dst->descriptors[dst_layout->descriptor_index];
1504       dst_desc += copy->dstArrayElement;
1505 
1506       if (src_layout->data & ANV_DESCRIPTOR_INLINE_UNIFORM) {
1507          assert(src_layout->data == ANV_DESCRIPTOR_INLINE_UNIFORM);
1508          memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
1509                                     copy->dstArrayElement,
1510                 src->desc_mem.map + src_layout->descriptor_offset +
1511                                     copy->srcArrayElement,
1512                 copy->descriptorCount);
1513       } else {
1514          for (uint32_t j = 0; j < copy->descriptorCount; j++)
1515             dst_desc[j] = src_desc[j];
1516 
1517          unsigned desc_size = anv_descriptor_size(src_layout);
1518          if (desc_size > 0) {
1519             assert(desc_size == anv_descriptor_size(dst_layout));
1520             memcpy(dst->desc_mem.map + dst_layout->descriptor_offset +
1521                                        copy->dstArrayElement * desc_size,
1522                    src->desc_mem.map + src_layout->descriptor_offset +
1523                                        copy->srcArrayElement * desc_size,
1524                    copy->descriptorCount * desc_size);
1525          }
1526       }
1527    }
1528 }
1529 
1530 /*
1531  * Descriptor update templates.
1532  */
1533 
1534 void
anv_descriptor_set_write_template(struct anv_device * device,struct anv_descriptor_set * set,struct anv_state_stream * alloc_stream,const struct anv_descriptor_update_template * template,const void * data)1535 anv_descriptor_set_write_template(struct anv_device *device,
1536                                   struct anv_descriptor_set *set,
1537                                   struct anv_state_stream *alloc_stream,
1538                                   const struct anv_descriptor_update_template *template,
1539                                   const void *data)
1540 {
1541    for (uint32_t i = 0; i < template->entry_count; i++) {
1542       const struct anv_descriptor_template_entry *entry =
1543          &template->entries[i];
1544 
1545       switch (entry->type) {
1546       case VK_DESCRIPTOR_TYPE_SAMPLER:
1547       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1548       case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1549       case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1550       case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1551          for (uint32_t j = 0; j < entry->array_count; j++) {
1552             const VkDescriptorImageInfo *info =
1553                data + entry->offset + j * entry->stride;
1554             anv_descriptor_set_write_image_view(device, set,
1555                                                 info, entry->type,
1556                                                 entry->binding,
1557                                                 entry->array_element + j);
1558          }
1559          break;
1560 
1561       case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1562       case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1563          for (uint32_t j = 0; j < entry->array_count; j++) {
1564             const VkBufferView *_bview =
1565                data + entry->offset + j * entry->stride;
1566             ANV_FROM_HANDLE(anv_buffer_view, bview, *_bview);
1567 
1568             anv_descriptor_set_write_buffer_view(device, set,
1569                                                  entry->type,
1570                                                  bview,
1571                                                  entry->binding,
1572                                                  entry->array_element + j);
1573          }
1574          break;
1575 
1576       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1577       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1578       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1579       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1580          for (uint32_t j = 0; j < entry->array_count; j++) {
1581             const VkDescriptorBufferInfo *info =
1582                data + entry->offset + j * entry->stride;
1583             ANV_FROM_HANDLE(anv_buffer, buffer, info->buffer);
1584 
1585             anv_descriptor_set_write_buffer(device, set,
1586                                             alloc_stream,
1587                                             entry->type,
1588                                             buffer,
1589                                             entry->binding,
1590                                             entry->array_element + j,
1591                                             info->offset, info->range);
1592          }
1593          break;
1594 
1595       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT:
1596          anv_descriptor_set_write_inline_uniform_data(device, set,
1597                                                       entry->binding,
1598                                                       data + entry->offset,
1599                                                       entry->array_element,
1600                                                       entry->array_count);
1601          break;
1602 
1603       default:
1604          break;
1605       }
1606    }
1607 }
1608 
anv_CreateDescriptorUpdateTemplate(VkDevice _device,const VkDescriptorUpdateTemplateCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorUpdateTemplate * pDescriptorUpdateTemplate)1609 VkResult anv_CreateDescriptorUpdateTemplate(
1610     VkDevice                                    _device,
1611     const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo,
1612     const VkAllocationCallbacks*                pAllocator,
1613     VkDescriptorUpdateTemplate*                 pDescriptorUpdateTemplate)
1614 {
1615    ANV_FROM_HANDLE(anv_device, device, _device);
1616    struct anv_descriptor_update_template *template;
1617 
1618    size_t size = sizeof(*template) +
1619       pCreateInfo->descriptorUpdateEntryCount * sizeof(template->entries[0]);
1620    template = vk_alloc2(&device->vk.alloc, pAllocator, size, 8,
1621                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1622    if (template == NULL)
1623       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1624 
1625    vk_object_base_init(&device->vk, &template->base,
1626                        VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
1627    template->bind_point = pCreateInfo->pipelineBindPoint;
1628 
1629    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET)
1630       template->set = pCreateInfo->set;
1631 
1632    template->entry_count = pCreateInfo->descriptorUpdateEntryCount;
1633    for (uint32_t i = 0; i < template->entry_count; i++) {
1634       const VkDescriptorUpdateTemplateEntry *pEntry =
1635          &pCreateInfo->pDescriptorUpdateEntries[i];
1636 
1637       template->entries[i] = (struct anv_descriptor_template_entry) {
1638          .type = pEntry->descriptorType,
1639          .binding = pEntry->dstBinding,
1640          .array_element = pEntry->dstArrayElement,
1641          .array_count = pEntry->descriptorCount,
1642          .offset = pEntry->offset,
1643          .stride = pEntry->stride,
1644       };
1645    }
1646 
1647    *pDescriptorUpdateTemplate =
1648       anv_descriptor_update_template_to_handle(template);
1649 
1650    return VK_SUCCESS;
1651 }
1652 
anv_DestroyDescriptorUpdateTemplate(VkDevice _device,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const VkAllocationCallbacks * pAllocator)1653 void anv_DestroyDescriptorUpdateTemplate(
1654     VkDevice                                    _device,
1655     VkDescriptorUpdateTemplate                  descriptorUpdateTemplate,
1656     const VkAllocationCallbacks*                pAllocator)
1657 {
1658    ANV_FROM_HANDLE(anv_device, device, _device);
1659    ANV_FROM_HANDLE(anv_descriptor_update_template, template,
1660                    descriptorUpdateTemplate);
1661 
1662    vk_object_base_finish(&template->base);
1663    vk_free2(&device->vk.alloc, pAllocator, template);
1664 }
1665 
anv_UpdateDescriptorSetWithTemplate(VkDevice _device,VkDescriptorSet descriptorSet,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1666 void anv_UpdateDescriptorSetWithTemplate(
1667     VkDevice                                    _device,
1668     VkDescriptorSet                             descriptorSet,
1669     VkDescriptorUpdateTemplate                  descriptorUpdateTemplate,
1670     const void*                                 pData)
1671 {
1672    ANV_FROM_HANDLE(anv_device, device, _device);
1673    ANV_FROM_HANDLE(anv_descriptor_set, set, descriptorSet);
1674    ANV_FROM_HANDLE(anv_descriptor_update_template, template,
1675                    descriptorUpdateTemplate);
1676 
1677    anv_descriptor_set_write_template(device, set, NULL, template, pData);
1678 }
1679