1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24 
25 #include <inttypes.h>
26 #include "util/format/u_format.h"
27 #include "util/crc32.h"
28 #include "util/u_helpers.h"
29 #include "util/u_math.h"
30 #include "util/u_memory.h"
31 #include "util/ralloc.h"
32 #include "util/hash_table.h"
33 #include "tgsi/tgsi_dump.h"
34 #include "tgsi/tgsi_parse.h"
35 #include "compiler/nir/nir.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "compiler/nir_types.h"
38 #include "nir/tgsi_to_nir.h"
39 #include "vc4_context.h"
40 #include "vc4_qpu.h"
41 #include "vc4_qir.h"
42 
43 static struct qreg
44 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
45 static void
46 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
47 
48 static int
type_size(const struct glsl_type * type,bool bindless)49 type_size(const struct glsl_type *type, bool bindless)
50 {
51    return glsl_count_attribute_slots(type, false);
52 }
53 
54 static void
resize_qreg_array(struct vc4_compile * c,struct qreg ** regs,uint32_t * size,uint32_t decl_size)55 resize_qreg_array(struct vc4_compile *c,
56                   struct qreg **regs,
57                   uint32_t *size,
58                   uint32_t decl_size)
59 {
60         if (*size >= decl_size)
61                 return;
62 
63         uint32_t old_size = *size;
64         *size = MAX2(*size * 2, decl_size);
65         *regs = reralloc(c, *regs, struct qreg, *size);
66         if (!*regs) {
67                 fprintf(stderr, "Malloc failure\n");
68                 abort();
69         }
70 
71         for (uint32_t i = old_size; i < *size; i++)
72                 (*regs)[i] = c->undef;
73 }
74 
75 static void
ntq_emit_thrsw(struct vc4_compile * c)76 ntq_emit_thrsw(struct vc4_compile *c)
77 {
78         if (!c->fs_threaded)
79                 return;
80 
81         /* Always thread switch after each texture operation for now.
82          *
83          * We could do better by batching a bunch of texture fetches up and
84          * then doing one thread switch and collecting all their results
85          * afterward.
86          */
87         qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
88                                     c->undef, c->undef));
89         c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
90 }
91 
92 static struct qreg
indirect_uniform_load(struct vc4_compile * c,nir_intrinsic_instr * intr)93 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
94 {
95         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
96 
97         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
98         uint32_t range = nir_intrinsic_range(intr);
99         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
100         indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
101                                         qir_uniform_ui(c, range - 4));
102 
103         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
104                      indirect_offset,
105                      qir_uniform(c, QUNIFORM_UBO0_ADDR,
106                                  nir_intrinsic_base(intr)));
107 
108         c->num_texture_samples++;
109 
110         ntq_emit_thrsw(c);
111 
112         return qir_TEX_RESULT(c);
113 }
114 
115 static struct qreg
vc4_ubo_load(struct vc4_compile * c,nir_intrinsic_instr * intr)116 vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
117 {
118         ASSERTED int buffer_index = nir_src_as_uint(intr->src[0]);
119         assert(buffer_index == 1);
120         assert(c->stage == QSTAGE_FRAG);
121 
122         struct qreg offset = ntq_get_src(c, intr->src[1], 0);
123 
124         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
125         offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
126         offset = qir_MIN_NOIMM(c, offset,
127                                qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
128 
129         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
130                      offset,
131                      qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
132 
133         c->num_texture_samples++;
134 
135         ntq_emit_thrsw(c);
136 
137         return qir_TEX_RESULT(c);
138 }
139 
140 nir_ssa_def *
vc4_nir_get_swizzled_channel(nir_builder * b,nir_ssa_def ** srcs,int swiz)141 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
142 {
143         switch (swiz) {
144         default:
145         case PIPE_SWIZZLE_NONE:
146                 fprintf(stderr, "warning: unknown swizzle\n");
147                 FALLTHROUGH;
148         case PIPE_SWIZZLE_0:
149                 return nir_imm_float(b, 0.0);
150         case PIPE_SWIZZLE_1:
151                 return nir_imm_float(b, 1.0);
152         case PIPE_SWIZZLE_X:
153         case PIPE_SWIZZLE_Y:
154         case PIPE_SWIZZLE_Z:
155         case PIPE_SWIZZLE_W:
156                 return srcs[swiz];
157         }
158 }
159 
160 static struct qreg *
ntq_init_ssa_def(struct vc4_compile * c,nir_ssa_def * def)161 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
162 {
163         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
164                                           def->num_components);
165         _mesa_hash_table_insert(c->def_ht, def, qregs);
166         return qregs;
167 }
168 
169 /**
170  * This function is responsible for getting QIR results into the associated
171  * storage for a NIR instruction.
172  *
173  * If it's a NIR SSA def, then we just set the associated hash table entry to
174  * the new result.
175  *
176  * If it's a NIR reg, then we need to update the existing qreg assigned to the
177  * NIR destination with the incoming value.  To do that without introducing
178  * new MOVs, we require that the incoming qreg either be a uniform, or be
179  * SSA-defined by the previous QIR instruction in the block and rewritable by
180  * this function.  That lets us sneak ahead and insert the SF flag beforehand
181  * (knowing that the previous instruction doesn't depend on flags) and rewrite
182  * its destination to be the NIR reg's destination
183  */
184 static void
ntq_store_dest(struct vc4_compile * c,nir_dest * dest,int chan,struct qreg result)185 ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
186                struct qreg result)
187 {
188         struct qinst *last_inst = NULL;
189         if (!list_is_empty(&c->cur_block->instructions))
190                 last_inst = (struct qinst *)c->cur_block->instructions.prev;
191 
192         assert(result.file == QFILE_UNIF ||
193                (result.file == QFILE_TEMP &&
194                 last_inst && last_inst == c->defs[result.index]));
195 
196         if (dest->is_ssa) {
197                 assert(chan < dest->ssa.num_components);
198 
199                 struct qreg *qregs;
200                 struct hash_entry *entry =
201                         _mesa_hash_table_search(c->def_ht, &dest->ssa);
202 
203                 if (entry)
204                         qregs = entry->data;
205                 else
206                         qregs = ntq_init_ssa_def(c, &dest->ssa);
207 
208                 qregs[chan] = result;
209         } else {
210                 nir_register *reg = dest->reg.reg;
211                 assert(dest->reg.base_offset == 0);
212                 assert(reg->num_array_elems == 0);
213                 struct hash_entry *entry =
214                         _mesa_hash_table_search(c->def_ht, reg);
215                 struct qreg *qregs = entry->data;
216 
217                 /* Insert a MOV if the source wasn't an SSA def in the
218                  * previous instruction.
219                  */
220                 if (result.file == QFILE_UNIF) {
221                         result = qir_MOV(c, result);
222                         last_inst = c->defs[result.index];
223                 }
224 
225                 /* We know they're both temps, so just rewrite index. */
226                 c->defs[last_inst->dst.index] = NULL;
227                 last_inst->dst.index = qregs[chan].index;
228 
229                 /* If we're in control flow, then make this update of the reg
230                  * conditional on the execution mask.
231                  */
232                 if (c->execute.file != QFILE_NULL) {
233                         last_inst->dst.index = qregs[chan].index;
234 
235                         /* Set the flags to the current exec mask.  To insert
236                          * the SF, we temporarily remove our SSA instruction.
237                          */
238                         list_del(&last_inst->link);
239                         qir_SF(c, c->execute);
240                         list_addtail(&last_inst->link,
241                                      &c->cur_block->instructions);
242 
243                         last_inst->cond = QPU_COND_ZS;
244                         last_inst->cond_is_exec_mask = true;
245                 }
246         }
247 }
248 
249 static struct qreg *
ntq_get_dest(struct vc4_compile * c,nir_dest * dest)250 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
251 {
252         if (dest->is_ssa) {
253                 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
254                 for (int i = 0; i < dest->ssa.num_components; i++)
255                         qregs[i] = c->undef;
256                 return qregs;
257         } else {
258                 nir_register *reg = dest->reg.reg;
259                 assert(dest->reg.base_offset == 0);
260                 assert(reg->num_array_elems == 0);
261                 struct hash_entry *entry =
262                         _mesa_hash_table_search(c->def_ht, reg);
263                 return entry->data;
264         }
265 }
266 
267 static struct qreg
ntq_get_src(struct vc4_compile * c,nir_src src,int i)268 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
269 {
270         struct hash_entry *entry;
271         if (src.is_ssa) {
272                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
273                 assert(i < src.ssa->num_components);
274         } else {
275                 nir_register *reg = src.reg.reg;
276                 entry = _mesa_hash_table_search(c->def_ht, reg);
277                 assert(reg->num_array_elems == 0);
278                 assert(src.reg.base_offset == 0);
279                 assert(i < reg->num_components);
280         }
281 
282         struct qreg *qregs = entry->data;
283         return qregs[i];
284 }
285 
286 static struct qreg
ntq_get_alu_src(struct vc4_compile * c,nir_alu_instr * instr,unsigned src)287 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
288                 unsigned src)
289 {
290         assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
291         unsigned chan = ffs(instr->dest.write_mask) - 1;
292         struct qreg r = ntq_get_src(c, instr->src[src].src,
293                                     instr->src[src].swizzle[chan]);
294 
295         assert(!instr->src[src].abs);
296         assert(!instr->src[src].negate);
297 
298         return r;
299 };
300 
301 static inline struct qreg
qir_SAT(struct vc4_compile * c,struct qreg val)302 qir_SAT(struct vc4_compile *c, struct qreg val)
303 {
304         return qir_FMAX(c,
305                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
306                         qir_uniform_f(c, 0.0));
307 }
308 
309 static struct qreg
ntq_rcp(struct vc4_compile * c,struct qreg x)310 ntq_rcp(struct vc4_compile *c, struct qreg x)
311 {
312         struct qreg r = qir_RCP(c, x);
313 
314         /* Apply a Newton-Raphson step to improve the accuracy. */
315         r = qir_FMUL(c, r, qir_FSUB(c,
316                                     qir_uniform_f(c, 2.0),
317                                     qir_FMUL(c, x, r)));
318 
319         return r;
320 }
321 
322 static struct qreg
ntq_rsq(struct vc4_compile * c,struct qreg x)323 ntq_rsq(struct vc4_compile *c, struct qreg x)
324 {
325         struct qreg r = qir_RSQ(c, x);
326 
327         /* Apply a Newton-Raphson step to improve the accuracy. */
328         r = qir_FMUL(c, r, qir_FSUB(c,
329                                     qir_uniform_f(c, 1.5),
330                                     qir_FMUL(c,
331                                              qir_uniform_f(c, 0.5),
332                                              qir_FMUL(c, x,
333                                                       qir_FMUL(c, r, r)))));
334 
335         return r;
336 }
337 
338 static struct qreg
ntq_umul(struct vc4_compile * c,struct qreg src0,struct qreg src1)339 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
340 {
341         struct qreg src0_hi = qir_SHR(c, src0,
342                                       qir_uniform_ui(c, 24));
343         struct qreg src1_hi = qir_SHR(c, src1,
344                                       qir_uniform_ui(c, 24));
345 
346         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
347         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
348         struct qreg lolo = qir_MUL24(c, src0, src1);
349 
350         return qir_ADD(c, lolo, qir_SHL(c,
351                                         qir_ADD(c, hilo, lohi),
352                                         qir_uniform_ui(c, 24)));
353 }
354 
355 static struct qreg
ntq_scale_depth_texture(struct vc4_compile * c,struct qreg src)356 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
357 {
358         struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
359                                                  qir_uniform_ui(c, 8)));
360         return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
361 }
362 
363 /**
364  * Emits a lowered TXF_MS from an MSAA texture.
365  *
366  * The addressing math has been lowered in NIR, and now we just need to read
367  * it like a UBO.
368  */
369 static void
ntq_emit_txf(struct vc4_compile * c,nir_tex_instr * instr)370 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
371 {
372         uint32_t tile_width = 32;
373         uint32_t tile_height = 32;
374         uint32_t tile_size = (tile_height * tile_width *
375                               VC4_MAX_SAMPLES * sizeof(uint32_t));
376 
377         unsigned unit = instr->texture_index;
378         uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
379         uint32_t w_tiles = w / tile_width;
380         uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
381         uint32_t h_tiles = h / tile_height;
382         uint32_t size = w_tiles * h_tiles * tile_size;
383 
384         struct qreg addr;
385         assert(instr->num_srcs == 1);
386         assert(instr->src[0].src_type == nir_tex_src_coord);
387         addr = ntq_get_src(c, instr->src[0].src, 0);
388 
389         /* Perform the clamping required by kernel validation. */
390         addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
391         addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
392 
393         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
394                      addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
395 
396         ntq_emit_thrsw(c);
397 
398         struct qreg tex = qir_TEX_RESULT(c);
399         c->num_texture_samples++;
400 
401         enum pipe_format format = c->key->tex[unit].format;
402         if (util_format_is_depth_or_stencil(format)) {
403                 struct qreg scaled = ntq_scale_depth_texture(c, tex);
404                 for (int i = 0; i < 4; i++)
405                         ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
406         } else {
407                 for (int i = 0; i < 4; i++)
408                         ntq_store_dest(c, &instr->dest, i,
409                                        qir_UNPACK_8_F(c, tex, i));
410         }
411 }
412 
413 static void
ntq_emit_tex(struct vc4_compile * c,nir_tex_instr * instr)414 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
415 {
416         struct qreg s, t, r, lod, compare;
417         bool is_txb = false, is_txl = false;
418         unsigned unit = instr->texture_index;
419 
420         if (instr->op == nir_texop_txf) {
421                 ntq_emit_txf(c, instr);
422                 return;
423         }
424 
425         for (unsigned i = 0; i < instr->num_srcs; i++) {
426                 switch (instr->src[i].src_type) {
427                 case nir_tex_src_coord:
428                         s = ntq_get_src(c, instr->src[i].src, 0);
429                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
430                                 t = qir_uniform_f(c, 0.5);
431                         else
432                                 t = ntq_get_src(c, instr->src[i].src, 1);
433                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
434                                 r = ntq_get_src(c, instr->src[i].src, 2);
435                         break;
436                 case nir_tex_src_bias:
437                         lod = ntq_get_src(c, instr->src[i].src, 0);
438                         is_txb = true;
439                         break;
440                 case nir_tex_src_lod:
441                         lod = ntq_get_src(c, instr->src[i].src, 0);
442                         is_txl = true;
443                         break;
444                 case nir_tex_src_comparator:
445                         compare = ntq_get_src(c, instr->src[i].src, 0);
446                         break;
447                 default:
448                         unreachable("unknown texture source");
449                 }
450         }
451 
452         if (c->stage != QSTAGE_FRAG && !is_txl) {
453                 /* From the GLSL 1.20 spec:
454                  *
455                  *     "If it is mip-mapped and running on the vertex shader,
456                  *      then the base texture is used."
457                  */
458                 is_txl = true;
459                 lod = qir_uniform_ui(c, 0);
460         }
461 
462         if (c->key->tex[unit].force_first_level) {
463                 lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
464                 is_txl = true;
465                 is_txb = false;
466         }
467 
468         struct qreg texture_u[] = {
469                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
470                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
471                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
472                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
473         };
474         uint32_t next_texture_u = 0;
475 
476         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
477                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
478                                            unit | (is_txl << 16));
479         }
480 
481         struct qinst *tmu;
482         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
483                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
484                 tmu->src[qir_get_tex_uniform_src(tmu)] =
485                         texture_u[next_texture_u++];
486         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
487                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
488                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
489                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
490                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
491                                    qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
492                                                unit));
493                 tmu->src[qir_get_tex_uniform_src(tmu)] =
494                         texture_u[next_texture_u++];
495         }
496 
497         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
498                 s = qir_SAT(c, s);
499         }
500 
501         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
502                 t = qir_SAT(c, t);
503         }
504 
505         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
506         tmu->src[qir_get_tex_uniform_src(tmu)] =
507                 texture_u[next_texture_u++];
508 
509         if (is_txl || is_txb) {
510                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
511                 tmu->src[qir_get_tex_uniform_src(tmu)] =
512                         texture_u[next_texture_u++];
513         }
514 
515         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
516         tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
517 
518         c->num_texture_samples++;
519 
520         ntq_emit_thrsw(c);
521 
522         struct qreg tex = qir_TEX_RESULT(c);
523 
524         enum pipe_format format = c->key->tex[unit].format;
525 
526         struct qreg *dest = ntq_get_dest(c, &instr->dest);
527         if (util_format_is_depth_or_stencil(format)) {
528                 struct qreg normalized = ntq_scale_depth_texture(c, tex);
529                 struct qreg depth_output;
530 
531                 struct qreg u0 = qir_uniform_f(c, 0.0f);
532                 struct qreg u1 = qir_uniform_f(c, 1.0f);
533                 if (c->key->tex[unit].compare_mode) {
534                         /* From the GL_ARB_shadow spec:
535                          *
536                          *     "Let Dt (D subscript t) be the depth texture
537                          *      value, in the range [0, 1].  Let R be the
538                          *      interpolated texture coordinate clamped to the
539                          *      range [0, 1]."
540                          */
541                         compare = qir_SAT(c, compare);
542 
543                         switch (c->key->tex[unit].compare_func) {
544                         case PIPE_FUNC_NEVER:
545                                 depth_output = qir_uniform_f(c, 0.0f);
546                                 break;
547                         case PIPE_FUNC_ALWAYS:
548                                 depth_output = u1;
549                                 break;
550                         case PIPE_FUNC_EQUAL:
551                                 qir_SF(c, qir_FSUB(c, compare, normalized));
552                                 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
553                                 break;
554                         case PIPE_FUNC_NOTEQUAL:
555                                 qir_SF(c, qir_FSUB(c, compare, normalized));
556                                 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
557                                 break;
558                         case PIPE_FUNC_GREATER:
559                                 qir_SF(c, qir_FSUB(c, compare, normalized));
560                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
561                                 break;
562                         case PIPE_FUNC_GEQUAL:
563                                 qir_SF(c, qir_FSUB(c, normalized, compare));
564                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
565                                 break;
566                         case PIPE_FUNC_LESS:
567                                 qir_SF(c, qir_FSUB(c, compare, normalized));
568                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
569                                 break;
570                         case PIPE_FUNC_LEQUAL:
571                                 qir_SF(c, qir_FSUB(c, normalized, compare));
572                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
573                                 break;
574                         }
575                 } else {
576                         depth_output = normalized;
577                 }
578 
579                 for (int i = 0; i < 4; i++)
580                         dest[i] = depth_output;
581         } else {
582                 for (int i = 0; i < 4; i++)
583                         dest[i] = qir_UNPACK_8_F(c, tex, i);
584         }
585 }
586 
587 /**
588  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
589  * to zero).
590  */
591 static struct qreg
ntq_ffract(struct vc4_compile * c,struct qreg src)592 ntq_ffract(struct vc4_compile *c, struct qreg src)
593 {
594         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
595         struct qreg diff = qir_FSUB(c, src, trunc);
596         qir_SF(c, diff);
597 
598         qir_FADD_dest(c, diff,
599                       diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
600 
601         return qir_MOV(c, diff);
602 }
603 
604 /**
605  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
606  * zero).
607  */
608 static struct qreg
ntq_ffloor(struct vc4_compile * c,struct qreg src)609 ntq_ffloor(struct vc4_compile *c, struct qreg src)
610 {
611         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
612 
613         /* This will be < 0 if we truncated and the truncation was of a value
614          * that was < 0 in the first place.
615          */
616         qir_SF(c, qir_FSUB(c, src, result));
617 
618         struct qinst *sub = qir_FSUB_dest(c, result,
619                                           result, qir_uniform_f(c, 1.0));
620         sub->cond = QPU_COND_NS;
621 
622         return qir_MOV(c, result);
623 }
624 
625 /**
626  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
627  * zero).
628  */
629 static struct qreg
ntq_fceil(struct vc4_compile * c,struct qreg src)630 ntq_fceil(struct vc4_compile *c, struct qreg src)
631 {
632         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
633 
634         /* This will be < 0 if we truncated and the truncation was of a value
635          * that was > 0 in the first place.
636          */
637         qir_SF(c, qir_FSUB(c, result, src));
638 
639         qir_FADD_dest(c, result,
640                       result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
641 
642         return qir_MOV(c, result);
643 }
644 
645 static struct qreg
ntq_shrink_sincos_input_range(struct vc4_compile * c,struct qreg x)646 ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
647 {
648         /* Since we're using a Taylor approximation, we want to have a small
649          * number of coefficients and take advantage of sin/cos repeating
650          * every 2pi.  We keep our x as close to 0 as we can, since the series
651          * will be less accurate as |x| increases.  (Also, be careful of
652          * shifting the input x value to be tricky with sin/cos relations,
653          * because getting accurate values for x==0 is very important for SDL
654          * rendering)
655          */
656         struct qreg scaled_x =
657                 qir_FMUL(c, x,
658                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
659         /* Note: FTOI truncates toward 0. */
660         struct qreg x_frac = qir_FSUB(c, scaled_x,
661                                       qir_ITOF(c, qir_FTOI(c, scaled_x)));
662         /* Map [0.5, 1] to [-0.5, 0] */
663         qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
664         qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
665         /* Map [-1, -0.5] to [0, 0.5] */
666         qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
667         qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
668 
669         return x_frac;
670 }
671 
672 static struct qreg
ntq_fsin(struct vc4_compile * c,struct qreg src)673 ntq_fsin(struct vc4_compile *c, struct qreg src)
674 {
675         float coeff[] = {
676                 2.0 * M_PI,
677                 -pow(2.0 * M_PI, 3) / (3 * 2 * 1),
678                 pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
679                 -pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
680                 pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
681         };
682 
683         struct qreg x = ntq_shrink_sincos_input_range(c, src);
684         struct qreg x2 = qir_FMUL(c, x, x);
685         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
686         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
687                 x = qir_FMUL(c, x, x2);
688                 sum = qir_FADD(c,
689                                sum,
690                                qir_FMUL(c,
691                                         x,
692                                         qir_uniform_f(c, coeff[i])));
693         }
694         return sum;
695 }
696 
697 static struct qreg
ntq_fcos(struct vc4_compile * c,struct qreg src)698 ntq_fcos(struct vc4_compile *c, struct qreg src)
699 {
700         float coeff[] = {
701                 1.0f,
702                 -pow(2.0 * M_PI, 2) / (2 * 1),
703                 pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
704                 -pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
705                 pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
706                 -pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
707         };
708 
709         struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
710         struct qreg sum = qir_uniform_f(c, coeff[0]);
711         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
712         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
713         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
714                 if (i != 1)
715                         x = qir_FMUL(c, x, x2);
716 
717                 sum = qir_FADD(c, qir_FMUL(c,
718                                            x,
719                                            qir_uniform_f(c, coeff[i])),
720                                sum);
721         }
722         return sum;
723 }
724 
725 static struct qreg
ntq_fsign(struct vc4_compile * c,struct qreg src)726 ntq_fsign(struct vc4_compile *c, struct qreg src)
727 {
728         struct qreg t = qir_get_temp(c);
729 
730         qir_SF(c, src);
731         qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
732         qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
733         qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
734         return qir_MOV(c, t);
735 }
736 
737 static void
emit_vertex_input(struct vc4_compile * c,int attr)738 emit_vertex_input(struct vc4_compile *c, int attr)
739 {
740         enum pipe_format format = c->vs_key->attr_formats[attr];
741         uint32_t attr_size = util_format_get_blocksize(format);
742 
743         c->vattr_sizes[attr] = align(attr_size, 4);
744         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
745                 c->inputs[attr * 4 + i] =
746                         qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
747                 c->num_inputs++;
748         }
749 }
750 
751 static void
emit_fragcoord_input(struct vc4_compile * c,int attr)752 emit_fragcoord_input(struct vc4_compile *c, int attr)
753 {
754         c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
755         c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
756         c->inputs[attr * 4 + 2] =
757                 qir_FMUL(c,
758                          qir_ITOF(c, qir_FRAG_Z(c)),
759                          qir_uniform_f(c, 1.0 / 0xffffff));
760         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
761 }
762 
763 static struct qreg
emit_fragment_varying(struct vc4_compile * c,gl_varying_slot slot,uint8_t swizzle)764 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
765                       uint8_t swizzle)
766 {
767         uint32_t i = c->num_input_slots++;
768         struct qreg vary = {
769                 QFILE_VARY,
770                 i
771         };
772 
773         if (c->num_input_slots >= c->input_slots_array_size) {
774                 c->input_slots_array_size =
775                         MAX2(4, c->input_slots_array_size * 2);
776 
777                 c->input_slots = reralloc(c, c->input_slots,
778                                           struct vc4_varying_slot,
779                                           c->input_slots_array_size);
780         }
781 
782         c->input_slots[i].slot = slot;
783         c->input_slots[i].swizzle = swizzle;
784 
785         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
786 }
787 
788 static void
emit_fragment_input(struct vc4_compile * c,int attr,gl_varying_slot slot)789 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
790 {
791         for (int i = 0; i < 4; i++) {
792                 c->inputs[attr * 4 + i] =
793                         emit_fragment_varying(c, slot, i);
794                 c->num_inputs++;
795         }
796 }
797 
798 static void
add_output(struct vc4_compile * c,uint32_t decl_offset,uint8_t slot,uint8_t swizzle)799 add_output(struct vc4_compile *c,
800            uint32_t decl_offset,
801            uint8_t slot,
802            uint8_t swizzle)
803 {
804         uint32_t old_array_size = c->outputs_array_size;
805         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
806                           decl_offset + 1);
807 
808         if (old_array_size != c->outputs_array_size) {
809                 c->output_slots = reralloc(c,
810                                            c->output_slots,
811                                            struct vc4_varying_slot,
812                                            c->outputs_array_size);
813         }
814 
815         c->output_slots[decl_offset].slot = slot;
816         c->output_slots[decl_offset].swizzle = swizzle;
817 }
818 
819 static bool
ntq_src_is_only_ssa_def_user(nir_src * src)820 ntq_src_is_only_ssa_def_user(nir_src *src)
821 {
822         if (!src->is_ssa)
823                 return false;
824 
825         if (!list_is_empty(&src->ssa->if_uses))
826                 return false;
827 
828         return (src->ssa->uses.next == &src->use_link &&
829                 src->ssa->uses.next->next == &src->ssa->uses);
830 }
831 
832 /**
833  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
834  * bit set.
835  *
836  * However, as an optimization, it tries to find the instructions generating
837  * the sources to be packed and just emit the pack flag there, if possible.
838  */
839 static void
ntq_emit_pack_unorm_4x8(struct vc4_compile * c,nir_alu_instr * instr)840 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
841 {
842         struct qreg result = qir_get_temp(c);
843         struct nir_alu_instr *vec4 = NULL;
844 
845         /* If packing from a vec4 op (as expected), identify it so that we can
846          * peek back at what generated its sources.
847          */
848         if (instr->src[0].src.is_ssa &&
849             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
850             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
851             nir_op_vec4) {
852                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
853         }
854 
855         /* If the pack is replicating the same channel 4 times, use the 8888
856          * pack flag.  This is common for blending using the alpha
857          * channel.
858          */
859         if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
860             instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
861             instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
862                 struct qreg rep = ntq_get_src(c,
863                                               instr->src[0].src,
864                                               instr->src[0].swizzle[0]);
865                 ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
866                 return;
867         }
868 
869         for (int i = 0; i < 4; i++) {
870                 int swiz = instr->src[0].swizzle[i];
871                 struct qreg src;
872                 if (vec4) {
873                         src = ntq_get_src(c, vec4->src[swiz].src,
874                                           vec4->src[swiz].swizzle[0]);
875                 } else {
876                         src = ntq_get_src(c, instr->src[0].src, swiz);
877                 }
878 
879                 if (vec4 &&
880                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
881                     src.file == QFILE_TEMP &&
882                     c->defs[src.index] &&
883                     qir_is_mul(c->defs[src.index]) &&
884                     !c->defs[src.index]->dst.pack) {
885                         struct qinst *rewrite = c->defs[src.index];
886                         c->defs[src.index] = NULL;
887                         rewrite->dst = result;
888                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
889                         continue;
890                 }
891 
892                 qir_PACK_8_F(c, result, src, i);
893         }
894 
895         ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
896 }
897 
898 /** Handles sign-extended bitfield extracts for 16 bits. */
899 static struct qreg
ntq_emit_ibfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)900 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
901               struct qreg bits)
902 {
903         assert(bits.file == QFILE_UNIF &&
904                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
905                c->uniform_data[bits.index] == 16);
906 
907         assert(offset.file == QFILE_UNIF &&
908                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
909         int offset_bit = c->uniform_data[offset.index];
910         assert(offset_bit % 16 == 0);
911 
912         return qir_UNPACK_16_I(c, base, offset_bit / 16);
913 }
914 
915 /** Handles unsigned bitfield extracts for 8 bits. */
916 static struct qreg
ntq_emit_ubfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)917 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
918               struct qreg bits)
919 {
920         assert(bits.file == QFILE_UNIF &&
921                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
922                c->uniform_data[bits.index] == 8);
923 
924         assert(offset.file == QFILE_UNIF &&
925                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
926         int offset_bit = c->uniform_data[offset.index];
927         assert(offset_bit % 8 == 0);
928 
929         return qir_UNPACK_8_I(c, base, offset_bit / 8);
930 }
931 
932 /**
933  * If compare_instr is a valid comparison instruction, emits the
934  * compare_instr's comparison and returns the sel_instr's return value based
935  * on the compare_instr's result.
936  */
937 static bool
ntq_emit_comparison(struct vc4_compile * c,struct qreg * dest,nir_alu_instr * compare_instr,nir_alu_instr * sel_instr)938 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
939                     nir_alu_instr *compare_instr,
940                     nir_alu_instr *sel_instr)
941 {
942         enum qpu_cond cond;
943 
944         switch (compare_instr->op) {
945         case nir_op_feq32:
946         case nir_op_ieq32:
947         case nir_op_seq:
948                 cond = QPU_COND_ZS;
949                 break;
950         case nir_op_fneu32:
951         case nir_op_ine32:
952         case nir_op_sne:
953                 cond = QPU_COND_ZC;
954                 break;
955         case nir_op_fge32:
956         case nir_op_ige32:
957         case nir_op_uge32:
958         case nir_op_sge:
959                 cond = QPU_COND_NC;
960                 break;
961         case nir_op_flt32:
962         case nir_op_ilt32:
963         case nir_op_slt:
964                 cond = QPU_COND_NS;
965                 break;
966         default:
967                 return false;
968         }
969 
970         struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
971         struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
972 
973         unsigned unsized_type =
974                 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
975         if (unsized_type == nir_type_float)
976                 qir_SF(c, qir_FSUB(c, src0, src1));
977         else
978                 qir_SF(c, qir_SUB(c, src0, src1));
979 
980         switch (sel_instr->op) {
981         case nir_op_seq:
982         case nir_op_sne:
983         case nir_op_sge:
984         case nir_op_slt:
985                 *dest = qir_SEL(c, cond,
986                                 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
987                 break;
988 
989         case nir_op_b32csel:
990                 *dest = qir_SEL(c, cond,
991                                 ntq_get_alu_src(c, sel_instr, 1),
992                                 ntq_get_alu_src(c, sel_instr, 2));
993                 break;
994 
995         default:
996                 *dest = qir_SEL(c, cond,
997                                 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
998                 break;
999         }
1000 
1001         /* Make the temporary for nir_store_dest(). */
1002         *dest = qir_MOV(c, *dest);
1003 
1004         return true;
1005 }
1006 
1007 /**
1008  * Attempts to fold a comparison generating a boolean result into the
1009  * condition code for selecting between two values, instead of comparing the
1010  * boolean result against 0 to generate the condition code.
1011  */
ntq_emit_bcsel(struct vc4_compile * c,nir_alu_instr * instr,struct qreg * src)1012 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
1013                                   struct qreg *src)
1014 {
1015         if (!instr->src[0].src.is_ssa)
1016                 goto out;
1017         if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1018                 goto out;
1019         nir_alu_instr *compare =
1020                 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1021         if (!compare)
1022                 goto out;
1023 
1024         struct qreg dest;
1025         if (ntq_emit_comparison(c, &dest, compare, instr))
1026                 return dest;
1027 
1028 out:
1029         qir_SF(c, src[0]);
1030         return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
1031 }
1032 
1033 static struct qreg
ntq_fddx(struct vc4_compile * c,struct qreg src)1034 ntq_fddx(struct vc4_compile *c, struct qreg src)
1035 {
1036         /* Make sure that we have a bare temp to use for MUL rotation, so it
1037          * can be allocated to an accumulator.
1038          */
1039         if (src.pack || src.file != QFILE_TEMP)
1040                 src = qir_MOV(c, src);
1041 
1042         struct qreg from_left = qir_ROT_MUL(c, src, 1);
1043         struct qreg from_right = qir_ROT_MUL(c, src, 15);
1044 
1045         /* Distinguish left/right pixels of the quad. */
1046         qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
1047                           qir_uniform_ui(c, 1)));
1048 
1049         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1050                                   qir_FSUB(c, from_right, src),
1051                                   qir_FSUB(c, src, from_left)));
1052 }
1053 
1054 static struct qreg
ntq_fddy(struct vc4_compile * c,struct qreg src)1055 ntq_fddy(struct vc4_compile *c, struct qreg src)
1056 {
1057         if (src.pack || src.file != QFILE_TEMP)
1058                 src = qir_MOV(c, src);
1059 
1060         struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
1061         struct qreg from_top = qir_ROT_MUL(c, src, 14);
1062 
1063         /* Distinguish top/bottom pixels of the quad. */
1064         qir_SF(c, qir_AND(c,
1065                           qir_reg(QFILE_QPU_ELEMENT, 0),
1066                           qir_uniform_ui(c, 2)));
1067 
1068         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1069                                   qir_FSUB(c, from_top, src),
1070                                   qir_FSUB(c, src, from_bottom)));
1071 }
1072 
1073 static void
ntq_emit_alu(struct vc4_compile * c,nir_alu_instr * instr)1074 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
1075 {
1076         /* This should always be lowered to ALU operations for VC4. */
1077         assert(!instr->dest.saturate);
1078 
1079         /* Vectors are special in that they have non-scalarized writemasks,
1080          * and just take the first swizzle channel for each argument in order
1081          * into each writemask channel.
1082          */
1083         if (instr->op == nir_op_vec2 ||
1084             instr->op == nir_op_vec3 ||
1085             instr->op == nir_op_vec4) {
1086                 struct qreg srcs[4];
1087                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1088                         srcs[i] = ntq_get_src(c, instr->src[i].src,
1089                                               instr->src[i].swizzle[0]);
1090                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1091                         ntq_store_dest(c, &instr->dest.dest, i,
1092                                        qir_MOV(c, srcs[i]));
1093                 return;
1094         }
1095 
1096         if (instr->op == nir_op_pack_unorm_4x8) {
1097                 ntq_emit_pack_unorm_4x8(c, instr);
1098                 return;
1099         }
1100 
1101         if (instr->op == nir_op_unpack_unorm_4x8) {
1102                 struct qreg src = ntq_get_src(c, instr->src[0].src,
1103                                               instr->src[0].swizzle[0]);
1104                 for (int i = 0; i < 4; i++) {
1105                         if (instr->dest.write_mask & (1 << i))
1106                                 ntq_store_dest(c, &instr->dest.dest, i,
1107                                                qir_UNPACK_8_F(c, src, i));
1108                 }
1109                 return;
1110         }
1111 
1112         /* General case: We can just grab the one used channel per src. */
1113         struct qreg src[nir_op_infos[instr->op].num_inputs];
1114         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1115                 src[i] = ntq_get_alu_src(c, instr, i);
1116         }
1117 
1118         struct qreg result;
1119 
1120         switch (instr->op) {
1121         case nir_op_mov:
1122                 result = qir_MOV(c, src[0]);
1123                 break;
1124         case nir_op_fmul:
1125                 result = qir_FMUL(c, src[0], src[1]);
1126                 break;
1127         case nir_op_fadd:
1128                 result = qir_FADD(c, src[0], src[1]);
1129                 break;
1130         case nir_op_fsub:
1131                 result = qir_FSUB(c, src[0], src[1]);
1132                 break;
1133         case nir_op_fmin:
1134                 result = qir_FMIN(c, src[0], src[1]);
1135                 break;
1136         case nir_op_fmax:
1137                 result = qir_FMAX(c, src[0], src[1]);
1138                 break;
1139 
1140         case nir_op_f2i32:
1141         case nir_op_f2u32:
1142                 result = qir_FTOI(c, src[0]);
1143                 break;
1144         case nir_op_i2f32:
1145         case nir_op_u2f32:
1146                 result = qir_ITOF(c, src[0]);
1147                 break;
1148         case nir_op_b2f32:
1149                 result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1150                 break;
1151         case nir_op_b2i32:
1152                 result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1153                 break;
1154         case nir_op_i2b32:
1155         case nir_op_f2b32:
1156                 qir_SF(c, src[0]);
1157                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
1158                                             qir_uniform_ui(c, ~0),
1159                                             qir_uniform_ui(c, 0)));
1160                 break;
1161 
1162         case nir_op_iadd:
1163                 result = qir_ADD(c, src[0], src[1]);
1164                 break;
1165         case nir_op_ushr:
1166                 result = qir_SHR(c, src[0], src[1]);
1167                 break;
1168         case nir_op_isub:
1169                 result = qir_SUB(c, src[0], src[1]);
1170                 break;
1171         case nir_op_ishr:
1172                 result = qir_ASR(c, src[0], src[1]);
1173                 break;
1174         case nir_op_ishl:
1175                 result = qir_SHL(c, src[0], src[1]);
1176                 break;
1177         case nir_op_imin:
1178                 result = qir_MIN(c, src[0], src[1]);
1179                 break;
1180         case nir_op_imax:
1181                 result = qir_MAX(c, src[0], src[1]);
1182                 break;
1183         case nir_op_iand:
1184                 result = qir_AND(c, src[0], src[1]);
1185                 break;
1186         case nir_op_ior:
1187                 result = qir_OR(c, src[0], src[1]);
1188                 break;
1189         case nir_op_ixor:
1190                 result = qir_XOR(c, src[0], src[1]);
1191                 break;
1192         case nir_op_inot:
1193                 result = qir_NOT(c, src[0]);
1194                 break;
1195 
1196         case nir_op_imul:
1197                 result = ntq_umul(c, src[0], src[1]);
1198                 break;
1199 
1200         case nir_op_seq:
1201         case nir_op_sne:
1202         case nir_op_sge:
1203         case nir_op_slt:
1204         case nir_op_feq32:
1205         case nir_op_fneu32:
1206         case nir_op_fge32:
1207         case nir_op_flt32:
1208         case nir_op_ieq32:
1209         case nir_op_ine32:
1210         case nir_op_ige32:
1211         case nir_op_uge32:
1212         case nir_op_ilt32:
1213                 if (!ntq_emit_comparison(c, &result, instr, instr)) {
1214                         fprintf(stderr, "Bad comparison instruction\n");
1215                 }
1216                 break;
1217 
1218         case nir_op_b32csel:
1219                 result = ntq_emit_bcsel(c, instr, src);
1220                 break;
1221         case nir_op_fcsel:
1222                 qir_SF(c, src[0]);
1223                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
1224                 break;
1225 
1226         case nir_op_frcp:
1227                 result = ntq_rcp(c, src[0]);
1228                 break;
1229         case nir_op_frsq:
1230                 result = ntq_rsq(c, src[0]);
1231                 break;
1232         case nir_op_fexp2:
1233                 result = qir_EXP2(c, src[0]);
1234                 break;
1235         case nir_op_flog2:
1236                 result = qir_LOG2(c, src[0]);
1237                 break;
1238 
1239         case nir_op_ftrunc:
1240                 result = qir_ITOF(c, qir_FTOI(c, src[0]));
1241                 break;
1242         case nir_op_fceil:
1243                 result = ntq_fceil(c, src[0]);
1244                 break;
1245         case nir_op_ffract:
1246                 result = ntq_ffract(c, src[0]);
1247                 break;
1248         case nir_op_ffloor:
1249                 result = ntq_ffloor(c, src[0]);
1250                 break;
1251 
1252         case nir_op_fsin:
1253                 result = ntq_fsin(c, src[0]);
1254                 break;
1255         case nir_op_fcos:
1256                 result = ntq_fcos(c, src[0]);
1257                 break;
1258 
1259         case nir_op_fsign:
1260                 result = ntq_fsign(c, src[0]);
1261                 break;
1262 
1263         case nir_op_fabs:
1264                 result = qir_FMAXABS(c, src[0], src[0]);
1265                 break;
1266         case nir_op_iabs:
1267                 result = qir_MAX(c, src[0],
1268                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1269                 break;
1270 
1271         case nir_op_ibitfield_extract:
1272                 result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1273                 break;
1274 
1275         case nir_op_ubitfield_extract:
1276                 result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1277                 break;
1278 
1279         case nir_op_usadd_4x8_vc4:
1280                 result = qir_V8ADDS(c, src[0], src[1]);
1281                 break;
1282 
1283         case nir_op_ussub_4x8_vc4:
1284                 result = qir_V8SUBS(c, src[0], src[1]);
1285                 break;
1286 
1287         case nir_op_umin_4x8_vc4:
1288                 result = qir_V8MIN(c, src[0], src[1]);
1289                 break;
1290 
1291         case nir_op_umax_4x8_vc4:
1292                 result = qir_V8MAX(c, src[0], src[1]);
1293                 break;
1294 
1295         case nir_op_umul_unorm_4x8_vc4:
1296                 result = qir_V8MULD(c, src[0], src[1]);
1297                 break;
1298 
1299         case nir_op_fddx:
1300         case nir_op_fddx_coarse:
1301         case nir_op_fddx_fine:
1302                 result = ntq_fddx(c, src[0]);
1303                 break;
1304 
1305         case nir_op_fddy:
1306         case nir_op_fddy_coarse:
1307         case nir_op_fddy_fine:
1308                 result = ntq_fddy(c, src[0]);
1309                 break;
1310 
1311         default:
1312                 fprintf(stderr, "unknown NIR ALU inst: ");
1313                 nir_print_instr(&instr->instr, stderr);
1314                 fprintf(stderr, "\n");
1315                 abort();
1316         }
1317 
1318         /* We have a scalar result, so the instruction should only have a
1319          * single channel written to.
1320          */
1321         assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
1322         ntq_store_dest(c, &instr->dest.dest,
1323                        ffs(instr->dest.write_mask) - 1, result);
1324 }
1325 
1326 static void
emit_frag_end(struct vc4_compile * c)1327 emit_frag_end(struct vc4_compile *c)
1328 {
1329         struct qreg color;
1330         if (c->output_color_index != -1) {
1331                 color = c->outputs[c->output_color_index];
1332         } else {
1333                 color = qir_uniform_ui(c, 0);
1334         }
1335 
1336         uint32_t discard_cond = QPU_COND_ALWAYS;
1337         if (c->s->info.fs.uses_discard) {
1338                 qir_SF(c, c->discard);
1339                 discard_cond = QPU_COND_ZS;
1340         }
1341 
1342         if (c->fs_key->stencil_enabled) {
1343                 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1344                              qir_uniform(c, QUNIFORM_STENCIL, 0));
1345                 if (c->fs_key->stencil_twoside) {
1346                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1347                                      qir_uniform(c, QUNIFORM_STENCIL, 1));
1348                 }
1349                 if (c->fs_key->stencil_full_writemasks) {
1350                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1351                                      qir_uniform(c, QUNIFORM_STENCIL, 2));
1352                 }
1353         }
1354 
1355         if (c->output_sample_mask_index != -1) {
1356                 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1357         }
1358 
1359         if (c->fs_key->depth_enabled) {
1360                 if (c->output_position_index != -1) {
1361                         qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1362                                       qir_FMUL(c,
1363                                                c->outputs[c->output_position_index],
1364                                                qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1365                 } else {
1366                         qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1367                                      qir_FRAG_Z(c))->cond = discard_cond;
1368                 }
1369         }
1370 
1371         if (!c->msaa_per_sample_output) {
1372                 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1373                              color)->cond = discard_cond;
1374         } else {
1375                 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1376                         qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1377                                      c->sample_colors[i])->cond = discard_cond;
1378                 }
1379         }
1380 }
1381 
1382 static void
emit_scaled_viewport_write(struct vc4_compile * c,struct qreg rcp_w)1383 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1384 {
1385         struct qreg packed = qir_get_temp(c);
1386 
1387         for (int i = 0; i < 2; i++) {
1388                 struct qreg scale =
1389                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1390 
1391                 struct qreg packed_chan = packed;
1392                 packed_chan.pack = QPU_PACK_A_16A + i;
1393 
1394                 qir_FTOI_dest(c, packed_chan,
1395                               qir_FMUL(c,
1396                                        qir_FMUL(c,
1397                                                 c->outputs[c->output_position_index + i],
1398                                                 scale),
1399                                        rcp_w));
1400         }
1401 
1402         qir_VPM_WRITE(c, packed);
1403 }
1404 
1405 static void
emit_zs_write(struct vc4_compile * c,struct qreg rcp_w)1406 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1407 {
1408         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1409         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1410 
1411         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1412                                                           c->outputs[c->output_position_index + 2],
1413                                                           zscale),
1414                                               rcp_w),
1415                                   zoffset));
1416 }
1417 
1418 static void
emit_rcp_wc_write(struct vc4_compile * c,struct qreg rcp_w)1419 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1420 {
1421         qir_VPM_WRITE(c, rcp_w);
1422 }
1423 
1424 static void
emit_point_size_write(struct vc4_compile * c)1425 emit_point_size_write(struct vc4_compile *c)
1426 {
1427         struct qreg point_size;
1428 
1429         if (c->output_point_size_index != -1)
1430                 point_size = c->outputs[c->output_point_size_index];
1431         else
1432                 point_size = qir_uniform_f(c, 1.0);
1433 
1434         qir_VPM_WRITE(c, point_size);
1435 }
1436 
1437 /**
1438  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1439  *
1440  * The simulator insists that there be at least one vertex attribute, so
1441  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1442  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1443  * to consume it here.
1444  */
1445 static void
emit_stub_vpm_read(struct vc4_compile * c)1446 emit_stub_vpm_read(struct vc4_compile *c)
1447 {
1448         if (c->num_inputs)
1449                 return;
1450 
1451         c->vattr_sizes[0] = 4;
1452         (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1453         c->num_inputs++;
1454 }
1455 
1456 static void
emit_vert_end(struct vc4_compile * c,struct vc4_varying_slot * fs_inputs,uint32_t num_fs_inputs)1457 emit_vert_end(struct vc4_compile *c,
1458               struct vc4_varying_slot *fs_inputs,
1459               uint32_t num_fs_inputs)
1460 {
1461         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1462 
1463         emit_stub_vpm_read(c);
1464 
1465         emit_scaled_viewport_write(c, rcp_w);
1466         emit_zs_write(c, rcp_w);
1467         emit_rcp_wc_write(c, rcp_w);
1468         if (c->vs_key->per_vertex_point_size)
1469                 emit_point_size_write(c);
1470 
1471         for (int i = 0; i < num_fs_inputs; i++) {
1472                 struct vc4_varying_slot *input = &fs_inputs[i];
1473                 int j;
1474 
1475                 for (j = 0; j < c->num_outputs; j++) {
1476                         struct vc4_varying_slot *output =
1477                                 &c->output_slots[j];
1478 
1479                         if (input->slot == output->slot &&
1480                             input->swizzle == output->swizzle) {
1481                                 qir_VPM_WRITE(c, c->outputs[j]);
1482                                 break;
1483                         }
1484                 }
1485                 /* Emit padding if we didn't find a declared VS output for
1486                  * this FS input.
1487                  */
1488                 if (j == c->num_outputs)
1489                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1490         }
1491 }
1492 
1493 static void
emit_coord_end(struct vc4_compile * c)1494 emit_coord_end(struct vc4_compile *c)
1495 {
1496         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1497 
1498         emit_stub_vpm_read(c);
1499 
1500         for (int i = 0; i < 4; i++)
1501                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1502 
1503         emit_scaled_viewport_write(c, rcp_w);
1504         emit_zs_write(c, rcp_w);
1505         emit_rcp_wc_write(c, rcp_w);
1506         if (c->vs_key->per_vertex_point_size)
1507                 emit_point_size_write(c);
1508 }
1509 
1510 static void
vc4_optimize_nir(struct nir_shader * s)1511 vc4_optimize_nir(struct nir_shader *s)
1512 {
1513         bool progress;
1514         unsigned lower_flrp =
1515                 (s->options->lower_flrp16 ? 16 : 0) |
1516                 (s->options->lower_flrp32 ? 32 : 0) |
1517                 (s->options->lower_flrp64 ? 64 : 0);
1518 
1519         do {
1520                 progress = false;
1521 
1522                 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1523                 NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
1524                 NIR_PASS(progress, s, nir_lower_phis_to_scalar, false);
1525                 NIR_PASS(progress, s, nir_copy_prop);
1526                 NIR_PASS(progress, s, nir_opt_remove_phis);
1527                 NIR_PASS(progress, s, nir_opt_dce);
1528                 NIR_PASS(progress, s, nir_opt_dead_cf);
1529                 NIR_PASS(progress, s, nir_opt_cse);
1530                 NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
1531                 NIR_PASS(progress, s, nir_opt_algebraic);
1532                 NIR_PASS(progress, s, nir_opt_constant_folding);
1533                 if (lower_flrp != 0) {
1534                         bool lower_flrp_progress = false;
1535 
1536                         NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
1537                                  lower_flrp,
1538                                  false /* always_precise */);
1539                         if (lower_flrp_progress) {
1540                                 NIR_PASS(progress, s, nir_opt_constant_folding);
1541                                 progress = true;
1542                         }
1543 
1544                         /* Nothing should rematerialize any flrps, so we only
1545                          * need to do this lowering once.
1546                          */
1547                         lower_flrp = 0;
1548                 }
1549 
1550                 NIR_PASS(progress, s, nir_opt_undef);
1551                 NIR_PASS(progress, s, nir_opt_loop_unroll);
1552         } while (progress);
1553 }
1554 
1555 static int
driver_location_compare(const void * in_a,const void * in_b)1556 driver_location_compare(const void *in_a, const void *in_b)
1557 {
1558         const nir_variable *const *a = in_a;
1559         const nir_variable *const *b = in_b;
1560 
1561         return (*a)->data.driver_location - (*b)->data.driver_location;
1562 }
1563 
1564 static void
ntq_setup_inputs(struct vc4_compile * c)1565 ntq_setup_inputs(struct vc4_compile *c)
1566 {
1567         unsigned num_entries = 0;
1568         nir_foreach_shader_in_variable(var, c->s)
1569                 num_entries++;
1570 
1571         nir_variable *vars[num_entries];
1572 
1573         unsigned i = 0;
1574         nir_foreach_shader_in_variable(var, c->s)
1575                 vars[i++] = var;
1576 
1577         /* Sort the variables so that we emit the input setup in
1578          * driver_location order.  This is required for VPM reads, whose data
1579          * is fetched into the VPM in driver_location (TGSI register index)
1580          * order.
1581          */
1582         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1583 
1584         for (unsigned i = 0; i < num_entries; i++) {
1585                 nir_variable *var = vars[i];
1586                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1587                 unsigned loc = var->data.driver_location;
1588 
1589                 assert(array_len == 1);
1590                 (void)array_len;
1591                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1592                                   (loc + 1) * 4);
1593 
1594                 if (c->stage == QSTAGE_FRAG) {
1595                         if (var->data.location == VARYING_SLOT_POS) {
1596                                 emit_fragcoord_input(c, loc);
1597                         } else if (util_varying_is_point_coord(var->data.location,
1598                                                                c->fs_key->point_sprite_mask)) {
1599                                 c->inputs[loc * 4 + 0] = c->point_x;
1600                                 c->inputs[loc * 4 + 1] = c->point_y;
1601                         } else {
1602                                 emit_fragment_input(c, loc, var->data.location);
1603                         }
1604                 } else {
1605                         emit_vertex_input(c, loc);
1606                 }
1607         }
1608 }
1609 
1610 static void
ntq_setup_outputs(struct vc4_compile * c)1611 ntq_setup_outputs(struct vc4_compile *c)
1612 {
1613         nir_foreach_shader_out_variable(var, c->s) {
1614                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1615                 unsigned loc = var->data.driver_location * 4;
1616 
1617                 assert(array_len == 1);
1618                 (void)array_len;
1619 
1620                 for (int i = 0; i < 4; i++)
1621                         add_output(c, loc + i, var->data.location, i);
1622 
1623                 if (c->stage == QSTAGE_FRAG) {
1624                         switch (var->data.location) {
1625                         case FRAG_RESULT_COLOR:
1626                         case FRAG_RESULT_DATA0:
1627                                 c->output_color_index = loc;
1628                                 break;
1629                         case FRAG_RESULT_DEPTH:
1630                                 c->output_position_index = loc;
1631                                 break;
1632                         case FRAG_RESULT_SAMPLE_MASK:
1633                                 c->output_sample_mask_index = loc;
1634                                 break;
1635                         }
1636                 } else {
1637                         switch (var->data.location) {
1638                         case VARYING_SLOT_POS:
1639                                 c->output_position_index = loc;
1640                                 break;
1641                         case VARYING_SLOT_PSIZ:
1642                                 c->output_point_size_index = loc;
1643                                 break;
1644                         }
1645                 }
1646         }
1647 }
1648 
1649 /**
1650  * Sets up the mapping from nir_register to struct qreg *.
1651  *
1652  * Each nir_register gets a struct qreg per 32-bit component being stored.
1653  */
1654 static void
ntq_setup_registers(struct vc4_compile * c,struct exec_list * list)1655 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1656 {
1657         foreach_list_typed(nir_register, nir_reg, node, list) {
1658                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1659                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1660                                                   array_len *
1661                                                   nir_reg->num_components);
1662 
1663                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1664 
1665                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1666                         qregs[i] = qir_get_temp(c);
1667         }
1668 }
1669 
1670 static void
ntq_emit_load_const(struct vc4_compile * c,nir_load_const_instr * instr)1671 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1672 {
1673         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1674         for (int i = 0; i < instr->def.num_components; i++)
1675                 qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
1676 
1677         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1678 }
1679 
1680 static void
ntq_emit_ssa_undef(struct vc4_compile * c,nir_ssa_undef_instr * instr)1681 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1682 {
1683         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1684 
1685         /* QIR needs there to be *some* value, so pick 0 (same as for
1686          * ntq_setup_registers().
1687          */
1688         for (int i = 0; i < instr->def.num_components; i++)
1689                 qregs[i] = qir_uniform_ui(c, 0);
1690 }
1691 
1692 static void
ntq_emit_color_read(struct vc4_compile * c,nir_intrinsic_instr * instr)1693 ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
1694 {
1695         assert(nir_src_as_uint(instr->src[0]) == 0);
1696 
1697         /* Reads of the per-sample color need to be done in
1698          * order.
1699          */
1700         int sample_index = (nir_intrinsic_base(instr) -
1701                             VC4_NIR_TLB_COLOR_READ_INPUT);
1702         for (int i = 0; i <= sample_index; i++) {
1703                 if (c->color_reads[i].file == QFILE_NULL) {
1704                         c->color_reads[i] =
1705                                 qir_TLB_COLOR_READ(c);
1706                 }
1707         }
1708         ntq_store_dest(c, &instr->dest, 0,
1709                        qir_MOV(c, c->color_reads[sample_index]));
1710 }
1711 
1712 static void
ntq_emit_load_input(struct vc4_compile * c,nir_intrinsic_instr * instr)1713 ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
1714 {
1715         assert(instr->num_components == 1);
1716         assert(nir_src_is_const(instr->src[0]) &&
1717                "vc4 doesn't support indirect inputs");
1718 
1719         if (c->stage == QSTAGE_FRAG &&
1720             nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1721                 ntq_emit_color_read(c, instr);
1722                 return;
1723         }
1724 
1725         uint32_t offset = nir_intrinsic_base(instr) +
1726                           nir_src_as_uint(instr->src[0]);
1727         int comp = nir_intrinsic_component(instr);
1728         ntq_store_dest(c, &instr->dest, 0,
1729                        qir_MOV(c, c->inputs[offset * 4 + comp]));
1730 }
1731 
1732 static void
ntq_emit_intrinsic(struct vc4_compile * c,nir_intrinsic_instr * instr)1733 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1734 {
1735         unsigned offset;
1736 
1737         switch (instr->intrinsic) {
1738         case nir_intrinsic_load_uniform:
1739                 assert(instr->num_components == 1);
1740                 if (nir_src_is_const(instr->src[0])) {
1741                         offset = nir_intrinsic_base(instr) +
1742                                  nir_src_as_uint(instr->src[0]);
1743                         assert(offset % 4 == 0);
1744                         /* We need dwords */
1745                         offset = offset / 4;
1746                         ntq_store_dest(c, &instr->dest, 0,
1747                                        qir_uniform(c, QUNIFORM_UNIFORM,
1748                                                    offset));
1749                 } else {
1750                         ntq_store_dest(c, &instr->dest, 0,
1751                                        indirect_uniform_load(c, instr));
1752                 }
1753                 break;
1754 
1755         case nir_intrinsic_load_ubo:
1756                 assert(instr->num_components == 1);
1757                 ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
1758                 break;
1759 
1760         case nir_intrinsic_load_user_clip_plane:
1761                 for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
1762                         ntq_store_dest(c, &instr->dest, i,
1763                                        qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1764                                                    nir_intrinsic_ucp_id(instr) *
1765                                                    4 + i));
1766                 }
1767                 break;
1768 
1769         case nir_intrinsic_load_blend_const_color_r_float:
1770         case nir_intrinsic_load_blend_const_color_g_float:
1771         case nir_intrinsic_load_blend_const_color_b_float:
1772         case nir_intrinsic_load_blend_const_color_a_float:
1773                 ntq_store_dest(c, &instr->dest, 0,
1774                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
1775                                            (instr->intrinsic -
1776                                             nir_intrinsic_load_blend_const_color_r_float),
1777                                            0));
1778                 break;
1779 
1780         case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
1781                 ntq_store_dest(c, &instr->dest, 0,
1782                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
1783                                            0));
1784                 break;
1785 
1786         case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
1787                 ntq_store_dest(c, &instr->dest, 0,
1788                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
1789                                            0));
1790                 break;
1791 
1792         case nir_intrinsic_load_sample_mask_in:
1793                 ntq_store_dest(c, &instr->dest, 0,
1794                                qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
1795                 break;
1796 
1797         case nir_intrinsic_load_front_face:
1798                 /* The register contains 0 (front) or 1 (back), and we need to
1799                  * turn it into a NIR bool where true means front.
1800                  */
1801                 ntq_store_dest(c, &instr->dest, 0,
1802                                qir_ADD(c,
1803                                        qir_uniform_ui(c, -1),
1804                                        qir_reg(QFILE_FRAG_REV_FLAG, 0)));
1805                 break;
1806 
1807         case nir_intrinsic_load_input:
1808                 ntq_emit_load_input(c, instr);
1809                 break;
1810 
1811         case nir_intrinsic_store_output:
1812                 assert(nir_src_is_const(instr->src[1]) &&
1813                        "vc4 doesn't support indirect outputs");
1814                 offset = nir_intrinsic_base(instr) +
1815                          nir_src_as_uint(instr->src[1]);
1816 
1817                 /* MSAA color outputs are the only case where we have an
1818                  * output that's not lowered to being a store of a single 32
1819                  * bit value.
1820                  */
1821                 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1822                         assert(offset == c->output_color_index);
1823                         for (int i = 0; i < 4; i++) {
1824                                 c->sample_colors[i] =
1825                                         qir_MOV(c, ntq_get_src(c, instr->src[0],
1826                                                                i));
1827                         }
1828                 } else {
1829                         offset = offset * 4 + nir_intrinsic_component(instr);
1830                         assert(instr->num_components == 1);
1831                         c->outputs[offset] =
1832                                 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1833                         c->num_outputs = MAX2(c->num_outputs, offset + 1);
1834                 }
1835                 break;
1836 
1837         case nir_intrinsic_discard:
1838                 if (c->execute.file != QFILE_NULL) {
1839                         qir_SF(c, c->execute);
1840                         qir_MOV_cond(c, QPU_COND_ZS, c->discard,
1841                                      qir_uniform_ui(c, ~0));
1842                 } else {
1843                         qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
1844                 }
1845                 break;
1846 
1847         case nir_intrinsic_discard_if: {
1848                 /* true (~0) if we're discarding */
1849                 struct qreg cond = ntq_get_src(c, instr->src[0], 0);
1850 
1851                 if (c->execute.file != QFILE_NULL) {
1852                         /* execute == 0 means the channel is active.  Invert
1853                          * the condition so that we can use zero as "executing
1854                          * and discarding."
1855                          */
1856                         qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
1857                         qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
1858                 } else {
1859                         qir_OR_dest(c, c->discard, c->discard,
1860                                     ntq_get_src(c, instr->src[0], 0));
1861                 }
1862 
1863                 break;
1864         }
1865 
1866         case nir_intrinsic_load_texture_rect_scaling: {
1867                 assert(nir_src_is_const(instr->src[0]));
1868                 int sampler = nir_src_as_int(instr->src[0]);
1869 
1870                 ntq_store_dest(c, &instr->dest, 0,
1871                                 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, sampler));
1872                 ntq_store_dest(c, &instr->dest, 1,
1873                                 qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, sampler));
1874                 break;
1875         }
1876 
1877         default:
1878                 fprintf(stderr, "Unknown intrinsic: ");
1879                 nir_print_instr(&instr->instr, stderr);
1880                 fprintf(stderr, "\n");
1881                 break;
1882         }
1883 }
1884 
1885 /* Clears (activates) the execute flags for any channels whose jump target
1886  * matches this block.
1887  */
1888 static void
ntq_activate_execute_for_block(struct vc4_compile * c)1889 ntq_activate_execute_for_block(struct vc4_compile *c)
1890 {
1891         qir_SF(c, qir_SUB(c,
1892                           c->execute,
1893                           qir_uniform_ui(c, c->cur_block->index)));
1894         qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
1895 }
1896 
1897 static void
ntq_emit_if(struct vc4_compile * c,nir_if * if_stmt)1898 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1899 {
1900         if (!c->vc4->screen->has_control_flow) {
1901                 fprintf(stderr,
1902                         "IF statement support requires updated kernel.\n");
1903                 return;
1904         }
1905 
1906         nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1907         bool empty_else_block =
1908                 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1909                  exec_list_is_empty(&nir_else_block->instr_list));
1910 
1911         struct qblock *then_block = qir_new_block(c);
1912         struct qblock *after_block = qir_new_block(c);
1913         struct qblock *else_block;
1914         if (empty_else_block)
1915                 else_block = after_block;
1916         else
1917                 else_block = qir_new_block(c);
1918 
1919         bool was_top_level = false;
1920         if (c->execute.file == QFILE_NULL) {
1921                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
1922                 was_top_level = true;
1923         }
1924 
1925         /* Set ZS for executing (execute == 0) and jumping (if->condition ==
1926          * 0) channels, and then update execute flags for those to point to
1927          * the ELSE block.
1928          */
1929         qir_SF(c, qir_OR(c,
1930                          c->execute,
1931                          ntq_get_src(c, if_stmt->condition, 0)));
1932         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1933                      qir_uniform_ui(c, else_block->index));
1934 
1935         /* Jump to ELSE if nothing is active for THEN, otherwise fall
1936          * through.
1937          */
1938         qir_SF(c, c->execute);
1939         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
1940         qir_link_blocks(c->cur_block, else_block);
1941         qir_link_blocks(c->cur_block, then_block);
1942 
1943         /* Process the THEN block. */
1944         qir_set_emit_block(c, then_block);
1945         ntq_emit_cf_list(c, &if_stmt->then_list);
1946 
1947         if (!empty_else_block) {
1948                 /* Handle the end of the THEN block.  First, all currently
1949                  * active channels update their execute flags to point to
1950                  * ENDIF
1951                  */
1952                 qir_SF(c, c->execute);
1953                 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1954                              qir_uniform_ui(c, after_block->index));
1955 
1956                 /* If everything points at ENDIF, then jump there immediately. */
1957                 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
1958                 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
1959                 qir_link_blocks(c->cur_block, after_block);
1960                 qir_link_blocks(c->cur_block, else_block);
1961 
1962                 qir_set_emit_block(c, else_block);
1963                 ntq_activate_execute_for_block(c);
1964                 ntq_emit_cf_list(c, &if_stmt->else_list);
1965         }
1966 
1967         qir_link_blocks(c->cur_block, after_block);
1968 
1969         qir_set_emit_block(c, after_block);
1970         if (was_top_level) {
1971                 c->execute = c->undef;
1972                 c->last_top_block = c->cur_block;
1973         } else {
1974                 ntq_activate_execute_for_block(c);
1975         }
1976 }
1977 
1978 static void
ntq_emit_jump(struct vc4_compile * c,nir_jump_instr * jump)1979 ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
1980 {
1981         struct qblock *jump_block;
1982         switch (jump->type) {
1983         case nir_jump_break:
1984                 jump_block = c->loop_break_block;
1985                 break;
1986         case nir_jump_continue:
1987                 jump_block = c->loop_cont_block;
1988                 break;
1989         default:
1990                 unreachable("Unsupported jump type\n");
1991         }
1992 
1993         qir_SF(c, c->execute);
1994         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1995                      qir_uniform_ui(c, jump_block->index));
1996 
1997         /* Jump to the destination block if everyone has taken the jump. */
1998         qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
1999         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
2000         struct qblock *new_block = qir_new_block(c);
2001         qir_link_blocks(c->cur_block, jump_block);
2002         qir_link_blocks(c->cur_block, new_block);
2003         qir_set_emit_block(c, new_block);
2004 }
2005 
2006 static void
ntq_emit_instr(struct vc4_compile * c,nir_instr * instr)2007 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
2008 {
2009         switch (instr->type) {
2010         case nir_instr_type_alu:
2011                 ntq_emit_alu(c, nir_instr_as_alu(instr));
2012                 break;
2013 
2014         case nir_instr_type_intrinsic:
2015                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2016                 break;
2017 
2018         case nir_instr_type_load_const:
2019                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2020                 break;
2021 
2022         case nir_instr_type_ssa_undef:
2023                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2024                 break;
2025 
2026         case nir_instr_type_tex:
2027                 ntq_emit_tex(c, nir_instr_as_tex(instr));
2028                 break;
2029 
2030         case nir_instr_type_jump:
2031                 ntq_emit_jump(c, nir_instr_as_jump(instr));
2032                 break;
2033 
2034         default:
2035                 fprintf(stderr, "Unknown NIR instr type: ");
2036                 nir_print_instr(instr, stderr);
2037                 fprintf(stderr, "\n");
2038                 abort();
2039         }
2040 }
2041 
2042 static void
ntq_emit_block(struct vc4_compile * c,nir_block * block)2043 ntq_emit_block(struct vc4_compile *c, nir_block *block)
2044 {
2045         nir_foreach_instr(instr, block) {
2046                 ntq_emit_instr(c, instr);
2047         }
2048 }
2049 
2050 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
2051 
2052 static void
ntq_emit_loop(struct vc4_compile * c,nir_loop * loop)2053 ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
2054 {
2055         if (!c->vc4->screen->has_control_flow) {
2056                 fprintf(stderr,
2057                         "loop support requires updated kernel.\n");
2058                 ntq_emit_cf_list(c, &loop->body);
2059                 return;
2060         }
2061 
2062         bool was_top_level = false;
2063         if (c->execute.file == QFILE_NULL) {
2064                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
2065                 was_top_level = true;
2066         }
2067 
2068         struct qblock *save_loop_cont_block = c->loop_cont_block;
2069         struct qblock *save_loop_break_block = c->loop_break_block;
2070 
2071         c->loop_cont_block = qir_new_block(c);
2072         c->loop_break_block = qir_new_block(c);
2073 
2074         qir_link_blocks(c->cur_block, c->loop_cont_block);
2075         qir_set_emit_block(c, c->loop_cont_block);
2076         ntq_activate_execute_for_block(c);
2077 
2078         ntq_emit_cf_list(c, &loop->body);
2079 
2080         /* If anything had explicitly continued, or is here at the end of the
2081          * loop, then we need to loop again.  SF updates are masked by the
2082          * instruction's condition, so we can do the OR of the two conditions
2083          * within SF.
2084          */
2085         qir_SF(c, c->execute);
2086         struct qinst *cont_check =
2087                 qir_SUB_dest(c,
2088                              c->undef,
2089                              c->execute,
2090                              qir_uniform_ui(c, c->loop_cont_block->index));
2091         cont_check->cond = QPU_COND_ZC;
2092         cont_check->sf = true;
2093 
2094         qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
2095         qir_link_blocks(c->cur_block, c->loop_cont_block);
2096         qir_link_blocks(c->cur_block, c->loop_break_block);
2097 
2098         qir_set_emit_block(c, c->loop_break_block);
2099         if (was_top_level) {
2100                 c->execute = c->undef;
2101                 c->last_top_block = c->cur_block;
2102         } else {
2103                 ntq_activate_execute_for_block(c);
2104         }
2105 
2106         c->loop_break_block = save_loop_break_block;
2107         c->loop_cont_block = save_loop_cont_block;
2108 }
2109 
2110 static void
ntq_emit_function(struct vc4_compile * c,nir_function_impl * func)2111 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
2112 {
2113         fprintf(stderr, "FUNCTIONS not handled.\n");
2114         abort();
2115 }
2116 
2117 static void
ntq_emit_cf_list(struct vc4_compile * c,struct exec_list * list)2118 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
2119 {
2120         foreach_list_typed(nir_cf_node, node, node, list) {
2121                 switch (node->type) {
2122                 case nir_cf_node_block:
2123                         ntq_emit_block(c, nir_cf_node_as_block(node));
2124                         break;
2125 
2126                 case nir_cf_node_if:
2127                         ntq_emit_if(c, nir_cf_node_as_if(node));
2128                         break;
2129 
2130                 case nir_cf_node_loop:
2131                         ntq_emit_loop(c, nir_cf_node_as_loop(node));
2132                         break;
2133 
2134                 case nir_cf_node_function:
2135                         ntq_emit_function(c, nir_cf_node_as_function(node));
2136                         break;
2137 
2138                 default:
2139                         fprintf(stderr, "Unknown NIR node type\n");
2140                         abort();
2141                 }
2142         }
2143 }
2144 
2145 static void
ntq_emit_impl(struct vc4_compile * c,nir_function_impl * impl)2146 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
2147 {
2148         ntq_setup_registers(c, &impl->registers);
2149         ntq_emit_cf_list(c, &impl->body);
2150 }
2151 
2152 static void
nir_to_qir(struct vc4_compile * c)2153 nir_to_qir(struct vc4_compile *c)
2154 {
2155         if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
2156                 c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
2157 
2158         ntq_setup_inputs(c);
2159         ntq_setup_outputs(c);
2160 
2161         /* Find the main function and emit the body. */
2162         nir_foreach_function(function, c->s) {
2163                 assert(strcmp(function->name, "main") == 0);
2164                 assert(function->impl);
2165                 ntq_emit_impl(c, function->impl);
2166         }
2167 }
2168 
2169 static const nir_shader_compiler_options nir_options = {
2170         .lower_all_io_to_temps = true,
2171         .lower_extract_byte = true,
2172         .lower_extract_word = true,
2173         .lower_insert_byte = true,
2174         .lower_insert_word = true,
2175         .lower_fdiv = true,
2176         .lower_ffma16 = true,
2177         .lower_ffma32 = true,
2178         .lower_ffma64 = true,
2179         .lower_flrp32 = true,
2180         .lower_fmod = true,
2181         .lower_fpow = true,
2182         .lower_fsat = true,
2183         .lower_fsqrt = true,
2184         .lower_ldexp = true,
2185         .lower_fneg = true,
2186         .lower_ineg = true,
2187         .lower_rotate = true,
2188         .lower_to_scalar = true,
2189         .lower_umax = true,
2190         .lower_umin = true,
2191         .lower_isign = true,
2192         .has_fsub = true,
2193         .has_isub = true,
2194         .max_unroll_iterations = 32,
2195         .force_indirect_unrolling = (nir_var_shader_in | nir_var_shader_out | nir_var_function_temp),
2196 };
2197 
2198 const void *
vc4_screen_get_compiler_options(struct pipe_screen * pscreen,enum pipe_shader_ir ir,enum pipe_shader_type shader)2199 vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
2200                                 enum pipe_shader_ir ir,
2201                                 enum pipe_shader_type shader)
2202 {
2203         return &nir_options;
2204 }
2205 
2206 static int
count_nir_instrs(nir_shader * nir)2207 count_nir_instrs(nir_shader *nir)
2208 {
2209         int count = 0;
2210         nir_foreach_function(function, nir) {
2211                 if (!function->impl)
2212                         continue;
2213                 nir_foreach_block(block, function->impl) {
2214                         nir_foreach_instr(instr, block)
2215                                 count++;
2216                 }
2217         }
2218         return count;
2219 }
2220 
2221 static struct vc4_compile *
vc4_shader_ntq(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key,bool fs_threaded)2222 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2223                struct vc4_key *key, bool fs_threaded)
2224 {
2225         struct vc4_compile *c = qir_compile_init();
2226 
2227         c->vc4 = vc4;
2228         c->stage = stage;
2229         c->shader_state = &key->shader_state->base;
2230         c->program_id = key->shader_state->program_id;
2231         c->variant_id =
2232                 p_atomic_inc_return(&key->shader_state->compiled_variant_count);
2233         c->fs_threaded = fs_threaded;
2234 
2235         c->key = key;
2236         switch (stage) {
2237         case QSTAGE_FRAG:
2238                 c->fs_key = (struct vc4_fs_key *)key;
2239                 if (c->fs_key->is_points) {
2240                         c->point_x = emit_fragment_varying(c, ~0, 0);
2241                         c->point_y = emit_fragment_varying(c, ~0, 0);
2242                 } else if (c->fs_key->is_lines) {
2243                         c->line_x = emit_fragment_varying(c, ~0, 0);
2244                 }
2245                 break;
2246         case QSTAGE_VERT:
2247                 c->vs_key = (struct vc4_vs_key *)key;
2248                 break;
2249         case QSTAGE_COORD:
2250                 c->vs_key = (struct vc4_vs_key *)key;
2251                 break;
2252         }
2253 
2254         c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
2255 
2256         if (stage == QSTAGE_FRAG) {
2257                 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
2258         }
2259 
2260         struct nir_lower_tex_options tex_options = {
2261                 .lower_txp = ~0,
2262 
2263                 /* Apply swizzles to all samplers. */
2264                 .swizzle_result = ~0,
2265         };
2266 
2267         /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
2268          * The format swizzling applies before sRGB decode, and
2269          * ARB_texture_swizzle is the last thing before returning the sample.
2270          */
2271         for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
2272                 enum pipe_format format = c->key->tex[i].format;
2273 
2274                 if (!format)
2275                         continue;
2276 
2277                 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
2278 
2279                 for (int j = 0; j < 4; j++) {
2280                         uint8_t arb_swiz = c->key->tex[i].swizzle[j];
2281 
2282                         if (arb_swiz <= 3) {
2283                                 tex_options.swizzles[i][j] =
2284                                         format_swizzle[arb_swiz];
2285                         } else {
2286                                 tex_options.swizzles[i][j] = arb_swiz;
2287                         }
2288                 }
2289 
2290                 if (util_format_is_srgb(format))
2291                         tex_options.lower_srgb |= (1 << i);
2292         }
2293 
2294         NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
2295 
2296         if (c->key->ucp_enables) {
2297                 if (stage == QSTAGE_FRAG) {
2298                         NIR_PASS_V(c->s, nir_lower_clip_fs,
2299                                    c->key->ucp_enables, false);
2300                 } else {
2301                         NIR_PASS_V(c->s, nir_lower_clip_vs,
2302                                    c->key->ucp_enables, false, false, NULL);
2303                         NIR_PASS_V(c->s, nir_lower_io_to_scalar,
2304                                    nir_var_shader_out);
2305                 }
2306         }
2307 
2308         /* FS input scalarizing must happen after nir_lower_two_sided_color,
2309          * which only handles a vec4 at a time.  Similarly, VS output
2310          * scalarizing must happen after nir_lower_clip_vs.
2311          */
2312         if (c->stage == QSTAGE_FRAG)
2313                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
2314         else
2315                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
2316 
2317         NIR_PASS_V(c->s, vc4_nir_lower_io, c);
2318         NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
2319         nir_lower_idiv_options idiv_options = {
2320                 .imprecise_32bit_lowering = true,
2321                 .allow_fp16 = true,
2322         };
2323         NIR_PASS_V(c->s, nir_lower_idiv, &idiv_options);
2324 
2325         vc4_optimize_nir(c->s);
2326 
2327         /* Do late algebraic optimization to turn add(a, neg(b)) back into
2328          * subs, then the mandatory cleanup after algebraic.  Note that it may
2329          * produce fnegs, and if so then we need to keep running to squash
2330          * fneg(fneg(a)).
2331          */
2332         bool more_late_algebraic = true;
2333         while (more_late_algebraic) {
2334                 more_late_algebraic = false;
2335                 NIR_PASS(more_late_algebraic, c->s, nir_opt_algebraic_late);
2336                 NIR_PASS_V(c->s, nir_opt_constant_folding);
2337                 NIR_PASS_V(c->s, nir_copy_prop);
2338                 NIR_PASS_V(c->s, nir_opt_dce);
2339                 NIR_PASS_V(c->s, nir_opt_cse);
2340         }
2341 
2342         NIR_PASS_V(c->s, nir_lower_bool_to_int32);
2343 
2344         NIR_PASS_V(c->s, nir_convert_from_ssa, true);
2345 
2346         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2347                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2348                         qir_get_stage_name(c->stage),
2349                         c->program_id, c->variant_id,
2350                         count_nir_instrs(c->s));
2351         }
2352 
2353         if (vc4_debug & VC4_DEBUG_NIR) {
2354                 fprintf(stderr, "%s prog %d/%d NIR:\n",
2355                         qir_get_stage_name(c->stage),
2356                         c->program_id, c->variant_id);
2357                 nir_print_shader(c->s, stderr);
2358         }
2359 
2360         nir_to_qir(c);
2361 
2362         switch (stage) {
2363         case QSTAGE_FRAG:
2364                 /* FS threading requires that the thread execute
2365                  * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
2366                  * (with no other THRSW afterwards, obviously).  If we didn't
2367                  * fetch a texture at a top level block, this wouldn't be
2368                  * true.
2369                  */
2370                 if (c->fs_threaded && !c->last_thrsw_at_top_level) {
2371                         c->failed = true;
2372                         return c;
2373                 }
2374 
2375                 emit_frag_end(c);
2376                 break;
2377         case QSTAGE_VERT:
2378                 emit_vert_end(c,
2379                               c->vs_key->fs_inputs->input_slots,
2380                               c->vs_key->fs_inputs->num_inputs);
2381                 break;
2382         case QSTAGE_COORD:
2383                 emit_coord_end(c);
2384                 break;
2385         }
2386 
2387         if (vc4_debug & VC4_DEBUG_QIR) {
2388                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2389                         qir_get_stage_name(c->stage),
2390                         c->program_id, c->variant_id);
2391                 qir_dump(c);
2392                 fprintf(stderr, "\n");
2393         }
2394 
2395         qir_optimize(c);
2396         qir_lower_uniforms(c);
2397 
2398         qir_schedule_instructions(c);
2399         qir_emit_uniform_stream_resets(c);
2400 
2401         if (vc4_debug & VC4_DEBUG_QIR) {
2402                 fprintf(stderr, "%s prog %d/%d QIR:\n",
2403                         qir_get_stage_name(c->stage),
2404                         c->program_id, c->variant_id);
2405                 qir_dump(c);
2406                 fprintf(stderr, "\n");
2407         }
2408 
2409         qir_reorder_uniforms(c);
2410         vc4_generate_code(vc4, c);
2411 
2412         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2413                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2414                         qir_get_stage_name(c->stage),
2415                         c->program_id, c->variant_id,
2416                         c->qpu_inst_count);
2417                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2418                         qir_get_stage_name(c->stage),
2419                         c->program_id, c->variant_id,
2420                         c->num_uniforms);
2421         }
2422 
2423         ralloc_free(c->s);
2424 
2425         return c;
2426 }
2427 
2428 static void *
vc4_shader_state_create(struct pipe_context * pctx,const struct pipe_shader_state * cso)2429 vc4_shader_state_create(struct pipe_context *pctx,
2430                         const struct pipe_shader_state *cso)
2431 {
2432         struct vc4_context *vc4 = vc4_context(pctx);
2433         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2434         if (!so)
2435                 return NULL;
2436 
2437         so->program_id = vc4->next_uncompiled_program_id++;
2438 
2439         nir_shader *s;
2440 
2441         if (cso->type == PIPE_SHADER_IR_NIR) {
2442                 /* The backend takes ownership of the NIR shader on state
2443                  * creation.
2444                  */
2445                 s = cso->ir.nir;
2446        } else {
2447                 assert(cso->type == PIPE_SHADER_IR_TGSI);
2448 
2449                 if (vc4_debug & VC4_DEBUG_TGSI) {
2450                         fprintf(stderr, "prog %d TGSI:\n",
2451                                 so->program_id);
2452                         tgsi_dump(cso->tokens, 0);
2453                         fprintf(stderr, "\n");
2454                 }
2455                 s = tgsi_to_nir(cso->tokens, pctx->screen, false);
2456         }
2457 
2458         if (s->info.stage == MESA_SHADER_VERTEX)
2459                 NIR_PASS_V(s, nir_lower_point_size, 1.0f, 0.0f);
2460 
2461         NIR_PASS_V(s, nir_lower_io,
2462                    nir_var_shader_in | nir_var_shader_out | nir_var_uniform,
2463                    type_size, (nir_lower_io_options)0);
2464 
2465         NIR_PASS_V(s, nir_lower_regs_to_ssa);
2466         NIR_PASS_V(s, nir_normalize_cubemap_coords);
2467 
2468         NIR_PASS_V(s, nir_lower_load_const_to_scalar);
2469 
2470         vc4_optimize_nir(s);
2471 
2472         NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
2473 
2474         /* Garbage collect dead instructions */
2475         nir_sweep(s);
2476 
2477         so->base.type = PIPE_SHADER_IR_NIR;
2478         so->base.ir.nir = s;
2479 
2480         if (vc4_debug & VC4_DEBUG_NIR) {
2481                 fprintf(stderr, "%s prog %d NIR:\n",
2482                         gl_shader_stage_name(s->info.stage),
2483                         so->program_id);
2484                 nir_print_shader(s, stderr);
2485                 fprintf(stderr, "\n");
2486         }
2487 
2488         return so;
2489 }
2490 
2491 static void
copy_uniform_state_to_shader(struct vc4_compiled_shader * shader,struct vc4_compile * c)2492 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2493                              struct vc4_compile *c)
2494 {
2495         int count = c->num_uniforms;
2496         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2497 
2498         uinfo->count = count;
2499         uinfo->data = ralloc_array(shader, uint32_t, count);
2500         memcpy(uinfo->data, c->uniform_data,
2501                count * sizeof(*uinfo->data));
2502         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2503         memcpy(uinfo->contents, c->uniform_contents,
2504                count * sizeof(*uinfo->contents));
2505         uinfo->num_texture_samples = c->num_texture_samples;
2506 
2507         vc4_set_shader_uniform_dirty_flags(shader);
2508 }
2509 
2510 static void
vc4_setup_compiled_fs_inputs(struct vc4_context * vc4,struct vc4_compile * c,struct vc4_compiled_shader * shader)2511 vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
2512                              struct vc4_compiled_shader *shader)
2513 {
2514         struct vc4_fs_inputs inputs;
2515 
2516         memset(&inputs, 0, sizeof(inputs));
2517         inputs.input_slots = ralloc_array(shader,
2518                                           struct vc4_varying_slot,
2519                                           c->num_input_slots);
2520 
2521         bool input_live[c->num_input_slots];
2522 
2523         memset(input_live, 0, sizeof(input_live));
2524         qir_for_each_inst_inorder(inst, c) {
2525                 for (int i = 0; i < qir_get_nsrc(inst); i++) {
2526                         if (inst->src[i].file == QFILE_VARY)
2527                                 input_live[inst->src[i].index] = true;
2528                 }
2529         }
2530 
2531         for (int i = 0; i < c->num_input_slots; i++) {
2532                 struct vc4_varying_slot *slot = &c->input_slots[i];
2533 
2534                 if (!input_live[i])
2535                         continue;
2536 
2537                 /* Skip non-VS-output inputs. */
2538                 if (slot->slot == (uint8_t)~0)
2539                         continue;
2540 
2541                 if (slot->slot == VARYING_SLOT_COL0 ||
2542                     slot->slot == VARYING_SLOT_COL1 ||
2543                     slot->slot == VARYING_SLOT_BFC0 ||
2544                     slot->slot == VARYING_SLOT_BFC1) {
2545                         shader->color_inputs |= (1 << inputs.num_inputs);
2546                 }
2547 
2548                 inputs.input_slots[inputs.num_inputs] = *slot;
2549                 inputs.num_inputs++;
2550         }
2551         shader->num_inputs = inputs.num_inputs;
2552 
2553         /* Add our set of inputs to the set of all inputs seen.  This way, we
2554          * can have a single pointer that identifies an FS inputs set,
2555          * allowing VS to avoid recompiling when the FS is recompiled (or a
2556          * new one is bound using separate shader objects) but the inputs
2557          * don't change.
2558          */
2559         struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
2560         if (entry) {
2561                 shader->fs_inputs = entry->key;
2562                 ralloc_free(inputs.input_slots);
2563         } else {
2564                 struct vc4_fs_inputs *alloc_inputs;
2565 
2566                 alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
2567                 memcpy(alloc_inputs, &inputs, sizeof(inputs));
2568                 ralloc_steal(alloc_inputs, inputs.input_slots);
2569                 _mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
2570 
2571                 shader->fs_inputs = alloc_inputs;
2572         }
2573 }
2574 
2575 static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key)2576 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2577                         struct vc4_key *key)
2578 {
2579         struct hash_table *ht;
2580         uint32_t key_size;
2581         bool try_threading;
2582 
2583         if (stage == QSTAGE_FRAG) {
2584                 ht = vc4->fs_cache;
2585                 key_size = sizeof(struct vc4_fs_key);
2586                 try_threading = vc4->screen->has_threaded_fs;
2587         } else {
2588                 ht = vc4->vs_cache;
2589                 key_size = sizeof(struct vc4_vs_key);
2590                 try_threading = false;
2591         }
2592 
2593         struct vc4_compiled_shader *shader;
2594         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2595         if (entry)
2596                 return entry->data;
2597 
2598         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
2599         /* If the FS failed to compile threaded, fall back to single threaded. */
2600         if (try_threading && c->failed) {
2601                 qir_compile_destroy(c);
2602                 c = vc4_shader_ntq(vc4, stage, key, false);
2603         }
2604 
2605         shader = rzalloc(NULL, struct vc4_compiled_shader);
2606 
2607         shader->program_id = vc4->next_compiled_program_id++;
2608         if (stage == QSTAGE_FRAG) {
2609                 vc4_setup_compiled_fs_inputs(vc4, c, shader);
2610 
2611                 /* Note: the temporary clone in c->s has been freed. */
2612                 nir_shader *orig_shader = key->shader_state->base.ir.nir;
2613                 if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2614                         shader->disable_early_z = true;
2615         } else {
2616                 shader->num_inputs = c->num_inputs;
2617 
2618                 shader->vattr_offsets[0] = 0;
2619                 for (int i = 0; i < 8; i++) {
2620                         shader->vattr_offsets[i + 1] =
2621                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
2622 
2623                         if (c->vattr_sizes[i])
2624                                 shader->vattrs_live |= (1 << i);
2625                 }
2626         }
2627 
2628         shader->failed = c->failed;
2629         if (c->failed) {
2630                 shader->failed = true;
2631         } else {
2632                 copy_uniform_state_to_shader(shader, c);
2633                 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2634                                                  c->qpu_inst_count *
2635                                                  sizeof(uint64_t));
2636         }
2637 
2638         shader->fs_threaded = c->fs_threaded;
2639 
2640         if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
2641                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
2642                         qir_get_stage_name(c->stage),
2643                         c->program_id, c->variant_id,
2644                         1 + shader->fs_threaded);
2645         }
2646 
2647         qir_compile_destroy(c);
2648 
2649         struct vc4_key *dup_key;
2650         dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
2651         memcpy(dup_key, key, key_size);
2652         _mesa_hash_table_insert(ht, dup_key, shader);
2653 
2654         return shader;
2655 }
2656 
2657 static void
vc4_setup_shared_key(struct vc4_context * vc4,struct vc4_key * key,struct vc4_texture_stateobj * texstate)2658 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2659                      struct vc4_texture_stateobj *texstate)
2660 {
2661         for (int i = 0; i < texstate->num_textures; i++) {
2662                 struct pipe_sampler_view *sampler = texstate->textures[i];
2663                 struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
2664                 struct pipe_sampler_state *sampler_state =
2665                         texstate->samplers[i];
2666 
2667                 if (!sampler)
2668                         continue;
2669 
2670                 key->tex[i].format = sampler->format;
2671                 key->tex[i].swizzle[0] = sampler->swizzle_r;
2672                 key->tex[i].swizzle[1] = sampler->swizzle_g;
2673                 key->tex[i].swizzle[2] = sampler->swizzle_b;
2674                 key->tex[i].swizzle[3] = sampler->swizzle_a;
2675 
2676                 if (sampler->texture->nr_samples > 1) {
2677                         key->tex[i].msaa_width = sampler->texture->width0;
2678                         key->tex[i].msaa_height = sampler->texture->height0;
2679                 } else if (sampler){
2680                         key->tex[i].compare_mode = sampler_state->compare_mode;
2681                         key->tex[i].compare_func = sampler_state->compare_func;
2682                         key->tex[i].wrap_s = sampler_state->wrap_s;
2683                         key->tex[i].wrap_t = sampler_state->wrap_t;
2684                         key->tex[i].force_first_level =
2685                                 vc4_sampler->force_first_level;
2686                 }
2687         }
2688 
2689         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2690 }
2691 
2692 static void
vc4_update_compiled_fs(struct vc4_context * vc4,uint8_t prim_mode)2693 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2694 {
2695         struct vc4_job *job = vc4->job;
2696         struct vc4_fs_key local_key;
2697         struct vc4_fs_key *key = &local_key;
2698 
2699         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2700                             VC4_DIRTY_BLEND |
2701                             VC4_DIRTY_FRAMEBUFFER |
2702                             VC4_DIRTY_ZSA |
2703                             VC4_DIRTY_RASTERIZER |
2704                             VC4_DIRTY_SAMPLE_MASK |
2705                             VC4_DIRTY_FRAGTEX |
2706                             VC4_DIRTY_UNCOMPILED_FS |
2707                             VC4_DIRTY_UBO_1_SIZE))) {
2708                 return;
2709         }
2710 
2711         memset(key, 0, sizeof(*key));
2712         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2713         key->base.shader_state = vc4->prog.bind_fs;
2714         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2715         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2716                          prim_mode <= PIPE_PRIM_LINE_STRIP);
2717         key->blend = vc4->blend->rt[0];
2718         if (vc4->blend->logicop_enable) {
2719                 key->logicop_func = vc4->blend->logicop_func;
2720         } else {
2721                 key->logicop_func = PIPE_LOGICOP_COPY;
2722         }
2723         if (job->msaa) {
2724                 key->msaa = vc4->rasterizer->base.multisample;
2725                 key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2726                 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2727                 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2728         }
2729 
2730         if (vc4->framebuffer.cbufs[0])
2731                 key->color_format = vc4->framebuffer.cbufs[0]->format;
2732 
2733         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2734         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2735         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2736         key->depth_enabled = (vc4->zsa->base.depth_enabled ||
2737                               key->stencil_enabled);
2738 
2739         if (key->is_points) {
2740                 key->point_sprite_mask =
2741                         vc4->rasterizer->base.sprite_coord_enable;
2742                 key->point_coord_upper_left =
2743                         (vc4->rasterizer->base.sprite_coord_mode ==
2744                          PIPE_SPRITE_COORD_UPPER_LEFT);
2745         }
2746 
2747         key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
2748 
2749         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2750         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2751         if (vc4->prog.fs == old_fs)
2752                 return;
2753 
2754         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2755 
2756         if (vc4->rasterizer->base.flatshade &&
2757             (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
2758                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2759         }
2760 
2761         if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
2762                 vc4->dirty |= VC4_DIRTY_FS_INPUTS;
2763 }
2764 
2765 static void
vc4_update_compiled_vs(struct vc4_context * vc4,uint8_t prim_mode)2766 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2767 {
2768         struct vc4_vs_key local_key;
2769         struct vc4_vs_key *key = &local_key;
2770 
2771         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2772                             VC4_DIRTY_RASTERIZER |
2773                             VC4_DIRTY_VERTTEX |
2774                             VC4_DIRTY_VTXSTATE |
2775                             VC4_DIRTY_UNCOMPILED_VS |
2776                             VC4_DIRTY_FS_INPUTS))) {
2777                 return;
2778         }
2779 
2780         memset(key, 0, sizeof(*key));
2781         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2782         key->base.shader_state = vc4->prog.bind_vs;
2783         key->fs_inputs = vc4->prog.fs->fs_inputs;
2784 
2785         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2786                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2787 
2788         key->per_vertex_point_size =
2789                 (prim_mode == PIPE_PRIM_POINTS &&
2790                  vc4->rasterizer->base.point_size_per_vertex);
2791 
2792         struct vc4_compiled_shader *vs =
2793                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2794         if (vs != vc4->prog.vs) {
2795                 vc4->prog.vs = vs;
2796                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2797         }
2798 
2799         key->is_coord = true;
2800         /* Coord shaders don't care what the FS inputs are. */
2801         key->fs_inputs = NULL;
2802         struct vc4_compiled_shader *cs =
2803                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2804         if (cs != vc4->prog.cs) {
2805                 vc4->prog.cs = cs;
2806                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2807         }
2808 }
2809 
2810 bool
vc4_update_compiled_shaders(struct vc4_context * vc4,uint8_t prim_mode)2811 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2812 {
2813         vc4_update_compiled_fs(vc4, prim_mode);
2814         vc4_update_compiled_vs(vc4, prim_mode);
2815 
2816         return !(vc4->prog.cs->failed ||
2817                  vc4->prog.vs->failed ||
2818                  vc4->prog.fs->failed);
2819 }
2820 
2821 static uint32_t
fs_cache_hash(const void * key)2822 fs_cache_hash(const void *key)
2823 {
2824         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2825 }
2826 
2827 static uint32_t
vs_cache_hash(const void * key)2828 vs_cache_hash(const void *key)
2829 {
2830         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2831 }
2832 
2833 static bool
fs_cache_compare(const void * key1,const void * key2)2834 fs_cache_compare(const void *key1, const void *key2)
2835 {
2836         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2837 }
2838 
2839 static bool
vs_cache_compare(const void * key1,const void * key2)2840 vs_cache_compare(const void *key1, const void *key2)
2841 {
2842         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2843 }
2844 
2845 static uint32_t
fs_inputs_hash(const void * key)2846 fs_inputs_hash(const void *key)
2847 {
2848         const struct vc4_fs_inputs *inputs = key;
2849 
2850         return _mesa_hash_data(inputs->input_slots,
2851                                sizeof(*inputs->input_slots) *
2852                                inputs->num_inputs);
2853 }
2854 
2855 static bool
fs_inputs_compare(const void * key1,const void * key2)2856 fs_inputs_compare(const void *key1, const void *key2)
2857 {
2858         const struct vc4_fs_inputs *inputs1 = key1;
2859         const struct vc4_fs_inputs *inputs2 = key2;
2860 
2861         return (inputs1->num_inputs == inputs2->num_inputs &&
2862                 memcmp(inputs1->input_slots,
2863                        inputs2->input_slots,
2864                        sizeof(*inputs1->input_slots) *
2865                        inputs1->num_inputs) == 0);
2866 }
2867 
2868 static void
delete_from_cache_if_matches(struct hash_table * ht,struct vc4_compiled_shader ** last_compile,struct hash_entry * entry,struct vc4_uncompiled_shader * so)2869 delete_from_cache_if_matches(struct hash_table *ht,
2870                              struct vc4_compiled_shader **last_compile,
2871                              struct hash_entry *entry,
2872                              struct vc4_uncompiled_shader *so)
2873 {
2874         const struct vc4_key *key = entry->key;
2875 
2876         if (key->shader_state == so) {
2877                 struct vc4_compiled_shader *shader = entry->data;
2878                 _mesa_hash_table_remove(ht, entry);
2879                 vc4_bo_unreference(&shader->bo);
2880 
2881                 if (shader == *last_compile)
2882                         *last_compile = NULL;
2883 
2884                 ralloc_free(shader);
2885         }
2886 }
2887 
2888 static void
vc4_shader_state_delete(struct pipe_context * pctx,void * hwcso)2889 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2890 {
2891         struct vc4_context *vc4 = vc4_context(pctx);
2892         struct vc4_uncompiled_shader *so = hwcso;
2893 
2894         hash_table_foreach(vc4->fs_cache, entry) {
2895                 delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
2896                                              entry, so);
2897         }
2898         hash_table_foreach(vc4->vs_cache, entry) {
2899                 delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
2900                                              entry, so);
2901         }
2902 
2903         ralloc_free(so->base.ir.nir);
2904         free(so);
2905 }
2906 
2907 static void
vc4_fp_state_bind(struct pipe_context * pctx,void * hwcso)2908 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2909 {
2910         struct vc4_context *vc4 = vc4_context(pctx);
2911         vc4->prog.bind_fs = hwcso;
2912         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2913 }
2914 
2915 static void
vc4_vp_state_bind(struct pipe_context * pctx,void * hwcso)2916 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2917 {
2918         struct vc4_context *vc4 = vc4_context(pctx);
2919         vc4->prog.bind_vs = hwcso;
2920         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2921 }
2922 
2923 void
vc4_program_init(struct pipe_context * pctx)2924 vc4_program_init(struct pipe_context *pctx)
2925 {
2926         struct vc4_context *vc4 = vc4_context(pctx);
2927 
2928         pctx->create_vs_state = vc4_shader_state_create;
2929         pctx->delete_vs_state = vc4_shader_state_delete;
2930 
2931         pctx->create_fs_state = vc4_shader_state_create;
2932         pctx->delete_fs_state = vc4_shader_state_delete;
2933 
2934         pctx->bind_fs_state = vc4_fp_state_bind;
2935         pctx->bind_vs_state = vc4_vp_state_bind;
2936 
2937         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2938                                                 fs_cache_compare);
2939         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2940                                                 vs_cache_compare);
2941         vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
2942                                               fs_inputs_compare);
2943 }
2944 
2945 void
vc4_program_fini(struct pipe_context * pctx)2946 vc4_program_fini(struct pipe_context *pctx)
2947 {
2948         struct vc4_context *vc4 = vc4_context(pctx);
2949 
2950         hash_table_foreach(vc4->fs_cache, entry) {
2951                 struct vc4_compiled_shader *shader = entry->data;
2952                 vc4_bo_unreference(&shader->bo);
2953                 ralloc_free(shader);
2954                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2955         }
2956 
2957         hash_table_foreach(vc4->vs_cache, entry) {
2958                 struct vc4_compiled_shader *shader = entry->data;
2959                 vc4_bo_unreference(&shader->bo);
2960                 ralloc_free(shader);
2961                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2962         }
2963 }
2964