1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 /** @file register_allocate.c
29  *
30  * Graph-coloring register allocator.
31  *
32  * The basic idea of graph coloring is to make a node in a graph for
33  * every thing that needs a register (color) number assigned, and make
34  * edges in the graph between nodes that interfere (can't be allocated
35  * to the same register at the same time).
36  *
37  * During the "simplify" process, any any node with fewer edges than
38  * there are registers means that that edge can get assigned a
39  * register regardless of what its neighbors choose, so that node is
40  * pushed on a stack and removed (with its edges) from the graph.
41  * That likely causes other nodes to become trivially colorable as well.
42  *
43  * Then during the "select" process, nodes are popped off of that
44  * stack, their edges restored, and assigned a color different from
45  * their neighbors.  Because they were pushed on the stack only when
46  * they were trivially colorable, any color chosen won't interfere
47  * with the registers to be popped later.
48  *
49  * The downside to most graph coloring is that real hardware often has
50  * limitations, like registers that need to be allocated to a node in
51  * pairs, or aligned on some boundary.  This implementation follows
52  * the paper "Retargetable Graph-Coloring Register Allocation for
53  * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54  *
55  * In this system, there are register classes each containing various
56  * registers, and registers may interfere with other registers.  For
57  * example, one might have a class of base registers, and a class of
58  * aligned register pairs that would each interfere with their pair of
59  * the base registers.  Each node has a register class it needs to be
60  * assigned to.  Define p(B) to be the size of register class B, and
61  * q(B,C) to be the number of registers in B that the worst choice
62  * register in C could conflict with.  Then, this system replaces the
63  * basic graph coloring test of "fewer edges from this node than there
64  * are registers" with "For this node of class B, the sum of q(B,C)
65  * for each neighbor node of class C is less than pB".
66  *
67  * A nice feature of the pq test is that q(B,C) can be computed once
68  * up front and stored in a 2-dimensional array, so that the cost of
69  * coloring a node is constant with the number of registers.  We do
70  * this during ra_set_finalize().
71  */
72 
73 #include <stdbool.h>
74 #include <stdlib.h>
75 
76 #include "blob.h"
77 #include "ralloc.h"
78 #include "main/macros.h"
79 #include "util/bitset.h"
80 #include "util/u_dynarray.h"
81 #include "u_math.h"
82 #include "register_allocate.h"
83 #include "register_allocate_internal.h"
84 
85 /**
86  * Creates a set of registers for the allocator.
87  *
88  * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
89  * using ralloc_free().
90  */
91 struct ra_regs *
ra_alloc_reg_set(void * mem_ctx,unsigned int count,bool need_conflict_lists)92 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
93 {
94    unsigned int i;
95    struct ra_regs *regs;
96 
97    regs = rzalloc(mem_ctx, struct ra_regs);
98    regs->count = count;
99    regs->regs = rzalloc_array(regs, struct ra_reg, count);
100 
101    for (i = 0; i < count; i++) {
102       regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
103                                               BITSET_WORDS(count));
104       BITSET_SET(regs->regs[i].conflicts, i);
105 
106       util_dynarray_init(&regs->regs[i].conflict_list,
107                          need_conflict_lists ? regs->regs : NULL);
108       if (need_conflict_lists)
109          util_dynarray_append(&regs->regs[i].conflict_list, unsigned int, i);
110    }
111 
112    return regs;
113 }
114 
115 /**
116  * The register allocator by default prefers to allocate low register numbers,
117  * since it was written for hardware (gen4/5 Intel) that is limited in its
118  * multithreadedness by the number of registers used in a given shader.
119  *
120  * However, for hardware without that restriction, densely packed register
121  * allocation can put serious constraints on instruction scheduling.  This
122  * function tells the allocator to rotate around the registers if possible as
123  * it allocates the nodes.
124  */
125 void
ra_set_allocate_round_robin(struct ra_regs * regs)126 ra_set_allocate_round_robin(struct ra_regs *regs)
127 {
128    regs->round_robin = true;
129 }
130 
131 static void
ra_add_conflict_list(struct ra_regs * regs,unsigned int r1,unsigned int r2)132 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
133 {
134    struct ra_reg *reg1 = &regs->regs[r1];
135 
136    if (reg1->conflict_list.mem_ctx) {
137       util_dynarray_append(&reg1->conflict_list, unsigned int, r2);
138    }
139    BITSET_SET(reg1->conflicts, r2);
140 }
141 
142 void
ra_add_reg_conflict(struct ra_regs * regs,unsigned int r1,unsigned int r2)143 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
144 {
145    if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
146       ra_add_conflict_list(regs, r1, r2);
147       ra_add_conflict_list(regs, r2, r1);
148    }
149 }
150 
151 /**
152  * Adds a conflict between base_reg and reg, and also between reg and
153  * anything that base_reg conflicts with.
154  *
155  * This can simplify code for setting up multiple register classes
156  * which are aggregates of some base hardware registers, compared to
157  * explicitly using ra_add_reg_conflict.
158  */
159 void
ra_add_transitive_reg_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg)160 ra_add_transitive_reg_conflict(struct ra_regs *regs,
161                                unsigned int base_reg, unsigned int reg)
162 {
163    ra_add_reg_conflict(regs, reg, base_reg);
164 
165    util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int,
166                          r2p) {
167       ra_add_reg_conflict(regs, reg, *r2p);
168    }
169 }
170 
171 /**
172  * Set up conflicts between base_reg and it's two half registers reg0 and
173  * reg1, but take care to not add conflicts between reg0 and reg1.
174  *
175  * This is useful for architectures where full size registers are aliased by
176  * two half size registers (eg 32 bit float and 16 bit float registers).
177  */
178 void
ra_add_transitive_reg_pair_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg0,unsigned int reg1)179 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
180                                     unsigned int base_reg, unsigned int reg0, unsigned int reg1)
181 {
182    ra_add_reg_conflict(regs, reg0, base_reg);
183    ra_add_reg_conflict(regs, reg1, base_reg);
184 
185    util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int, i) {
186       unsigned int conflict = *i;
187       if (conflict != reg1)
188          ra_add_reg_conflict(regs, reg0, conflict);
189       if (conflict != reg0)
190          ra_add_reg_conflict(regs, reg1, conflict);
191    }
192 }
193 
194 /**
195  * Makes every conflict on the given register transitive.  In other words,
196  * every register that conflicts with r will now conflict with every other
197  * register conflicting with r.
198  *
199  * This can simplify code for setting up multiple register classes
200  * which are aggregates of some base hardware registers, compared to
201  * explicitly using ra_add_reg_conflict.
202  */
203 void
ra_make_reg_conflicts_transitive(struct ra_regs * regs,unsigned int r)204 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
205 {
206    struct ra_reg *reg = &regs->regs[r];
207    int c;
208 
209    BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
210       struct ra_reg *other = &regs->regs[c];
211       unsigned i;
212       for (i = 0; i < BITSET_WORDS(regs->count); i++)
213          other->conflicts[i] |= reg->conflicts[i];
214    }
215 }
216 
217 struct ra_class *
ra_alloc_reg_class(struct ra_regs * regs)218 ra_alloc_reg_class(struct ra_regs *regs)
219 {
220    struct ra_class *class;
221 
222    regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
223                             regs->class_count + 1);
224 
225    class = rzalloc(regs, struct ra_class);
226    class->regset = regs;
227 
228    /* Users may rely on the class index being allocated in order starting from 0. */
229    class->index = regs->class_count++;
230    regs->classes[class->index] = class;
231 
232    class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
233 
234    return class;
235 }
236 
237 /**
238  * Creates a register class for contiguous register groups of a base register
239  * set.
240  *
241  * A reg set using this type of register class must use only this type of
242  * register class.
243  */
244 struct ra_class *
ra_alloc_contig_reg_class(struct ra_regs * regs,int contig_len)245 ra_alloc_contig_reg_class(struct ra_regs *regs, int contig_len)
246 {
247    struct ra_class *c = ra_alloc_reg_class(regs);
248 
249    assert(contig_len != 0);
250    c->contig_len = contig_len;
251 
252    return c;
253 }
254 
255 struct ra_class *
ra_get_class_from_index(struct ra_regs * regs,unsigned int class)256 ra_get_class_from_index(struct ra_regs *regs, unsigned int class)
257 {
258    return regs->classes[class];
259 }
260 
261 unsigned int
ra_class_index(struct ra_class * c)262 ra_class_index(struct ra_class *c)
263 {
264    return c->index;
265 }
266 
267 void
ra_class_add_reg(struct ra_class * class,unsigned int r)268 ra_class_add_reg(struct ra_class *class, unsigned int r)
269 {
270    assert(r < class->regset->count);
271    assert(r + class->contig_len <= class->regset->count);
272 
273    BITSET_SET(class->regs, r);
274    class->p++;
275 }
276 
277 /**
278  * Returns true if the register belongs to the given class.
279  */
280 static bool
reg_belongs_to_class(unsigned int r,struct ra_class * c)281 reg_belongs_to_class(unsigned int r, struct ra_class *c)
282 {
283    return BITSET_TEST(c->regs, r);
284 }
285 
286 /**
287  * Must be called after all conflicts and register classes have been
288  * set up and before the register set is used for allocation.
289  * To avoid costly q value computation, use the q_values paramater
290  * to pass precomputed q values to this function.
291  */
292 void
ra_set_finalize(struct ra_regs * regs,unsigned int ** q_values)293 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
294 {
295    unsigned int b, c;
296 
297    for (b = 0; b < regs->class_count; b++) {
298       regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
299    }
300 
301    if (q_values) {
302       for (b = 0; b < regs->class_count; b++) {
303          for (c = 0; c < regs->class_count; c++) {
304             regs->classes[b]->q[c] = q_values[b][c];
305          }
306       }
307    } else {
308       /* Compute, for each class B and C, how many regs of B an
309        * allocation to C could conflict with.
310        */
311       for (b = 0; b < regs->class_count; b++) {
312          for (c = 0; c < regs->class_count; c++) {
313             struct ra_class *class_b = regs->classes[b];
314             struct ra_class *class_c = regs->classes[c];
315 
316             if (class_b->contig_len && class_c->contig_len) {
317                if (class_b->contig_len == 1 && class_c->contig_len == 1) {
318                   /* If both classes are single registers, then they only
319                    * conflict if there are any regs shared between them.  This
320                    * is a cheap test for a common case.
321                    */
322                   class_b->q[c] = 0;
323                   for (int i = 0; i < BITSET_WORDS(regs->count); i++) {
324                      if (class_b->regs[i] & class_c->regs[i]) {
325                         class_b->q[c] = 1;
326                         break;
327                      }
328                   }
329                } else {
330                   int max_possible_conflicts = class_b->contig_len + class_c->contig_len - 1;
331 
332                   unsigned int max_conflicts = 0;
333                   unsigned int rc;
334                   BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
335                      int start = MAX2(0, (int)rc - class_b->contig_len + 1);
336                      int end = MIN2(regs->count, rc + class_c->contig_len);
337                      unsigned int conflicts = 0;
338                      for (int i = start; i < end; i++) {
339                         if (BITSET_TEST(class_b->regs, i))
340                            conflicts++;
341                      }
342                      max_conflicts = MAX2(max_conflicts, conflicts);
343                      /* Unless a class has some restriction like the register
344                       * bases are all aligned, then we should quickly find this
345                       * limit and exit the loop.
346                       */
347                      if (max_conflicts == max_possible_conflicts)
348                         break;
349                   }
350                   class_b->q[c] = max_conflicts;
351                }
352             } else {
353                /* If you're doing contiguous classes, you have to be all in
354                 * because I don't want to deal with it.
355                 */
356                assert(!class_b->contig_len && !class_c->contig_len);
357 
358                unsigned int rc;
359                int max_conflicts = 0;
360 
361                BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
362                   int conflicts = 0;
363 
364                   util_dynarray_foreach(&regs->regs[rc].conflict_list,
365                                        unsigned int, rbp) {
366                      unsigned int rb = *rbp;
367                      if (reg_belongs_to_class(rb, regs->classes[b]))
368                         conflicts++;
369                   }
370                   max_conflicts = MAX2(max_conflicts, conflicts);
371                }
372                regs->classes[b]->q[c] = max_conflicts;
373             }
374          }
375       }
376    }
377 
378    for (b = 0; b < regs->count; b++) {
379       util_dynarray_fini(&regs->regs[b].conflict_list);
380    }
381 
382    bool all_contig = true;
383    for (int c = 0; c < regs->class_count; c++)
384       all_contig &= regs->classes[c]->contig_len != 0;
385    if (all_contig) {
386       /* In this case, we never need the conflicts lists (and it would probably
387        * be a mistake to look at conflicts when doing contiguous classes!), so
388        * free them.  TODO: Avoid the allocation in the first place.
389        */
390       for (int i = 0; i < regs->count; i++) {
391          ralloc_free(regs->regs[i].conflicts);
392          regs->regs[i].conflicts = NULL;
393       }
394    }
395 }
396 
397 void
ra_set_serialize(const struct ra_regs * regs,struct blob * blob)398 ra_set_serialize(const struct ra_regs *regs, struct blob *blob)
399 {
400    blob_write_uint32(blob, regs->count);
401    blob_write_uint32(blob, regs->class_count);
402 
403    bool is_contig = regs->classes[0]->contig_len != 0;
404    blob_write_uint8(blob, is_contig);
405 
406    if (!is_contig) {
407       for (unsigned int r = 0; r < regs->count; r++) {
408          struct ra_reg *reg = &regs->regs[r];
409          blob_write_bytes(blob, reg->conflicts, BITSET_WORDS(regs->count) *
410                                                 sizeof(BITSET_WORD));
411          assert(util_dynarray_num_elements(&reg->conflict_list, unsigned int) == 0);
412       }
413    }
414 
415    for (unsigned int c = 0; c < regs->class_count; c++) {
416       struct ra_class *class = regs->classes[c];
417       blob_write_bytes(blob, class->regs, BITSET_WORDS(regs->count) *
418                                           sizeof(BITSET_WORD));
419       blob_write_uint32(blob, class->contig_len);
420       blob_write_uint32(blob, class->p);
421       blob_write_bytes(blob, class->q, regs->class_count * sizeof(*class->q));
422    }
423 
424    blob_write_uint32(blob, regs->round_robin);
425 }
426 
427 struct ra_regs *
ra_set_deserialize(void * mem_ctx,struct blob_reader * blob)428 ra_set_deserialize(void *mem_ctx, struct blob_reader *blob)
429 {
430    unsigned int reg_count = blob_read_uint32(blob);
431    unsigned int class_count = blob_read_uint32(blob);
432    bool is_contig = blob_read_uint8(blob);
433 
434    struct ra_regs *regs = ra_alloc_reg_set(mem_ctx, reg_count, false);
435    assert(regs->count == reg_count);
436 
437    if (is_contig) {
438       for (int i = 0; i < regs->count; i++) {
439          ralloc_free(regs->regs[i].conflicts);
440          regs->regs[i].conflicts = NULL;
441       }
442    } else {
443       for (unsigned int r = 0; r < reg_count; r++) {
444          struct ra_reg *reg = &regs->regs[r];
445          blob_copy_bytes(blob, reg->conflicts, BITSET_WORDS(reg_count) *
446                                              sizeof(BITSET_WORD));
447       }
448    }
449 
450    assert(regs->classes == NULL);
451    regs->classes = ralloc_array(regs->regs, struct ra_class *, class_count);
452    regs->class_count = class_count;
453 
454    for (unsigned int c = 0; c < class_count; c++) {
455       struct ra_class *class = rzalloc(regs, struct ra_class);
456       regs->classes[c] = class;
457       class->regset = regs;
458       class->index = c;
459 
460       class->regs = ralloc_array(class, BITSET_WORD, BITSET_WORDS(reg_count));
461       blob_copy_bytes(blob, class->regs, BITSET_WORDS(reg_count) *
462                                          sizeof(BITSET_WORD));
463 
464       class->contig_len = blob_read_uint32(blob);
465       class->p = blob_read_uint32(blob);
466 
467       class->q = ralloc_array(regs->classes[c], unsigned int, class_count);
468       blob_copy_bytes(blob, class->q, class_count * sizeof(*class->q));
469    }
470 
471    regs->round_robin = blob_read_uint32(blob);
472 
473    return regs;
474 }
475 
476 static void
ra_add_node_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)477 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
478 {
479    BITSET_SET(g->nodes[n1].adjacency, n2);
480 
481    assert(n1 != n2);
482 
483    int n1_class = g->nodes[n1].class;
484    int n2_class = g->nodes[n2].class;
485    g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
486 
487    util_dynarray_append(&g->nodes[n1].adjacency_list, unsigned int, n2);
488 }
489 
490 static void
ra_node_remove_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)491 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
492 {
493    BITSET_CLEAR(g->nodes[n1].adjacency, n2);
494 
495    assert(n1 != n2);
496 
497    int n1_class = g->nodes[n1].class;
498    int n2_class = g->nodes[n2].class;
499    g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
500 
501    util_dynarray_delete_unordered(&g->nodes[n1].adjacency_list, unsigned int,
502                                   n2);
503 }
504 
505 static void
ra_realloc_interference_graph(struct ra_graph * g,unsigned int alloc)506 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
507 {
508    if (alloc <= g->alloc)
509       return;
510 
511    /* If we always have a whole number of BITSET_WORDs, it makes it much
512     * easier to memset the top of the growing bitsets.
513     */
514    assert(g->alloc % BITSET_WORDBITS == 0);
515    alloc = align64(alloc, BITSET_WORDBITS);
516 
517    g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
518 
519    unsigned g_bitset_count = BITSET_WORDS(g->alloc);
520    unsigned bitset_count = BITSET_WORDS(alloc);
521    /* For nodes already in the graph, we just have to grow the adjacency set */
522    for (unsigned i = 0; i < g->alloc; i++) {
523       assert(g->nodes[i].adjacency != NULL);
524       g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
525                                         g_bitset_count, bitset_count);
526    }
527 
528    /* For new nodes, we have to fully initialize them */
529    for (unsigned i = g->alloc; i < alloc; i++) {
530       memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
531       g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
532       util_dynarray_init(&g->nodes[i].adjacency_list, g);
533       g->nodes[i].q_total = 0;
534 
535       g->nodes[i].forced_reg = NO_REG;
536       g->nodes[i].reg = NO_REG;
537    }
538 
539    /* These are scratch values and don't need to be zeroed.  We'll clear them
540     * as part of ra_select() setup.
541     */
542    g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
543    g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
544 
545    g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
546                                   bitset_count);
547    g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
548    g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
549                                  bitset_count);
550    g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
551                                 bitset_count);
552 
553    g->alloc = alloc;
554 }
555 
556 struct ra_graph *
ra_alloc_interference_graph(struct ra_regs * regs,unsigned int count)557 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
558 {
559    struct ra_graph *g;
560 
561    g = rzalloc(NULL, struct ra_graph);
562    g->regs = regs;
563    g->count = count;
564    ra_realloc_interference_graph(g, count);
565 
566    return g;
567 }
568 
569 void
ra_resize_interference_graph(struct ra_graph * g,unsigned int count)570 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
571 {
572    g->count = count;
573    if (count > g->alloc)
574       ra_realloc_interference_graph(g, g->alloc * 2);
575 }
576 
ra_set_select_reg_callback(struct ra_graph * g,ra_select_reg_callback callback,void * data)577 void ra_set_select_reg_callback(struct ra_graph *g,
578                                 ra_select_reg_callback callback,
579                                 void *data)
580 {
581    g->select_reg_callback = callback;
582    g->select_reg_callback_data = data;
583 }
584 
585 void
ra_set_node_class(struct ra_graph * g,unsigned int n,struct ra_class * class)586 ra_set_node_class(struct ra_graph *g,
587                   unsigned int n, struct ra_class *class)
588 {
589    g->nodes[n].class = class->index;
590 }
591 
592 struct ra_class *
ra_get_node_class(struct ra_graph * g,unsigned int n)593 ra_get_node_class(struct ra_graph *g,
594                   unsigned int n)
595 {
596    return g->regs->classes[g->nodes[n].class];
597 }
598 
599 unsigned int
ra_add_node(struct ra_graph * g,struct ra_class * class)600 ra_add_node(struct ra_graph *g, struct ra_class *class)
601 {
602    unsigned int n = g->count;
603    ra_resize_interference_graph(g, g->count + 1);
604 
605    ra_set_node_class(g, n, class);
606 
607    return n;
608 }
609 
610 void
ra_add_node_interference(struct ra_graph * g,unsigned int n1,unsigned int n2)611 ra_add_node_interference(struct ra_graph *g,
612                          unsigned int n1, unsigned int n2)
613 {
614    assert(n1 < g->count && n2 < g->count);
615    if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
616       ra_add_node_adjacency(g, n1, n2);
617       ra_add_node_adjacency(g, n2, n1);
618    }
619 }
620 
621 void
ra_reset_node_interference(struct ra_graph * g,unsigned int n)622 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
623 {
624    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
625       ra_node_remove_adjacency(g, *n2p, n);
626    }
627 
628    memset(g->nodes[n].adjacency, 0,
629           BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
630    util_dynarray_clear(&g->nodes[n].adjacency_list);
631 }
632 
633 static void
update_pq_info(struct ra_graph * g,unsigned int n)634 update_pq_info(struct ra_graph *g, unsigned int n)
635 {
636    int i = n / BITSET_WORDBITS;
637    int n_class = g->nodes[n].class;
638    if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
639       BITSET_SET(g->tmp.pq_test, n);
640    } else if (g->tmp.min_q_total[i] != UINT_MAX) {
641       /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
642        * that we don't update while we have stale data and accidentally mark
643        * it as non-stale.  Also, in order to remain consistent with the old
644        * naive implementation of the algorithm, we do a lexicographical sort
645        * to ensure that we always choose the node with the highest node index.
646        */
647       if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
648           (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
649            n > g->tmp.min_q_node[i])) {
650          g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
651          g->tmp.min_q_node[i] = n;
652       }
653    }
654 }
655 
656 static void
add_node_to_stack(struct ra_graph * g,unsigned int n)657 add_node_to_stack(struct ra_graph *g, unsigned int n)
658 {
659    int n_class = g->nodes[n].class;
660 
661    assert(!BITSET_TEST(g->tmp.in_stack, n));
662 
663    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
664       unsigned int n2 = *n2p;
665       unsigned int n2_class = g->nodes[n2].class;
666 
667       if (!BITSET_TEST(g->tmp.in_stack, n2) &&
668           !BITSET_TEST(g->tmp.reg_assigned, n2)) {
669          assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
670          g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
671          update_pq_info(g, n2);
672       }
673    }
674 
675    g->tmp.stack[g->tmp.stack_count] = n;
676    g->tmp.stack_count++;
677    BITSET_SET(g->tmp.in_stack, n);
678 
679    /* Flag the min_q_total for n's block as dirty so it gets recalculated */
680    g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
681 }
682 
683 /**
684  * Simplifies the interference graph by pushing all
685  * trivially-colorable nodes into a stack of nodes to be colored,
686  * removing them from the graph, and rinsing and repeating.
687  *
688  * If we encounter a case where we can't push any nodes on the stack, then
689  * we optimistically choose a node and push it on the stack. We heuristically
690  * push the node with the lowest total q value, since it has the fewest
691  * neighbors and therefore is most likely to be allocated.
692  */
693 static void
ra_simplify(struct ra_graph * g)694 ra_simplify(struct ra_graph *g)
695 {
696    bool progress = true;
697    unsigned int stack_optimistic_start = UINT_MAX;
698 
699    /* Figure out the high bit and bit mask for the first iteration of a loop
700     * over BITSET_WORDs.
701     */
702    const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
703 
704    /* Do a quick pre-pass to set things up */
705    g->tmp.stack_count = 0;
706    for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
707         i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
708       g->tmp.in_stack[i] = 0;
709       g->tmp.reg_assigned[i] = 0;
710       g->tmp.pq_test[i] = 0;
711       g->tmp.min_q_total[i] = UINT_MAX;
712       g->tmp.min_q_node[i] = UINT_MAX;
713       for (int j = high_bit; j >= 0; j--) {
714          unsigned int n = i * BITSET_WORDBITS + j;
715          g->nodes[n].reg = g->nodes[n].forced_reg;
716          g->nodes[n].tmp.q_total = g->nodes[n].q_total;
717          if (g->nodes[n].reg != NO_REG)
718             g->tmp.reg_assigned[i] |= BITSET_BIT(j);
719          update_pq_info(g, n);
720       }
721    }
722 
723    while (progress) {
724       unsigned int min_q_total = UINT_MAX;
725       unsigned int min_q_node = UINT_MAX;
726 
727       progress = false;
728 
729       for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
730            i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
731          BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
732 
733          BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
734          if (skip == mask)
735             continue;
736 
737          BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
738          if (pq) {
739             /* In this case, we have stuff we can immediately take off the
740              * stack.  This also means that we're guaranteed to make progress
741              * and we don't need to bother updating lowest_q_total because we
742              * know we're going to loop again before attempting to do anything
743              * optimistic.
744              */
745             for (int j = high_bit; j >= 0; j--) {
746                if (pq & BITSET_BIT(j)) {
747                   unsigned int n = i * BITSET_WORDBITS + j;
748                   assert(n < g->count);
749                   add_node_to_stack(g, n);
750                   /* add_node_to_stack() may update pq_test for this word so
751                    * we need to update our local copy.
752                    */
753                   pq = g->tmp.pq_test[i] & ~skip;
754                   progress = true;
755                }
756             }
757          } else if (!progress) {
758             if (g->tmp.min_q_total[i] == UINT_MAX) {
759                /* The min_q_total and min_q_node are dirty because we added
760                 * one of these nodes to the stack.  It needs to be
761                 * recalculated.
762                 */
763                for (int j = high_bit; j >= 0; j--) {
764                   if (skip & BITSET_BIT(j))
765                      continue;
766 
767                   unsigned int n = i * BITSET_WORDBITS + j;
768                   assert(n < g->count);
769                   if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
770                      g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
771                      g->tmp.min_q_node[i] = n;
772                   }
773                }
774             }
775             if (g->tmp.min_q_total[i] < min_q_total) {
776                min_q_node = g->tmp.min_q_node[i];
777                min_q_total = g->tmp.min_q_total[i];
778             }
779          }
780       }
781 
782       if (!progress && min_q_total != UINT_MAX) {
783          if (stack_optimistic_start == UINT_MAX)
784             stack_optimistic_start = g->tmp.stack_count;
785 
786          add_node_to_stack(g, min_q_node);
787          progress = true;
788       }
789    }
790 
791    g->tmp.stack_optimistic_start = stack_optimistic_start;
792 }
793 
794 bool
ra_class_allocations_conflict(struct ra_class * c1,unsigned int r1,struct ra_class * c2,unsigned int r2)795 ra_class_allocations_conflict(struct ra_class *c1, unsigned int r1,
796                               struct ra_class *c2, unsigned int r2)
797 {
798    if (c1->contig_len) {
799       assert(c2->contig_len);
800 
801       int r1_end = r1 + c1->contig_len;
802       int r2_end = r2 + c2->contig_len;
803       return !(r2 >= r1_end || r1 >= r2_end);
804    } else {
805       return BITSET_TEST(c1->regset->regs[r1].conflicts, r2);
806    }
807 }
808 
809 static struct ra_node *
ra_find_conflicting_neighbor(struct ra_graph * g,unsigned int n,unsigned int r)810 ra_find_conflicting_neighbor(struct ra_graph *g, unsigned int n, unsigned int r)
811 {
812    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
813       unsigned int n2 = *n2p;
814 
815       /* If our adjacent node is in the stack, it's not allocated yet. */
816       if (!BITSET_TEST(g->tmp.in_stack, n2) &&
817           ra_class_allocations_conflict(g->regs->classes[g->nodes[n].class], r,
818                                         g->regs->classes[g->nodes[n2].class], g->nodes[n2].reg)) {
819          return &g->nodes[n2];
820       }
821    }
822 
823    return NULL;
824 }
825 
826 /* Computes a bitfield of what regs are available for a given register
827  * selection.
828  *
829  * This lets drivers implement a more complicated policy than our simple first
830  * or round robin policies (which don't require knowing the whole bitset)
831  */
832 static bool
ra_compute_available_regs(struct ra_graph * g,unsigned int n,BITSET_WORD * regs)833 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
834 {
835    struct ra_class *c = g->regs->classes[g->nodes[n].class];
836 
837    /* Populate with the set of regs that are in the node's class. */
838    memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
839 
840    /* Remove any regs that conflict with nodes that we're adjacent to and have
841     * already colored.
842     */
843    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
844       struct ra_node *n2 = &g->nodes[*n2p];
845       struct ra_class *n2c = g->regs->classes[n2->class];
846 
847       if (!BITSET_TEST(g->tmp.in_stack, *n2p)) {
848          if (c->contig_len) {
849             int start = MAX2(0, (int)n2->reg - c->contig_len + 1);
850             int end = MIN2(g->regs->count, n2->reg + n2c->contig_len);
851             for (unsigned i = start; i < end; i++)
852                BITSET_CLEAR(regs, i);
853          } else {
854             for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
855                regs[j] &= ~g->regs->regs[n2->reg].conflicts[j];
856          }
857       }
858    }
859 
860    for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
861       if (regs[i])
862          return true;
863    }
864 
865    return false;
866 }
867 
868 /**
869  * Pops nodes from the stack back into the graph, coloring them with
870  * registers as they go.
871  *
872  * If all nodes were trivially colorable, then this must succeed.  If
873  * not (optimistic coloring), then it may return false;
874  */
875 static bool
ra_select(struct ra_graph * g)876 ra_select(struct ra_graph *g)
877 {
878    int start_search_reg = 0;
879    BITSET_WORD *select_regs = NULL;
880 
881    if (g->select_reg_callback)
882       select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
883 
884    while (g->tmp.stack_count != 0) {
885       unsigned int ri;
886       unsigned int r = -1;
887       int n = g->tmp.stack[g->tmp.stack_count - 1];
888       struct ra_class *c = g->regs->classes[g->nodes[n].class];
889 
890       /* set this to false even if we return here so that
891        * ra_get_best_spill_node() considers this node later.
892        */
893       BITSET_CLEAR(g->tmp.in_stack, n);
894 
895       if (g->select_reg_callback) {
896          if (!ra_compute_available_regs(g, n, select_regs)) {
897             free(select_regs);
898             return false;
899          }
900 
901          r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
902          assert(r < g->regs->count);
903       } else {
904          /* Find the lowest-numbered reg which is not used by a member
905           * of the graph adjacent to us.
906           */
907          for (ri = 0; ri < g->regs->count; ri++) {
908             r = (start_search_reg + ri) % g->regs->count;
909             if (!reg_belongs_to_class(r, c))
910                continue;
911 
912             struct ra_node *conflicting = ra_find_conflicting_neighbor(g, n, r);
913             if (!conflicting) {
914                /* Found a reg! */
915                break;
916             }
917             if (g->regs->classes[conflicting->class]->contig_len) {
918                /* Skip to point at the last base reg of the conflicting reg
919                 * allocation -- the loop will increment us to check the next reg
920                 * after the conflicting allocaiton.
921                 */
922                unsigned conflicting_end = (conflicting->reg +
923                                            g->regs->classes[conflicting->class]->contig_len - 1);
924                assert(conflicting_end >= r);
925                ri += conflicting_end - r;
926             }
927          }
928 
929          if (ri >= g->regs->count)
930             return false;
931       }
932 
933       g->nodes[n].reg = r;
934       g->tmp.stack_count--;
935 
936       /* Rotate the starting point except for any nodes above the lowest
937        * optimistically colorable node.  The likelihood that we will succeed
938        * at allocating optimistically colorable nodes is highly dependent on
939        * the way that the previous nodes popped off the stack are laid out.
940        * The round-robin strategy increases the fragmentation of the register
941        * file and decreases the number of nearby nodes assigned to the same
942        * color, what increases the likelihood of spilling with respect to the
943        * dense packing strategy.
944        */
945       if (g->regs->round_robin &&
946           g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
947          start_search_reg = r + 1;
948    }
949 
950    free(select_regs);
951 
952    return true;
953 }
954 
955 bool
ra_allocate(struct ra_graph * g)956 ra_allocate(struct ra_graph *g)
957 {
958    ra_simplify(g);
959    return ra_select(g);
960 }
961 
962 unsigned int
ra_get_node_reg(struct ra_graph * g,unsigned int n)963 ra_get_node_reg(struct ra_graph *g, unsigned int n)
964 {
965    if (g->nodes[n].forced_reg != NO_REG)
966       return g->nodes[n].forced_reg;
967    else
968       return g->nodes[n].reg;
969 }
970 
971 /**
972  * Forces a node to a specific register.  This can be used to avoid
973  * creating a register class containing one node when handling data
974  * that must live in a fixed location and is known to not conflict
975  * with other forced register assignment (as is common with shader
976  * input data).  These nodes do not end up in the stack during
977  * ra_simplify(), and thus at ra_select() time it is as if they were
978  * the first popped off the stack and assigned their fixed locations.
979  * Nodes that use this function do not need to be assigned a register
980  * class.
981  *
982  * Must be called before ra_simplify().
983  */
984 void
ra_set_node_reg(struct ra_graph * g,unsigned int n,unsigned int reg)985 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
986 {
987    g->nodes[n].forced_reg = reg;
988 }
989 
990 static float
ra_get_spill_benefit(struct ra_graph * g,unsigned int n)991 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
992 {
993    float benefit = 0;
994    int n_class = g->nodes[n].class;
995 
996    /* Define the benefit of eliminating an interference between n, n2
997     * through spilling as q(C, B) / p(C).  This is similar to the
998     * "count number of edges" approach of traditional graph coloring,
999     * but takes classes into account.
1000     */
1001    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
1002       unsigned int n2 = *n2p;
1003       unsigned int n2_class = g->nodes[n2].class;
1004       benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
1005                   g->regs->classes[n_class]->p);
1006    }
1007 
1008    return benefit;
1009 }
1010 
1011 /**
1012  * Returns a node number to be spilled according to the cost/benefit using
1013  * the pq test, or -1 if there are no spillable nodes.
1014  */
1015 int
ra_get_best_spill_node(struct ra_graph * g)1016 ra_get_best_spill_node(struct ra_graph *g)
1017 {
1018    unsigned int best_node = -1;
1019    float best_benefit = 0.0;
1020    unsigned int n;
1021 
1022    /* Consider any nodes that we colored successfully or the node we failed to
1023     * color for spilling. When we failed to color a node in ra_select(), we
1024     * only considered these nodes, so spilling any other ones would not result
1025     * in us making progress.
1026     */
1027    for (n = 0; n < g->count; n++) {
1028       float cost = g->nodes[n].spill_cost;
1029       float benefit;
1030 
1031       if (cost <= 0.0f)
1032          continue;
1033 
1034       if (BITSET_TEST(g->tmp.in_stack, n))
1035          continue;
1036 
1037       benefit = ra_get_spill_benefit(g, n);
1038 
1039       if (benefit / cost > best_benefit) {
1040          best_benefit = benefit / cost;
1041          best_node = n;
1042       }
1043    }
1044 
1045    return best_node;
1046 }
1047 
1048 /**
1049  * Only nodes with a spill cost set (cost != 0.0) will be considered
1050  * for register spilling.
1051  */
1052 void
ra_set_node_spill_cost(struct ra_graph * g,unsigned int n,float cost)1053 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1054 {
1055    g->nodes[n].spill_cost = cost;
1056 }
1057