1 /*
2  * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Rob Clark <robclark@freedesktop.org>
25  */
26 
27 #include "util/ralloc.h"
28 #include "util/u_math.h"
29 
30 #include "ir3.h"
31 #include "ir3_shader.h"
32 
33 /*
34  * Legalize:
35  *
36  * The legalize pass handles ensuring sufficient nop's and sync flags for
37  * correct execution.
38  *
39  * 1) Iteratively determine where sync ((sy)/(ss)) flags are needed,
40  *    based on state flowing out of predecessor blocks until there is
41  *    no further change.  In some cases this requires inserting nops.
42  * 2) Mark (ei) on last varying input, and (ul) on last use of a0.x
43  * 3) Final nop scheduling for instruction latency
44  * 4) Resolve jumps and schedule blocks, marking potential convergence
45  *    points with (jp)
46  */
47 
48 struct ir3_legalize_ctx {
49    struct ir3_compiler *compiler;
50    struct ir3_shader_variant *so;
51    gl_shader_stage type;
52    int max_bary;
53    bool early_input_release;
54 };
55 
56 struct ir3_legalize_state {
57    regmask_t needs_ss;
58    regmask_t needs_ss_war; /* write after read */
59    regmask_t needs_sy;
60 };
61 
62 struct ir3_legalize_block_data {
63    bool valid;
64    struct ir3_legalize_state state;
65 };
66 
67 /* We want to evaluate each block from the position of any other
68  * predecessor block, in order that the flags set are the union of
69  * all possible program paths.
70  *
71  * To do this, we need to know the output state (needs_ss/ss_war/sy)
72  * of all predecessor blocks.  The tricky thing is loops, which mean
73  * that we can't simply recursively process each predecessor block
74  * before legalizing the current block.
75  *
76  * How we handle that is by looping over all the blocks until the
77  * results converge.  If the output state of a given block changes
78  * in a given pass, this means that all successor blocks are not
79  * yet fully legalized.
80  */
81 
82 static bool
legalize_block(struct ir3_legalize_ctx * ctx,struct ir3_block * block)83 legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
84 {
85    struct ir3_legalize_block_data *bd = block->data;
86 
87    if (bd->valid)
88       return false;
89 
90    struct ir3_instruction *last_rel = NULL;
91    struct ir3_instruction *last_n = NULL;
92    struct list_head instr_list;
93    struct ir3_legalize_state prev_state = bd->state;
94    struct ir3_legalize_state *state = &bd->state;
95    bool last_input_needs_ss = false;
96    bool has_tex_prefetch = false;
97    bool mergedregs = ctx->so->mergedregs;
98 
99    /* our input state is the OR of all predecessor blocks' state: */
100    for (unsigned i = 0; i < block->predecessors_count; i++) {
101       struct ir3_block *predecessor = block->predecessors[i];
102       struct ir3_legalize_block_data *pbd = predecessor->data;
103       struct ir3_legalize_state *pstate = &pbd->state;
104 
105       /* Our input (ss)/(sy) state is based on OR'ing the output
106        * state of all our predecessor blocks
107        */
108       regmask_or(&state->needs_ss, &state->needs_ss, &pstate->needs_ss);
109       regmask_or(&state->needs_ss_war, &state->needs_ss_war,
110                  &pstate->needs_ss_war);
111       regmask_or(&state->needs_sy, &state->needs_sy, &pstate->needs_sy);
112    }
113 
114    unsigned input_count = 0;
115 
116    foreach_instr (n, &block->instr_list) {
117       if (is_input(n)) {
118          input_count++;
119       }
120    }
121 
122    unsigned inputs_remaining = input_count;
123 
124    /* Either inputs are in the first block or we expect inputs to be released
125     * with the end of the program.
126     */
127    assert(input_count == 0 || !ctx->early_input_release ||
128           block == ir3_start_block(block->shader));
129 
130    /* remove all the instructions from the list, we'll be adding
131     * them back in as we go
132     */
133    list_replace(&block->instr_list, &instr_list);
134    list_inithead(&block->instr_list);
135 
136    foreach_instr_safe (n, &instr_list) {
137       unsigned i;
138 
139       n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY);
140 
141       /* _meta::tex_prefetch instructions removed later in
142        * collect_tex_prefetches()
143        */
144       if (is_meta(n) && (n->opc != OPC_META_TEX_PREFETCH))
145          continue;
146 
147       if (is_input(n)) {
148          struct ir3_register *inloc = n->srcs[0];
149          assert(inloc->flags & IR3_REG_IMMED);
150          ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
151       }
152 
153       if (last_n && is_barrier(last_n)) {
154          n->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
155          last_input_needs_ss = false;
156          regmask_init(&state->needs_ss_war, mergedregs);
157          regmask_init(&state->needs_ss, mergedregs);
158          regmask_init(&state->needs_sy, mergedregs);
159       }
160 
161       if (last_n && (last_n->opc == OPC_PREDT)) {
162          n->flags |= IR3_INSTR_SS;
163          regmask_init(&state->needs_ss_war, mergedregs);
164          regmask_init(&state->needs_ss, mergedregs);
165       }
166 
167       /* NOTE: consider dst register too.. it could happen that
168        * texture sample instruction (for example) writes some
169        * components which are unused.  A subsequent instruction
170        * that writes the same register can race w/ the sam instr
171        * resulting in undefined results:
172        */
173       for (i = 0; i < n->dsts_count + n->srcs_count; i++) {
174          struct ir3_register *reg;
175          if (i < n->dsts_count)
176             reg = n->dsts[i];
177          else
178             reg = n->srcs[i - n->dsts_count];
179 
180          if (reg_gpr(reg)) {
181 
182             /* TODO: we probably only need (ss) for alu
183              * instr consuming sfu result.. need to make
184              * some tests for both this and (sy)..
185              */
186             if (regmask_get(&state->needs_ss, reg)) {
187                n->flags |= IR3_INSTR_SS;
188                last_input_needs_ss = false;
189                regmask_init(&state->needs_ss_war, mergedregs);
190                regmask_init(&state->needs_ss, mergedregs);
191             }
192 
193             if (regmask_get(&state->needs_sy, reg)) {
194                n->flags |= IR3_INSTR_SY;
195                regmask_init(&state->needs_sy, mergedregs);
196             }
197          }
198 
199          /* TODO: is it valid to have address reg loaded from a
200           * relative src (ie. mova a0, c<a0.x+4>)?  If so, the
201           * last_rel check below should be moved ahead of this:
202           */
203          if (reg->flags & IR3_REG_RELATIV)
204             last_rel = n;
205       }
206 
207       foreach_dst (reg, n) {
208          if (regmask_get(&state->needs_ss_war, reg)) {
209             n->flags |= IR3_INSTR_SS;
210             last_input_needs_ss = false;
211             regmask_init(&state->needs_ss_war, mergedregs);
212             regmask_init(&state->needs_ss, mergedregs);
213          }
214 
215          if (last_rel && (reg->num == regid(REG_A0, 0))) {
216             last_rel->flags |= IR3_INSTR_UL;
217             last_rel = NULL;
218          }
219       }
220 
221       /* cat5+ does not have an (ss) bit, if needed we need to
222        * insert a nop to carry the sync flag.  Would be kinda
223        * clever if we were aware of this during scheduling, but
224        * this should be a pretty rare case:
225        */
226       if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
227          struct ir3_instruction *nop;
228          nop = ir3_NOP(block);
229          nop->flags |= IR3_INSTR_SS;
230          n->flags &= ~IR3_INSTR_SS;
231       }
232 
233       /* need to be able to set (ss) on first instruction: */
234       if (list_is_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
235          ir3_NOP(block);
236 
237       if (ctx->compiler->samgq_workaround &&
238           ctx->type != MESA_SHADER_FRAGMENT &&
239           ctx->type != MESA_SHADER_COMPUTE && n->opc == OPC_SAMGQ) {
240          struct ir3_instruction *samgp;
241 
242          list_delinit(&n->node);
243 
244          for (i = 0; i < 4; i++) {
245             samgp = ir3_instr_clone(n);
246             samgp->opc = OPC_SAMGP0 + i;
247             if (i > 1)
248                samgp->flags |= IR3_INSTR_SY;
249          }
250       } else {
251          list_delinit(&n->node);
252          list_addtail(&n->node, &block->instr_list);
253       }
254 
255       if (is_sfu(n))
256          regmask_set(&state->needs_ss, n->dsts[0]);
257 
258       if (is_tex_or_prefetch(n)) {
259          regmask_set(&state->needs_sy, n->dsts[0]);
260          if (n->opc == OPC_META_TEX_PREFETCH)
261             has_tex_prefetch = true;
262       } else if (n->opc == OPC_RESINFO) {
263          regmask_set(&state->needs_ss, n->dsts[0]);
264          ir3_NOP(block)->flags |= IR3_INSTR_SS;
265          last_input_needs_ss = false;
266       } else if (is_load(n)) {
267          /* seems like ldlv needs (ss) bit instead??  which is odd but
268           * makes a bunch of flat-varying tests start working on a4xx.
269           */
270          if ((n->opc == OPC_LDLV) || (n->opc == OPC_LDL) ||
271              (n->opc == OPC_LDLW))
272             regmask_set(&state->needs_ss, n->dsts[0]);
273          else
274             regmask_set(&state->needs_sy, n->dsts[0]);
275       } else if (is_atomic(n->opc)) {
276          if (n->flags & IR3_INSTR_G) {
277             if (ctx->compiler->gen >= 6) {
278                /* New encoding, returns  result via second src: */
279                regmask_set(&state->needs_sy, n->srcs[2]);
280             } else {
281                regmask_set(&state->needs_sy, n->dsts[0]);
282             }
283          } else {
284             regmask_set(&state->needs_ss, n->dsts[0]);
285          }
286       }
287 
288       if (is_ssbo(n->opc) || (is_atomic(n->opc) && (n->flags & IR3_INSTR_G)))
289          ctx->so->has_ssbo = true;
290 
291       /* both tex/sfu appear to not always immediately consume
292        * their src register(s):
293        */
294       if (is_tex(n) || is_sfu(n) || is_mem(n)) {
295          foreach_src (reg, n) {
296             regmask_set(&state->needs_ss_war, reg);
297          }
298       }
299 
300       if (ctx->early_input_release && is_input(n)) {
301          last_input_needs_ss |= (n->opc == OPC_LDLV);
302 
303          assert(inputs_remaining > 0);
304          inputs_remaining--;
305          if (inputs_remaining == 0) {
306             /* This is the last input. We add the (ei) flag to release
307              * varying memory after this executes. If it's an ldlv,
308              * however, we need to insert a dummy bary.f on which we can
309              * set the (ei) flag. We may also need to insert an (ss) to
310              * guarantee that all ldlv's have finished fetching their
311              * results before releasing the varying memory.
312              */
313             struct ir3_instruction *last_input = n;
314             if (n->opc == OPC_LDLV) {
315                struct ir3_instruction *baryf;
316 
317                /* (ss)bary.f (ei)r63.x, 0, r0.x */
318                baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2);
319                ir3_dst_create(baryf, regid(63, 0), 0);
320                ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
321                ir3_src_create(baryf, regid(0, 0), 0);
322 
323                last_input = baryf;
324             }
325 
326             last_input->dsts[0]->flags |= IR3_REG_EI;
327             if (last_input_needs_ss) {
328                last_input->flags |= IR3_INSTR_SS;
329                regmask_init(&state->needs_ss_war, mergedregs);
330                regmask_init(&state->needs_ss, mergedregs);
331             }
332          }
333       }
334 
335       last_n = n;
336    }
337 
338    assert(inputs_remaining == 0 || !ctx->early_input_release);
339 
340    if (has_tex_prefetch && input_count == 0) {
341       /* texture prefetch, but *no* inputs.. we need to insert a
342        * dummy bary.f at the top of the shader to unblock varying
343        * storage:
344        */
345       struct ir3_instruction *baryf;
346 
347       /* (ss)bary.f (ei)r63.x, 0, r0.x */
348       baryf = ir3_instr_create(block, OPC_BARY_F, 1, 2);
349       ir3_dst_create(baryf, regid(63, 0), 0)->flags |= IR3_REG_EI;
350       ir3_src_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
351       ir3_src_create(baryf, regid(0, 0), 0);
352 
353       /* insert the dummy bary.f at head: */
354       list_delinit(&baryf->node);
355       list_add(&baryf->node, &block->instr_list);
356    }
357 
358    if (last_rel)
359       last_rel->flags |= IR3_INSTR_UL;
360 
361    bd->valid = true;
362 
363    if (memcmp(&prev_state, state, sizeof(*state))) {
364       /* our output state changed, this invalidates all of our
365        * successors:
366        */
367       for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
368          if (!block->successors[i])
369             break;
370          struct ir3_legalize_block_data *pbd = block->successors[i]->data;
371          pbd->valid = false;
372       }
373    }
374 
375    return true;
376 }
377 
378 /* Expands dsxpp and dsypp macros to:
379  *
380  * dsxpp.1 dst, src
381  * dsxpp.1.p dst, src
382  *
383  * We apply this after flags syncing, as we don't want to sync in between the
384  * two (which might happen if dst == src).  We do it before nop scheduling
385  * because that needs to count actual instructions.
386  */
387 static bool
apply_fine_deriv_macro(struct ir3_legalize_ctx * ctx,struct ir3_block * block)388 apply_fine_deriv_macro(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
389 {
390    struct list_head instr_list;
391 
392    /* remove all the instructions from the list, we'll be adding
393     * them back in as we go
394     */
395    list_replace(&block->instr_list, &instr_list);
396    list_inithead(&block->instr_list);
397 
398    foreach_instr_safe (n, &instr_list) {
399       list_addtail(&n->node, &block->instr_list);
400 
401       if (n->opc == OPC_DSXPP_MACRO || n->opc == OPC_DSYPP_MACRO) {
402          n->opc = (n->opc == OPC_DSXPP_MACRO) ? OPC_DSXPP_1 : OPC_DSYPP_1;
403 
404          struct ir3_instruction *op_p = ir3_instr_clone(n);
405          op_p->flags = IR3_INSTR_P;
406 
407          ctx->so->need_fine_derivatives = true;
408       }
409    }
410 
411    return true;
412 }
413 
414 /* NOTE: branch instructions are always the last instruction(s)
415  * in the block.  We take advantage of this as we resolve the
416  * branches, since "if (foo) break;" constructs turn into
417  * something like:
418  *
419  *   block3 {
420  *   	...
421  *   	0029:021: mov.s32s32 r62.x, r1.y
422  *   	0082:022: br !p0.x, target=block5
423  *   	0083:023: br p0.x, target=block4
424  *   	// succs: if _[0029:021: mov.s32s32] block4; else block5;
425  *   }
426  *   block4 {
427  *   	0084:024: jump, target=block6
428  *   	// succs: block6;
429  *   }
430  *   block5 {
431  *   	0085:025: jump, target=block7
432  *   	// succs: block7;
433  *   }
434  *
435  * ie. only instruction in block4/block5 is a jump, so when
436  * resolving branches we can easily detect this by checking
437  * that the first instruction in the target block is itself
438  * a jump, and setup the br directly to the jump's target
439  * (and strip back out the now unreached jump)
440  *
441  * TODO sometimes we end up with things like:
442  *
443  *    br !p0.x, #2
444  *    br p0.x, #12
445  *    add.u r0.y, r0.y, 1
446  *
447  * If we swapped the order of the branches, we could drop one.
448  */
449 static struct ir3_block *
resolve_dest_block(struct ir3_block * block)450 resolve_dest_block(struct ir3_block *block)
451 {
452    /* special case for last block: */
453    if (!block->successors[0])
454       return block;
455 
456    /* NOTE that we may or may not have inserted the jump
457     * in the target block yet, so conditions to resolve
458     * the dest to the dest block's successor are:
459     *
460     *   (1) successor[1] == NULL &&
461     *   (2) (block-is-empty || only-instr-is-jump)
462     */
463    if (block->successors[1] == NULL) {
464       if (list_is_empty(&block->instr_list)) {
465          return block->successors[0];
466       } else if (list_length(&block->instr_list) == 1) {
467          struct ir3_instruction *instr =
468             list_first_entry(&block->instr_list, struct ir3_instruction, node);
469          if (instr->opc == OPC_JUMP) {
470             /* If this jump is backwards, then we will probably convert
471              * the jump being resolved to a backwards jump, which will
472              * change a loop-with-continue or loop-with-if into a
473              * doubly-nested loop and change the convergence behavior.
474              * Disallow this here.
475              */
476             if (block->successors[0]->index <= block->index)
477                return block;
478             return block->successors[0];
479          }
480       }
481    }
482    return block;
483 }
484 
485 static void
remove_unused_block(struct ir3_block * old_target)486 remove_unused_block(struct ir3_block *old_target)
487 {
488    list_delinit(&old_target->node);
489 
490    /* cleanup dangling predecessors: */
491    for (unsigned i = 0; i < ARRAY_SIZE(old_target->successors); i++) {
492       if (old_target->successors[i]) {
493          struct ir3_block *succ = old_target->successors[i];
494          ir3_block_remove_predecessor(succ, old_target);
495       }
496    }
497 }
498 
499 static bool
retarget_jump(struct ir3_instruction * instr,struct ir3_block * new_target)500 retarget_jump(struct ir3_instruction *instr, struct ir3_block *new_target)
501 {
502    struct ir3_block *old_target = instr->cat0.target;
503    struct ir3_block *cur_block = instr->block;
504 
505    /* update current blocks successors to reflect the retargetting: */
506    if (cur_block->successors[0] == old_target) {
507       cur_block->successors[0] = new_target;
508    } else {
509       debug_assert(cur_block->successors[1] == old_target);
510       cur_block->successors[1] = new_target;
511    }
512 
513    /* also update physical_successors.. we don't really need them at
514     * this stage, but it keeps ir3_validate happy:
515     */
516    if (cur_block->physical_successors[0] == old_target) {
517       cur_block->physical_successors[0] = new_target;
518    } else {
519       debug_assert(cur_block->physical_successors[1] == old_target);
520       cur_block->physical_successors[1] = new_target;
521    }
522 
523    /* update new target's predecessors: */
524    ir3_block_add_predecessor(new_target, cur_block);
525 
526    /* and remove old_target's predecessor: */
527    ir3_block_remove_predecessor(old_target, cur_block);
528 
529    instr->cat0.target = new_target;
530 
531    if (old_target->predecessors_count == 0) {
532       remove_unused_block(old_target);
533       return true;
534    }
535 
536    return false;
537 }
538 
539 static bool
opt_jump(struct ir3 * ir)540 opt_jump(struct ir3 *ir)
541 {
542    bool progress = false;
543 
544    unsigned index = 0;
545    foreach_block (block, &ir->block_list)
546       block->index = index++;
547 
548    foreach_block (block, &ir->block_list) {
549       foreach_instr (instr, &block->instr_list) {
550          if (!is_flow(instr) || !instr->cat0.target)
551             continue;
552 
553          struct ir3_block *tblock = resolve_dest_block(instr->cat0.target);
554          if (tblock != instr->cat0.target) {
555             progress = true;
556 
557             /* Exit early if we deleted a block to avoid iterator
558              * weirdness/assert fails
559              */
560             if (retarget_jump(instr, tblock))
561                return true;
562          }
563       }
564 
565       /* Detect the case where the block ends either with:
566        * - A single unconditional jump to the next block.
567        * - Two jump instructions with opposite conditions, and one of the
568        *   them jumps to the next block.
569        * We can remove the one that jumps to the next block in either case.
570        */
571       if (list_is_empty(&block->instr_list))
572          continue;
573 
574       struct ir3_instruction *jumps[2] = {NULL, NULL};
575       jumps[0] =
576          list_last_entry(&block->instr_list, struct ir3_instruction, node);
577       if (!list_is_singular(&block->instr_list))
578          jumps[1] =
579             list_last_entry(&jumps[0]->node, struct ir3_instruction, node);
580 
581       if (jumps[0]->opc == OPC_JUMP)
582          jumps[1] = NULL;
583       else if (jumps[0]->opc != OPC_B || !jumps[1] || jumps[1]->opc != OPC_B)
584          continue;
585 
586       for (unsigned i = 0; i < 2; i++) {
587          if (!jumps[i])
588             continue;
589 
590          struct ir3_block *tblock = jumps[i]->cat0.target;
591          if (&tblock->node == block->node.next) {
592             list_delinit(&jumps[i]->node);
593             progress = true;
594             break;
595          }
596       }
597    }
598 
599    return progress;
600 }
601 
602 static void
resolve_jumps(struct ir3 * ir)603 resolve_jumps(struct ir3 *ir)
604 {
605    foreach_block (block, &ir->block_list)
606       foreach_instr (instr, &block->instr_list)
607          if (is_flow(instr) && instr->cat0.target) {
608             struct ir3_instruction *target = list_first_entry(
609                &instr->cat0.target->instr_list, struct ir3_instruction, node);
610 
611             instr->cat0.immed = (int)target->ip - (int)instr->ip;
612          }
613 }
614 
615 static void
mark_jp(struct ir3_block * block)616 mark_jp(struct ir3_block *block)
617 {
618    struct ir3_instruction *target =
619       list_first_entry(&block->instr_list, struct ir3_instruction, node);
620    target->flags |= IR3_INSTR_JP;
621 }
622 
623 /* Mark points where control flow converges or diverges.
624  *
625  * Divergence points could actually be re-convergence points where
626  * "parked" threads are recoverged with threads that took the opposite
627  * path last time around.  Possibly it is easier to think of (jp) as
628  * "the execution mask might have changed".
629  */
630 static void
mark_xvergence_points(struct ir3 * ir)631 mark_xvergence_points(struct ir3 *ir)
632 {
633    foreach_block (block, &ir->block_list) {
634       if (block->predecessors_count > 1) {
635          /* if a block has more than one possible predecessor, then
636           * the first instruction is a convergence point.
637           */
638          mark_jp(block);
639       } else if (block->predecessors_count == 1) {
640          /* If a block has one predecessor, which has multiple possible
641           * successors, it is a divergence point.
642           */
643          for (unsigned i = 0; i < block->predecessors_count; i++) {
644             struct ir3_block *predecessor = block->predecessors[i];
645             if (predecessor->successors[1]) {
646                mark_jp(block);
647             }
648          }
649       }
650    }
651 }
652 
653 /* Insert the branch/jump instructions for flow control between blocks.
654  * Initially this is done naively, without considering if the successor
655  * block immediately follows the current block (ie. so no jump required),
656  * but that is cleaned up in opt_jump().
657  *
658  * TODO what ensures that the last write to p0.x in a block is the
659  * branch condition?  Have we been getting lucky all this time?
660  */
661 static void
block_sched(struct ir3 * ir)662 block_sched(struct ir3 *ir)
663 {
664    foreach_block (block, &ir->block_list) {
665       if (block->successors[1]) {
666          /* if/else, conditional branches to "then" or "else": */
667          struct ir3_instruction *br1, *br2;
668 
669          if (block->brtype == IR3_BRANCH_GETONE) {
670             /* getone can't be inverted, and it wouldn't even make sense
671              * to follow it with an inverted branch, so follow it by an
672              * unconditional branch.
673              */
674             debug_assert(!block->condition);
675             br1 = ir3_GETONE(block);
676             br1->cat0.target = block->successors[1];
677 
678             br2 = ir3_JUMP(block);
679             br2->cat0.target = block->successors[0];
680          } else {
681             debug_assert(block->condition);
682 
683             /* create "else" branch first (since "then" block should
684              * frequently/always end up being a fall-thru):
685              */
686             br1 = ir3_instr_create(block, OPC_B, 0, 1);
687             ir3_src_create(br1, regid(REG_P0, 0), 0)->def =
688                block->condition->dsts[0];
689             br1->cat0.inv1 = true;
690             br1->cat0.target = block->successors[1];
691 
692             /* "then" branch: */
693             br2 = ir3_instr_create(block, OPC_B, 0, 1);
694             ir3_src_create(br2, regid(REG_P0, 0), 0)->def =
695                block->condition->dsts[0];
696             br2->cat0.target = block->successors[0];
697 
698             switch (block->brtype) {
699             case IR3_BRANCH_COND:
700                br1->cat0.brtype = br2->cat0.brtype = BRANCH_PLAIN;
701                break;
702             case IR3_BRANCH_ALL:
703                br1->cat0.brtype = BRANCH_ANY;
704                br2->cat0.brtype = BRANCH_ALL;
705                break;
706             case IR3_BRANCH_ANY:
707                br1->cat0.brtype = BRANCH_ALL;
708                br2->cat0.brtype = BRANCH_ANY;
709                break;
710             case IR3_BRANCH_GETONE:
711                unreachable("can't get here");
712             }
713          }
714       } else if (block->successors[0]) {
715          /* otherwise unconditional jump to next block: */
716          struct ir3_instruction *jmp;
717 
718          jmp = ir3_JUMP(block);
719          jmp->cat0.target = block->successors[0];
720       }
721    }
722 }
723 
724 /* Here we workaround the fact that kill doesn't actually kill the thread as
725  * GL expects. The last instruction always needs to be an end instruction,
726  * which means that if we're stuck in a loop where kill is the only way out,
727  * then we may have to jump out to the end. kill may also have the d3d
728  * semantics of converting the thread to a helper thread, rather than setting
729  * the exec mask to 0, in which case the helper thread could get stuck in an
730  * infinite loop.
731  *
732  * We do this late, both to give the scheduler the opportunity to reschedule
733  * kill instructions earlier and to avoid having to create a separate basic
734  * block.
735  *
736  * TODO: Assuming that the wavefront doesn't stop as soon as all threads are
737  * killed, we might benefit by doing this more aggressively when the remaining
738  * part of the program after the kill is large, since that would let us
739  * skip over the instructions when there are no non-killed threads left.
740  */
741 static void
kill_sched(struct ir3 * ir,struct ir3_shader_variant * so)742 kill_sched(struct ir3 *ir, struct ir3_shader_variant *so)
743 {
744    /* True if we know that this block will always eventually lead to the end
745     * block:
746     */
747    bool always_ends = true;
748    bool added = false;
749    struct ir3_block *last_block =
750       list_last_entry(&ir->block_list, struct ir3_block, node);
751 
752    foreach_block_rev (block, &ir->block_list) {
753       for (unsigned i = 0; i < 2 && block->successors[i]; i++) {
754          if (block->successors[i]->start_ip <= block->end_ip)
755             always_ends = false;
756       }
757 
758       if (always_ends)
759          continue;
760 
761       foreach_instr_safe (instr, &block->instr_list) {
762          if (instr->opc != OPC_KILL)
763             continue;
764 
765          struct ir3_instruction *br = ir3_instr_create(block, OPC_B, 0, 1);
766          ir3_src_create(br, instr->srcs[0]->num, instr->srcs[0]->flags)->wrmask =
767             1;
768          br->cat0.target =
769             list_last_entry(&ir->block_list, struct ir3_block, node);
770 
771          list_del(&br->node);
772          list_add(&br->node, &instr->node);
773 
774          added = true;
775       }
776    }
777 
778    if (added) {
779       /* I'm not entirely sure how the branchstack works, but we probably
780        * need to add at least one entry for the divergence which is resolved
781        * at the end:
782        */
783       so->branchstack++;
784 
785       /* We don't update predecessors/successors, so we have to do this
786        * manually:
787        */
788       mark_jp(last_block);
789    }
790 }
791 
792 /* Insert nop's required to make this a legal/valid shader program: */
793 static void
nop_sched(struct ir3 * ir,struct ir3_shader_variant * so)794 nop_sched(struct ir3 *ir, struct ir3_shader_variant *so)
795 {
796    foreach_block (block, &ir->block_list) {
797       struct ir3_instruction *last = NULL;
798       struct list_head instr_list;
799 
800       /* remove all the instructions from the list, we'll be adding
801        * them back in as we go
802        */
803       list_replace(&block->instr_list, &instr_list);
804       list_inithead(&block->instr_list);
805 
806       foreach_instr_safe (instr, &instr_list) {
807          unsigned delay = ir3_delay_calc_exact(block, instr, so->mergedregs);
808 
809          /* NOTE: I think the nopN encoding works for a5xx and
810           * probably a4xx, but not a3xx.  So far only tested on
811           * a6xx.
812           */
813 
814          if ((delay > 0) && (ir->compiler->gen >= 6) && last &&
815              ((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3)) &&
816              (last->repeat == 0)) {
817             /* the previous cat2/cat3 instruction can encode at most 3 nop's: */
818             unsigned transfer = MIN2(delay, 3 - last->nop);
819             last->nop += transfer;
820             delay -= transfer;
821          }
822 
823          if ((delay > 0) && last && (last->opc == OPC_NOP)) {
824             /* the previous nop can encode at most 5 repeats: */
825             unsigned transfer = MIN2(delay, 5 - last->repeat);
826             last->repeat += transfer;
827             delay -= transfer;
828          }
829 
830          if (delay > 0) {
831             debug_assert(delay <= 6);
832             ir3_NOP(block)->repeat = delay - 1;
833          }
834 
835          list_addtail(&instr->node, &block->instr_list);
836          last = instr;
837       }
838    }
839 }
840 
841 bool
ir3_legalize(struct ir3 * ir,struct ir3_shader_variant * so,int * max_bary)842 ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary)
843 {
844    struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx);
845    bool mergedregs = so->mergedregs;
846    bool progress;
847 
848    ctx->so = so;
849    ctx->max_bary = -1;
850    ctx->compiler = ir->compiler;
851    ctx->type = ir->type;
852 
853    /* allocate per-block data: */
854    foreach_block (block, &ir->block_list) {
855       struct ir3_legalize_block_data *bd =
856          rzalloc(ctx, struct ir3_legalize_block_data);
857 
858       regmask_init(&bd->state.needs_ss_war, mergedregs);
859       regmask_init(&bd->state.needs_ss, mergedregs);
860       regmask_init(&bd->state.needs_sy, mergedregs);
861 
862       block->data = bd;
863    }
864 
865    ir3_remove_nops(ir);
866 
867    /* We may have failed to pull all input loads into the first block.
868     * In such case at the moment we aren't able to find a better place
869     * to for (ei) than the end of the program.
870     * a5xx and a6xx do automatically release varying storage at the end.
871     */
872    ctx->early_input_release = true;
873    struct ir3_block *start_block = ir3_start_block(ir);
874    foreach_block (block, &ir->block_list) {
875       foreach_instr (instr, &block->instr_list) {
876          if (is_input(instr) && block != start_block) {
877             ctx->early_input_release = false;
878             break;
879          }
880       }
881    }
882 
883    assert(ctx->early_input_release || ctx->compiler->gen >= 5);
884 
885    /* process each block: */
886    do {
887       progress = false;
888       foreach_block (block, &ir->block_list) {
889          progress |= legalize_block(ctx, block);
890       }
891    } while (progress);
892 
893    *max_bary = ctx->max_bary;
894 
895    block_sched(ir);
896    if (so->type == MESA_SHADER_FRAGMENT)
897       kill_sched(ir, so);
898 
899    foreach_block (block, &ir->block_list) {
900       progress |= apply_fine_deriv_macro(ctx, block);
901    }
902 
903    nop_sched(ir, so);
904 
905    while (opt_jump(ir))
906       ;
907 
908    ir3_count_instructions(ir);
909    resolve_jumps(ir);
910 
911    mark_xvergence_points(ir);
912 
913    ralloc_free(ctx);
914 
915    return true;
916 }
917