1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include "si_pipe.h"
27 #include "util/format/u_format.h"
28 #include "util/format_srgb.h"
29 #include "util/u_helpers.h"
30 
31 /* Determine the cache policy. */
get_cache_policy(struct si_context * sctx,enum si_coherency coher,uint64_t size)32 static enum si_cache_policy get_cache_policy(struct si_context *sctx, enum si_coherency coher,
33                                              uint64_t size)
34 {
35    if ((sctx->chip_class >= GFX9 && (coher == SI_COHERENCY_CB_META ||
36                                      coher == SI_COHERENCY_DB_META ||
37                                      coher == SI_COHERENCY_CP)) ||
38        (sctx->chip_class >= GFX7 && coher == SI_COHERENCY_SHADER))
39       return L2_LRU; /* it's faster if L2 doesn't evict anything  */
40 
41    return L2_BYPASS;
42 }
43 
si_get_flush_flags(struct si_context * sctx,enum si_coherency coher,enum si_cache_policy cache_policy)44 unsigned si_get_flush_flags(struct si_context *sctx, enum si_coherency coher,
45                             enum si_cache_policy cache_policy)
46 {
47    switch (coher) {
48    default:
49    case SI_COHERENCY_NONE:
50    case SI_COHERENCY_CP:
51       return 0;
52    case SI_COHERENCY_SHADER:
53       return SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE |
54              (cache_policy == L2_BYPASS ? SI_CONTEXT_INV_L2 : 0);
55    case SI_COHERENCY_CB_META:
56       return SI_CONTEXT_FLUSH_AND_INV_CB;
57    case SI_COHERENCY_DB_META:
58       return SI_CONTEXT_FLUSH_AND_INV_DB;
59    }
60 }
61 
si_launch_grid_internal(struct si_context * sctx,struct pipe_grid_info * info,void * shader,unsigned flags)62 void si_launch_grid_internal(struct si_context *sctx, struct pipe_grid_info *info,
63                              void *shader, unsigned flags)
64 {
65 
66    /* Wait for previous shaders to finish. */
67    if (flags & SI_OP_SYNC_PS_BEFORE)
68       sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH;
69 
70    if (flags & SI_OP_SYNC_CS_BEFORE)
71       sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
72 
73    if (!(flags & SI_OP_CS_IMAGE))
74       sctx->flags |= SI_CONTEXT_PFP_SYNC_ME;
75 
76    /* Invalidate L0-L1 caches. */
77    /* sL0 is never invalidated, because src resources don't use it. */
78    if (!(flags & SI_OP_SKIP_CACHE_INV_BEFORE))
79       sctx->flags |= SI_CONTEXT_INV_VCACHE;
80 
81    /* Set settings for driver-internal compute dispatches. */
82    sctx->flags &= ~SI_CONTEXT_START_PIPELINE_STATS;
83    sctx->flags |= SI_CONTEXT_STOP_PIPELINE_STATS;
84 
85    if (!(flags & SI_OP_CS_RENDER_COND_ENABLE))
86       sctx->render_cond_enabled = false;
87 
88    /* Skip decompression to prevent infinite recursion. */
89    sctx->blitter_running = true;
90 
91    /* Dispatch compute. */
92    void *saved_cs = sctx->cs_shader_state.program;
93    sctx->b.bind_compute_state(&sctx->b, shader);
94    sctx->b.launch_grid(&sctx->b, info);
95    sctx->b.bind_compute_state(&sctx->b, saved_cs);
96 
97    /* Restore default settings. */
98    sctx->flags &= ~SI_CONTEXT_STOP_PIPELINE_STATS;
99    sctx->flags |= SI_CONTEXT_START_PIPELINE_STATS;
100    sctx->render_cond_enabled = sctx->render_cond;
101    sctx->blitter_running = false;
102 
103    if (flags & SI_OP_SYNC_AFTER) {
104       sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
105 
106       if (flags & SI_OP_CS_IMAGE) {
107          /* Make sure image stores are visible to CB, which doesn't use L2 on GFX6-8. */
108          sctx->flags |= sctx->chip_class <= GFX8 ? SI_CONTEXT_WB_L2 : 0;
109          /* Make sure image stores are visible to all CUs. */
110          sctx->flags |= SI_CONTEXT_INV_VCACHE;
111       } else {
112          /* Make sure buffer stores are visible to all CUs. */
113          sctx->flags |= SI_CONTEXT_INV_SCACHE | SI_CONTEXT_INV_VCACHE | SI_CONTEXT_PFP_SYNC_ME;
114       }
115    }
116 }
117 
si_launch_grid_internal_ssbos(struct si_context * sctx,struct pipe_grid_info * info,void * shader,unsigned flags,enum si_coherency coher,unsigned num_buffers,const struct pipe_shader_buffer * buffers,unsigned writeable_bitmask)118 void si_launch_grid_internal_ssbos(struct si_context *sctx, struct pipe_grid_info *info,
119                                    void *shader, unsigned flags, enum si_coherency coher,
120                                    unsigned num_buffers, const struct pipe_shader_buffer *buffers,
121                                    unsigned writeable_bitmask)
122 {
123    if (!(flags & SI_OP_SKIP_CACHE_INV_BEFORE))
124       sctx->flags |= si_get_flush_flags(sctx, coher, SI_COMPUTE_DST_CACHE_POLICY);
125 
126    /* Save states. */
127    struct pipe_shader_buffer saved_sb[3] = {};
128    assert(num_buffers <= ARRAY_SIZE(saved_sb));
129    si_get_shader_buffers(sctx, PIPE_SHADER_COMPUTE, 0, num_buffers, saved_sb);
130 
131    unsigned saved_writable_mask = 0;
132    for (unsigned i = 0; i < num_buffers; i++) {
133       if (sctx->const_and_shader_buffers[PIPE_SHADER_COMPUTE].writable_mask &
134           (1u << si_get_shaderbuf_slot(i)))
135          saved_writable_mask |= 1 << i;
136    }
137 
138    /* Bind buffers and launch compute. */
139    sctx->b.set_shader_buffers(&sctx->b, PIPE_SHADER_COMPUTE, 0, num_buffers, buffers,
140                               writeable_bitmask);
141    si_launch_grid_internal(sctx, info, shader, flags);
142 
143    /* Do cache flushing at the end. */
144    if (get_cache_policy(sctx, coher, 0) == L2_BYPASS) {
145       if (flags & SI_OP_SYNC_AFTER)
146          sctx->flags |= SI_CONTEXT_WB_L2;
147    } else {
148       while (writeable_bitmask)
149          si_resource(buffers[u_bit_scan(&writeable_bitmask)].buffer)->TC_L2_dirty = true;
150    }
151 
152    /* Restore states. */
153    sctx->b.set_shader_buffers(&sctx->b, PIPE_SHADER_COMPUTE, 0, num_buffers, saved_sb,
154                               saved_writable_mask);
155    for (int i = 0; i < num_buffers; i++)
156       pipe_resource_reference(&saved_sb[i].buffer, NULL);
157 }
158 
159 /**
160  * Clear a buffer using read-modify-write with a 32-bit write bitmask.
161  * The clear value has 32 bits.
162  */
si_compute_clear_buffer_rmw(struct si_context * sctx,struct pipe_resource * dst,unsigned dst_offset,unsigned size,uint32_t clear_value,uint32_t writebitmask,unsigned flags,enum si_coherency coher)163 void si_compute_clear_buffer_rmw(struct si_context *sctx, struct pipe_resource *dst,
164                                  unsigned dst_offset, unsigned size,
165                                  uint32_t clear_value, uint32_t writebitmask,
166                                  unsigned flags, enum si_coherency coher)
167 {
168    assert(dst_offset % 4 == 0);
169    assert(size % 4 == 0);
170 
171    assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0);
172 
173    /* Use buffer_load_dwordx4 and buffer_store_dwordx4 per thread. */
174    unsigned dwords_per_instruction = 4;
175    unsigned wave_size = sctx->screen->compute_wave_size;
176    unsigned dwords_per_wave = dwords_per_instruction * wave_size;
177 
178    unsigned num_dwords = size / 4;
179    unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction);
180 
181    struct pipe_grid_info info = {};
182    info.block[0] = MIN2(wave_size, num_instructions);
183    info.block[1] = 1;
184    info.block[2] = 1;
185    info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave);
186    info.grid[1] = 1;
187    info.grid[2] = 1;
188 
189    struct pipe_shader_buffer sb = {};
190    sb.buffer = dst;
191    sb.buffer_offset = dst_offset;
192    sb.buffer_size = size;
193 
194    sctx->cs_user_data[0] = clear_value & writebitmask;
195    sctx->cs_user_data[1] = ~writebitmask;
196 
197    if (!sctx->cs_clear_buffer_rmw)
198       sctx->cs_clear_buffer_rmw = si_create_clear_buffer_rmw_cs(&sctx->b);
199 
200    si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_clear_buffer_rmw, flags, coher,
201                                  1, &sb, 0x1);
202 }
203 
si_compute_clear_12bytes_buffer(struct si_context * sctx,struct pipe_resource * dst,unsigned dst_offset,unsigned size,const uint32_t * clear_value,unsigned flags,enum si_coherency coher)204 static void si_compute_clear_12bytes_buffer(struct si_context *sctx, struct pipe_resource *dst,
205                                             unsigned dst_offset, unsigned size,
206                                             const uint32_t *clear_value, unsigned flags,
207                                             enum si_coherency coher)
208 {
209    struct pipe_context *ctx = &sctx->b;
210 
211    assert(dst_offset % 4 == 0);
212    assert(size % 4 == 0);
213    unsigned size_12 = DIV_ROUND_UP(size, 12);
214 
215    struct pipe_shader_buffer sb = {0};
216    sb.buffer = dst;
217    sb.buffer_offset = dst_offset;
218    sb.buffer_size = size;
219 
220    memcpy(sctx->cs_user_data, clear_value, 12);
221 
222    struct pipe_grid_info info = {0};
223 
224    if (!sctx->cs_clear_12bytes_buffer)
225       sctx->cs_clear_12bytes_buffer = si_clear_12bytes_buffer_shader(ctx);
226 
227    info.block[0] = 64;
228    info.last_block[0] = size_12 % 64;
229    info.block[1] = 1;
230    info.block[2] = 1;
231    info.grid[0] = DIV_ROUND_UP(size_12, 64);
232    info.grid[1] = 1;
233    info.grid[2] = 1;
234 
235    si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_clear_12bytes_buffer, flags, coher,
236                                  1, &sb, 0x1);
237 }
238 
si_compute_do_clear_or_copy(struct si_context * sctx,struct pipe_resource * dst,unsigned dst_offset,struct pipe_resource * src,unsigned src_offset,unsigned size,const uint32_t * clear_value,unsigned clear_value_size,unsigned flags,enum si_coherency coher)239 static void si_compute_do_clear_or_copy(struct si_context *sctx, struct pipe_resource *dst,
240                                         unsigned dst_offset, struct pipe_resource *src,
241                                         unsigned src_offset, unsigned size,
242                                         const uint32_t *clear_value, unsigned clear_value_size,
243                                         unsigned flags, enum si_coherency coher)
244 {
245    assert(src_offset % 4 == 0);
246    assert(dst_offset % 4 == 0);
247    assert(size % 4 == 0);
248 
249    assert(dst->target != PIPE_BUFFER || dst_offset + size <= dst->width0);
250    assert(!src || src_offset + size <= src->width0);
251 
252    /* The memory accesses are coalesced, meaning that the 1st instruction writes
253     * the 1st contiguous block of data for the whole wave, the 2nd instruction
254     * writes the 2nd contiguous block of data, etc.
255     */
256    unsigned dwords_per_thread =
257       src ? SI_COMPUTE_COPY_DW_PER_THREAD : SI_COMPUTE_CLEAR_DW_PER_THREAD;
258    unsigned instructions_per_thread = MAX2(1, dwords_per_thread / 4);
259    unsigned dwords_per_instruction = dwords_per_thread / instructions_per_thread;
260    unsigned wave_size = sctx->screen->compute_wave_size;
261    unsigned dwords_per_wave = dwords_per_thread * wave_size;
262 
263    unsigned num_dwords = size / 4;
264    unsigned num_instructions = DIV_ROUND_UP(num_dwords, dwords_per_instruction);
265 
266    struct pipe_grid_info info = {};
267    info.block[0] = MIN2(wave_size, num_instructions);
268    info.block[1] = 1;
269    info.block[2] = 1;
270    info.grid[0] = DIV_ROUND_UP(num_dwords, dwords_per_wave);
271    info.grid[1] = 1;
272    info.grid[2] = 1;
273 
274    struct pipe_shader_buffer sb[2] = {};
275    sb[0].buffer = dst;
276    sb[0].buffer_offset = dst_offset;
277    sb[0].buffer_size = size;
278 
279    bool shader_dst_stream_policy = SI_COMPUTE_DST_CACHE_POLICY != L2_LRU;
280 
281    if (src) {
282       sb[1].buffer = src;
283       sb[1].buffer_offset = src_offset;
284       sb[1].buffer_size = size;
285 
286       if (!sctx->cs_copy_buffer) {
287          sctx->cs_copy_buffer = si_create_dma_compute_shader(
288             &sctx->b, SI_COMPUTE_COPY_DW_PER_THREAD, shader_dst_stream_policy, true);
289       }
290 
291       si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_copy_buffer, flags, coher,
292                                     2, sb, 0x1);
293    } else {
294       assert(clear_value_size >= 4 && clear_value_size <= 16 &&
295              util_is_power_of_two_or_zero(clear_value_size));
296 
297       for (unsigned i = 0; i < 4; i++)
298          sctx->cs_user_data[i] = clear_value[i % (clear_value_size / 4)];
299 
300       if (!sctx->cs_clear_buffer) {
301          sctx->cs_clear_buffer = si_create_dma_compute_shader(
302             &sctx->b, SI_COMPUTE_CLEAR_DW_PER_THREAD, shader_dst_stream_policy, false);
303       }
304 
305       si_launch_grid_internal_ssbos(sctx, &info, sctx->cs_clear_buffer, flags, coher,
306                                     1, sb, 0x1);
307    }
308 }
309 
si_clear_buffer(struct si_context * sctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,uint32_t * clear_value,uint32_t clear_value_size,unsigned flags,enum si_coherency coher,enum si_clear_method method)310 void si_clear_buffer(struct si_context *sctx, struct pipe_resource *dst,
311                      uint64_t offset, uint64_t size, uint32_t *clear_value,
312                      uint32_t clear_value_size, unsigned flags,
313                      enum si_coherency coher, enum si_clear_method method)
314 {
315    if (!size)
316       return;
317 
318    ASSERTED unsigned clear_alignment = MIN2(clear_value_size, 4);
319 
320    assert(clear_value_size != 3 && clear_value_size != 6); /* 12 is allowed. */
321    assert(offset % clear_alignment == 0);
322    assert(size % clear_alignment == 0);
323    assert(size < (UINT_MAX & ~0xf)); /* TODO: test 64-bit sizes in all codepaths */
324 
325    uint32_t clamped;
326    if (util_lower_clearsize_to_dword(clear_value, (int*)&clear_value_size, &clamped))
327       clear_value = &clamped;
328 
329    if (clear_value_size == 12) {
330       si_compute_clear_12bytes_buffer(sctx, dst, offset, size, clear_value, flags, coher);
331       return;
332    }
333 
334    uint64_t aligned_size = size & ~3ull;
335    if (aligned_size >= 4) {
336       uint64_t compute_min_size;
337 
338       if (sctx->chip_class <= GFX8) {
339          /* CP DMA clears are terribly slow with GTT on GFX6-8, which can always
340           * happen due to BO evictions.
341           */
342          compute_min_size = 0;
343       } else {
344          /* Use a small enough size because CP DMA is slower than compute with bigger sizes. */
345          compute_min_size = 4 * 1024;
346       }
347 
348       if (method == SI_AUTO_SELECT_CLEAR_METHOD && (
349            clear_value_size > 4 ||
350            (clear_value_size == 4 && offset % 4 == 0 && size > compute_min_size))) {
351          method = SI_COMPUTE_CLEAR_METHOD;
352       }
353       if (method == SI_COMPUTE_CLEAR_METHOD) {
354          si_compute_do_clear_or_copy(sctx, dst, offset, NULL, 0, aligned_size, clear_value,
355                                      clear_value_size, flags, coher);
356       } else {
357          assert(clear_value_size == 4);
358          si_cp_dma_clear_buffer(sctx, &sctx->gfx_cs, dst, offset, aligned_size, *clear_value,
359                                 flags, coher, get_cache_policy(sctx, coher, size));
360       }
361 
362       offset += aligned_size;
363       size -= aligned_size;
364    }
365 
366    /* Handle non-dword alignment. */
367    if (size) {
368       assert(dst);
369       assert(dst->target == PIPE_BUFFER);
370       assert(size < 4);
371 
372       pipe_buffer_write(&sctx->b, dst, offset, size, clear_value);
373    }
374 }
375 
si_screen_clear_buffer(struct si_screen * sscreen,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value,unsigned flags)376 void si_screen_clear_buffer(struct si_screen *sscreen, struct pipe_resource *dst, uint64_t offset,
377                             uint64_t size, unsigned value, unsigned flags)
378 {
379    struct si_context *ctx = (struct si_context *)sscreen->aux_context;
380 
381    simple_mtx_lock(&sscreen->aux_context_lock);
382    si_clear_buffer(ctx, dst, offset, size, &value, 4, flags,
383                    SI_COHERENCY_SHADER, SI_AUTO_SELECT_CLEAR_METHOD);
384    sscreen->aux_context->flush(sscreen->aux_context, NULL, 0);
385    simple_mtx_unlock(&sscreen->aux_context_lock);
386 }
387 
si_pipe_clear_buffer(struct pipe_context * ctx,struct pipe_resource * dst,unsigned offset,unsigned size,const void * clear_value,int clear_value_size)388 static void si_pipe_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
389                                  unsigned offset, unsigned size, const void *clear_value,
390                                  int clear_value_size)
391 {
392    si_clear_buffer((struct si_context *)ctx, dst, offset, size, (uint32_t *)clear_value,
393                    clear_value_size, SI_OP_SYNC_BEFORE_AFTER, SI_COHERENCY_SHADER,
394                    SI_AUTO_SELECT_CLEAR_METHOD);
395 }
396 
si_copy_buffer(struct si_context * sctx,struct pipe_resource * dst,struct pipe_resource * src,uint64_t dst_offset,uint64_t src_offset,unsigned size,unsigned flags)397 void si_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, struct pipe_resource *src,
398                     uint64_t dst_offset, uint64_t src_offset, unsigned size, unsigned flags)
399 {
400    if (!size)
401       return;
402 
403    enum si_coherency coher = SI_COHERENCY_SHADER;
404    enum si_cache_policy cache_policy = get_cache_policy(sctx, coher, size);
405    uint64_t compute_min_size = 8 * 1024;
406 
407    /* Only use compute for VRAM copies on dGPUs. */
408    if (sctx->screen->info.has_dedicated_vram && si_resource(dst)->domains & RADEON_DOMAIN_VRAM &&
409        si_resource(src)->domains & RADEON_DOMAIN_VRAM && size > compute_min_size &&
410        dst_offset % 4 == 0 && src_offset % 4 == 0 && size % 4 == 0) {
411       si_compute_do_clear_or_copy(sctx, dst, dst_offset, src, src_offset, size, NULL, 0,
412                                   flags, coher);
413    } else {
414       si_cp_dma_copy_buffer(sctx, dst, src, dst_offset, src_offset, size,
415                             flags, coher, cache_policy);
416    }
417 }
418 
si_compute_copy_image(struct si_context * sctx,struct pipe_resource * dst,unsigned dst_level,struct pipe_resource * src,unsigned src_level,unsigned dstx,unsigned dsty,unsigned dstz,const struct pipe_box * src_box,bool is_dcc_decompress,unsigned flags)419 void si_compute_copy_image(struct si_context *sctx, struct pipe_resource *dst, unsigned dst_level,
420                            struct pipe_resource *src, unsigned src_level, unsigned dstx,
421                            unsigned dsty, unsigned dstz, const struct pipe_box *src_box,
422                            bool is_dcc_decompress, unsigned flags)
423 {
424    struct pipe_context *ctx = &sctx->b;
425    struct si_texture *ssrc = (struct si_texture*)src;
426    struct si_texture *sdst = (struct si_texture*)dst;
427    unsigned width = src_box->width;
428    unsigned height = src_box->height;
429    unsigned depth = src_box->depth;
430    enum pipe_format src_format = util_format_linear(src->format);
431    enum pipe_format dst_format = util_format_linear(dst->format);
432    bool is_linear = ssrc->surface.is_linear || sdst->surface.is_linear;
433 
434    assert(util_format_is_subsampled_422(src_format) == util_format_is_subsampled_422(dst_format));
435 
436    if (!vi_dcc_enabled(ssrc, src_level) &&
437        !vi_dcc_enabled(sdst, dst_level) &&
438        src_format == dst_format &&
439        util_format_is_float(src_format) &&
440        !util_format_is_compressed(src_format)) {
441       /* Interpret as integer values to avoid NaN issues */
442       switch(util_format_get_blocksizebits(src_format)) {
443         case 16:
444           src_format = dst_format = PIPE_FORMAT_R16_UINT;
445           break;
446         case 32:
447           src_format = dst_format = PIPE_FORMAT_R32_UINT;
448           break;
449         case 64:
450           src_format = dst_format = PIPE_FORMAT_R32G32_UINT;
451           break;
452         case 128:
453           src_format = dst_format = PIPE_FORMAT_R32G32B32A32_UINT;
454           break;
455         default:
456           assert(false);
457       }
458    }
459 
460    if (util_format_is_subsampled_422(src_format)) {
461       src_format = dst_format = PIPE_FORMAT_R32_UINT;
462       /* Interpreting 422 subsampled format (16 bpp) as 32 bpp
463        * should force us to divide src_box->x, dstx and width by 2.
464        * But given that ac_surface allocates this format as 32 bpp
465        * and that surf_size is then modified to pack the values
466        * we must keep the original values to get the correct results.
467        */
468    }
469 
470    if (width == 0 || height == 0)
471       return;
472 
473    /* The driver doesn't decompress resources automatically here. */
474    si_decompress_subresource(ctx, dst, PIPE_MASK_RGBAZS, dst_level, dstz,
475                              dstz + src_box->depth - 1);
476    si_decompress_subresource(ctx, src, PIPE_MASK_RGBAZS, src_level, src_box->z,
477                              src_box->z + src_box->depth - 1);
478 
479    /* src and dst have the same number of samples. */
480    si_make_CB_shader_coherent(sctx, src->nr_samples, true,
481                               ssrc->surface.u.gfx9.color.dcc.pipe_aligned);
482    if (sctx->chip_class >= GFX10) {
483       /* GFX10+ uses DCC stores so si_make_CB_shader_coherent is required for dst too */
484       si_make_CB_shader_coherent(sctx, dst->nr_samples, true,
485                                  sdst->surface.u.gfx9.color.dcc.pipe_aligned);
486    }
487 
488    struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
489    struct pipe_image_view saved_image[2] = {0};
490    util_copy_image_view(&saved_image[0], &images->views[0]);
491    util_copy_image_view(&saved_image[1], &images->views[1]);
492 
493    struct pipe_image_view image[2] = {0};
494    image[0].resource = src;
495    image[0].shader_access = image[0].access = PIPE_IMAGE_ACCESS_READ;
496    image[0].format = src_format;
497    image[0].u.tex.level = src_level;
498    image[0].u.tex.first_layer = 0;
499    image[0].u.tex.last_layer = src->target == PIPE_TEXTURE_3D ? u_minify(src->depth0, src_level) - 1
500                                                               : (unsigned)(src->array_size - 1);
501    image[1].resource = dst;
502    image[1].shader_access = image[1].access = PIPE_IMAGE_ACCESS_WRITE;
503    image[1].format = dst_format;
504    image[1].u.tex.level = dst_level;
505    image[1].u.tex.first_layer = 0;
506    image[1].u.tex.last_layer = dst->target == PIPE_TEXTURE_3D ? u_minify(dst->depth0, dst_level) - 1
507                                                               : (unsigned)(dst->array_size - 1);
508 
509    /* SNORM8 blitting has precision issues on some chips. Use the SINT
510     * equivalent instead, which doesn't force DCC decompression.
511     */
512    if (util_format_is_snorm8(dst->format)) {
513       image[0].format = image[1].format = util_format_snorm8_to_sint8(dst->format);
514    }
515 
516    if (is_dcc_decompress)
517       image[1].access |= SI_IMAGE_ACCESS_DCC_OFF;
518    else if (sctx->chip_class >= GFX10)
519       image[1].access |= SI_IMAGE_ACCESS_ALLOW_DCC_STORE;
520 
521    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, 0, image);
522 
523    if (!is_dcc_decompress) {
524       sctx->cs_user_data[0] = src_box->x | (dstx << 16);
525       sctx->cs_user_data[1] = src_box->y | (dsty << 16);
526       sctx->cs_user_data[2] = src_box->z | (dstz << 16);
527    }
528 
529    struct pipe_grid_info info = {0};
530 
531    if (is_dcc_decompress) {
532       /* The DCC decompression is a normal blit where the load is compressed
533        * and the store is uncompressed. The workgroup size is either equal to
534        * the DCC block size or a multiple thereof. The shader uses a barrier
535        * between loads and stores to safely overwrite each DCC block of pixels.
536        */
537       unsigned dim[3] = {src_box->width, src_box->height, src_box->depth};
538 
539       assert(src == dst);
540       assert(dst->target != PIPE_TEXTURE_1D && dst->target != PIPE_TEXTURE_1D_ARRAY);
541 
542       if (!sctx->cs_dcc_decompress)
543          sctx->cs_dcc_decompress = si_create_dcc_decompress_cs(ctx);
544 
545       info.block[0] = ssrc->surface.u.gfx9.color.dcc_block_width;
546       info.block[1] = ssrc->surface.u.gfx9.color.dcc_block_height;
547       info.block[2] = ssrc->surface.u.gfx9.color.dcc_block_depth;
548 
549       /* Make sure the block size is at least the same as wave size. */
550       while (info.block[0] * info.block[1] * info.block[2] <
551              sctx->screen->compute_wave_size) {
552          info.block[0] *= 2;
553       }
554 
555       for (unsigned i = 0; i < 3; i++) {
556          info.last_block[i] = dim[i] % info.block[i];
557          info.grid[i] = DIV_ROUND_UP(dim[i], info.block[i]);
558       }
559 
560       si_launch_grid_internal(sctx, &info, sctx->cs_dcc_decompress, flags | SI_OP_CS_IMAGE);
561    } else if (dst->target == PIPE_TEXTURE_1D_ARRAY && src->target == PIPE_TEXTURE_1D_ARRAY) {
562       if (!sctx->cs_copy_image_1d_array)
563          sctx->cs_copy_image_1d_array = si_create_copy_image_compute_shader_1d_array(ctx);
564 
565       info.block[0] = 64;
566       info.last_block[0] = width % 64;
567       info.block[1] = 1;
568       info.block[2] = 1;
569       info.grid[0] = DIV_ROUND_UP(width, 64);
570       info.grid[1] = depth;
571       info.grid[2] = 1;
572 
573       si_launch_grid_internal(sctx, &info, sctx->cs_copy_image_1d_array, flags | SI_OP_CS_IMAGE);
574    } else {
575       if (!sctx->cs_copy_image)
576          sctx->cs_copy_image = si_create_copy_image_compute_shader(ctx);
577 
578       /* This is better for access over PCIe. */
579       if (is_linear) {
580          info.block[0] = 64;
581          info.block[1] = 1;
582       } else {
583          info.block[0] = 8;
584          info.block[1] = 8;
585       }
586       info.last_block[0] = width % info.block[0];
587       info.last_block[1] = height % info.block[1];
588       info.block[2] = 1;
589       info.grid[0] = DIV_ROUND_UP(width, info.block[0]);
590       info.grid[1] = DIV_ROUND_UP(height, info.block[1]);
591       info.grid[2] = depth;
592 
593       si_launch_grid_internal(sctx, &info, sctx->cs_copy_image, flags | SI_OP_CS_IMAGE);
594    }
595 
596    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 2, 0, saved_image);
597    for (int i = 0; i < 2; i++)
598       pipe_resource_reference(&saved_image[i].resource, NULL);
599 }
600 
si_retile_dcc(struct si_context * sctx,struct si_texture * tex)601 void si_retile_dcc(struct si_context *sctx, struct si_texture *tex)
602 {
603    /* Set the DCC buffer. */
604    assert(tex->surface.meta_offset && tex->surface.meta_offset <= UINT_MAX);
605    assert(tex->surface.display_dcc_offset && tex->surface.display_dcc_offset <= UINT_MAX);
606    assert(tex->surface.display_dcc_offset < tex->surface.meta_offset);
607    assert(tex->buffer.bo_size <= UINT_MAX);
608 
609    struct pipe_shader_buffer sb = {};
610    sb.buffer = &tex->buffer.b.b;
611    sb.buffer_offset = tex->surface.display_dcc_offset;
612    sb.buffer_size = tex->buffer.bo_size - sb.buffer_offset;
613 
614    sctx->cs_user_data[0] = tex->surface.meta_offset - tex->surface.display_dcc_offset;
615    sctx->cs_user_data[1] = (tex->surface.u.gfx9.color.dcc_pitch_max + 1) |
616                            (tex->surface.u.gfx9.color.dcc_height << 16);
617    sctx->cs_user_data[2] = (tex->surface.u.gfx9.color.display_dcc_pitch_max + 1) |
618                            (tex->surface.u.gfx9.color.display_dcc_height << 16);
619 
620    /* We have only 1 variant per bpp for now, so expect 32 bpp. */
621    assert(tex->surface.bpe == 4);
622 
623    void **shader = &sctx->cs_dcc_retile[tex->surface.u.gfx9.swizzle_mode];
624    if (!*shader)
625       *shader = si_create_dcc_retile_cs(sctx, &tex->surface);
626 
627    /* Dispatch compute. */
628    unsigned width = DIV_ROUND_UP(tex->buffer.b.b.width0, tex->surface.u.gfx9.color.dcc_block_width);
629    unsigned height = DIV_ROUND_UP(tex->buffer.b.b.height0, tex->surface.u.gfx9.color.dcc_block_height);
630 
631    struct pipe_grid_info info = {};
632    info.block[0] = 8;
633    info.block[1] = 8;
634    info.block[2] = 1;
635    info.last_block[0] = width % info.block[0];
636    info.last_block[1] = height % info.block[1];
637    info.grid[0] = DIV_ROUND_UP(width, info.block[0]);
638    info.grid[1] = DIV_ROUND_UP(height, info.block[1]);
639    info.grid[2] = 1;
640 
641    si_launch_grid_internal_ssbos(sctx, &info, *shader, SI_OP_SYNC_BEFORE,
642                                  SI_COHERENCY_CB_META, 1, &sb, 0x1);
643 
644    /* Don't flush caches. L2 will be flushed by the kernel fence. */
645 }
646 
gfx9_clear_dcc_msaa(struct si_context * sctx,struct pipe_resource * res,uint32_t clear_value,unsigned flags,enum si_coherency coher)647 void gfx9_clear_dcc_msaa(struct si_context *sctx, struct pipe_resource *res, uint32_t clear_value,
648                          unsigned flags, enum si_coherency coher)
649 {
650    struct si_texture *tex = (struct si_texture*)res;
651 
652    /* Set the DCC buffer. */
653    assert(tex->surface.meta_offset && tex->surface.meta_offset <= UINT_MAX);
654    assert(tex->buffer.bo_size <= UINT_MAX);
655 
656    struct pipe_shader_buffer sb = {};
657    sb.buffer = &tex->buffer.b.b;
658    sb.buffer_offset = tex->surface.meta_offset;
659    sb.buffer_size = tex->buffer.bo_size - sb.buffer_offset;
660 
661    sctx->cs_user_data[0] = (tex->surface.u.gfx9.color.dcc_pitch_max + 1) |
662                            (tex->surface.u.gfx9.color.dcc_height << 16);
663    sctx->cs_user_data[1] = (clear_value & 0xffff) |
664                            ((uint32_t)tex->surface.tile_swizzle << 16);
665 
666    /* These variables identify the shader variant. */
667    unsigned swizzle_mode = tex->surface.u.gfx9.swizzle_mode;
668    unsigned bpe_log2 = util_logbase2(tex->surface.bpe);
669    unsigned log2_samples = util_logbase2(tex->buffer.b.b.nr_samples);
670    bool fragments8 = tex->buffer.b.b.nr_storage_samples == 8;
671    bool is_array = tex->buffer.b.b.array_size > 1;
672    void **shader = &sctx->cs_clear_dcc_msaa[swizzle_mode][bpe_log2][fragments8][log2_samples - 2][is_array];
673 
674    if (!*shader)
675       *shader = gfx9_create_clear_dcc_msaa_cs(sctx, tex);
676 
677    /* Dispatch compute. */
678    unsigned width = DIV_ROUND_UP(tex->buffer.b.b.width0, tex->surface.u.gfx9.color.dcc_block_width);
679    unsigned height = DIV_ROUND_UP(tex->buffer.b.b.height0, tex->surface.u.gfx9.color.dcc_block_height);
680    unsigned depth = DIV_ROUND_UP(tex->buffer.b.b.array_size, tex->surface.u.gfx9.color.dcc_block_depth);
681 
682    struct pipe_grid_info info = {};
683    info.block[0] = 8;
684    info.block[1] = 8;
685    info.block[2] = 1;
686    info.last_block[0] = width % info.block[0];
687    info.last_block[1] = height % info.block[1];
688    info.grid[0] = DIV_ROUND_UP(width, info.block[0]);
689    info.grid[1] = DIV_ROUND_UP(height, info.block[1]);
690    info.grid[2] = depth;
691 
692    si_launch_grid_internal_ssbos(sctx, &info, *shader, flags, coher, 1, &sb, 0x1);
693 }
694 
695 /* Expand FMASK to make it identity, so that image stores can ignore it. */
si_compute_expand_fmask(struct pipe_context * ctx,struct pipe_resource * tex)696 void si_compute_expand_fmask(struct pipe_context *ctx, struct pipe_resource *tex)
697 {
698    struct si_context *sctx = (struct si_context *)ctx;
699    bool is_array = tex->target == PIPE_TEXTURE_2D_ARRAY;
700    unsigned log_fragments = util_logbase2(tex->nr_storage_samples);
701    unsigned log_samples = util_logbase2(tex->nr_samples);
702    assert(tex->nr_samples >= 2);
703 
704    /* EQAA FMASK expansion is unimplemented. */
705    if (tex->nr_samples != tex->nr_storage_samples)
706       return;
707 
708    si_make_CB_shader_coherent(sctx, tex->nr_samples, true,
709                               ((struct si_texture*)tex)->surface.u.gfx9.color.dcc.pipe_aligned);
710 
711    /* Save states. */
712    struct pipe_image_view saved_image = {0};
713    util_copy_image_view(&saved_image, &sctx->images[PIPE_SHADER_COMPUTE].views[0]);
714 
715    /* Bind the image. */
716    struct pipe_image_view image = {0};
717    image.resource = tex;
718    /* Don't set WRITE so as not to trigger FMASK expansion, causing
719     * an infinite loop. */
720    image.shader_access = image.access = PIPE_IMAGE_ACCESS_READ;
721    image.format = util_format_linear(tex->format);
722    if (is_array)
723       image.u.tex.last_layer = tex->array_size - 1;
724 
725    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &image);
726 
727    /* Bind the shader. */
728    void **shader = &sctx->cs_fmask_expand[log_samples - 1][is_array];
729    if (!*shader)
730       *shader = si_create_fmask_expand_cs(ctx, tex->nr_samples, is_array);
731 
732    /* Dispatch compute. */
733    struct pipe_grid_info info = {0};
734    info.block[0] = 8;
735    info.last_block[0] = tex->width0 % 8;
736    info.block[1] = 8;
737    info.last_block[1] = tex->height0 % 8;
738    info.block[2] = 1;
739    info.grid[0] = DIV_ROUND_UP(tex->width0, 8);
740    info.grid[1] = DIV_ROUND_UP(tex->height0, 8);
741    info.grid[2] = is_array ? tex->array_size : 1;
742 
743    si_launch_grid_internal(sctx, &info, *shader, SI_OP_SYNC_BEFORE_AFTER);
744 
745    /* Restore previous states. */
746    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &saved_image);
747    pipe_resource_reference(&saved_image.resource, NULL);
748 
749    /* Array of fully expanded FMASK values, arranged by [log2(fragments)][log2(samples)-1]. */
750 #define INVALID 0 /* never used */
751    static const uint64_t fmask_expand_values[][4] = {
752       /* samples */
753       /* 2 (8 bpp) 4 (8 bpp)   8 (8-32bpp) 16 (16-64bpp)      fragments */
754       {0x02020202, 0x0E0E0E0E, 0xFEFEFEFE, 0xFFFEFFFE},      /* 1 */
755       {0x02020202, 0xA4A4A4A4, 0xAAA4AAA4, 0xAAAAAAA4},      /* 2 */
756       {INVALID, 0xE4E4E4E4, 0x44443210, 0x4444444444443210}, /* 4 */
757       {INVALID, INVALID, 0x76543210, 0x8888888876543210},    /* 8 */
758    };
759 
760    /* Clear FMASK to identity. */
761    struct si_texture *stex = (struct si_texture *)tex;
762    si_clear_buffer(sctx, tex, stex->surface.fmask_offset, stex->surface.fmask_size,
763                    (uint32_t *)&fmask_expand_values[log_fragments][log_samples - 1],
764                    log_fragments >= 2 && log_samples == 4 ? 8 : 4, SI_OP_SYNC_AFTER,
765                    SI_COHERENCY_SHADER, SI_AUTO_SELECT_CLEAR_METHOD);
766 }
767 
si_init_compute_blit_functions(struct si_context * sctx)768 void si_init_compute_blit_functions(struct si_context *sctx)
769 {
770    sctx->b.clear_buffer = si_pipe_clear_buffer;
771 }
772 
773 /* Clear a region of a color surface to a constant value. */
si_compute_clear_render_target(struct pipe_context * ctx,struct pipe_surface * dstsurf,const union pipe_color_union * color,unsigned dstx,unsigned dsty,unsigned width,unsigned height,bool render_condition_enabled)774 void si_compute_clear_render_target(struct pipe_context *ctx, struct pipe_surface *dstsurf,
775                                     const union pipe_color_union *color, unsigned dstx,
776                                     unsigned dsty, unsigned width, unsigned height,
777                                     bool render_condition_enabled)
778 {
779    struct si_context *sctx = (struct si_context *)ctx;
780    struct si_texture *tex = (struct si_texture*)dstsurf->texture;
781    unsigned num_layers = dstsurf->u.tex.last_layer - dstsurf->u.tex.first_layer + 1;
782    unsigned data[4 + sizeof(color->ui)] = {dstx, dsty, dstsurf->u.tex.first_layer, 0};
783 
784    if (width == 0 || height == 0)
785       return;
786 
787    /* The driver doesn't decompress resources automatically here. */
788    si_decompress_subresource(ctx, dstsurf->texture, PIPE_MASK_RGBA, dstsurf->u.tex.level,
789                              dstsurf->u.tex.first_layer, dstsurf->u.tex.last_layer);
790 
791    if (util_format_is_srgb(dstsurf->format)) {
792       union pipe_color_union color_srgb;
793       for (int i = 0; i < 3; i++)
794          color_srgb.f[i] = util_format_linear_to_srgb_float(color->f[i]);
795       color_srgb.f[3] = color->f[3];
796       memcpy(data + 4, color_srgb.ui, sizeof(color->ui));
797    } else {
798       memcpy(data + 4, color->ui, sizeof(color->ui));
799    }
800 
801    si_make_CB_shader_coherent(sctx, dstsurf->texture->nr_samples, true,
802                               tex->surface.u.gfx9.color.dcc.pipe_aligned);
803 
804    struct pipe_constant_buffer saved_cb = {};
805    si_get_pipe_constant_buffer(sctx, PIPE_SHADER_COMPUTE, 0, &saved_cb);
806 
807    struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
808    struct pipe_image_view saved_image = {0};
809    util_copy_image_view(&saved_image, &images->views[0]);
810 
811    struct pipe_constant_buffer cb = {};
812    cb.buffer_size = sizeof(data);
813    cb.user_buffer = data;
814    ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, false, &cb);
815 
816    struct pipe_image_view image = {0};
817    image.resource = dstsurf->texture;
818    image.shader_access = image.access = PIPE_IMAGE_ACCESS_WRITE | SI_IMAGE_ACCESS_ALLOW_DCC_STORE;
819    image.format = util_format_linear(dstsurf->format);
820    image.u.tex.level = dstsurf->u.tex.level;
821    image.u.tex.first_layer = 0; /* 3D images ignore first_layer (BASE_ARRAY) */
822    image.u.tex.last_layer = dstsurf->u.tex.last_layer;
823 
824    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &image);
825 
826    struct pipe_grid_info info = {0};
827    void *shader;
828 
829    if (dstsurf->texture->target != PIPE_TEXTURE_1D_ARRAY) {
830       if (!sctx->cs_clear_render_target)
831          sctx->cs_clear_render_target = si_clear_render_target_shader(ctx);
832       shader = sctx->cs_clear_render_target;
833 
834       info.block[0] = 8;
835       info.last_block[0] = width % 8;
836       info.block[1] = 8;
837       info.last_block[1] = height % 8;
838       info.block[2] = 1;
839       info.grid[0] = DIV_ROUND_UP(width, 8);
840       info.grid[1] = DIV_ROUND_UP(height, 8);
841       info.grid[2] = num_layers;
842    } else {
843       if (!sctx->cs_clear_render_target_1d_array)
844          sctx->cs_clear_render_target_1d_array = si_clear_render_target_shader_1d_array(ctx);
845       shader = sctx->cs_clear_render_target_1d_array;
846 
847       info.block[0] = 64;
848       info.last_block[0] = width % 64;
849       info.block[1] = 1;
850       info.block[2] = 1;
851       info.grid[0] = DIV_ROUND_UP(width, 64);
852       info.grid[1] = num_layers;
853       info.grid[2] = 1;
854    }
855 
856    si_launch_grid_internal(sctx, &info, shader, SI_OP_SYNC_BEFORE_AFTER | SI_OP_CS_IMAGE |
857                            (render_condition_enabled ? SI_OP_CS_RENDER_COND_ENABLE : 0));
858 
859    ctx->set_shader_images(ctx, PIPE_SHADER_COMPUTE, 0, 1, 0, &saved_image);
860    ctx->set_constant_buffer(ctx, PIPE_SHADER_COMPUTE, 0, true, &saved_cb);
861    pipe_resource_reference(&saved_image.resource, NULL);
862 }
863