1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include "drm-uapi/drm_fourcc.h"
31 
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35 #include "util/u_math.h"
36 
37 #include "vk_format_info.h"
38 
39 static isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,VkImageUsageFlags vk_usage,isl_surf_usage_flags_t isl_extra_usage,VkImageAspectFlagBits aspect)40 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
41                       VkImageUsageFlags vk_usage,
42                       isl_surf_usage_flags_t isl_extra_usage,
43                       VkImageAspectFlagBits aspect)
44 {
45    isl_surf_usage_flags_t isl_usage = isl_extra_usage;
46 
47    if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
48       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
49 
50    if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
51       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
52 
53    if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
54       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
55 
56    if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
57       isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
58 
59    /* Even if we're only using it for transfer operations, clears to depth and
60     * stencil images happen as depth and stencil so they need the right ISL
61     * usage bits or else things will fall apart.
62     */
63    switch (aspect) {
64    case VK_IMAGE_ASPECT_DEPTH_BIT:
65       isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
66       break;
67    case VK_IMAGE_ASPECT_STENCIL_BIT:
68       isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
69       break;
70    case VK_IMAGE_ASPECT_COLOR_BIT:
71    case VK_IMAGE_ASPECT_PLANE_0_BIT:
72    case VK_IMAGE_ASPECT_PLANE_1_BIT:
73    case VK_IMAGE_ASPECT_PLANE_2_BIT:
74       break;
75    default:
76       unreachable("bad VkImageAspect");
77    }
78 
79    if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
80       /* blorp implements transfers by sampling from the source image. */
81       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
82    }
83 
84    if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
85        aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
86       /* blorp implements transfers by rendering into the destination image.
87        * Only request this with color images, as we deal with depth/stencil
88        * formats differently. */
89       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
90    }
91 
92    return isl_usage;
93 }
94 
95 static isl_tiling_flags_t
choose_isl_tiling_flags(const struct gen_device_info * devinfo,const struct anv_image_create_info * anv_info,const struct isl_drm_modifier_info * isl_mod_info,bool legacy_scanout)96 choose_isl_tiling_flags(const struct gen_device_info *devinfo,
97                         const struct anv_image_create_info *anv_info,
98                         const struct isl_drm_modifier_info *isl_mod_info,
99                         bool legacy_scanout)
100 {
101    const VkImageCreateInfo *base_info = anv_info->vk_info;
102    isl_tiling_flags_t flags = 0;
103 
104    switch (base_info->tiling) {
105    default:
106       unreachable("bad VkImageTiling");
107    case VK_IMAGE_TILING_OPTIMAL:
108       flags = ISL_TILING_ANY_MASK;
109       break;
110    case VK_IMAGE_TILING_LINEAR:
111       flags = ISL_TILING_LINEAR_BIT;
112       break;
113    case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT:
114       assert(isl_mod_info);
115       flags = 1 << isl_mod_info->tiling;
116    }
117 
118    if (anv_info->isl_tiling_flags)
119       flags &= anv_info->isl_tiling_flags;
120 
121    if (legacy_scanout) {
122       isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT;
123       if (devinfo->has_tiling_uapi)
124          legacy_mask |= ISL_TILING_X_BIT;
125       flags &= legacy_mask;
126    }
127 
128    assert(flags);
129 
130    return flags;
131 }
132 
133 static void
add_surface(struct anv_image * image,struct anv_surface * surf,uint32_t plane)134 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
135 {
136    assert(surf->isl.size_B > 0); /* isl surface must be initialized */
137 
138    if (image->disjoint) {
139       surf->offset = align_u32(image->planes[plane].size,
140                                surf->isl.alignment_B);
141       /* Plane offset is always 0 when it's disjoint. */
142    } else {
143       surf->offset = align_u32(image->size, surf->isl.alignment_B);
144       /* Determine plane's offset only once when the first surface is added. */
145       if (image->planes[plane].size == 0)
146          image->planes[plane].offset = image->size;
147    }
148 
149    image->size = surf->offset + surf->isl.size_B;
150    image->planes[plane].size = (surf->offset + surf->isl.size_B) - image->planes[plane].offset;
151 
152    image->alignment = MAX2(image->alignment, surf->isl.alignment_B);
153    image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
154                                          surf->isl.alignment_B);
155 }
156 
157 /**
158  * Do hardware limitations require the image plane to use a shadow surface?
159  *
160  * If hardware limitations force us to use a shadow surface, then the same
161  * limitations may also constrain the tiling of the primary surface; therefore
162  * paramater @a inout_primary_tiling_flags.
163  *
164  * If the image plane is a separate stencil plane and if the user provided
165  * VkImageStencilUsageCreateInfoEXT, then @a usage must be stencilUsage.
166  *
167  * @see anv_image::planes[]::shadow_surface
168  */
169 static bool
anv_image_plane_needs_shadow_surface(const struct gen_device_info * devinfo,struct anv_format_plane plane_format,VkImageTiling vk_tiling,VkImageUsageFlags vk_plane_usage,VkImageCreateFlags vk_create_flags,isl_tiling_flags_t * inout_primary_tiling_flags)170 anv_image_plane_needs_shadow_surface(const struct gen_device_info *devinfo,
171                                      struct anv_format_plane plane_format,
172                                      VkImageTiling vk_tiling,
173                                      VkImageUsageFlags vk_plane_usage,
174                                      VkImageCreateFlags vk_create_flags,
175                                      isl_tiling_flags_t *inout_primary_tiling_flags)
176 {
177    if (devinfo->gen <= 8 &&
178        (vk_create_flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
179        vk_tiling == VK_IMAGE_TILING_OPTIMAL) {
180       /* We must fallback to a linear surface because we may not be able to
181        * correctly handle the offsets if tiled. (On gen9,
182        * RENDER_SURFACE_STATE::X/Y Offset are sufficient). To prevent garbage
183        * performance while texturing, we maintain a tiled shadow surface.
184        */
185       assert(isl_format_is_compressed(plane_format.isl_format));
186 
187       if (inout_primary_tiling_flags) {
188          *inout_primary_tiling_flags = ISL_TILING_LINEAR_BIT;
189       }
190 
191       return true;
192    }
193 
194    if (devinfo->gen <= 7 &&
195        plane_format.aspect == VK_IMAGE_ASPECT_STENCIL_BIT &&
196        (vk_plane_usage & VK_IMAGE_USAGE_SAMPLED_BIT)) {
197       /* gen7 can't sample from W-tiled surfaces. */
198       return true;
199    }
200 
201    return false;
202 }
203 
204 bool
anv_formats_ccs_e_compatible(const struct gen_device_info * devinfo,VkImageCreateFlags create_flags,VkFormat vk_format,VkImageTiling vk_tiling,const VkImageFormatListCreateInfoKHR * fmt_list)205 anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
206                              VkImageCreateFlags create_flags,
207                              VkFormat vk_format,
208                              VkImageTiling vk_tiling,
209                              const VkImageFormatListCreateInfoKHR *fmt_list)
210 {
211    enum isl_format format =
212       anv_get_isl_format(devinfo, vk_format,
213                          VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling);
214 
215    if (!isl_format_supports_ccs_e(devinfo, format))
216       return false;
217 
218    if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
219       return true;
220 
221    if (!fmt_list || fmt_list->viewFormatCount == 0)
222       return false;
223 
224    for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
225       enum isl_format view_format =
226          anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
227                             VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling);
228 
229       if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
230          return false;
231    }
232 
233    return true;
234 }
235 
236 /**
237  * For color images that have an auxiliary surface, request allocation for an
238  * additional buffer that mainly stores fast-clear values. Use of this buffer
239  * allows us to access the image's subresources while being aware of their
240  * fast-clear values in non-trivial cases (e.g., outside of a render pass in
241  * which a fast clear has occurred).
242  *
243  * In order to avoid having multiple clear colors for a single plane of an
244  * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
245  * the first slice (level 0, layer 0).  At the time of our testing (Jan 17,
246  * 2018), there were no known applications which would benefit from fast-
247  * clearing more than just the first slice.
248  *
249  * The fast clear portion of the image is laid out in the following order:
250  *
251  *  * 1 or 4 dwords (depending on hardware generation) for the clear color
252  *  * 1 dword for the anv_fast_clear_type of the clear color
253  *  * On gen9+, 1 dword per level and layer of the image (3D levels count
254  *    multiple layers) in level-major order for compression state.
255  *
256  * For the purpose of discoverability, the algorithm used to manage
257  * compression and fast-clears is described here:
258  *
259  *  * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
260  *    all of the values in the fast clear portion of the image are initialized
261  *    to default values.
262  *
263  *  * On fast-clear, the clear value is written into surface state and also
264  *    into the buffer and the fast clear type is set appropriately.  Both
265  *    setting the fast-clear value in the buffer and setting the fast-clear
266  *    type happen from the GPU using MI commands.
267  *
268  *  * Whenever a render or blorp operation is performed with CCS_E, we call
269  *    genX(cmd_buffer_mark_image_written) to set the compression state to
270  *    true (which is represented by UINT32_MAX).
271  *
272  *  * On pipeline barrier transitions, the worst-case transition is computed
273  *    from the image layouts.  The command streamer inspects the fast clear
274  *    type and compression state dwords and constructs a predicate.  The
275  *    worst-case resolve is performed with the given predicate and the fast
276  *    clear and compression state is set accordingly.
277  *
278  * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
279  * details on exactly what is allowed in what layouts.
280  *
281  * On gen7-9, we do not have a concept of indirect clear colors in hardware.
282  * In order to deal with this, we have to do some clear color management.
283  *
284  *  * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
285  *    value from the buffer into the surface state with MI commands.
286  *
287  *  * For any blorp operations, we pass the address to the clear value into
288  *    blorp and it knows to copy the clear color.
289  */
290 static void
add_aux_state_tracking_buffer(struct anv_image * image,uint32_t plane,const struct anv_device * device)291 add_aux_state_tracking_buffer(struct anv_image *image,
292                               uint32_t plane,
293                               const struct anv_device *device)
294 {
295    assert(image && device);
296    assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE &&
297           image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
298 
299    /* Compressed images must be tiled and therefore everything should be 4K
300     * aligned.  The CCS has the same alignment requirements.  This is good
301     * because we need at least dword-alignment for MI_LOAD/STORE operations.
302     */
303    assert(image->alignment % 4 == 0);
304    assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
305 
306    /* This buffer should be at the very end of the plane. */
307    if (image->disjoint) {
308       assert(image->planes[plane].size ==
309              (image->planes[plane].offset + image->planes[plane].size));
310    } else {
311       assert(image->size ==
312              (image->planes[plane].offset + image->planes[plane].size));
313    }
314 
315    const unsigned clear_color_state_size = device->info.gen >= 10 ?
316       device->isl_dev.ss.clear_color_state_size :
317       device->isl_dev.ss.clear_value_size;
318 
319    /* Clear color and fast clear type */
320    unsigned state_size = clear_color_state_size + 4;
321 
322    /* We only need to track compression on CCS_E surfaces. */
323    if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
324       if (image->type == VK_IMAGE_TYPE_3D) {
325          for (uint32_t l = 0; l < image->levels; l++)
326             state_size += anv_minify(image->extent.depth, l) * 4;
327       } else {
328          state_size += image->levels * image->array_size * 4;
329       }
330    }
331 
332    /* Add some padding to make sure the fast clear color state buffer starts at
333     * a 4K alignment. We believe that 256B might be enough, but due to lack of
334     * testing we will leave this as 4K for now.
335     */
336    image->planes[plane].size = align_u64(image->planes[plane].size, 4096);
337    image->size = align_u64(image->size, 4096);
338 
339    assert(image->planes[plane].offset % 4096 == 0);
340 
341    image->planes[plane].fast_clear_state_offset =
342       image->planes[plane].offset + image->planes[plane].size;
343 
344    image->planes[plane].size += state_size;
345    image->size += state_size;
346 }
347 
348 /**
349  * The return code indicates whether creation of the VkImage should continue
350  * or fail, not whether the creation of the aux surface succeeded.  If the aux
351  * surface is not required (for example, by neither hardware nor DRM format
352  * modifier), then this may return VK_SUCCESS when creation of the aux surface
353  * fails.
354  */
355 static VkResult
add_aux_surface_if_supported(struct anv_device * device,struct anv_image * image,uint32_t plane,struct anv_format_plane plane_format,const VkImageFormatListCreateInfoKHR * fmt_list,isl_surf_usage_flags_t isl_extra_usage_flags)356 add_aux_surface_if_supported(struct anv_device *device,
357                              struct anv_image *image,
358                              uint32_t plane,
359                              struct anv_format_plane plane_format,
360                              const VkImageFormatListCreateInfoKHR *fmt_list,
361                              isl_surf_usage_flags_t isl_extra_usage_flags)
362 {
363    VkImageAspectFlags aspect = plane_format.aspect;
364    bool ok;
365 
366    /* The aux surface must not be already added. */
367    assert(image->planes[plane].aux_surface.isl.size_B == 0);
368 
369    if ((isl_extra_usage_flags & ISL_SURF_USAGE_DISABLE_AUX_BIT))
370       return VK_SUCCESS;
371 
372    if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
373       /* We don't advertise that depth buffers could be used as storage
374        * images.
375        */
376        assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
377 
378       /* Allow the user to control HiZ enabling. Disable by default on gen7
379        * because resolves are not currently implemented pre-BDW.
380        */
381       if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
382          /* It will never be used as an attachment, HiZ is pointless. */
383          return VK_SUCCESS;
384       }
385 
386       if (device->info.gen == 7) {
387          anv_perf_warn(device, image, "Implement gen7 HiZ");
388          return VK_SUCCESS;
389       }
390 
391       if (image->levels > 1) {
392          anv_perf_warn(device, image, "Enable multi-LOD HiZ");
393          return VK_SUCCESS;
394       }
395 
396       if (device->info.gen == 8 && image->samples > 1) {
397          anv_perf_warn(device, image, "Enable gen8 multisampled HiZ");
398          return VK_SUCCESS;
399       }
400 
401       if (unlikely(INTEL_DEBUG & DEBUG_NO_HIZ))
402          return VK_SUCCESS;
403 
404       ok = isl_surf_get_hiz_surf(&device->isl_dev,
405                                  &image->planes[plane].surface.isl,
406                                  &image->planes[plane].aux_surface.isl);
407       assert(ok);
408       if (!isl_surf_supports_ccs(&device->isl_dev,
409                                  &image->planes[plane].surface.isl)) {
410          image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
411       } else if (image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
412                                  VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) &&
413                  image->samples == 1) {
414          /* If it's used as an input attachment or a texture and it's
415           * single-sampled (this is a requirement for HiZ+CCS write-through
416           * mode), use write-through mode so that we don't need to resolve
417           * before texturing.  This will make depth testing a bit slower but
418           * texturing faster.
419           *
420           * TODO: This is a heuristic trade-off; we haven't tuned it at all.
421           */
422          assert(device->info.gen >= 12);
423          image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS_WT;
424       } else {
425          assert(device->info.gen >= 12);
426          image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS;
427       }
428       add_surface(image, &image->planes[plane].aux_surface, plane);
429    } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples == 1) {
430       if (image->n_planes != 1) {
431          /* Multiplanar images seem to hit a sampler bug with CCS and R16G16
432           * format. (Putting the clear state a page/4096bytes further fixes
433           * the issue).
434           */
435          return VK_SUCCESS;
436       }
437 
438       if ((image->create_flags & VK_IMAGE_CREATE_ALIAS_BIT)) {
439          /* The image may alias a plane of a multiplanar image. Above we ban
440           * CCS on multiplanar images.
441           */
442          return VK_SUCCESS;
443       }
444 
445       if (!isl_format_supports_rendering(&device->info,
446                                          plane_format.isl_format)) {
447          /* Disable CCS because it is not useful (we can't render to the image
448           * with CCS enabled).  While it may be technically possible to enable
449           * CCS for this case, we currently don't have things hooked up to get
450           * it working.
451           */
452          anv_perf_warn(device, image,
453                        "This image format doesn't support rendering. "
454                        "Not allocating an CCS buffer.");
455          return VK_SUCCESS;
456       }
457 
458       if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
459          return VK_SUCCESS;
460 
461       ok = isl_surf_get_ccs_surf(&device->isl_dev,
462                                  &image->planes[plane].surface.isl,
463                                  &image->planes[plane].aux_surface.isl,
464                                  NULL, 0);
465       if (!ok)
466          return VK_SUCCESS;
467 
468       /* Choose aux usage */
469       if (!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
470           anv_formats_ccs_e_compatible(&device->info,
471                                        image->create_flags,
472                                        image->vk_format,
473                                        image->tiling,
474                                        fmt_list)) {
475          /* For images created without MUTABLE_FORMAT_BIT set, we know that
476           * they will always be used with the original format.  In particular,
477           * they will always be used with a format that supports color
478           * compression.  If it's never used as a storage image, then it will
479           * only be used through the sampler or the as a render target.  This
480           * means that it's safe to just leave compression on at all times for
481           * these formats.
482           */
483          image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
484       } else if (device->info.gen >= 12) {
485          anv_perf_warn(device, image,
486                        "The CCS_D aux mode is not yet handled on "
487                        "Gen12+. Not allocating a CCS buffer.");
488          image->planes[plane].aux_surface.isl.size_B = 0;
489          return VK_SUCCESS;
490       } else {
491          image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D;
492       }
493 
494       if (!device->physical->has_implicit_ccs)
495          add_surface(image, &image->planes[plane].aux_surface, plane);
496 
497       add_aux_state_tracking_buffer(image, plane, device);
498    } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples > 1) {
499       assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
500       ok = isl_surf_get_mcs_surf(&device->isl_dev,
501                                  &image->planes[plane].surface.isl,
502                                  &image->planes[plane].aux_surface.isl);
503       if (!ok)
504          return VK_SUCCESS;
505 
506       image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
507       add_surface(image, &image->planes[plane].aux_surface, plane);
508       add_aux_state_tracking_buffer(image, plane, device);
509    }
510 
511    return VK_SUCCESS;
512 }
513 
514 /**
515  * Initialize the anv_image::*_surface selected by \a aspect. Then update the
516  * image's memory requirements (that is, the image's size and alignment).
517  */
518 static VkResult
make_surface(struct anv_device * device,struct anv_image * image,const VkImageFormatListCreateInfoKHR * fmt_list,uint32_t stride,isl_tiling_flags_t tiling_flags,isl_surf_usage_flags_t isl_extra_usage_flags,VkImageAspectFlagBits aspect)519 make_surface(struct anv_device *device,
520              struct anv_image *image,
521              const VkImageFormatListCreateInfoKHR *fmt_list,
522              uint32_t stride,
523              isl_tiling_flags_t tiling_flags,
524              isl_surf_usage_flags_t isl_extra_usage_flags,
525              VkImageAspectFlagBits aspect)
526 {
527    VkResult result;
528    bool ok;
529 
530    static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
531       [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
532       [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
533       [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
534    };
535 
536    image->extent = anv_sanitize_image_extent(image->type, image->extent);
537 
538    const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
539    const  struct anv_format_plane plane_format =
540       anv_get_format_plane(&device->info, image->vk_format, aspect, image->tiling);
541    struct anv_surface *anv_surf = &image->planes[plane].surface;
542 
543    VkImageUsageFlags plane_vk_usage =
544       aspect == VK_IMAGE_ASPECT_STENCIL_BIT ?
545       image->stencil_usage : image->usage;
546 
547    const isl_surf_usage_flags_t usage =
548       choose_isl_surf_usage(image->create_flags, plane_vk_usage,
549                             isl_extra_usage_flags, aspect);
550 
551    bool needs_shadow =
552       anv_image_plane_needs_shadow_surface(&device->info,
553                                    plane_format,
554                                    image->tiling,
555                                    plane_vk_usage,
556                                    image->create_flags,
557                                    &tiling_flags);
558 
559    ok = isl_surf_init(&device->isl_dev, &anv_surf->isl,
560       .dim = vk_to_isl_surf_dim[image->type],
561       .format = plane_format.isl_format,
562       .width = image->extent.width / plane_format.denominator_scales[0],
563       .height = image->extent.height / plane_format.denominator_scales[1],
564       .depth = image->extent.depth,
565       .levels = image->levels,
566       .array_len = image->array_size,
567       .samples = image->samples,
568       .min_alignment_B = 0,
569       .row_pitch_B = stride,
570       .usage = usage,
571       .tiling_flags = tiling_flags);
572 
573    if (!ok)
574       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
575 
576    image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
577 
578    add_surface(image, anv_surf, plane);
579 
580    if (needs_shadow) {
581       ok = isl_surf_init(&device->isl_dev, &image->planes[plane].shadow_surface.isl,
582          .dim = vk_to_isl_surf_dim[image->type],
583          .format = plane_format.isl_format,
584          .width = image->extent.width,
585          .height = image->extent.height,
586          .depth = image->extent.depth,
587          .levels = image->levels,
588          .array_len = image->array_size,
589          .samples = image->samples,
590          .min_alignment_B = 0,
591          .row_pitch_B = stride,
592          .usage = ISL_SURF_USAGE_TEXTURE_BIT |
593                   (usage & ISL_SURF_USAGE_CUBE_BIT),
594          .tiling_flags = ISL_TILING_ANY_MASK);
595 
596       /* isl_surf_init() will fail only if provided invalid input. Invalid input
597        * is illegal in Vulkan.
598        */
599       assert(ok);
600 
601       add_surface(image, &image->planes[plane].shadow_surface, plane);
602    }
603 
604    result = add_aux_surface_if_supported(device, image, plane, plane_format,
605                                          fmt_list, isl_extra_usage_flags);
606    if (result != VK_SUCCESS)
607       return result;
608 
609    assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
610 
611    /* Upper bound of the last surface should be smaller than the plane's
612     * size.
613     */
614    assert((MAX2(image->planes[plane].surface.offset,
615                 image->planes[plane].aux_surface.offset) +
616            (image->planes[plane].aux_surface.isl.size_B > 0 ?
617             image->planes[plane].aux_surface.isl.size_B :
618             image->planes[plane].surface.isl.size_B)) <=
619           (image->planes[plane].offset + image->planes[plane].size));
620 
621    if (image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE) {
622       /* assert(image->planes[plane].fast_clear_state_offset == */
623       /*        (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size_B)); */
624       assert(image->planes[plane].fast_clear_state_offset <
625              (image->planes[plane].offset + image->planes[plane].size));
626    }
627 
628    return VK_SUCCESS;
629 }
630 
631 static uint32_t
score_drm_format_mod(uint64_t modifier)632 score_drm_format_mod(uint64_t modifier)
633 {
634    switch (modifier) {
635    case DRM_FORMAT_MOD_LINEAR: return 1;
636    case I915_FORMAT_MOD_X_TILED: return 2;
637    case I915_FORMAT_MOD_Y_TILED: return 3;
638    case I915_FORMAT_MOD_Y_TILED_CCS: return 4;
639    default: unreachable("bad DRM format modifier");
640    }
641 }
642 
643 static const struct isl_drm_modifier_info *
choose_drm_format_mod(const struct anv_physical_device * device,uint32_t modifier_count,const uint64_t * modifiers)644 choose_drm_format_mod(const struct anv_physical_device *device,
645                       uint32_t modifier_count, const uint64_t *modifiers)
646 {
647    uint64_t best_mod = UINT64_MAX;
648    uint32_t best_score = 0;
649 
650    for (uint32_t i = 0; i < modifier_count; ++i) {
651       uint32_t score = score_drm_format_mod(modifiers[i]);
652       if (score > best_score) {
653          best_mod = modifiers[i];
654          best_score = score;
655       }
656    }
657 
658    if (best_score > 0)
659       return isl_drm_modifier_get_info(best_mod);
660    else
661       return NULL;
662 }
663 
664 VkResult
anv_image_create(VkDevice _device,const struct anv_image_create_info * create_info,const VkAllocationCallbacks * alloc,VkImage * pImage)665 anv_image_create(VkDevice _device,
666                  const struct anv_image_create_info *create_info,
667                  const VkAllocationCallbacks* alloc,
668                  VkImage *pImage)
669 {
670    ANV_FROM_HANDLE(anv_device, device, _device);
671    const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
672    const struct isl_drm_modifier_info *isl_mod_info = NULL;
673    struct anv_image *image = NULL;
674    VkResult r;
675 
676    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
677 
678    const struct wsi_image_create_info *wsi_info =
679       vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
680 
681    if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
682       const VkImageDrmFormatModifierListCreateInfoEXT *mod_info =
683          vk_find_struct_const(pCreateInfo->pNext,
684                               IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
685       isl_mod_info = choose_drm_format_mod(device->physical,
686                                            mod_info->drmFormatModifierCount,
687                                            mod_info->pDrmFormatModifiers);
688       assert(isl_mod_info);
689    }
690 
691    anv_assert(pCreateInfo->mipLevels > 0);
692    anv_assert(pCreateInfo->arrayLayers > 0);
693    anv_assert(pCreateInfo->samples > 0);
694    anv_assert(pCreateInfo->extent.width > 0);
695    anv_assert(pCreateInfo->extent.height > 0);
696    anv_assert(pCreateInfo->extent.depth > 0);
697 
698    image = vk_zalloc2(&device->vk.alloc, alloc, sizeof(*image), 8,
699                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
700    if (!image)
701       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
702 
703    vk_object_base_init(&device->vk, &image->base, VK_OBJECT_TYPE_IMAGE);
704    image->type = pCreateInfo->imageType;
705    image->extent = pCreateInfo->extent;
706    image->vk_format = pCreateInfo->format;
707    image->format = anv_get_format(pCreateInfo->format);
708    image->aspects = vk_format_aspects(image->vk_format);
709    image->levels = pCreateInfo->mipLevels;
710    image->array_size = pCreateInfo->arrayLayers;
711    image->samples = pCreateInfo->samples;
712    image->usage = pCreateInfo->usage;
713    image->create_flags = pCreateInfo->flags;
714    image->tiling = pCreateInfo->tiling;
715    image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT;
716    image->needs_set_tiling = wsi_info && wsi_info->scanout;
717    image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
718                                           DRM_FORMAT_MOD_INVALID;
719 
720    if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
721       image->stencil_usage = pCreateInfo->usage;
722       const VkImageStencilUsageCreateInfoEXT *stencil_usage_info =
723          vk_find_struct_const(pCreateInfo->pNext,
724                               IMAGE_STENCIL_USAGE_CREATE_INFO_EXT);
725       if (stencil_usage_info)
726          image->stencil_usage = stencil_usage_info->stencilUsage;
727    }
728 
729    /* In case of external format, We don't know format yet,
730     * so skip the rest for now.
731     */
732    if (create_info->external_format) {
733       image->external_format = true;
734       *pImage = anv_image_to_handle(image);
735       return VK_SUCCESS;
736    }
737 
738    const struct anv_format *format = anv_get_format(image->vk_format);
739    assert(format != NULL);
740 
741    const isl_tiling_flags_t isl_tiling_flags =
742       choose_isl_tiling_flags(&device->info, create_info, isl_mod_info,
743                               image->needs_set_tiling);
744 
745    image->n_planes = format->n_planes;
746 
747    const VkImageFormatListCreateInfoKHR *fmt_list =
748       vk_find_struct_const(pCreateInfo->pNext,
749                            IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
750 
751    uint32_t b;
752    for_each_bit(b, image->aspects) {
753       r = make_surface(device, image, fmt_list, create_info->stride,
754                        isl_tiling_flags, create_info->isl_extra_usage_flags,
755                        (1 << b));
756       if (r != VK_SUCCESS)
757          goto fail;
758    }
759 
760    *pImage = anv_image_to_handle(image);
761 
762    return VK_SUCCESS;
763 
764 fail:
765    if (image)
766       vk_free2(&device->vk.alloc, alloc, image);
767 
768    return r;
769 }
770 
771 static struct anv_image *
anv_swapchain_get_image(VkSwapchainKHR swapchain,uint32_t index)772 anv_swapchain_get_image(VkSwapchainKHR swapchain,
773                         uint32_t index)
774 {
775    uint32_t n_images = index + 1;
776    VkImage *images = malloc(sizeof(*images) * n_images);
777    VkResult result = wsi_common_get_images(swapchain, &n_images, images);
778 
779    if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
780       free(images);
781       return NULL;
782    }
783 
784    ANV_FROM_HANDLE(anv_image, image, images[index]);
785    free(images);
786 
787    return image;
788 }
789 
790 static VkResult
anv_image_from_swapchain(VkDevice device,const VkImageCreateInfo * pCreateInfo,const VkImageSwapchainCreateInfoKHR * swapchain_info,const VkAllocationCallbacks * pAllocator,VkImage * pImage)791 anv_image_from_swapchain(VkDevice device,
792                          const VkImageCreateInfo *pCreateInfo,
793                          const VkImageSwapchainCreateInfoKHR *swapchain_info,
794                          const VkAllocationCallbacks *pAllocator,
795                          VkImage *pImage)
796 {
797    struct anv_image *swapchain_image = anv_swapchain_get_image(swapchain_info->swapchain, 0);
798    assert(swapchain_image);
799 
800    assert(swapchain_image->type == pCreateInfo->imageType);
801    assert(swapchain_image->vk_format == pCreateInfo->format);
802    assert(swapchain_image->extent.width == pCreateInfo->extent.width);
803    assert(swapchain_image->extent.height == pCreateInfo->extent.height);
804    assert(swapchain_image->extent.depth == pCreateInfo->extent.depth);
805    assert(swapchain_image->array_size == pCreateInfo->arrayLayers);
806    /* Color attachment is added by the wsi code. */
807    assert(swapchain_image->usage == (pCreateInfo->usage | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT));
808 
809    VkImageCreateInfo local_create_info;
810    local_create_info = *pCreateInfo;
811    local_create_info.pNext = NULL;
812    /* The following parameters are implictly selected by the wsi code. */
813    local_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
814    local_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
815    local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
816 
817    /* If the image has a particular modifier, specify that modifier. */
818    VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = {
819       .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT,
820       .drmFormatModifierCount = 1,
821       .pDrmFormatModifiers = &swapchain_image->drm_format_mod,
822    };
823    if (swapchain_image->drm_format_mod != DRM_FORMAT_MOD_INVALID)
824       __vk_append_struct(&local_create_info, &local_modifier_info);
825 
826    return anv_image_create(device,
827       &(struct anv_image_create_info) {
828          .vk_info = &local_create_info,
829          .external_format = swapchain_image->external_format,
830       },
831       pAllocator,
832       pImage);
833 }
834 
835 VkResult
anv_CreateImage(VkDevice device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)836 anv_CreateImage(VkDevice device,
837                 const VkImageCreateInfo *pCreateInfo,
838                 const VkAllocationCallbacks *pAllocator,
839                 VkImage *pImage)
840 {
841    const VkExternalMemoryImageCreateInfo *create_info =
842       vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_IMAGE_CREATE_INFO);
843 
844    if (create_info && (create_info->handleTypes &
845        VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))
846       return anv_image_from_external(device, pCreateInfo, create_info,
847                                      pAllocator, pImage);
848 
849    bool use_external_format = false;
850    const VkExternalFormatANDROID *ext_format =
851       vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_FORMAT_ANDROID);
852 
853    /* "If externalFormat is zero, the effect is as if the
854     * VkExternalFormatANDROID structure was not present. Otherwise, the image
855     * will have the specified external format."
856     */
857    if (ext_format && ext_format->externalFormat != 0)
858       use_external_format = true;
859 
860    const VkNativeBufferANDROID *gralloc_info =
861       vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
862    if (gralloc_info)
863       return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
864                                     pAllocator, pImage);
865 
866    const VkImageSwapchainCreateInfoKHR *swapchain_info =
867       vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
868    if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE)
869       return anv_image_from_swapchain(device, pCreateInfo, swapchain_info,
870                                       pAllocator, pImage);
871 
872    return anv_image_create(device,
873       &(struct anv_image_create_info) {
874          .vk_info = pCreateInfo,
875          .external_format = use_external_format,
876       },
877       pAllocator,
878       pImage);
879 }
880 
881 void
anv_DestroyImage(VkDevice _device,VkImage _image,const VkAllocationCallbacks * pAllocator)882 anv_DestroyImage(VkDevice _device, VkImage _image,
883                  const VkAllocationCallbacks *pAllocator)
884 {
885    ANV_FROM_HANDLE(anv_device, device, _device);
886    ANV_FROM_HANDLE(anv_image, image, _image);
887 
888    if (!image)
889       return;
890 
891    for (uint32_t p = 0; p < image->n_planes; ++p) {
892       if (image->planes[p].bo_is_owned) {
893          assert(image->planes[p].address.bo != NULL);
894          anv_device_release_bo(device, image->planes[p].address.bo);
895       }
896    }
897 
898    vk_object_base_finish(&image->base);
899    vk_free2(&device->vk.alloc, pAllocator, image);
900 }
901 
anv_image_bind_memory_plane(struct anv_device * device,struct anv_image * image,uint32_t plane,struct anv_device_memory * memory,uint32_t memory_offset)902 static void anv_image_bind_memory_plane(struct anv_device *device,
903                                         struct anv_image *image,
904                                         uint32_t plane,
905                                         struct anv_device_memory *memory,
906                                         uint32_t memory_offset)
907 {
908    assert(!image->planes[plane].bo_is_owned);
909 
910    if (!memory) {
911       image->planes[plane].address = ANV_NULL_ADDRESS;
912       return;
913    }
914 
915    image->planes[plane].address = (struct anv_address) {
916       .bo = memory->bo,
917       .offset = memory_offset,
918    };
919 
920    /* If we're on a platform that uses implicit CCS and our buffer does not
921     * have any implicit CCS data, disable compression on that image.
922     */
923    if (device->physical->has_implicit_ccs && !memory->bo->has_implicit_ccs)
924       image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
925 }
926 
927 /* We are binding AHardwareBuffer. Get a description, resolve the
928  * format and prepare anv_image properly.
929  */
930 static void
resolve_ahw_image(struct anv_device * device,struct anv_image * image,struct anv_device_memory * mem)931 resolve_ahw_image(struct anv_device *device,
932                   struct anv_image *image,
933                   struct anv_device_memory *mem)
934 {
935 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
936    assert(mem->ahw);
937    AHardwareBuffer_Desc desc;
938    AHardwareBuffer_describe(mem->ahw, &desc);
939 
940    /* Check tiling. */
941    int i915_tiling = anv_gem_get_tiling(device, mem->bo->gem_handle);
942    VkImageTiling vk_tiling;
943    isl_tiling_flags_t isl_tiling_flags = 0;
944 
945    switch (i915_tiling) {
946    case I915_TILING_NONE:
947       vk_tiling = VK_IMAGE_TILING_LINEAR;
948       isl_tiling_flags = ISL_TILING_LINEAR_BIT;
949       break;
950    case I915_TILING_X:
951       vk_tiling = VK_IMAGE_TILING_OPTIMAL;
952       isl_tiling_flags = ISL_TILING_X_BIT;
953       break;
954    case I915_TILING_Y:
955       vk_tiling = VK_IMAGE_TILING_OPTIMAL;
956       isl_tiling_flags = ISL_TILING_Y0_BIT;
957       break;
958    case -1:
959    default:
960       unreachable("Invalid tiling flags.");
961    }
962 
963    assert(vk_tiling == VK_IMAGE_TILING_LINEAR ||
964           vk_tiling == VK_IMAGE_TILING_OPTIMAL);
965 
966    /* Check format. */
967    VkFormat vk_format = vk_format_from_android(desc.format, desc.usage);
968    enum isl_format isl_fmt = anv_get_isl_format(&device->info,
969                                                 vk_format,
970                                                 VK_IMAGE_ASPECT_COLOR_BIT,
971                                                 vk_tiling);
972    assert(isl_fmt != ISL_FORMAT_UNSUPPORTED);
973 
974    /* Handle RGB(X)->RGBA fallback. */
975    switch (desc.format) {
976    case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
977    case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
978       if (isl_format_is_rgb(isl_fmt))
979          isl_fmt = isl_format_rgb_to_rgba(isl_fmt);
980       break;
981    }
982 
983    /* Now we are able to fill anv_image fields properly and create
984     * isl_surface for it.
985     */
986    image->vk_format = vk_format;
987    image->format = anv_get_format(vk_format);
988    image->aspects = vk_format_aspects(image->vk_format);
989    image->n_planes = image->format->n_planes;
990 
991    uint32_t stride = desc.stride *
992                      (isl_format_get_layout(isl_fmt)->bpb / 8);
993 
994    uint32_t b;
995    for_each_bit(b, image->aspects) {
996       VkResult r = make_surface(device, image, NULL, stride, isl_tiling_flags,
997                                 ISL_SURF_USAGE_DISABLE_AUX_BIT, (1 << b));
998       assert(r == VK_SUCCESS);
999    }
1000 #endif
1001 }
1002 
anv_BindImageMemory(VkDevice _device,VkImage _image,VkDeviceMemory _memory,VkDeviceSize memoryOffset)1003 VkResult anv_BindImageMemory(
1004     VkDevice                                    _device,
1005     VkImage                                     _image,
1006     VkDeviceMemory                              _memory,
1007     VkDeviceSize                                memoryOffset)
1008 {
1009    ANV_FROM_HANDLE(anv_device, device, _device);
1010    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1011    ANV_FROM_HANDLE(anv_image, image, _image);
1012 
1013    if (mem->ahw)
1014       resolve_ahw_image(device, image, mem);
1015 
1016    uint32_t aspect_bit;
1017    anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
1018       uint32_t plane =
1019          anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
1020       anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
1021    }
1022 
1023    return VK_SUCCESS;
1024 }
1025 
anv_BindImageMemory2(VkDevice _device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)1026 VkResult anv_BindImageMemory2(
1027     VkDevice                                    _device,
1028     uint32_t                                    bindInfoCount,
1029     const VkBindImageMemoryInfo*                pBindInfos)
1030 {
1031    ANV_FROM_HANDLE(anv_device, device, _device);
1032 
1033    for (uint32_t i = 0; i < bindInfoCount; i++) {
1034       const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
1035       ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
1036       ANV_FROM_HANDLE(anv_image, image, bind_info->image);
1037 
1038       /* Resolve will alter the image's aspects, do this first. */
1039       if (mem && mem->ahw)
1040          resolve_ahw_image(device, image, mem);
1041 
1042       VkImageAspectFlags aspects = image->aspects;
1043       vk_foreach_struct_const(s, bind_info->pNext) {
1044          switch (s->sType) {
1045          case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
1046             const VkBindImagePlaneMemoryInfo *plane_info =
1047                (const VkBindImagePlaneMemoryInfo *) s;
1048 
1049             aspects = plane_info->planeAspect;
1050             break;
1051          }
1052          case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: {
1053             const VkBindImageMemorySwapchainInfoKHR *swapchain_info =
1054                (const VkBindImageMemorySwapchainInfoKHR *) s;
1055             struct anv_image *swapchain_image =
1056                anv_swapchain_get_image(swapchain_info->swapchain,
1057                                        swapchain_info->imageIndex);
1058             assert(swapchain_image);
1059             assert(image->aspects == swapchain_image->aspects);
1060             assert(mem == NULL);
1061 
1062             uint32_t aspect_bit;
1063             anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
1064                uint32_t plane =
1065                   anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
1066                struct anv_device_memory mem = {
1067                   .bo = swapchain_image->planes[plane].address.bo,
1068                };
1069                anv_image_bind_memory_plane(device, image, plane,
1070                                            &mem, bind_info->memoryOffset);
1071             }
1072             break;
1073          }
1074          default:
1075             anv_debug_ignored_stype(s->sType);
1076             break;
1077          }
1078       }
1079 
1080       /* VkBindImageMemorySwapchainInfoKHR requires memory to be
1081        * VK_NULL_HANDLE. In such case, just carry one with the next bind
1082        * item.
1083        */
1084       if (!mem)
1085          continue;
1086 
1087       uint32_t aspect_bit;
1088       anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
1089          uint32_t plane =
1090             anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
1091          anv_image_bind_memory_plane(device, image, plane,
1092                                      mem, bind_info->memoryOffset);
1093       }
1094    }
1095 
1096    return VK_SUCCESS;
1097 }
1098 
anv_GetImageSubresourceLayout(VkDevice device,VkImage _image,const VkImageSubresource * subresource,VkSubresourceLayout * layout)1099 void anv_GetImageSubresourceLayout(
1100     VkDevice                                    device,
1101     VkImage                                     _image,
1102     const VkImageSubresource*                   subresource,
1103     VkSubresourceLayout*                        layout)
1104 {
1105    ANV_FROM_HANDLE(anv_image, image, _image);
1106 
1107    const struct anv_surface *surface;
1108    if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT &&
1109        image->drm_format_mod != DRM_FORMAT_MOD_INVALID &&
1110        isl_drm_modifier_has_aux(image->drm_format_mod)) {
1111       surface = &image->planes[0].aux_surface;
1112    } else {
1113       uint32_t plane = anv_image_aspect_to_plane(image->aspects,
1114                                                  subresource->aspectMask);
1115       surface = &image->planes[plane].surface;
1116    }
1117 
1118    assert(__builtin_popcount(subresource->aspectMask) == 1);
1119 
1120    layout->offset = surface->offset;
1121    layout->rowPitch = surface->isl.row_pitch_B;
1122    layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
1123    layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
1124 
1125    if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
1126       assert(surface->isl.tiling == ISL_TILING_LINEAR);
1127 
1128       uint32_t offset_B;
1129       isl_surf_get_image_offset_B_tile_sa(&surface->isl,
1130                                           subresource->mipLevel,
1131                                           subresource->arrayLayer,
1132                                           0 /* logical_z_offset_px */,
1133                                           &offset_B, NULL, NULL);
1134       layout->offset += offset_B;
1135       layout->size = layout->rowPitch * anv_minify(image->extent.height,
1136                                                    subresource->mipLevel);
1137    } else {
1138       layout->size = surface->isl.size_B;
1139    }
1140 }
1141 
anv_GetImageDrmFormatModifierPropertiesEXT(VkDevice device,VkImage _image,VkImageDrmFormatModifierPropertiesEXT * pProperties)1142 VkResult anv_GetImageDrmFormatModifierPropertiesEXT(
1143     VkDevice                                    device,
1144     VkImage                                     _image,
1145     VkImageDrmFormatModifierPropertiesEXT*      pProperties)
1146 {
1147    ANV_FROM_HANDLE(anv_image, image, _image);
1148 
1149    assert(pProperties->sType ==
1150           VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT);
1151 
1152    pProperties->drmFormatModifier = image->drm_format_mod;
1153 
1154    return VK_SUCCESS;
1155 }
1156 
1157 static VkImageUsageFlags
vk_image_layout_to_usage_flags(VkImageLayout layout,VkImageAspectFlagBits aspect)1158 vk_image_layout_to_usage_flags(VkImageLayout layout,
1159                                VkImageAspectFlagBits aspect)
1160 {
1161    assert(util_bitcount(aspect) == 1);
1162 
1163    switch (layout) {
1164    case VK_IMAGE_LAYOUT_UNDEFINED:
1165    case VK_IMAGE_LAYOUT_PREINITIALIZED:
1166       return 0u;
1167 
1168    case VK_IMAGE_LAYOUT_GENERAL:
1169       return ~0u;
1170 
1171    case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
1172       assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1173       return VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1174 
1175    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
1176       assert(aspect & (VK_IMAGE_ASPECT_DEPTH_BIT |
1177                        VK_IMAGE_ASPECT_STENCIL_BIT));
1178       return VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
1179 
1180    case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL:
1181       assert(aspect & VK_IMAGE_ASPECT_DEPTH_BIT);
1182       return vk_image_layout_to_usage_flags(
1183          VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect);
1184 
1185    case VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL:
1186       assert(aspect & VK_IMAGE_ASPECT_STENCIL_BIT);
1187       return vk_image_layout_to_usage_flags(
1188          VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect);
1189 
1190    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
1191       assert(aspect & (VK_IMAGE_ASPECT_DEPTH_BIT |
1192                        VK_IMAGE_ASPECT_STENCIL_BIT));
1193       return VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT |
1194              VK_IMAGE_USAGE_SAMPLED_BIT |
1195              VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
1196 
1197    case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL:
1198       assert(aspect & VK_IMAGE_ASPECT_DEPTH_BIT);
1199       return vk_image_layout_to_usage_flags(
1200          VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect);
1201 
1202    case VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL:
1203       assert(aspect & VK_IMAGE_ASPECT_STENCIL_BIT);
1204       return vk_image_layout_to_usage_flags(
1205          VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect);
1206 
1207    case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
1208       return VK_IMAGE_USAGE_SAMPLED_BIT |
1209              VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
1210 
1211    case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
1212       return VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
1213 
1214    case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
1215       return VK_IMAGE_USAGE_TRANSFER_DST_BIT;
1216 
1217    case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
1218       if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1219          return vk_image_layout_to_usage_flags(
1220             VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect);
1221       } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
1222          return vk_image_layout_to_usage_flags(
1223             VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect);
1224       } else {
1225          assert(!"Must be a depth/stencil aspect");
1226          return 0;
1227       }
1228 
1229    case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
1230       if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1231          return vk_image_layout_to_usage_flags(
1232             VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, aspect);
1233       } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
1234          return vk_image_layout_to_usage_flags(
1235             VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, aspect);
1236       } else {
1237          assert(!"Must be a depth/stencil aspect");
1238          return 0;
1239       }
1240 
1241    case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
1242       assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
1243       /* This needs to be handled specially by the caller */
1244       return 0;
1245 
1246    case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
1247       assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
1248       return vk_image_layout_to_usage_flags(VK_IMAGE_LAYOUT_GENERAL, aspect);
1249 
1250    case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV:
1251       assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
1252       return VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV;
1253 
1254    case VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT:
1255       assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
1256       return VK_IMAGE_USAGE_FRAGMENT_DENSITY_MAP_BIT_EXT;
1257 
1258    case VK_IMAGE_LAYOUT_MAX_ENUM:
1259       unreachable("Invalid image layout.");
1260    }
1261 
1262    unreachable("Invalid image layout.");
1263 }
1264 
1265 static bool
vk_image_layout_is_read_only(VkImageLayout layout,VkImageAspectFlagBits aspect)1266 vk_image_layout_is_read_only(VkImageLayout layout,
1267                              VkImageAspectFlagBits aspect)
1268 {
1269    assert(util_bitcount(aspect) == 1);
1270 
1271    switch (layout) {
1272    case VK_IMAGE_LAYOUT_UNDEFINED:
1273    case VK_IMAGE_LAYOUT_PREINITIALIZED:
1274       return true; /* These are only used for layout transitions */
1275 
1276    case VK_IMAGE_LAYOUT_GENERAL:
1277    case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
1278    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
1279    case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
1280    case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
1281    case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL:
1282    case VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL:
1283       return false;
1284 
1285    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
1286    case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
1287    case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
1288    case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
1289    case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV:
1290    case VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT:
1291    case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL:
1292    case VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL:
1293       return true;
1294 
1295    case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
1296       return aspect == VK_IMAGE_ASPECT_DEPTH_BIT;
1297 
1298    case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
1299       return aspect == VK_IMAGE_ASPECT_STENCIL_BIT;
1300 
1301    case VK_IMAGE_LAYOUT_MAX_ENUM:
1302       unreachable("Invalid image layout.");
1303    }
1304 
1305    unreachable("Invalid image layout.");
1306 }
1307 
1308 /**
1309  * This function returns the assumed isl_aux_state for a given VkImageLayout.
1310  * Because Vulkan image layouts don't map directly to isl_aux_state enums, the
1311  * returned enum is the assumed worst case.
1312  *
1313  * @param devinfo The device information of the Intel GPU.
1314  * @param image The image that may contain a collection of buffers.
1315  * @param aspect The aspect of the image to be accessed.
1316  * @param layout The current layout of the image aspect(s).
1317  *
1318  * @return The primary buffer that should be used for the given layout.
1319  */
1320 enum isl_aux_state
anv_layout_to_aux_state(const struct gen_device_info * const devinfo,const struct anv_image * const image,const VkImageAspectFlagBits aspect,const VkImageLayout layout)1321 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
1322                         const struct anv_image * const image,
1323                         const VkImageAspectFlagBits aspect,
1324                         const VkImageLayout layout)
1325 {
1326    /* Validate the inputs. */
1327 
1328    /* The devinfo is needed as the optimal buffer varies across generations. */
1329    assert(devinfo != NULL);
1330 
1331    /* The layout of a NULL image is not properly defined. */
1332    assert(image != NULL);
1333 
1334    /* The aspect must be exactly one of the image aspects. */
1335    assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
1336 
1337    /* Determine the optimal buffer. */
1338 
1339    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1340 
1341    /* If we don't have an aux buffer then aux state makes no sense */
1342    const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
1343    assert(aux_usage != ISL_AUX_USAGE_NONE);
1344 
1345    /* All images that use an auxiliary surface are required to be tiled. */
1346    assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1347 
1348    /* Stencil has no aux */
1349    assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
1350 
1351    /* Handle a few special cases */
1352    switch (layout) {
1353    /* Invalid layouts */
1354    case VK_IMAGE_LAYOUT_MAX_ENUM:
1355       unreachable("Invalid image layout.");
1356 
1357    /* Undefined layouts
1358     *
1359     * The pre-initialized layout is equivalent to the undefined layout for
1360     * optimally-tiled images.  We can only do color compression (CCS or HiZ)
1361     * on tiled images.
1362     */
1363    case VK_IMAGE_LAYOUT_UNDEFINED:
1364    case VK_IMAGE_LAYOUT_PREINITIALIZED:
1365       return ISL_AUX_STATE_AUX_INVALID;
1366 
1367    case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
1368       assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1369 
1370       enum isl_aux_state aux_state =
1371          isl_drm_modifier_get_default_aux_state(image->drm_format_mod);
1372 
1373       switch (aux_state) {
1374       default:
1375          assert(!"unexpected isl_aux_state");
1376       case ISL_AUX_STATE_AUX_INVALID:
1377          /* The modifier does not support compression. But, if we arrived
1378           * here, then we have enabled compression on it anyway, in which case
1379           * we must resolve the aux surface before we release ownership to the
1380           * presentation engine (because, having no modifier, the presentation
1381           * engine will not be aware of the aux surface). The presentation
1382           * engine will not access the aux surface (because it is unware of
1383           * it), and so the aux surface will still be resolved when we
1384           * re-acquire ownership.
1385           *
1386           * Therefore, at ownership transfers in either direction, there does
1387           * exist an aux surface despite the lack of modifier and its state is
1388           * pass-through.
1389           */
1390          return ISL_AUX_STATE_PASS_THROUGH;
1391       case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1392          return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1393       }
1394    }
1395 
1396    default:
1397       break;
1398    }
1399 
1400    const bool read_only = vk_image_layout_is_read_only(layout, aspect);
1401 
1402    const VkImageUsageFlags image_aspect_usage =
1403       aspect == VK_IMAGE_ASPECT_STENCIL_BIT ? image->stencil_usage :
1404                                               image->usage;
1405    const VkImageUsageFlags usage =
1406       vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage;
1407 
1408    bool aux_supported = true;
1409 
1410    if ((usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && !read_only) {
1411       /* This image could be used as both an input attachment and a render
1412        * target (depth, stencil, or color) at the same time and this can cause
1413        * corruption.
1414        *
1415        * We currently only disable aux in this way for depth even though we
1416        * disable it for color in GL.
1417        *
1418        * TODO: Should we be disabling this in more cases?
1419        */
1420       if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT)
1421          aux_supported = false;
1422    }
1423 
1424    if (usage & VK_IMAGE_USAGE_STORAGE_BIT)
1425       aux_supported = false;
1426 
1427    if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1428                 VK_IMAGE_USAGE_SAMPLED_BIT |
1429                 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
1430       switch (aux_usage) {
1431       case ISL_AUX_USAGE_HIZ:
1432          if (!anv_can_sample_with_hiz(devinfo, image))
1433             aux_supported = false;
1434          break;
1435 
1436       case ISL_AUX_USAGE_HIZ_CCS:
1437          aux_supported = false;
1438          break;
1439 
1440       case ISL_AUX_USAGE_HIZ_CCS_WT:
1441          break;
1442 
1443       case ISL_AUX_USAGE_CCS_D:
1444          aux_supported = false;
1445          break;
1446 
1447       case ISL_AUX_USAGE_CCS_E:
1448       case ISL_AUX_USAGE_MCS:
1449          break;
1450 
1451       default:
1452          unreachable("Unsupported aux usage");
1453       }
1454    }
1455 
1456    switch (aux_usage) {
1457    case ISL_AUX_USAGE_HIZ:
1458    case ISL_AUX_USAGE_HIZ_CCS:
1459    case ISL_AUX_USAGE_HIZ_CCS_WT:
1460       if (aux_supported) {
1461          return ISL_AUX_STATE_COMPRESSED_CLEAR;
1462       } else if (read_only) {
1463          return ISL_AUX_STATE_RESOLVED;
1464       } else {
1465          return ISL_AUX_STATE_AUX_INVALID;
1466       }
1467 
1468    case ISL_AUX_USAGE_CCS_D:
1469       /* We only support clear in exactly one state */
1470       if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
1471          assert(aux_supported);
1472          return ISL_AUX_STATE_PARTIAL_CLEAR;
1473       } else {
1474          return ISL_AUX_STATE_PASS_THROUGH;
1475       }
1476 
1477    case ISL_AUX_USAGE_CCS_E:
1478    case ISL_AUX_USAGE_MCS:
1479       if (aux_supported) {
1480          return ISL_AUX_STATE_COMPRESSED_CLEAR;
1481       } else {
1482          return ISL_AUX_STATE_PASS_THROUGH;
1483       }
1484 
1485    default:
1486       unreachable("Unsupported aux usage");
1487    }
1488 }
1489 
1490 /**
1491  * This function determines the optimal buffer to use for a given
1492  * VkImageLayout and other pieces of information needed to make that
1493  * determination. This does not determine the optimal buffer to use
1494  * during a resolve operation.
1495  *
1496  * @param devinfo The device information of the Intel GPU.
1497  * @param image The image that may contain a collection of buffers.
1498  * @param aspect The aspect of the image to be accessed.
1499  * @param usage The usage which describes how the image will be accessed.
1500  * @param layout The current layout of the image aspect(s).
1501  *
1502  * @return The primary buffer that should be used for the given layout.
1503  */
1504 enum isl_aux_usage
anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,const struct anv_image * const image,const VkImageAspectFlagBits aspect,const VkImageUsageFlagBits usage,const VkImageLayout layout)1505 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
1506                         const struct anv_image * const image,
1507                         const VkImageAspectFlagBits aspect,
1508                         const VkImageUsageFlagBits usage,
1509                         const VkImageLayout layout)
1510 {
1511    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1512 
1513    /* If there is no auxiliary surface allocated, we must use the one and only
1514     * main buffer.
1515     */
1516    if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
1517       return ISL_AUX_USAGE_NONE;
1518 
1519    enum isl_aux_state aux_state =
1520       anv_layout_to_aux_state(devinfo, image, aspect, layout);
1521 
1522    switch (aux_state) {
1523    case ISL_AUX_STATE_CLEAR:
1524       unreachable("We never use this state");
1525 
1526    case ISL_AUX_STATE_PARTIAL_CLEAR:
1527       assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1528       assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D);
1529       assert(image->samples == 1);
1530       return ISL_AUX_USAGE_CCS_D;
1531 
1532    case ISL_AUX_STATE_COMPRESSED_CLEAR:
1533    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1534       return image->planes[plane].aux_usage;
1535 
1536    case ISL_AUX_STATE_RESOLVED:
1537       /* We can only use RESOLVED in read-only layouts because any write will
1538        * either land us in AUX_INVALID or COMPRESSED_NO_CLEAR.  We can do
1539        * writes in PASS_THROUGH without destroying it so that is allowed.
1540        */
1541       assert(vk_image_layout_is_read_only(layout, aspect));
1542       assert(util_is_power_of_two_or_zero(usage));
1543       if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
1544          /* If we have valid HiZ data and are using the image as a read-only
1545           * depth/stencil attachment, we should enable HiZ so that we can get
1546           * faster depth testing.
1547           */
1548          return image->planes[plane].aux_usage;
1549       } else {
1550          return ISL_AUX_USAGE_NONE;
1551       }
1552 
1553    case ISL_AUX_STATE_PASS_THROUGH:
1554    case ISL_AUX_STATE_AUX_INVALID:
1555       return ISL_AUX_USAGE_NONE;
1556    }
1557 
1558    unreachable("Invalid isl_aux_state");
1559 }
1560 
1561 /**
1562  * This function returns the level of unresolved fast-clear support of the
1563  * given image in the given VkImageLayout.
1564  *
1565  * @param devinfo The device information of the Intel GPU.
1566  * @param image The image that may contain a collection of buffers.
1567  * @param aspect The aspect of the image to be accessed.
1568  * @param usage The usage which describes how the image will be accessed.
1569  * @param layout The current layout of the image aspect(s).
1570  */
1571 enum anv_fast_clear_type
anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,const struct anv_image * const image,const VkImageAspectFlagBits aspect,const VkImageLayout layout)1572 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
1573                               const struct anv_image * const image,
1574                               const VkImageAspectFlagBits aspect,
1575                               const VkImageLayout layout)
1576 {
1577    if (INTEL_DEBUG & DEBUG_NO_FAST_CLEAR)
1578       return ANV_FAST_CLEAR_NONE;
1579 
1580    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1581 
1582    /* If there is no auxiliary surface allocated, there are no fast-clears */
1583    if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
1584       return ANV_FAST_CLEAR_NONE;
1585 
1586    /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they
1587     * lack the MI ALU which we need to determine the predicates.
1588     */
1589    if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1)
1590       return ANV_FAST_CLEAR_NONE;
1591 
1592    enum isl_aux_state aux_state =
1593       anv_layout_to_aux_state(devinfo, image, aspect, layout);
1594 
1595    switch (aux_state) {
1596    case ISL_AUX_STATE_CLEAR:
1597       unreachable("We never use this state");
1598 
1599    case ISL_AUX_STATE_PARTIAL_CLEAR:
1600    case ISL_AUX_STATE_COMPRESSED_CLEAR:
1601       if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1602          return ANV_FAST_CLEAR_DEFAULT_VALUE;
1603       } else if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
1604          /* When we're in a render pass we have the clear color data from the
1605           * VkRenderPassBeginInfo and we can use arbitrary clear colors.  They
1606           * must get partially resolved before we leave the render pass.
1607           */
1608          return ANV_FAST_CLEAR_ANY;
1609       } else if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
1610                  image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1611          if (devinfo->gen >= 11) {
1612             /* On ICL and later, the sampler hardware uses a copy of the clear
1613              * value that is encoded as a pixel value.  Therefore, we can use
1614              * any clear color we like for sampling.
1615              */
1616             return ANV_FAST_CLEAR_ANY;
1617          } else {
1618             /* If the image has MCS or CCS_E enabled all the time then we can
1619              * use fast-clear as long as the clear color is the default value
1620              * of zero since this is the default value we program into every
1621              * surface state used for texturing.
1622              */
1623             return ANV_FAST_CLEAR_DEFAULT_VALUE;
1624          }
1625       } else {
1626          return ANV_FAST_CLEAR_NONE;
1627       }
1628 
1629    case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1630    case ISL_AUX_STATE_RESOLVED:
1631    case ISL_AUX_STATE_PASS_THROUGH:
1632    case ISL_AUX_STATE_AUX_INVALID:
1633       return ANV_FAST_CLEAR_NONE;
1634    }
1635 
1636    unreachable("Invalid isl_aux_state");
1637 }
1638 
1639 
1640 static struct anv_state
alloc_surface_state(struct anv_device * device)1641 alloc_surface_state(struct anv_device *device)
1642 {
1643    return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
1644 }
1645 
1646 static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle,VkComponentSwizzle component,struct isl_swizzle format_swizzle)1647 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
1648               struct isl_swizzle format_swizzle)
1649 {
1650    if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
1651       swizzle = component;
1652 
1653    switch (swizzle) {
1654    case VK_COMPONENT_SWIZZLE_ZERO:  return ISL_CHANNEL_SELECT_ZERO;
1655    case VK_COMPONENT_SWIZZLE_ONE:   return ISL_CHANNEL_SELECT_ONE;
1656    case VK_COMPONENT_SWIZZLE_R:     return format_swizzle.r;
1657    case VK_COMPONENT_SWIZZLE_G:     return format_swizzle.g;
1658    case VK_COMPONENT_SWIZZLE_B:     return format_swizzle.b;
1659    case VK_COMPONENT_SWIZZLE_A:     return format_swizzle.a;
1660    default:
1661       unreachable("Invalid swizzle");
1662    }
1663 }
1664 
1665 void
anv_image_fill_surface_state(struct anv_device * device,const struct anv_image * image,VkImageAspectFlagBits aspect,const struct isl_view * view_in,isl_surf_usage_flags_t view_usage,enum isl_aux_usage aux_usage,const union isl_color_value * clear_color,enum anv_image_view_state_flags flags,struct anv_surface_state * state_inout,struct brw_image_param * image_param_out)1666 anv_image_fill_surface_state(struct anv_device *device,
1667                              const struct anv_image *image,
1668                              VkImageAspectFlagBits aspect,
1669                              const struct isl_view *view_in,
1670                              isl_surf_usage_flags_t view_usage,
1671                              enum isl_aux_usage aux_usage,
1672                              const union isl_color_value *clear_color,
1673                              enum anv_image_view_state_flags flags,
1674                              struct anv_surface_state *state_inout,
1675                              struct brw_image_param *image_param_out)
1676 {
1677    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1678 
1679    const struct anv_surface *surface = &image->planes[plane].surface,
1680       *aux_surface = &image->planes[plane].aux_surface;
1681 
1682    struct isl_view view = *view_in;
1683    view.usage |= view_usage;
1684 
1685    /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
1686     * compressed surface with a shadow surface, we use the shadow instead of
1687     * the primary surface.  The shadow surface will be tiled, unlike the main
1688     * surface, so it should get significantly better performance.
1689     */
1690    if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1691        isl_format_is_compressed(view.format) &&
1692        (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
1693       assert(isl_format_is_compressed(surface->isl.format));
1694       assert(surface->isl.tiling == ISL_TILING_LINEAR);
1695       assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1696       surface = &image->planes[plane].shadow_surface;
1697    }
1698 
1699    /* For texturing from stencil on gen7, we have to sample from a shadow
1700     * surface because we don't support W-tiling in the sampler.
1701     */
1702    if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1703        aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
1704       assert(device->info.gen == 7);
1705       assert(view_usage & ISL_SURF_USAGE_TEXTURE_BIT);
1706       surface = &image->planes[plane].shadow_surface;
1707    }
1708 
1709    if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
1710       view.swizzle = anv_swizzle_for_render(view.swizzle);
1711 
1712    /* On Ivy Bridge and Bay Trail we do the swizzle in the shader */
1713    if (device->info.gen == 7 && !device->info.is_haswell)
1714       view.swizzle = ISL_SWIZZLE_IDENTITY;
1715 
1716    /* If this is a HiZ buffer we can sample from with a programmable clear
1717     * value (SKL+), define the clear value to the optimal constant.
1718     */
1719    union isl_color_value default_clear_color = { .u32 = { 0, } };
1720    if (device->info.gen >= 9 && aspect == VK_IMAGE_ASPECT_DEPTH_BIT)
1721       default_clear_color.f32[0] = ANV_HZ_FC_VAL;
1722    if (!clear_color)
1723       clear_color = &default_clear_color;
1724 
1725    const struct anv_address address =
1726       anv_address_add(image->planes[plane].address, surface->offset);
1727 
1728    if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1729        !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
1730        !isl_has_matching_typed_storage_image_format(&device->info,
1731                                                     view.format)) {
1732       /* In this case, we are a writeable storage buffer which needs to be
1733        * lowered to linear. All tiling and offset calculations will be done in
1734        * the shader.
1735        */
1736       assert(aux_usage == ISL_AUX_USAGE_NONE);
1737       isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
1738                             .address = anv_address_physical(address),
1739                             .size_B = surface->isl.size_B,
1740                             .format = ISL_FORMAT_RAW,
1741                             .swizzle = ISL_SWIZZLE_IDENTITY,
1742                             .stride_B = 1,
1743                             .mocs = anv_mocs_for_bo(device, address.bo));
1744       state_inout->address = address,
1745       state_inout->aux_address = ANV_NULL_ADDRESS;
1746       state_inout->clear_address = ANV_NULL_ADDRESS;
1747    } else {
1748       if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1749           !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
1750          /* Typed surface reads support a very limited subset of the shader
1751           * image formats.  Translate it into the closest format the hardware
1752           * supports.
1753           */
1754          assert(aux_usage == ISL_AUX_USAGE_NONE);
1755          view.format = isl_lower_storage_image_format(&device->info,
1756                                                       view.format);
1757       }
1758 
1759       const struct isl_surf *isl_surf = &surface->isl;
1760 
1761       struct isl_surf tmp_surf;
1762       uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1763       if (isl_format_is_compressed(surface->isl.format) &&
1764           !isl_format_is_compressed(view.format)) {
1765          /* We're creating an uncompressed view of a compressed surface.  This
1766           * is allowed but only for a single level/layer.
1767           */
1768          assert(surface->isl.samples == 1);
1769          assert(view.levels == 1);
1770          assert(view.array_len == 1);
1771 
1772          isl_surf_get_image_surf(&device->isl_dev, isl_surf,
1773                                  view.base_level,
1774                                  surface->isl.dim == ISL_SURF_DIM_3D ?
1775                                     0 : view.base_array_layer,
1776                                  surface->isl.dim == ISL_SURF_DIM_3D ?
1777                                     view.base_array_layer : 0,
1778                                  &tmp_surf,
1779                                  &offset_B, &tile_x_sa, &tile_y_sa);
1780 
1781          /* The newly created image represents the one subimage we're
1782           * referencing with this view so it only has one array slice and
1783           * miplevel.
1784           */
1785          view.base_array_layer = 0;
1786          view.base_level = 0;
1787 
1788          /* We're making an uncompressed view here.  The image dimensions need
1789           * to be scaled down by the block size.
1790           */
1791          const struct isl_format_layout *fmtl =
1792             isl_format_get_layout(surface->isl.format);
1793          tmp_surf.logical_level0_px =
1794             isl_surf_get_logical_level0_el(&tmp_surf);
1795          tmp_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&tmp_surf);
1796          tmp_surf.format = view.format;
1797          tile_x_sa /= fmtl->bw;
1798          tile_y_sa /= fmtl->bh;
1799 
1800          isl_surf = &tmp_surf;
1801 
1802          if (device->info.gen <= 8) {
1803             assert(surface->isl.tiling == ISL_TILING_LINEAR);
1804             assert(tile_x_sa == 0);
1805             assert(tile_y_sa == 0);
1806          }
1807       }
1808 
1809       state_inout->address = anv_address_add(address, offset_B);
1810 
1811       struct anv_address aux_address = ANV_NULL_ADDRESS;
1812       if (aux_usage != ISL_AUX_USAGE_NONE) {
1813          aux_address = anv_address_add(image->planes[plane].address,
1814                                        aux_surface->offset);
1815       }
1816       state_inout->aux_address = aux_address;
1817 
1818       struct anv_address clear_address = ANV_NULL_ADDRESS;
1819       if (device->info.gen >= 10 && aux_usage != ISL_AUX_USAGE_NONE) {
1820          if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1821             clear_address = (struct anv_address) {
1822                .bo = device->hiz_clear_bo,
1823                .offset = 0,
1824             };
1825          } else {
1826             clear_address = anv_image_get_clear_color_addr(device, image, aspect);
1827          }
1828       }
1829       state_inout->clear_address = clear_address;
1830 
1831       isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1832                           .surf = isl_surf,
1833                           .view = &view,
1834                           .address = anv_address_physical(state_inout->address),
1835                           .clear_color = *clear_color,
1836                           .aux_surf = &aux_surface->isl,
1837                           .aux_usage = aux_usage,
1838                           .aux_address = anv_address_physical(aux_address),
1839                           .clear_address = anv_address_physical(clear_address),
1840                           .use_clear_address = !anv_address_is_null(clear_address),
1841                           .mocs = anv_mocs_for_bo(device,
1842                                                   state_inout->address.bo),
1843                           .x_offset_sa = tile_x_sa,
1844                           .y_offset_sa = tile_y_sa);
1845 
1846       /* With the exception of gen8, the bottom 12 bits of the MCS base address
1847        * are used to store other information.  This should be ok, however,
1848        * because the surface buffer addresses are always 4K page aligned.
1849        */
1850       uint32_t *aux_addr_dw = state_inout->state.map +
1851          device->isl_dev.ss.aux_addr_offset;
1852       assert((aux_address.offset & 0xfff) == 0);
1853       state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
1854 
1855       if (device->info.gen >= 10 && clear_address.bo) {
1856          uint32_t *clear_addr_dw = state_inout->state.map +
1857                                    device->isl_dev.ss.clear_color_state_offset;
1858          assert((clear_address.offset & 0x3f) == 0);
1859          state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
1860       }
1861    }
1862 
1863    if (image_param_out) {
1864       assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1865       isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1866                                 &surface->isl, &view);
1867    }
1868 }
1869 
1870 static VkImageAspectFlags
remap_aspect_flags(VkImageAspectFlags view_aspects)1871 remap_aspect_flags(VkImageAspectFlags view_aspects)
1872 {
1873    if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1874       if (util_bitcount(view_aspects) == 1)
1875          return VK_IMAGE_ASPECT_COLOR_BIT;
1876 
1877       VkImageAspectFlags color_aspects = 0;
1878       for (uint32_t i = 0; i < util_bitcount(view_aspects); i++)
1879          color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i;
1880       return color_aspects;
1881    }
1882    /* No special remapping needed for depth & stencil aspects. */
1883    return view_aspects;
1884 }
1885 
1886 static uint32_t
anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)1887 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
1888 {
1889    uint32_t planes = 0;
1890 
1891    if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
1892                       VK_IMAGE_ASPECT_DEPTH_BIT |
1893                       VK_IMAGE_ASPECT_STENCIL_BIT |
1894                       VK_IMAGE_ASPECT_PLANE_0_BIT))
1895       planes++;
1896    if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT)
1897       planes++;
1898    if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT)
1899       planes++;
1900 
1901    if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0 &&
1902        (aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0)
1903       planes++;
1904 
1905    return planes;
1906 }
1907 
1908 VkResult
anv_CreateImageView(VkDevice _device,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)1909 anv_CreateImageView(VkDevice _device,
1910                     const VkImageViewCreateInfo *pCreateInfo,
1911                     const VkAllocationCallbacks *pAllocator,
1912                     VkImageView *pView)
1913 {
1914    ANV_FROM_HANDLE(anv_device, device, _device);
1915    ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1916    struct anv_image_view *iview;
1917 
1918    iview = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*iview), 8,
1919                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1920    if (iview == NULL)
1921       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1922 
1923    vk_object_base_init(&device->vk, &iview->base, VK_OBJECT_TYPE_IMAGE_VIEW);
1924 
1925    const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1926 
1927    assert(range->layerCount > 0);
1928    assert(range->baseMipLevel < image->levels);
1929 
1930    /* Check if a conversion info was passed. */
1931    const struct anv_format *conv_format = NULL;
1932    const VkSamplerYcbcrConversionInfo *conv_info =
1933       vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
1934 
1935    /* If image has an external format, the pNext chain must contain an instance of
1936     * VKSamplerYcbcrConversionInfo with a conversion object created with the same
1937     * external format as image."
1938     */
1939    assert(!image->external_format || conv_info);
1940 
1941    if (conv_info) {
1942       ANV_FROM_HANDLE(anv_ycbcr_conversion, conversion, conv_info->conversion);
1943       conv_format = conversion->format;
1944    }
1945 
1946    VkImageUsageFlags image_usage = image->usage;
1947    if (range->aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT |
1948                             VK_IMAGE_ASPECT_STENCIL_BIT)) {
1949       assert(!(range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV));
1950       /* From the Vulkan 1.2.131 spec:
1951        *
1952        *    "If the image was has a depth-stencil format and was created with
1953        *    a VkImageStencilUsageCreateInfo structure included in the pNext
1954        *    chain of VkImageCreateInfo, the usage is calculated based on the
1955        *    subresource.aspectMask provided:
1956        *
1957        *     - If aspectMask includes only VK_IMAGE_ASPECT_STENCIL_BIT, the
1958        *       implicit usage is equal to
1959        *       VkImageStencilUsageCreateInfo::stencilUsage.
1960        *
1961        *     - If aspectMask includes only VK_IMAGE_ASPECT_DEPTH_BIT, the
1962        *       implicit usage is equal to VkImageCreateInfo::usage.
1963        *
1964        *     - If both aspects are included in aspectMask, the implicit usage
1965        *       is equal to the intersection of VkImageCreateInfo::usage and
1966        *       VkImageStencilUsageCreateInfo::stencilUsage.
1967        */
1968       if (range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) {
1969          image_usage = image->stencil_usage;
1970       } else if (range->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) {
1971          image_usage = image->usage;
1972       } else {
1973          assert(range->aspectMask == (VK_IMAGE_ASPECT_DEPTH_BIT |
1974                                       VK_IMAGE_ASPECT_STENCIL_BIT));
1975          image_usage = image->usage & image->stencil_usage;
1976       }
1977    }
1978 
1979    const VkImageViewUsageCreateInfo *usage_info =
1980       vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO);
1981    VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image_usage;
1982 
1983    /* View usage should be a subset of image usage */
1984    assert((view_usage & ~image_usage) == 0);
1985    assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1986                         VK_IMAGE_USAGE_STORAGE_BIT |
1987                         VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1988                         VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1989                         VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1990 
1991    switch (image->type) {
1992    default:
1993       unreachable("bad VkImageType");
1994    case VK_IMAGE_TYPE_1D:
1995    case VK_IMAGE_TYPE_2D:
1996       assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1997       break;
1998    case VK_IMAGE_TYPE_3D:
1999       assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
2000              <= anv_minify(image->extent.depth, range->baseMipLevel));
2001       break;
2002    }
2003 
2004    /* First expand aspects to the image's ones (for example
2005     * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
2006     * VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT |
2007     * VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format
2008     * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM.
2009     */
2010    VkImageAspectFlags expanded_aspects =
2011       anv_image_expand_aspects(image, range->aspectMask);
2012 
2013    iview->image = image;
2014 
2015    /* Remap the expanded aspects for the image view. For example if only
2016     * VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will
2017     * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
2018     * the image view, it only has a single plane.
2019     */
2020    iview->aspect_mask = remap_aspect_flags(expanded_aspects);
2021    iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
2022    iview->vk_format = pCreateInfo->format;
2023 
2024    /* "If image has an external format, format must be VK_FORMAT_UNDEFINED." */
2025    assert(!image->external_format || pCreateInfo->format == VK_FORMAT_UNDEFINED);
2026 
2027    /* Format is undefined, this can happen when using external formats. Set
2028     * view format from the passed conversion info.
2029     */
2030    if (iview->vk_format == VK_FORMAT_UNDEFINED && conv_format)
2031       iview->vk_format = conv_format->vk_format;
2032 
2033    iview->extent = (VkExtent3D) {
2034       .width  = anv_minify(image->extent.width , range->baseMipLevel),
2035       .height = anv_minify(image->extent.height, range->baseMipLevel),
2036       .depth  = anv_minify(image->extent.depth , range->baseMipLevel),
2037    };
2038 
2039    /* Now go through the underlying image selected planes (computed in
2040     * expanded_aspects) and map them to planes in the image view.
2041     */
2042    uint32_t iaspect_bit, vplane = 0;
2043    anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
2044       uint32_t iplane =
2045          anv_image_aspect_to_plane(image->aspects, 1UL << iaspect_bit);
2046       VkImageAspectFlags vplane_aspect =
2047          anv_plane_to_aspect(iview->aspect_mask, vplane);
2048       struct anv_format_plane format =
2049          anv_get_format_plane(&device->info, iview->vk_format,
2050                               vplane_aspect, image->tiling);
2051 
2052       iview->planes[vplane].image_plane = iplane;
2053 
2054       iview->planes[vplane].isl = (struct isl_view) {
2055          .format = format.isl_format,
2056          .base_level = range->baseMipLevel,
2057          .levels = anv_get_levelCount(image, range),
2058          .base_array_layer = range->baseArrayLayer,
2059          .array_len = anv_get_layerCount(image, range),
2060          .swizzle = {
2061             .r = remap_swizzle(pCreateInfo->components.r,
2062                                VK_COMPONENT_SWIZZLE_R, format.swizzle),
2063             .g = remap_swizzle(pCreateInfo->components.g,
2064                                VK_COMPONENT_SWIZZLE_G, format.swizzle),
2065             .b = remap_swizzle(pCreateInfo->components.b,
2066                                VK_COMPONENT_SWIZZLE_B, format.swizzle),
2067             .a = remap_swizzle(pCreateInfo->components.a,
2068                                VK_COMPONENT_SWIZZLE_A, format.swizzle),
2069          },
2070       };
2071 
2072       if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
2073          iview->planes[vplane].isl.base_array_layer = 0;
2074          iview->planes[vplane].isl.array_len = iview->extent.depth;
2075       }
2076 
2077       if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
2078           pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
2079          iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
2080       } else {
2081          iview->planes[vplane].isl.usage = 0;
2082       }
2083 
2084       if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
2085           (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
2086            !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
2087          iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
2088          iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
2089 
2090          enum isl_aux_usage general_aux_usage =
2091             anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
2092                                     VK_IMAGE_USAGE_SAMPLED_BIT,
2093                                     VK_IMAGE_LAYOUT_GENERAL);
2094          enum isl_aux_usage optimal_aux_usage =
2095             anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
2096                                     VK_IMAGE_USAGE_SAMPLED_BIT,
2097                                     VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
2098 
2099          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2100                                       &iview->planes[vplane].isl,
2101                                       ISL_SURF_USAGE_TEXTURE_BIT,
2102                                       optimal_aux_usage, NULL,
2103                                       ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
2104                                       &iview->planes[vplane].optimal_sampler_surface_state,
2105                                       NULL);
2106 
2107          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2108                                       &iview->planes[vplane].isl,
2109                                       ISL_SURF_USAGE_TEXTURE_BIT,
2110                                       general_aux_usage, NULL,
2111                                       0,
2112                                       &iview->planes[vplane].general_sampler_surface_state,
2113                                       NULL);
2114       }
2115 
2116       /* NOTE: This one needs to go last since it may stomp isl_view.format */
2117       if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
2118          iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
2119          iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
2120 
2121          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2122                                       &iview->planes[vplane].isl,
2123                                       ISL_SURF_USAGE_STORAGE_BIT,
2124                                       ISL_AUX_USAGE_NONE, NULL,
2125                                       0,
2126                                       &iview->planes[vplane].storage_surface_state,
2127                                       &iview->planes[vplane].storage_image_param);
2128 
2129          anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
2130                                       &iview->planes[vplane].isl,
2131                                       ISL_SURF_USAGE_STORAGE_BIT,
2132                                       ISL_AUX_USAGE_NONE, NULL,
2133                                       ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
2134                                       &iview->planes[vplane].writeonly_storage_surface_state,
2135                                       NULL);
2136       }
2137 
2138       vplane++;
2139    }
2140 
2141    *pView = anv_image_view_to_handle(iview);
2142 
2143    return VK_SUCCESS;
2144 }
2145 
2146 void
anv_DestroyImageView(VkDevice _device,VkImageView _iview,const VkAllocationCallbacks * pAllocator)2147 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
2148                      const VkAllocationCallbacks *pAllocator)
2149 {
2150    ANV_FROM_HANDLE(anv_device, device, _device);
2151    ANV_FROM_HANDLE(anv_image_view, iview, _iview);
2152 
2153    if (!iview)
2154       return;
2155 
2156    for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
2157       if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
2158          anv_state_pool_free(&device->surface_state_pool,
2159                              iview->planes[plane].optimal_sampler_surface_state.state);
2160       }
2161 
2162       if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
2163          anv_state_pool_free(&device->surface_state_pool,
2164                              iview->planes[plane].general_sampler_surface_state.state);
2165       }
2166 
2167       if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
2168          anv_state_pool_free(&device->surface_state_pool,
2169                              iview->planes[plane].storage_surface_state.state);
2170       }
2171 
2172       if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
2173          anv_state_pool_free(&device->surface_state_pool,
2174                              iview->planes[plane].writeonly_storage_surface_state.state);
2175       }
2176    }
2177 
2178    vk_object_base_finish(&iview->base);
2179    vk_free2(&device->vk.alloc, pAllocator, iview);
2180 }
2181 
2182 
2183 VkResult
anv_CreateBufferView(VkDevice _device,const VkBufferViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBufferView * pView)2184 anv_CreateBufferView(VkDevice _device,
2185                      const VkBufferViewCreateInfo *pCreateInfo,
2186                      const VkAllocationCallbacks *pAllocator,
2187                      VkBufferView *pView)
2188 {
2189    ANV_FROM_HANDLE(anv_device, device, _device);
2190    ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
2191    struct anv_buffer_view *view;
2192 
2193    view = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*view), 8,
2194                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2195    if (!view)
2196       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2197 
2198    /* TODO: Handle the format swizzle? */
2199 
2200    vk_object_base_init(&device->vk, &view->base, VK_OBJECT_TYPE_BUFFER_VIEW);
2201    view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
2202                                      VK_IMAGE_ASPECT_COLOR_BIT,
2203                                      VK_IMAGE_TILING_LINEAR);
2204    const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
2205    view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
2206                                               pCreateInfo->range);
2207    view->range = align_down_npot_u32(view->range, format_bs);
2208 
2209    view->address = anv_address_add(buffer->address, pCreateInfo->offset);
2210 
2211    if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
2212       view->surface_state = alloc_surface_state(device);
2213 
2214       anv_fill_buffer_surface_state(device, view->surface_state,
2215                                     view->format,
2216                                     view->address, view->range, format_bs);
2217    } else {
2218       view->surface_state = (struct anv_state){ 0 };
2219    }
2220 
2221    if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
2222       view->storage_surface_state = alloc_surface_state(device);
2223       view->writeonly_storage_surface_state = alloc_surface_state(device);
2224 
2225       enum isl_format storage_format =
2226          isl_has_matching_typed_storage_image_format(&device->info,
2227                                                      view->format) ?
2228          isl_lower_storage_image_format(&device->info, view->format) :
2229          ISL_FORMAT_RAW;
2230 
2231       anv_fill_buffer_surface_state(device, view->storage_surface_state,
2232                                     storage_format,
2233                                     view->address, view->range,
2234                                     (storage_format == ISL_FORMAT_RAW ? 1 :
2235                                      isl_format_get_layout(storage_format)->bpb / 8));
2236 
2237       /* Write-only accesses should use the original format. */
2238       anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
2239                                     view->format,
2240                                     view->address, view->range,
2241                                     isl_format_get_layout(view->format)->bpb / 8);
2242 
2243       isl_buffer_fill_image_param(&device->isl_dev,
2244                                   &view->storage_image_param,
2245                                   view->format, view->range);
2246    } else {
2247       view->storage_surface_state = (struct anv_state){ 0 };
2248       view->writeonly_storage_surface_state = (struct anv_state){ 0 };
2249    }
2250 
2251    *pView = anv_buffer_view_to_handle(view);
2252 
2253    return VK_SUCCESS;
2254 }
2255 
2256 void
anv_DestroyBufferView(VkDevice _device,VkBufferView bufferView,const VkAllocationCallbacks * pAllocator)2257 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
2258                       const VkAllocationCallbacks *pAllocator)
2259 {
2260    ANV_FROM_HANDLE(anv_device, device, _device);
2261    ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
2262 
2263    if (!view)
2264       return;
2265 
2266    if (view->surface_state.alloc_size > 0)
2267       anv_state_pool_free(&device->surface_state_pool,
2268                           view->surface_state);
2269 
2270    if (view->storage_surface_state.alloc_size > 0)
2271       anv_state_pool_free(&device->surface_state_pool,
2272                           view->storage_surface_state);
2273 
2274    if (view->writeonly_storage_surface_state.alloc_size > 0)
2275       anv_state_pool_free(&device->surface_state_pool,
2276                           view->writeonly_storage_surface_state);
2277 
2278    vk_object_base_finish(&view->base);
2279    vk_free2(&device->vk.alloc, pAllocator, view);
2280 }
2281