1 /*
2  * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3  * Copyright (C) 2019 Collabora, Ltd.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "midgard_quirks.h"
30 
31 struct phys_reg {
32         /* Physical register: 0-31 */
33         unsigned reg;
34 
35         /* Byte offset into the physical register: 0-15 */
36         unsigned offset;
37 
38         /* log2(bytes per component) for fast mul/div */
39         unsigned shift;
40 };
41 
42 /* Shift up by reg_offset and horizontally by dst_offset. */
43 
44 static void
offset_swizzle(unsigned * swizzle,unsigned reg_offset,unsigned srcshift,unsigned dstshift,unsigned dst_offset)45 offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcshift, unsigned dstshift, unsigned dst_offset)
46 {
47         unsigned out[MIR_VEC_COMPONENTS];
48 
49         signed reg_comp = reg_offset >> srcshift;
50         signed dst_comp = dst_offset >> dstshift;
51 
52         unsigned max_component = (16 >> srcshift) - 1;
53 
54         assert(reg_comp << srcshift == reg_offset);
55         assert(dst_comp << dstshift == dst_offset);
56 
57         for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
58                 signed comp = MAX2(c - dst_comp, 0);
59                 out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
60         }
61 
62         memcpy(swizzle, out, sizeof(out));
63 }
64 
65 /* Helper to return the default phys_reg for a given register */
66 
67 static struct phys_reg
default_phys_reg(int reg,unsigned shift)68 default_phys_reg(int reg, unsigned shift)
69 {
70         struct phys_reg r = {
71                 .reg = reg,
72                 .offset = 0,
73                 .shift = shift
74         };
75 
76         return r;
77 }
78 
79 /* Determine which physical register, swizzle, and mask a virtual
80  * register corresponds to */
81 
82 static struct phys_reg
index_to_reg(compiler_context * ctx,struct lcra_state * l,unsigned reg,unsigned shift)83 index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned shift)
84 {
85         /* Check for special cases */
86         if (reg == ~0)
87                 return default_phys_reg(REGISTER_UNUSED, shift);
88         else if (reg >= SSA_FIXED_MINIMUM)
89                 return default_phys_reg(SSA_REG_FROM_FIXED(reg), shift);
90         else if (!l)
91                 return default_phys_reg(REGISTER_UNUSED, shift);
92 
93         struct phys_reg r = {
94                 .reg = l->solutions[reg] / 16,
95                 .offset = l->solutions[reg] & 0xF,
96                 .shift = shift
97         };
98 
99         /* Report that we actually use this register, and return it */
100 
101         if (r.reg < 16)
102                 ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, r.reg + 1);
103 
104         return r;
105 }
106 
107 static void
set_class(unsigned * classes,unsigned node,unsigned class)108 set_class(unsigned *classes, unsigned node, unsigned class)
109 {
110         if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
111                 assert(classes[node] == REG_CLASS_WORK);
112                 classes[node] = class;
113         }
114 }
115 
116 /* Special register classes impose special constraints on who can read their
117  * values, so check that */
118 
119 static bool ASSERTED
check_read_class(unsigned * classes,unsigned tag,unsigned node)120 check_read_class(unsigned *classes, unsigned tag, unsigned node)
121 {
122         /* Non-nodes are implicitly ok */
123         if (node >= SSA_FIXED_MINIMUM)
124                 return true;
125 
126         switch (classes[node]) {
127         case REG_CLASS_LDST:
128                 return (tag == TAG_LOAD_STORE_4);
129         case REG_CLASS_TEXR:
130                 return (tag == TAG_TEXTURE_4);
131         case REG_CLASS_TEXW:
132                 return (tag != TAG_LOAD_STORE_4);
133         case REG_CLASS_WORK:
134                 return IS_ALU(tag);
135         default:
136                 unreachable("Invalid class");
137         }
138 }
139 
140 static bool ASSERTED
check_write_class(unsigned * classes,unsigned tag,unsigned node)141 check_write_class(unsigned *classes, unsigned tag, unsigned node)
142 {
143         /* Non-nodes are implicitly ok */
144         if (node >= SSA_FIXED_MINIMUM)
145                 return true;
146 
147         switch (classes[node]) {
148         case REG_CLASS_TEXR:
149                 return true;
150         case REG_CLASS_TEXW:
151                 return (tag == TAG_TEXTURE_4);
152         case REG_CLASS_LDST:
153         case REG_CLASS_WORK:
154                 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
155         default:
156                 unreachable("Invalid class");
157         }
158 }
159 
160 /* Prepass before RA to ensure special class restrictions are met. The idea is
161  * to create a bit field of types of instructions that read a particular index.
162  * Later, we'll add moves as appropriate and rewrite to specialize by type. */
163 
164 static void
mark_node_class(unsigned * bitfield,unsigned node)165 mark_node_class (unsigned *bitfield, unsigned node)
166 {
167         if (node < SSA_FIXED_MINIMUM)
168                 BITSET_SET(bitfield, node);
169 }
170 
171 void
mir_lower_special_reads(compiler_context * ctx)172 mir_lower_special_reads(compiler_context *ctx)
173 {
174         size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
175 
176         /* Bitfields for the various types of registers we could have. aluw can
177          * be written by either ALU or load/store */
178 
179         unsigned *alur = calloc(sz, 1);
180         unsigned *aluw = calloc(sz, 1);
181         unsigned *brar = calloc(sz, 1);
182         unsigned *ldst = calloc(sz, 1);
183         unsigned *texr = calloc(sz, 1);
184         unsigned *texw = calloc(sz, 1);
185 
186         /* Pass #1 is analysis, a linear scan to fill out the bitfields */
187 
188         mir_foreach_instr_global(ctx, ins) {
189                 switch (ins->type) {
190                 case TAG_ALU_4:
191                         mark_node_class(aluw, ins->dest);
192                         mark_node_class(alur, ins->src[0]);
193                         mark_node_class(alur, ins->src[1]);
194                         mark_node_class(alur, ins->src[2]);
195 
196                         if (ins->compact_branch && ins->writeout)
197                                 mark_node_class(brar, ins->src[0]);
198 
199                         break;
200 
201                 case TAG_LOAD_STORE_4:
202                         mark_node_class(aluw, ins->dest);
203                         mark_node_class(ldst, ins->src[0]);
204                         mark_node_class(ldst, ins->src[1]);
205                         mark_node_class(ldst, ins->src[2]);
206                         mark_node_class(ldst, ins->src[3]);
207                         break;
208 
209                 case TAG_TEXTURE_4:
210                         mark_node_class(texr, ins->src[0]);
211                         mark_node_class(texr, ins->src[1]);
212                         mark_node_class(texr, ins->src[2]);
213                         mark_node_class(texw, ins->dest);
214                         break;
215 
216                 default:
217                         break;
218                 }
219         }
220 
221         /* Pass #2 is lowering now that we've analyzed all the classes.
222          * Conceptually, if an index is only marked for a single type of use,
223          * there is nothing to lower. If it is marked for different uses, we
224          * split up based on the number of types of uses. To do so, we divide
225          * into N distinct classes of use (where N>1 by definition), emit N-1
226          * moves from the index to copies of the index, and finally rewrite N-1
227          * of the types of uses to use the corresponding move */
228 
229         unsigned spill_idx = ctx->temp_count;
230 
231         for (unsigned i = 0; i < ctx->temp_count; ++i) {
232                 bool is_alur = BITSET_TEST(alur, i);
233                 bool is_aluw = BITSET_TEST(aluw, i);
234                 bool is_brar = BITSET_TEST(brar, i);
235                 bool is_ldst = BITSET_TEST(ldst, i);
236                 bool is_texr = BITSET_TEST(texr, i);
237                 bool is_texw = BITSET_TEST(texw, i);
238 
239                 /* Analyse to check how many distinct uses there are. ALU ops
240                  * (alur) can read the results of the texture pipeline (texw)
241                  * but not ldst or texr. Load/store ops (ldst) cannot read
242                  * anything but load/store inputs. Texture pipeline cannot read
243                  * anything but texture inputs. TODO: Simplify.  */
244 
245                 bool collision =
246                         (is_alur && (is_ldst || is_texr)) ||
247                         (is_ldst && (is_alur || is_texr || is_texw)) ||
248                         (is_texr && (is_alur || is_ldst || is_texw)) ||
249                         (is_texw && (is_aluw || is_ldst || is_texr)) ||
250                         (is_brar && is_texw);
251 
252                 if (!collision)
253                         continue;
254 
255                 /* Use the index as-is as the work copy. Emit copies for
256                  * special uses */
257 
258                 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
259                 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
260 
261                 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
262                         if (!collisions[j]) continue;
263 
264                         /* When the hazard is from reading, we move and rewrite
265                          * sources (typical case). When it's from writing, we
266                          * flip the move and rewrite destinations (obscure,
267                          * only from control flow -- impossible in SSA) */
268 
269                         bool hazard_write = (j == 2);
270 
271                         unsigned idx = spill_idx++;
272 
273                         /* Insert move before each read/write, depending on the
274                          * hazard we're trying to account for */
275 
276                         mir_foreach_instr_global_safe(ctx, pre_use) {
277                                 if (pre_use->type != classes[j])
278                                         continue;
279 
280                                 if (hazard_write) {
281                                         if (pre_use->dest != i)
282                                                 continue;
283 
284                                         midgard_instruction m = v_mov(idx, i);
285                                         m.dest_type = pre_use->dest_type;
286                                         m.src_types[1] = m.dest_type;
287                                         m.mask = pre_use->mask;
288 
289                                         midgard_instruction *use = mir_next_op(pre_use);
290                                         assert(use);
291                                         mir_insert_instruction_before(ctx, use, m);
292                                         mir_rewrite_index_dst_single(pre_use, i, idx);
293                                 } else {
294                                         if (!mir_has_arg(pre_use, i))
295                                                 continue;
296 
297                                         idx = spill_idx++;
298 
299                                         midgard_instruction m = v_mov(i, idx);
300                                         m.mask = mir_from_bytemask(mir_round_bytemask_up(
301                                                                 mir_bytemask_of_read_components(pre_use, i), 32), 32);
302                                         mir_insert_instruction_before(ctx, pre_use, m);
303                                         mir_rewrite_index_src_single(pre_use, i, idx);
304                                 }
305                         }
306                 }
307         }
308 
309         free(alur);
310         free(aluw);
311         free(brar);
312         free(ldst);
313         free(texr);
314         free(texw);
315 }
316 
317 static void
mir_compute_interference(compiler_context * ctx,struct lcra_state * l)318 mir_compute_interference(
319                 compiler_context *ctx,
320                 struct lcra_state *l)
321 {
322         /* First, we need liveness information to be computed per block */
323         mir_compute_liveness(ctx);
324 
325         /* We need to force r1.w live throughout a blend shader */
326 
327         if (ctx->inputs->is_blend) {
328                 unsigned r1w = ~0;
329 
330                 mir_foreach_block(ctx, _block) {
331                         midgard_block *block = (midgard_block *) _block;
332                         mir_foreach_instr_in_block_rev(block, ins) {
333                                 if (ins->writeout)
334                                         r1w = ins->dest;
335                         }
336 
337                         if (r1w != ~0)
338                                 break;
339                 }
340 
341                 mir_foreach_instr_global(ctx, ins) {
342                         if (ins->dest < ctx->temp_count)
343                                 lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
344                 }
345         }
346 
347         /* Now that every block has live_in/live_out computed, we can determine
348          * interference by walking each block linearly. Take live_out at the
349          * end of each block and walk the block backwards. */
350 
351         mir_foreach_block(ctx, _blk) {
352                 midgard_block *blk = (midgard_block *) _blk;
353                 uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
354 
355                 mir_foreach_instr_in_block_rev(blk, ins) {
356                         /* Mark all registers live after the instruction as
357                          * interfering with the destination */
358 
359                         unsigned dest = ins->dest;
360 
361                         if (dest < ctx->temp_count) {
362                                 for (unsigned i = 0; i < ctx->temp_count; ++i) {
363                                         if (live[i]) {
364                                                 unsigned mask = mir_bytemask(ins);
365                                                 lcra_add_node_interference(l, dest, mask, i, live[i]);
366                                         }
367                                 }
368                         }
369 
370                         /* Add blend shader interference: blend shaders might
371                          * clobber r0-r3. */
372                         if (ins->compact_branch && ins->writeout) {
373                                 for (unsigned i = 0; i < ctx->temp_count; ++i) {
374                                         if (!live[i])
375                                                 continue;
376 
377                                         for (unsigned j = 0; j < 4; j++) {
378                                                 lcra_add_node_interference(l, ctx->temp_count + j,
379                                                                 0xFFFF,
380                                                                 i, live[i]);
381                                         }
382                                 }
383                         }
384 
385                         /* Update live_in */
386                         mir_liveness_ins_update(live, ins, ctx->temp_count);
387                 }
388 
389                 free(live);
390         }
391 }
392 
393 static bool
mir_is_64(midgard_instruction * ins)394 mir_is_64(midgard_instruction *ins)
395 {
396         if (nir_alu_type_get_type_size(ins->dest_type) == 64)
397                 return true;
398 
399         mir_foreach_src(ins, v) {
400                 if (nir_alu_type_get_type_size(ins->src_types[v]) == 64)
401                         return true;
402         }
403 
404         return false;
405 }
406 
407 /* This routine performs the actual register allocation. It should be succeeded
408  * by install_registers */
409 
410 static struct lcra_state *
allocate_registers(compiler_context * ctx,bool * spilled)411 allocate_registers(compiler_context *ctx, bool *spilled)
412 {
413         /* The number of vec4 work registers available depends on the number of
414          * register-mapped uniforms and the shader stage. By ABI we limit blend
415          * shaders to 8 registers, should be lower XXX */
416         int rmu = ctx->info->push.count / 4;
417         int work_count = ctx->inputs->is_blend ? 8 : 16 - MAX2(rmu - 8, 0);
418 
419        /* No register allocation to do with no SSA */
420 
421         if (!ctx->temp_count)
422                 return NULL;
423 
424         /* Initialize LCRA. Allocate extra node at the end for r1-r3 for
425          * interference */
426 
427         struct lcra_state *l = lcra_alloc_equations(ctx->temp_count + 4, 5);
428         unsigned node_r1 = ctx->temp_count + 1;
429 
430         /* Starts of classes, in bytes */
431         l->class_start[REG_CLASS_WORK]  = 16 * 0;
432         l->class_start[REG_CLASS_LDST]  = 16 * 26;
433         l->class_start[REG_CLASS_TEXR]  = 16 * 28;
434         l->class_start[REG_CLASS_TEXW]  = 16 * 28;
435 
436         l->class_size[REG_CLASS_WORK] = 16 * work_count;
437         l->class_size[REG_CLASS_LDST]  = 16 * 2;
438         l->class_size[REG_CLASS_TEXR]  = 16 * 2;
439         l->class_size[REG_CLASS_TEXW]  = 16 * 2;
440 
441         lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
442 
443         /* To save space on T*20, we don't have real texture registers.
444          * Instead, tex inputs reuse the load/store pipeline registers, and
445          * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
446          * noting that this handles interferences and sizes correctly. */
447 
448         if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
449                 l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
450                 l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
451         }
452 
453         unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
454         unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
455         unsigned *min_bound = calloc(sizeof(unsigned), ctx->temp_count);
456 
457         mir_foreach_instr_global(ctx, ins) {
458                 /* Swizzles of 32-bit sources on 64-bit instructions need to be
459                  * aligned to either bottom (xy) or top (zw). More general
460                  * swizzle lowering should happen prior to scheduling (TODO),
461                  * but once we get RA we shouldn't disrupt this further. Align
462                  * sources of 64-bit instructions. */
463 
464                 if (ins->type == TAG_ALU_4 && mir_is_64(ins)) {
465                         mir_foreach_src(ins, v) {
466                                 unsigned s = ins->src[v];
467 
468                                 if (s < ctx->temp_count)
469                                         min_alignment[s] = 3;
470                         }
471                 }
472 
473                 if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->op)) {
474                         mir_foreach_src(ins, v) {
475                                 unsigned s = ins->src[v];
476                                 unsigned size = nir_alu_type_get_type_size(ins->src_types[v]);
477 
478                                 if (s < ctx->temp_count)
479                                         min_alignment[s] = (size == 64) ? 3 : 2;
480                         }
481                 }
482 
483                 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
484 
485                 unsigned size = nir_alu_type_get_type_size(ins->dest_type);
486 
487                 if (ins->is_pack)
488                         size = 32;
489 
490                 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
491                 int comps1 = util_logbase2(ins->mask);
492 
493                 int bytes = (comps1 + 1) * (size / 8);
494 
495                 /* Use the largest class if there's ambiguity, this
496                  * handles partial writes */
497 
498                 int dest = ins->dest;
499                 found_class[dest] = MAX2(found_class[dest], bytes);
500 
501                 min_alignment[dest] =
502                         (size == 16) ? 1 : /* (1 << 1) = 2-byte */
503                         (size == 32) ? 2 : /* (1 << 2) = 4-byte */
504                         (size == 64) ? 3 : /* (1 << 3) = 8-byte */
505                         3; /* 8-bit todo */
506 
507                 /* We can't cross xy/zw boundaries. TODO: vec8 can */
508                 if (size == 16)
509                         min_bound[dest] = 8;
510 
511                 mir_foreach_src(ins, s) {
512                         unsigned src_size = nir_alu_type_get_type_size(ins->src_types[s]);
513                         if (src_size == 16 && ins->src[s] < SSA_FIXED_MINIMUM)
514                                 min_bound[ins->src[s]] = MAX2(min_bound[ins->src[s]], 8);
515                 }
516 
517                 /* We don't have a swizzle for the conditional and we don't
518                  * want to muck with the conditional itself, so just force
519                  * alignment for now */
520 
521                 if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->op)) {
522                         min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
523 
524                         /* LCRA assumes bound >= alignment */
525                         min_bound[dest] = 16;
526                 }
527 
528                 /* Since ld/st swizzles and masks are 32-bit only, we need them
529                  * aligned to enable final packing */
530                 if (ins->type == TAG_LOAD_STORE_4)
531                         min_alignment[dest] = MAX2(min_alignment[dest], 2);
532         }
533 
534         for (unsigned i = 0; i < ctx->temp_count; ++i) {
535                 lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2,
536                                 min_bound[i] ? min_bound[i] : 16);
537                 lcra_restrict_range(l, i, found_class[i]);
538         }
539 
540         free(found_class);
541         free(min_alignment);
542         free(min_bound);
543 
544         /* Next, we'll determine semantic class. We default to zero (work).
545          * But, if we're used with a special operation, that will force us to a
546          * particular class. Each node must be assigned to exactly one class; a
547          * prepass before RA should have lowered what-would-have-been
548          * multiclass nodes into a series of moves to break it up into multiple
549          * nodes (TODO) */
550 
551         mir_foreach_instr_global(ctx, ins) {
552                 /* Check if this operation imposes any classes */
553 
554                 if (ins->type == TAG_LOAD_STORE_4) {
555                         set_class(l->class, ins->src[0], REG_CLASS_LDST);
556                         set_class(l->class, ins->src[1], REG_CLASS_LDST);
557                         set_class(l->class, ins->src[2], REG_CLASS_LDST);
558                         set_class(l->class, ins->src[3], REG_CLASS_LDST);
559 
560                         if (OP_IS_VEC4_ONLY(ins->op)) {
561                                 lcra_restrict_range(l, ins->dest, 16);
562                                 lcra_restrict_range(l, ins->src[0], 16);
563                                 lcra_restrict_range(l, ins->src[1], 16);
564                                 lcra_restrict_range(l, ins->src[2], 16);
565                                 lcra_restrict_range(l, ins->src[3], 16);
566                         }
567                 } else if (ins->type == TAG_TEXTURE_4) {
568                         set_class(l->class, ins->dest, REG_CLASS_TEXW);
569                         set_class(l->class, ins->src[0], REG_CLASS_TEXR);
570                         set_class(l->class, ins->src[1], REG_CLASS_TEXR);
571                         set_class(l->class, ins->src[2], REG_CLASS_TEXR);
572                         set_class(l->class, ins->src[3], REG_CLASS_TEXR);
573                 }
574         }
575 
576         /* Check that the semantics of the class are respected */
577         mir_foreach_instr_global(ctx, ins) {
578                 assert(check_write_class(l->class, ins->type, ins->dest));
579                 assert(check_read_class(l->class, ins->type, ins->src[0]));
580                 assert(check_read_class(l->class, ins->type, ins->src[1]));
581                 assert(check_read_class(l->class, ins->type, ins->src[2]));
582                 assert(check_read_class(l->class, ins->type, ins->src[3]));
583         }
584 
585         /* Mark writeout to r0, depth to r1.x, stencil to r1.y,
586          * render target to r1.z, unknown to r1.w */
587         mir_foreach_instr_global(ctx, ins) {
588                 if (!(ins->compact_branch && ins->writeout)) continue;
589 
590                 if (ins->src[0] < ctx->temp_count)
591                         l->solutions[ins->src[0]] = 0;
592 
593                 if (ins->src[2] < ctx->temp_count)
594                         l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_X * 4;
595 
596                 if (ins->src[3] < ctx->temp_count)
597                         l->solutions[ins->src[3]] = (16 * 1) + COMPONENT_Y * 4;
598 
599                 if (ins->src[1] < ctx->temp_count)
600                         l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
601 
602                 if (ins->dest < ctx->temp_count)
603                         l->solutions[ins->dest] = (16 * 1) + COMPONENT_W * 4;
604         }
605 
606         /* Destinations of instructions in a writeout block cannot be assigned
607          * to r1 unless they are actually used as r1 from the writeout itself,
608          * since the writes to r1 are special. A code sequence like:
609          *
610          *      sadd.fmov r1.x, [...]
611          *      vadd.fadd r0, r1, r2
612          *      [writeout branch]
613          *
614          * will misbehave since the r1.x write will be interpreted as a
615          * gl_FragDepth write so it won't show up correctly when r1 is read in
616          * the following segment. We model this as interference.
617          */
618 
619         for (unsigned i = 0; i < 4; ++i)
620                 l->solutions[ctx->temp_count + i] = (16 * i);
621 
622         mir_foreach_block(ctx, _blk) {
623                 midgard_block *blk = (midgard_block *) _blk;
624 
625                 mir_foreach_bundle_in_block(blk, v) {
626                         /* We need at least a writeout and nonwriteout instruction */
627                         if (v->instruction_count < 2)
628                                 continue;
629 
630                         /* Branches always come at the end */
631                         midgard_instruction *br = v->instructions[v->instruction_count - 1];
632 
633                         if (!br->writeout)
634                                 continue;
635 
636                         for (signed i = v->instruction_count - 2; i >= 0; --i) {
637                                 midgard_instruction *ins = v->instructions[i];
638 
639                                 if (ins->dest >= ctx->temp_count)
640                                         continue;
641 
642                                 bool used_as_r1 = (br->dest == ins->dest);
643 
644                                 mir_foreach_src(br, s)
645                                         used_as_r1 |= (s > 0) && (br->src[s] == ins->dest);
646 
647                                 if (!used_as_r1)
648                                         lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), node_r1, 0xFFFF);
649                         }
650                 }
651         }
652 
653         /* Precolour blend input to r0. Note writeout is necessarily at the end
654          * and blend shaders are single-RT only so there is only a single
655          * writeout block, so this cannot conflict with the writeout r0 (there
656          * is no need to have an intermediate move) */
657 
658         if (ctx->blend_input != ~0) {
659                 assert(ctx->blend_input < ctx->temp_count);
660                 l->solutions[ctx->blend_input] = 0;
661         }
662 
663         /* Same for the dual-source blend input/output, except here we use r2,
664          * which is also set in the fragment shader. */
665 
666         if (ctx->blend_src1 != ~0) {
667                 assert(ctx->blend_src1 < ctx->temp_count);
668                 l->solutions[ctx->blend_src1] = (16 * 2);
669                 ctx->info->work_reg_count = MAX2(ctx->info->work_reg_count, 3);
670         }
671 
672         mir_compute_interference(ctx, l);
673 
674         *spilled = !lcra_solve(l);
675         return l;
676 }
677 
678 
679 /* Once registers have been decided via register allocation
680  * (allocate_registers), we need to rewrite the MIR to use registers instead of
681  * indices */
682 
683 static void
install_registers_instr(compiler_context * ctx,struct lcra_state * l,midgard_instruction * ins)684 install_registers_instr(
685         compiler_context *ctx,
686         struct lcra_state *l,
687         midgard_instruction *ins)
688 {
689         unsigned src_shift[MIR_SRC_COUNT];
690 
691         for (unsigned i = 0; i < MIR_SRC_COUNT; ++i) {
692                 src_shift[i] =
693                         util_logbase2(nir_alu_type_get_type_size(ins->src_types[i]) / 8);
694         }
695 
696         unsigned dest_shift =
697                 util_logbase2(nir_alu_type_get_type_size(ins->dest_type) / 8);
698 
699         switch (ins->type) {
700         case TAG_ALU_4:
701         case TAG_ALU_8:
702         case TAG_ALU_12:
703         case TAG_ALU_16: {
704                  if (ins->compact_branch)
705                          return;
706 
707                 struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
708                 struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
709                 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
710 
711                 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
712 
713                 unsigned dest_offset =
714                         GET_CHANNEL_COUNT(alu_opcode_props[ins->op].props) ? 0 :
715                         dest.offset;
716 
717                 offset_swizzle(ins->swizzle[0], src1.offset, src1.shift, dest.shift, dest_offset);
718                 if (!ins->has_inline_constant)
719                         offset_swizzle(ins->swizzle[1], src2.offset, src2.shift, dest.shift, dest_offset);
720                 if (ins->src[0] != ~0)
721                         ins->src[0] = SSA_FIXED_REGISTER(src1.reg);
722                 if (ins->src[1] != ~0)
723                         ins->src[1] = SSA_FIXED_REGISTER(src2.reg);
724                 if (ins->dest != ~0)
725                         ins->dest = SSA_FIXED_REGISTER(dest.reg);
726                 break;
727         }
728 
729         case TAG_LOAD_STORE_4: {
730                 /* Which physical register we read off depends on
731                  * whether we are loading or storing -- think about the
732                  * logical dataflow */
733 
734                 bool encodes_src = OP_IS_STORE(ins->op);
735 
736                 if (encodes_src) {
737                         struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
738                         assert(src.reg == 26 || src.reg == 27);
739 
740                         ins->src[0] = SSA_FIXED_REGISTER(src.reg);
741                         offset_swizzle(ins->swizzle[0], src.offset, src.shift, 0, 0);
742                } else {
743                         struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_shift);
744 
745                         ins->dest = SSA_FIXED_REGISTER(dst.reg);
746                         offset_swizzle(ins->swizzle[0], 0, 2, 2, dst.offset);
747                         mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
748                 }
749 
750                 /* We also follow up by actual arguments */
751 
752                 for (int i = 1; i <= 3; i++) {
753                         unsigned src_index = ins->src[i];
754                         if (src_index != ~0) {
755                                 struct phys_reg src = index_to_reg(ctx, l, src_index, src_shift[i]);
756                                 unsigned component = src.offset >> src.shift;
757                                 assert(component << src.shift == src.offset);
758                                 ins->src[i] = SSA_FIXED_REGISTER(src.reg);
759                                 ins->swizzle[i][0] += component;
760                         }
761                 }
762 
763                 break;
764         }
765 
766         case TAG_TEXTURE_4: {
767                 if (ins->op == midgard_tex_op_barrier)
768                         break;
769 
770                 /* Grab RA results */
771                 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
772                 struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
773                 struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_shift[2]);
774                 struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_shift[3]);
775 
776                 /* First, install the texture coordinate */
777                 if (ins->src[1] != ~0)
778                         ins->src[1] = SSA_FIXED_REGISTER(coord.reg);
779                 offset_swizzle(ins->swizzle[1], coord.offset, coord.shift, dest.shift, 0);
780 
781                 /* Next, install the destination */
782                 if (ins->dest != ~0)
783                         ins->dest = SSA_FIXED_REGISTER(dest.reg);
784                 offset_swizzle(ins->swizzle[0], 0, 2, dest.shift,
785                                 dest_shift == 1 ? dest.offset % 8 :
786                                 dest.offset);
787                 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
788 
789                 /* If there is a register LOD/bias, use it */
790                 if (ins->src[2] != ~0) {
791                         assert(!(lod.offset & 3));
792                         ins->src[2] = SSA_FIXED_REGISTER(lod.reg);
793                         ins->swizzle[2][0] = lod.offset / 4;
794                 }
795 
796                 /* If there is an offset register, install it */
797                 if (ins->src[3] != ~0) {
798                         ins->src[3] = SSA_FIXED_REGISTER(offset.reg);
799                         ins->swizzle[3][0] = offset.offset / 4;
800                 }
801 
802                 break;
803         }
804 
805         default:
806                 break;
807         }
808 }
809 
810 static void
install_registers(compiler_context * ctx,struct lcra_state * l)811 install_registers(compiler_context *ctx, struct lcra_state *l)
812 {
813         mir_foreach_instr_global(ctx, ins)
814                 install_registers_instr(ctx, l, ins);
815 }
816 
817 
818 /* If register allocation fails, find the best spill node */
819 
820 static signed
mir_choose_spill_node(compiler_context * ctx,struct lcra_state * l)821 mir_choose_spill_node(
822                 compiler_context *ctx,
823                 struct lcra_state *l)
824 {
825         /* We can't spill a previously spilled value or an unspill */
826 
827         mir_foreach_instr_global(ctx, ins) {
828                 if (ins->no_spill & (1 << l->spill_class)) {
829                         lcra_set_node_spill_cost(l, ins->dest, -1);
830 
831                         if (l->spill_class != REG_CLASS_WORK) {
832                                 mir_foreach_src(ins, s)
833                                         lcra_set_node_spill_cost(l, ins->src[s], -1);
834                         }
835                 }
836         }
837 
838         return lcra_get_best_spill_node(l);
839 }
840 
841 /* Once we've chosen a spill node, spill it */
842 
843 static void
mir_spill_register(compiler_context * ctx,unsigned spill_node,unsigned spill_class,unsigned * spill_count)844 mir_spill_register(
845                 compiler_context *ctx,
846                 unsigned spill_node,
847                 unsigned spill_class,
848                 unsigned *spill_count)
849 {
850         if (spill_class == REG_CLASS_WORK && ctx->inputs->is_blend)
851                 unreachable("Blend shader spilling is currently unimplemented");
852 
853         unsigned spill_index = ctx->temp_count;
854 
855         /* We have a spill node, so check the class. Work registers
856          * legitimately spill to TLS, but special registers just spill to work
857          * registers */
858 
859         bool is_special = spill_class != REG_CLASS_WORK;
860         bool is_special_w = spill_class == REG_CLASS_TEXW;
861 
862         /* Allocate TLS slot (maybe) */
863         unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
864 
865         /* For special reads, figure out how many bytes we need */
866         unsigned read_bytemask = 0;
867 
868         /* If multiple instructions write to this destination, we'll have to
869          * fill from TLS before writing */
870         unsigned write_count = 0;
871 
872         mir_foreach_instr_global_safe(ctx, ins) {
873                 read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
874                 if (ins->dest == spill_node)
875                         ++write_count;
876         }
877 
878         /* For TLS, replace all stores to the spilled node. For
879          * special reads, just keep as-is; the class will be demoted
880          * implicitly. For special writes, spill to a work register */
881 
882         if (!is_special || is_special_w) {
883                 if (is_special_w)
884                         spill_slot = spill_index++;
885 
886                 mir_foreach_block(ctx, _block) {
887                 midgard_block *block = (midgard_block *) _block;
888                 mir_foreach_instr_in_block_safe(block, ins) {
889                         if (ins->dest != spill_node) continue;
890 
891                         /* Note: it's important to match the mask of the spill
892                          * with the mask of the instruction whose destination
893                          * we're spilling, or otherwise we'll read invalid
894                          * components and can fail RA in a subsequent iteration
895                          */
896 
897                         if (is_special_w) {
898                                 midgard_instruction st = v_mov(spill_node, spill_slot);
899                                 st.no_spill |= (1 << spill_class);
900                                 st.mask = ins->mask;
901                                 st.dest_type = st.src_types[1] = ins->dest_type;
902 
903                                 /* Hint: don't rewrite this node */
904                                 st.hint = true;
905 
906                                 mir_insert_instruction_after_scheduled(ctx, block, ins, st);
907                         } else {
908                                 unsigned dest = spill_index++;
909 
910                                 if (write_count > 1 && mir_bytemask(ins) != 0xF) {
911                                         midgard_instruction read =
912                                                 v_load_store_scratch(dest, spill_slot, false, 0xF);
913                                         mir_insert_instruction_before_scheduled(ctx, block, ins, read);
914                                 }
915 
916                                 ins->dest = dest;
917                                 ins->no_spill |= (1 << spill_class);
918 
919                                 bool move = false;
920 
921                                 /* In the same bundle, reads of the destination
922                                  * of the spilt instruction need to be direct */
923                                 midgard_instruction *it = ins;
924                                 while ((it = list_first_entry(&it->link, midgard_instruction, link))
925                                        && (it->bundle_id == ins->bundle_id)) {
926 
927                                         if (!mir_has_arg(it, spill_node)) continue;
928 
929                                         mir_rewrite_index_src_single(it, spill_node, dest);
930 
931                                         /* The spilt instruction will write to
932                                          * a work register for `it` to read but
933                                          * the spill needs an LD/ST register */
934                                         move = true;
935                                 }
936 
937                                 if (move)
938                                         dest = spill_index++;
939 
940                                 midgard_instruction st =
941                                         v_load_store_scratch(dest, spill_slot, true, ins->mask);
942                                 mir_insert_instruction_after_scheduled(ctx, block, ins, st);
943 
944                                 if (move) {
945                                         midgard_instruction mv = v_mov(ins->dest, dest);
946                                         mv.no_spill |= (1 << spill_class);
947 
948                                         mir_insert_instruction_after_scheduled(ctx, block, ins, mv);
949                                 }
950                         }
951 
952                         if (!is_special)
953                                 ctx->spills++;
954                 }
955                 }
956         }
957 
958         /* Insert a load from TLS before the first consecutive
959          * use of the node, rewriting to use spilled indices to
960          * break up the live range. Or, for special, insert a
961          * move. Ironically the latter *increases* register
962          * pressure, but the two uses of the spilling mechanism
963          * are somewhat orthogonal. (special spilling is to use
964          * work registers to back special registers; TLS
965          * spilling is to use memory to back work registers) */
966 
967         mir_foreach_block(ctx, _block) {
968                 midgard_block *block = (midgard_block *) _block;
969                 mir_foreach_instr_in_block(block, ins) {
970                         /* We can't rewrite the moves used to spill in the
971                          * first place. These moves are hinted. */
972                         if (ins->hint) continue;
973 
974                         /* If we don't use the spilled value, nothing to do */
975                         if (!mir_has_arg(ins, spill_node)) continue;
976 
977                         unsigned index = 0;
978 
979                         if (!is_special_w) {
980                                 index = ++spill_index;
981 
982                                 midgard_instruction *before = ins;
983                                 midgard_instruction st;
984 
985                                 if (is_special) {
986                                         /* Move */
987                                         st = v_mov(spill_node, index);
988                                         st.no_spill |= (1 << spill_class);
989                                 } else {
990                                         /* TLS load */
991                                         st = v_load_store_scratch(index, spill_slot, false, 0xF);
992                                 }
993 
994                                 /* Mask the load based on the component count
995                                  * actually needed to prevent RA loops */
996 
997                                 st.mask = mir_from_bytemask(mir_round_bytemask_up(
998                                                         read_bytemask, 32), 32);
999 
1000                                 mir_insert_instruction_before_scheduled(ctx, block, before, st);
1001                         } else {
1002                                 /* Special writes already have their move spilled in */
1003                                 index = spill_slot;
1004                         }
1005 
1006 
1007                         /* Rewrite to use */
1008                         mir_rewrite_index_src_single(ins, spill_node, index);
1009 
1010                         if (!is_special)
1011                                 ctx->fills++;
1012                 }
1013         }
1014 
1015         /* Reset hints */
1016 
1017         mir_foreach_instr_global(ctx, ins) {
1018                 ins->hint = false;
1019         }
1020 }
1021 
1022 static void
mir_demote_uniforms(compiler_context * ctx,unsigned new_cutoff)1023 mir_demote_uniforms(compiler_context *ctx, unsigned new_cutoff)
1024 {
1025         unsigned uniforms = ctx->info->push.count / 4;
1026         unsigned old_work_count = 16 - MAX2(uniforms - 8, 0);
1027         unsigned work_count = 16 - MAX2((new_cutoff - 8), 0);
1028 
1029         unsigned min_demote = SSA_FIXED_REGISTER(old_work_count);
1030         unsigned max_demote = SSA_FIXED_REGISTER(work_count);
1031 
1032         mir_foreach_block(ctx, _block) {
1033                 midgard_block *block = (midgard_block *) _block;
1034                 mir_foreach_instr_in_block(block, ins) {
1035                         mir_foreach_src(ins, i) {
1036                                 if (ins->src[i] < min_demote || ins->src[i] >= max_demote)
1037                                         continue;
1038 
1039                                 midgard_instruction *before = ins;
1040 
1041                                 unsigned temp = make_compiler_temp(ctx);
1042                                 unsigned idx = (23 - SSA_REG_FROM_FIXED(ins->src[i])) * 4;
1043                                 assert(idx < ctx->info->push.count);
1044 
1045                                 ctx->ubo_mask |= BITSET_BIT(ctx->info->push.words[idx].ubo);
1046 
1047                                 midgard_instruction ld = {
1048                                         .type = TAG_LOAD_STORE_4,
1049                                         .mask = 0xF,
1050                                         .dest = temp,
1051                                         .dest_type = ins->src_types[i],
1052                                         .src = { ~0, ~0, ~0, ~0 },
1053                                         .swizzle = SWIZZLE_IDENTITY_4,
1054                                         .op = midgard_op_ld_ubo_128,
1055                                         .load_store = {
1056                                                 .index_reg = REGISTER_LDST_ZERO,
1057                                         },
1058                                         .constants.u32[0] = ctx->info->push.words[idx].offset
1059                                 };
1060 
1061                                 midgard_pack_ubo_index_imm(&ld.load_store,
1062                                                            ctx->info->push.words[idx].ubo);
1063 
1064                                 mir_insert_instruction_before_scheduled(ctx, block, before, ld);
1065 
1066                                 mir_rewrite_index_src_single(ins, ins->src[i], temp);
1067                         }
1068                 }
1069         }
1070 
1071         ctx->info->push.count = MIN2(ctx->info->push.count, new_cutoff * 4);
1072 }
1073 
1074 /* Run register allocation in a loop, spilling until we succeed */
1075 
1076 void
mir_ra(compiler_context * ctx)1077 mir_ra(compiler_context *ctx)
1078 {
1079         struct lcra_state *l = NULL;
1080         bool spilled = false;
1081         int iter_count = 1000; /* max iterations */
1082 
1083         /* Number of 128-bit slots in memory we've spilled into */
1084         unsigned spill_count = DIV_ROUND_UP(ctx->info->tls_size, 16);
1085 
1086 
1087         mir_create_pipeline_registers(ctx);
1088 
1089         do {
1090                 if (spilled) {
1091                         signed spill_node = mir_choose_spill_node(ctx, l);
1092                         unsigned uniforms = ctx->info->push.count / 4;
1093 
1094                         /* It's a lot cheaper to demote uniforms to get more
1095                          * work registers than to spill to TLS. */
1096                         if (l->spill_class == REG_CLASS_WORK && uniforms > 8) {
1097                                 mir_demote_uniforms(ctx, MAX2(uniforms - 4, 8));
1098                         } else if (spill_node == -1) {
1099                                 fprintf(stderr, "ERROR: Failed to choose spill node\n");
1100                                 lcra_free(l);
1101                                 return;
1102                         } else {
1103                                 mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
1104                         }
1105                 }
1106 
1107                 mir_squeeze_index(ctx);
1108                 mir_invalidate_liveness(ctx);
1109 
1110                 if (l) {
1111                         lcra_free(l);
1112                         l = NULL;
1113                 }
1114 
1115                 l = allocate_registers(ctx, &spilled);
1116         } while(spilled && ((iter_count--) > 0));
1117 
1118         if (iter_count <= 0) {
1119                 fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
1120                 assert(0);
1121         }
1122 
1123         /* Report spilling information. spill_count is in 128-bit slots (vec4 x
1124          * fp32), but tls_size is in bytes, so multiply by 16 */
1125 
1126         ctx->info->tls_size = spill_count * 16;
1127 
1128         install_registers(ctx, l);
1129 
1130         lcra_free(l);
1131 }
1132