1 /*
2  * Copyright © 2020 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_ir.h"
26 
27 #include "aco_builder.h"
28 
29 #include "util/debug.h"
30 
31 #include "c11/threads.h"
32 
33 namespace aco {
34 
35 uint64_t debug_flags = 0;
36 
37 static const struct debug_control aco_debug_options[] = {{"validateir", DEBUG_VALIDATE_IR},
38                                                          {"validatera", DEBUG_VALIDATE_RA},
39                                                          {"perfwarn", DEBUG_PERFWARN},
40                                                          {"force-waitcnt", DEBUG_FORCE_WAITCNT},
41                                                          {"novn", DEBUG_NO_VN},
42                                                          {"noopt", DEBUG_NO_OPT},
43                                                          {"nosched", DEBUG_NO_SCHED},
44                                                          {"perfinfo", DEBUG_PERF_INFO},
45                                                          {"liveinfo", DEBUG_LIVE_INFO},
46                                                          {NULL, 0}};
47 
48 static once_flag init_once_flag = ONCE_FLAG_INIT;
49 
50 static void
init_once()51 init_once()
52 {
53    debug_flags = parse_debug_string(getenv("ACO_DEBUG"), aco_debug_options);
54 
55 #ifndef NDEBUG
56    /* enable some flags by default on debug builds */
57    debug_flags |= aco::DEBUG_VALIDATE_IR;
58 #endif
59 }
60 
61 void
init()62 init()
63 {
64    call_once(&init_once_flag, init_once);
65 }
66 
67 void
init_program(Program * program,Stage stage,const struct radv_shader_info * info,enum chip_class chip_class,enum radeon_family family,bool wgp_mode,ac_shader_config * config)68 init_program(Program* program, Stage stage, const struct radv_shader_info* info,
69              enum chip_class chip_class, enum radeon_family family, bool wgp_mode,
70              ac_shader_config* config)
71 {
72    program->stage = stage;
73    program->config = config;
74    program->info = info;
75    program->chip_class = chip_class;
76    if (family == CHIP_UNKNOWN) {
77       switch (chip_class) {
78       case GFX6: program->family = CHIP_TAHITI; break;
79       case GFX7: program->family = CHIP_BONAIRE; break;
80       case GFX8: program->family = CHIP_POLARIS10; break;
81       case GFX9: program->family = CHIP_VEGA10; break;
82       case GFX10: program->family = CHIP_NAVI10; break;
83       default: program->family = CHIP_UNKNOWN; break;
84       }
85    } else {
86       program->family = family;
87    }
88    program->wave_size = info->wave_size;
89    program->lane_mask = program->wave_size == 32 ? s1 : s2;
90 
91    program->dev.lds_encoding_granule = chip_class >= GFX7 ? 512 : 256;
92    program->dev.lds_alloc_granule =
93       chip_class >= GFX10_3 ? 1024 : program->dev.lds_encoding_granule;
94    program->dev.lds_limit = chip_class >= GFX7 ? 65536 : 32768;
95    /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
96    program->dev.has_16bank_lds = family == CHIP_KABINI || family == CHIP_STONEY;
97 
98    program->dev.vgpr_limit = 256;
99    program->dev.physical_vgprs = 256;
100    program->dev.vgpr_alloc_granule = 4;
101 
102    if (chip_class >= GFX10) {
103       program->dev.physical_sgprs = 5120; /* doesn't matter as long as it's at least 128 * 40 */
104       program->dev.physical_vgprs = program->wave_size == 32 ? 1024 : 512;
105       program->dev.sgpr_alloc_granule = 128;
106       program->dev.sgpr_limit =
107          108; /* includes VCC, which can be treated as s[106-107] on GFX10+ */
108       if (chip_class >= GFX10_3)
109          program->dev.vgpr_alloc_granule = program->wave_size == 32 ? 16 : 8;
110       else
111          program->dev.vgpr_alloc_granule = program->wave_size == 32 ? 8 : 4;
112    } else if (program->chip_class >= GFX8) {
113       program->dev.physical_sgprs = 800;
114       program->dev.sgpr_alloc_granule = 16;
115       program->dev.sgpr_limit = 102;
116       if (family == CHIP_TONGA || family == CHIP_ICELAND)
117          program->dev.sgpr_alloc_granule = 96; /* workaround hardware bug */
118    } else {
119       program->dev.physical_sgprs = 512;
120       program->dev.sgpr_alloc_granule = 8;
121       program->dev.sgpr_limit = 104;
122    }
123 
124    program->dev.max_wave64_per_simd = 10;
125    if (program->chip_class >= GFX10_3)
126       program->dev.max_wave64_per_simd = 16;
127    else if (program->chip_class == GFX10)
128       program->dev.max_wave64_per_simd = 20;
129    else if (program->family >= CHIP_POLARIS10 && program->family <= CHIP_VEGAM)
130       program->dev.max_wave64_per_simd = 8;
131 
132    program->dev.simd_per_cu = program->chip_class >= GFX10 ? 2 : 4;
133 
134    switch (program->family) {
135    /* GFX8 APUs */
136    case CHIP_CARRIZO:
137    case CHIP_STONEY:
138    /* GFX9 APUS */
139    case CHIP_RAVEN:
140    case CHIP_RAVEN2:
141    case CHIP_RENOIR: program->dev.xnack_enabled = true; break;
142    default: break;
143    }
144 
145    program->dev.sram_ecc_enabled = program->family == CHIP_ARCTURUS;
146    /* apparently gfx702 also has fast v_fma_f32 but I can't find a family for that */
147    program->dev.has_fast_fma32 = program->chip_class >= GFX9;
148    if (program->family == CHIP_TAHITI || program->family == CHIP_CARRIZO ||
149        program->family == CHIP_HAWAII)
150       program->dev.has_fast_fma32 = true;
151 
152    program->wgp_mode = wgp_mode;
153 
154    program->progress = CompilationProgress::after_isel;
155 
156    program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
157    program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
158    program->next_fp_mode.must_flush_denorms32 = false;
159    program->next_fp_mode.must_flush_denorms16_64 = false;
160    program->next_fp_mode.care_about_round32 = false;
161    program->next_fp_mode.care_about_round16_64 = false;
162    program->next_fp_mode.denorm16_64 = fp_denorm_keep;
163    program->next_fp_mode.denorm32 = 0;
164    program->next_fp_mode.round16_64 = fp_round_ne;
165    program->next_fp_mode.round32 = fp_round_ne;
166 }
167 
168 memory_sync_info
get_sync_info(const Instruction * instr)169 get_sync_info(const Instruction* instr)
170 {
171    switch (instr->format) {
172    case Format::SMEM: return instr->smem().sync;
173    case Format::MUBUF: return instr->mubuf().sync;
174    case Format::MIMG: return instr->mimg().sync;
175    case Format::MTBUF: return instr->mtbuf().sync;
176    case Format::FLAT:
177    case Format::GLOBAL:
178    case Format::SCRATCH: return instr->flatlike().sync;
179    case Format::DS: return instr->ds().sync;
180    default: return memory_sync_info();
181    }
182 }
183 
184 bool
can_use_SDWA(chip_class chip,const aco_ptr<Instruction> & instr,bool pre_ra)185 can_use_SDWA(chip_class chip, const aco_ptr<Instruction>& instr, bool pre_ra)
186 {
187    if (!instr->isVALU())
188       return false;
189 
190    if (chip < GFX8 || instr->isDPP() || instr->isVOP3P())
191       return false;
192 
193    if (instr->isSDWA())
194       return true;
195 
196    if (instr->isVOP3()) {
197       VOP3_instruction& vop3 = instr->vop3();
198       if (instr->format == Format::VOP3)
199          return false;
200       if (vop3.clamp && instr->isVOPC() && chip != GFX8)
201          return false;
202       if (vop3.omod && chip < GFX9)
203          return false;
204 
205       // TODO: return true if we know we will use vcc
206       if (!pre_ra && instr->definitions.size() >= 2)
207          return false;
208 
209       for (unsigned i = 1; i < instr->operands.size(); i++) {
210          if (instr->operands[i].isLiteral())
211             return false;
212          if (chip < GFX9 && !instr->operands[i].isOfType(RegType::vgpr))
213             return false;
214       }
215    }
216 
217    if (!instr->definitions.empty() && instr->definitions[0].bytes() > 4 && !instr->isVOPC())
218       return false;
219 
220    if (!instr->operands.empty()) {
221       if (instr->operands[0].isLiteral())
222          return false;
223       if (chip < GFX9 && !instr->operands[0].isOfType(RegType::vgpr))
224          return false;
225       if (instr->operands[0].bytes() > 4)
226          return false;
227       if (instr->operands.size() > 1 && instr->operands[1].bytes() > 4)
228          return false;
229    }
230 
231    bool is_mac = instr->opcode == aco_opcode::v_mac_f32 || instr->opcode == aco_opcode::v_mac_f16 ||
232                  instr->opcode == aco_opcode::v_fmac_f32 || instr->opcode == aco_opcode::v_fmac_f16;
233 
234    if (chip != GFX8 && is_mac)
235       return false;
236 
237    // TODO: return true if we know we will use vcc
238    if (!pre_ra && instr->isVOPC() && chip == GFX8)
239       return false;
240    if (!pre_ra && instr->operands.size() >= 3 && !is_mac)
241       return false;
242 
243    return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 &&
244           instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 &&
245           instr->opcode != aco_opcode::v_readfirstlane_b32 &&
246           instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32;
247 }
248 
249 /* updates "instr" and returns the old instruction (or NULL if no update was needed) */
250 aco_ptr<Instruction>
convert_to_SDWA(chip_class chip,aco_ptr<Instruction> & instr)251 convert_to_SDWA(chip_class chip, aco_ptr<Instruction>& instr)
252 {
253    if (instr->isSDWA())
254       return NULL;
255 
256    aco_ptr<Instruction> tmp = std::move(instr);
257    Format format =
258       (Format)(((uint16_t)tmp->format & ~(uint16_t)Format::VOP3) | (uint16_t)Format::SDWA);
259    instr.reset(create_instruction<SDWA_instruction>(tmp->opcode, format, tmp->operands.size(),
260                                                     tmp->definitions.size()));
261    std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
262    std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), instr->definitions.begin());
263 
264    SDWA_instruction& sdwa = instr->sdwa();
265 
266    if (tmp->isVOP3()) {
267       VOP3_instruction& vop3 = tmp->vop3();
268       memcpy(sdwa.neg, vop3.neg, sizeof(sdwa.neg));
269       memcpy(sdwa.abs, vop3.abs, sizeof(sdwa.abs));
270       sdwa.omod = vop3.omod;
271       sdwa.clamp = vop3.clamp;
272    }
273 
274    for (unsigned i = 0; i < instr->operands.size(); i++) {
275       /* SDWA only uses operands 0 and 1. */
276       if (i >= 2)
277          break;
278 
279       sdwa.sel[i] = SubdwordSel(instr->operands[i].bytes(), 0, false);
280    }
281 
282    sdwa.dst_sel = SubdwordSel(instr->definitions[0].bytes(), 0, false);
283 
284    if (instr->definitions[0].getTemp().type() == RegType::sgpr && chip == GFX8)
285       instr->definitions[0].setFixed(vcc);
286    if (instr->definitions.size() >= 2)
287       instr->definitions[1].setFixed(vcc);
288    if (instr->operands.size() >= 3)
289       instr->operands[2].setFixed(vcc);
290 
291    return tmp;
292 }
293 
294 bool
can_use_DPP(const aco_ptr<Instruction> & instr,bool pre_ra)295 can_use_DPP(const aco_ptr<Instruction>& instr, bool pre_ra)
296 {
297    assert(instr->isVALU() && !instr->operands.empty());
298 
299    if (instr->isDPP())
300       return true;
301 
302    if (instr->operands.size() && instr->operands[0].isLiteral())
303       return false;
304 
305    if (instr->isSDWA())
306       return false;
307 
308    if (!pre_ra && (instr->isVOPC() || instr->definitions.size() > 1) &&
309        instr->definitions.back().physReg() != vcc)
310       return false;
311 
312    if (!pre_ra && instr->operands.size() >= 3 && instr->operands[2].physReg() != vcc)
313       return false;
314 
315    if (instr->isVOP3()) {
316       const VOP3_instruction* vop3 = &instr->vop3();
317       if (vop3->clamp || vop3->omod || vop3->opsel)
318          return false;
319       if (instr->format == Format::VOP3)
320          return false;
321       if (instr->operands.size() > 1 && !instr->operands[1].isOfType(RegType::vgpr))
322          return false;
323    }
324 
325    /* there are more cases but those all take 64-bit inputs */
326    return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 &&
327           instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 &&
328           instr->opcode != aco_opcode::v_readfirstlane_b32 &&
329           instr->opcode != aco_opcode::v_cvt_f64_i32 &&
330           instr->opcode != aco_opcode::v_cvt_f64_f32 && instr->opcode != aco_opcode::v_cvt_f64_u32;
331 }
332 
333 aco_ptr<Instruction>
convert_to_DPP(aco_ptr<Instruction> & instr)334 convert_to_DPP(aco_ptr<Instruction>& instr)
335 {
336    if (instr->isDPP())
337       return NULL;
338 
339    aco_ptr<Instruction> tmp = std::move(instr);
340    Format format =
341       (Format)(((uint32_t)tmp->format & ~(uint32_t)Format::VOP3) | (uint32_t)Format::DPP);
342    instr.reset(create_instruction<DPP_instruction>(tmp->opcode, format, tmp->operands.size(),
343                                                    tmp->definitions.size()));
344    std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
345    for (unsigned i = 0; i < instr->definitions.size(); i++)
346       instr->definitions[i] = tmp->definitions[i];
347 
348    DPP_instruction* dpp = &instr->dpp();
349    dpp->dpp_ctrl = dpp_quad_perm(0, 1, 2, 3);
350    dpp->row_mask = 0xf;
351    dpp->bank_mask = 0xf;
352 
353    if (tmp->isVOP3()) {
354       const VOP3_instruction* vop3 = &tmp->vop3();
355       memcpy(dpp->neg, vop3->neg, sizeof(dpp->neg));
356       memcpy(dpp->abs, vop3->abs, sizeof(dpp->abs));
357    }
358 
359    if (instr->isVOPC() || instr->definitions.size() > 1)
360       instr->definitions.back().setFixed(vcc);
361 
362    if (instr->operands.size() >= 3)
363       instr->operands[2].setFixed(vcc);
364 
365    return tmp;
366 }
367 
368 bool
can_use_opsel(chip_class chip,aco_opcode op,int idx,bool high)369 can_use_opsel(chip_class chip, aco_opcode op, int idx, bool high)
370 {
371    /* opsel is only GFX9+ */
372    if ((high || idx == -1) && chip < GFX9)
373       return false;
374 
375    switch (op) {
376    case aco_opcode::v_div_fixup_f16:
377    case aco_opcode::v_fma_f16:
378    case aco_opcode::v_mad_f16:
379    case aco_opcode::v_mad_u16:
380    case aco_opcode::v_mad_i16:
381    case aco_opcode::v_med3_f16:
382    case aco_opcode::v_med3_i16:
383    case aco_opcode::v_med3_u16:
384    case aco_opcode::v_min3_f16:
385    case aco_opcode::v_min3_i16:
386    case aco_opcode::v_min3_u16:
387    case aco_opcode::v_max3_f16:
388    case aco_opcode::v_max3_i16:
389    case aco_opcode::v_max3_u16:
390    case aco_opcode::v_max_u16_e64:
391    case aco_opcode::v_max_i16_e64:
392    case aco_opcode::v_min_u16_e64:
393    case aco_opcode::v_min_i16_e64:
394    case aco_opcode::v_add_i16:
395    case aco_opcode::v_sub_i16:
396    case aco_opcode::v_add_u16_e64:
397    case aco_opcode::v_sub_u16_e64:
398    case aco_opcode::v_lshlrev_b16_e64:
399    case aco_opcode::v_lshrrev_b16_e64:
400    case aco_opcode::v_ashrrev_i16_e64:
401    case aco_opcode::v_mul_lo_u16_e64: return true;
402    case aco_opcode::v_pack_b32_f16:
403    case aco_opcode::v_cvt_pknorm_i16_f16:
404    case aco_opcode::v_cvt_pknorm_u16_f16: return idx != -1;
405    case aco_opcode::v_mad_u32_u16:
406    case aco_opcode::v_mad_i32_i16: return idx >= 0 && idx < 2;
407    default: return false;
408    }
409 }
410 
411 bool
instr_is_16bit(chip_class chip,aco_opcode op)412 instr_is_16bit(chip_class chip, aco_opcode op)
413 {
414    /* partial register writes are GFX9+, only */
415    if (chip < GFX9)
416       return false;
417 
418    switch (op) {
419    /* VOP3 */
420    case aco_opcode::v_mad_f16:
421    case aco_opcode::v_mad_u16:
422    case aco_opcode::v_mad_i16:
423    case aco_opcode::v_fma_f16:
424    case aco_opcode::v_div_fixup_f16:
425    case aco_opcode::v_interp_p2_f16:
426    case aco_opcode::v_fma_mixlo_f16:
427    /* VOP2 */
428    case aco_opcode::v_mac_f16:
429    case aco_opcode::v_madak_f16:
430    case aco_opcode::v_madmk_f16: return chip >= GFX9;
431    case aco_opcode::v_add_f16:
432    case aco_opcode::v_sub_f16:
433    case aco_opcode::v_subrev_f16:
434    case aco_opcode::v_mul_f16:
435    case aco_opcode::v_max_f16:
436    case aco_opcode::v_min_f16:
437    case aco_opcode::v_ldexp_f16:
438    case aco_opcode::v_fmac_f16:
439    case aco_opcode::v_fmamk_f16:
440    case aco_opcode::v_fmaak_f16:
441    /* VOP1 */
442    case aco_opcode::v_cvt_f16_f32:
443    case aco_opcode::v_cvt_f16_u16:
444    case aco_opcode::v_cvt_f16_i16:
445    case aco_opcode::v_rcp_f16:
446    case aco_opcode::v_sqrt_f16:
447    case aco_opcode::v_rsq_f16:
448    case aco_opcode::v_log_f16:
449    case aco_opcode::v_exp_f16:
450    case aco_opcode::v_frexp_mant_f16:
451    case aco_opcode::v_frexp_exp_i16_f16:
452    case aco_opcode::v_floor_f16:
453    case aco_opcode::v_ceil_f16:
454    case aco_opcode::v_trunc_f16:
455    case aco_opcode::v_rndne_f16:
456    case aco_opcode::v_fract_f16:
457    case aco_opcode::v_sin_f16:
458    case aco_opcode::v_cos_f16: return chip >= GFX10;
459    // TODO: confirm whether these write 16 or 32 bit on GFX10+
460    // case aco_opcode::v_cvt_u16_f16:
461    // case aco_opcode::v_cvt_i16_f16:
462    // case aco_opcode::p_cvt_f16_f32_rtne:
463    // case aco_opcode::v_cvt_norm_i16_f16:
464    // case aco_opcode::v_cvt_norm_u16_f16:
465    /* on GFX10, all opsel instructions preserve the high bits */
466    default: return chip >= GFX10 && can_use_opsel(chip, op, -1, false);
467    }
468 }
469 
470 uint32_t
get_reduction_identity(ReduceOp op,unsigned idx)471 get_reduction_identity(ReduceOp op, unsigned idx)
472 {
473    switch (op) {
474    case iadd8:
475    case iadd16:
476    case iadd32:
477    case iadd64:
478    case fadd16:
479    case fadd32:
480    case fadd64:
481    case ior8:
482    case ior16:
483    case ior32:
484    case ior64:
485    case ixor8:
486    case ixor16:
487    case ixor32:
488    case ixor64:
489    case umax8:
490    case umax16:
491    case umax32:
492    case umax64: return 0;
493    case imul8:
494    case imul16:
495    case imul32:
496    case imul64: return idx ? 0 : 1;
497    case fmul16: return 0x3c00u;                /* 1.0 */
498    case fmul32: return 0x3f800000u;            /* 1.0 */
499    case fmul64: return idx ? 0x3ff00000u : 0u; /* 1.0 */
500    case imin8: return INT8_MAX;
501    case imin16: return INT16_MAX;
502    case imin32: return INT32_MAX;
503    case imin64: return idx ? 0x7fffffffu : 0xffffffffu;
504    case imax8: return INT8_MIN;
505    case imax16: return INT16_MIN;
506    case imax32: return INT32_MIN;
507    case imax64: return idx ? 0x80000000u : 0;
508    case umin8:
509    case umin16:
510    case iand8:
511    case iand16: return 0xffffffffu;
512    case umin32:
513    case umin64:
514    case iand32:
515    case iand64: return 0xffffffffu;
516    case fmin16: return 0x7c00u;                /* infinity */
517    case fmin32: return 0x7f800000u;            /* infinity */
518    case fmin64: return idx ? 0x7ff00000u : 0u; /* infinity */
519    case fmax16: return 0xfc00u;                /* negative infinity */
520    case fmax32: return 0xff800000u;            /* negative infinity */
521    case fmax64: return idx ? 0xfff00000u : 0u; /* negative infinity */
522    default: unreachable("Invalid reduction operation"); break;
523    }
524    return 0;
525 }
526 
527 bool
needs_exec_mask(const Instruction * instr)528 needs_exec_mask(const Instruction* instr)
529 {
530    if (instr->isVALU()) {
531       return instr->opcode != aco_opcode::v_readlane_b32 &&
532              instr->opcode != aco_opcode::v_readlane_b32_e64 &&
533              instr->opcode != aco_opcode::v_writelane_b32 &&
534              instr->opcode != aco_opcode::v_writelane_b32_e64;
535    }
536 
537    if (instr->isVMEM() || instr->isFlatLike())
538       return true;
539 
540    if (instr->isSALU() || instr->isBranch() || instr->isSMEM() || instr->isBarrier())
541       return instr->reads_exec();
542 
543    if (instr->isPseudo()) {
544       switch (instr->opcode) {
545       case aco_opcode::p_create_vector:
546       case aco_opcode::p_extract_vector:
547       case aco_opcode::p_split_vector:
548       case aco_opcode::p_phi:
549       case aco_opcode::p_parallelcopy:
550          for (Definition def : instr->definitions) {
551             if (def.getTemp().type() == RegType::vgpr)
552                return true;
553          }
554          return instr->reads_exec();
555       case aco_opcode::p_spill:
556       case aco_opcode::p_reload:
557       case aco_opcode::p_logical_start:
558       case aco_opcode::p_logical_end:
559       case aco_opcode::p_startpgm: return instr->reads_exec();
560       default: break;
561       }
562    }
563 
564    return true;
565 }
566 
567 struct CmpInfo {
568    aco_opcode ordered;
569    aco_opcode unordered;
570    aco_opcode ordered_swapped;
571    aco_opcode unordered_swapped;
572    aco_opcode inverse;
573    aco_opcode f32;
574    unsigned size;
575 };
576 
577 ALWAYS_INLINE bool
get_cmp_info(aco_opcode op,CmpInfo * info)578 get_cmp_info(aco_opcode op, CmpInfo* info)
579 {
580    info->ordered = aco_opcode::num_opcodes;
581    info->unordered = aco_opcode::num_opcodes;
582    info->ordered_swapped = aco_opcode::num_opcodes;
583    info->unordered_swapped = aco_opcode::num_opcodes;
584    switch (op) {
585       // clang-format off
586 #define CMP2(ord, unord, ord_swap, unord_swap, sz)                                                 \
587    case aco_opcode::v_cmp_##ord##_f##sz:                                                           \
588    case aco_opcode::v_cmp_n##unord##_f##sz:                                                        \
589       info->ordered = aco_opcode::v_cmp_##ord##_f##sz;                                             \
590       info->unordered = aco_opcode::v_cmp_n##unord##_f##sz;                                        \
591       info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz;                                \
592       info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz;                           \
593       info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz \
594                                                                : aco_opcode::v_cmp_n##ord##_f##sz; \
595       info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32            \
596                                                         : aco_opcode::v_cmp_n##unord##_f32;        \
597       info->size = sz;                                                                             \
598       return true;
599 #define CMP(ord, unord, ord_swap, unord_swap)                                                      \
600    CMP2(ord, unord, ord_swap, unord_swap, 16)                                                      \
601    CMP2(ord, unord, ord_swap, unord_swap, 32)                                                      \
602    CMP2(ord, unord, ord_swap, unord_swap, 64)
603       CMP(lt, /*n*/ge, gt, /*n*/le)
604       CMP(eq, /*n*/lg, eq, /*n*/lg)
605       CMP(le, /*n*/gt, ge, /*n*/lt)
606       CMP(gt, /*n*/le, lt, /*n*/le)
607       CMP(lg, /*n*/eq, lg, /*n*/eq)
608       CMP(ge, /*n*/lt, le, /*n*/gt)
609 #undef CMP
610 #undef CMP2
611 #define ORD_TEST(sz)                                                                               \
612    case aco_opcode::v_cmp_u_f##sz:                                                                 \
613       info->f32 = aco_opcode::v_cmp_u_f32;                                                         \
614       info->inverse = aco_opcode::v_cmp_o_f##sz;                                                   \
615       info->size = sz;                                                                             \
616       return true;                                                                                 \
617    case aco_opcode::v_cmp_o_f##sz:                                                                 \
618       info->f32 = aco_opcode::v_cmp_o_f32;                                                         \
619       info->inverse = aco_opcode::v_cmp_u_f##sz;                                                   \
620       info->size = sz;                                                                             \
621       return true;
622       ORD_TEST(16)
623       ORD_TEST(32)
624       ORD_TEST(64)
625 #undef ORD_TEST
626       // clang-format on
627    default: return false;
628    }
629 }
630 
631 aco_opcode
get_ordered(aco_opcode op)632 get_ordered(aco_opcode op)
633 {
634    CmpInfo info;
635    return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes;
636 }
637 
638 aco_opcode
get_unordered(aco_opcode op)639 get_unordered(aco_opcode op)
640 {
641    CmpInfo info;
642    return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes;
643 }
644 
645 aco_opcode
get_inverse(aco_opcode op)646 get_inverse(aco_opcode op)
647 {
648    CmpInfo info;
649    return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes;
650 }
651 
652 aco_opcode
get_f32_cmp(aco_opcode op)653 get_f32_cmp(aco_opcode op)
654 {
655    CmpInfo info;
656    return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes;
657 }
658 
659 unsigned
get_cmp_bitsize(aco_opcode op)660 get_cmp_bitsize(aco_opcode op)
661 {
662    CmpInfo info;
663    return get_cmp_info(op, &info) ? info.size : 0;
664 }
665 
666 bool
is_cmp(aco_opcode op)667 is_cmp(aco_opcode op)
668 {
669    CmpInfo info;
670    return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes;
671 }
672 
673 bool
can_swap_operands(aco_ptr<Instruction> & instr,aco_opcode * new_op)674 can_swap_operands(aco_ptr<Instruction>& instr, aco_opcode* new_op)
675 {
676    if (instr->isDPP())
677       return false;
678 
679    if (instr->operands[0].isConstant() ||
680        (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
681       return false;
682 
683    switch (instr->opcode) {
684    case aco_opcode::v_add_u32:
685    case aco_opcode::v_add_co_u32:
686    case aco_opcode::v_add_co_u32_e64:
687    case aco_opcode::v_add_i32:
688    case aco_opcode::v_add_f16:
689    case aco_opcode::v_add_f32:
690    case aco_opcode::v_mul_f16:
691    case aco_opcode::v_mul_f32:
692    case aco_opcode::v_or_b32:
693    case aco_opcode::v_and_b32:
694    case aco_opcode::v_xor_b32:
695    case aco_opcode::v_max_f16:
696    case aco_opcode::v_max_f32:
697    case aco_opcode::v_min_f16:
698    case aco_opcode::v_min_f32:
699    case aco_opcode::v_max_i32:
700    case aco_opcode::v_min_i32:
701    case aco_opcode::v_max_u32:
702    case aco_opcode::v_min_u32:
703    case aco_opcode::v_max_i16:
704    case aco_opcode::v_min_i16:
705    case aco_opcode::v_max_u16:
706    case aco_opcode::v_min_u16:
707    case aco_opcode::v_max_i16_e64:
708    case aco_opcode::v_min_i16_e64:
709    case aco_opcode::v_max_u16_e64:
710    case aco_opcode::v_min_u16_e64: *new_op = instr->opcode; return true;
711    case aco_opcode::v_sub_f16: *new_op = aco_opcode::v_subrev_f16; return true;
712    case aco_opcode::v_sub_f32: *new_op = aco_opcode::v_subrev_f32; return true;
713    case aco_opcode::v_sub_co_u32: *new_op = aco_opcode::v_subrev_co_u32; return true;
714    case aco_opcode::v_sub_u16: *new_op = aco_opcode::v_subrev_u16; return true;
715    case aco_opcode::v_sub_u32: *new_op = aco_opcode::v_subrev_u32; return true;
716    default: {
717       CmpInfo info;
718       get_cmp_info(instr->opcode, &info);
719       if (info.ordered == instr->opcode) {
720          *new_op = info.ordered_swapped;
721          return true;
722       }
723       if (info.unordered == instr->opcode) {
724          *new_op = info.unordered_swapped;
725          return true;
726       }
727       return false;
728    }
729    }
730 }
731 
wait_imm()732 wait_imm::wait_imm() : vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter)
733 {}
wait_imm(uint16_t vm_,uint16_t exp_,uint16_t lgkm_,uint16_t vs_)734 wait_imm::wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_)
735     : vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_)
736 {}
737 
wait_imm(enum chip_class chip,uint16_t packed)738 wait_imm::wait_imm(enum chip_class chip, uint16_t packed) : vs(unset_counter)
739 {
740    vm = packed & 0xf;
741    if (chip >= GFX9)
742       vm |= (packed >> 10) & 0x30;
743 
744    exp = (packed >> 4) & 0x7;
745 
746    lgkm = (packed >> 8) & 0xf;
747    if (chip >= GFX10)
748       lgkm |= (packed >> 8) & 0x30;
749 }
750 
751 uint16_t
pack(enum chip_class chip) const752 wait_imm::pack(enum chip_class chip) const
753 {
754    uint16_t imm = 0;
755    assert(exp == unset_counter || exp <= 0x7);
756    switch (chip) {
757    case GFX10:
758    case GFX10_3:
759       assert(lgkm == unset_counter || lgkm <= 0x3f);
760       assert(vm == unset_counter || vm <= 0x3f);
761       imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
762       break;
763    case GFX9:
764       assert(lgkm == unset_counter || lgkm <= 0xf);
765       assert(vm == unset_counter || vm <= 0x3f);
766       imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
767       break;
768    default:
769       assert(lgkm == unset_counter || lgkm <= 0xf);
770       assert(vm == unset_counter || vm <= 0xf);
771       imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
772       break;
773    }
774    if (chip < GFX9 && vm == wait_imm::unset_counter)
775       imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the
776                         architecture when interpreting the immediate */
777    if (chip < GFX10 && lgkm == wait_imm::unset_counter)
778       imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the
779                         architecture when interpreting the immediate */
780    return imm;
781 }
782 
783 bool
combine(const wait_imm & other)784 wait_imm::combine(const wait_imm& other)
785 {
786    bool changed = other.vm < vm || other.exp < exp || other.lgkm < lgkm || other.vs < vs;
787    vm = std::min(vm, other.vm);
788    exp = std::min(exp, other.exp);
789    lgkm = std::min(lgkm, other.lgkm);
790    vs = std::min(vs, other.vs);
791    return changed;
792 }
793 
794 bool
empty() const795 wait_imm::empty() const
796 {
797    return vm == unset_counter && exp == unset_counter && lgkm == unset_counter &&
798           vs == unset_counter;
799 }
800 
801 bool
should_form_clause(const Instruction * a,const Instruction * b)802 should_form_clause(const Instruction* a, const Instruction* b)
803 {
804    /* Vertex attribute loads from the same binding likely load from similar addresses */
805    unsigned a_vtx_binding =
806       a->isMUBUF() ? a->mubuf().vtx_binding : (a->isMTBUF() ? a->mtbuf().vtx_binding : 0);
807    unsigned b_vtx_binding =
808       b->isMUBUF() ? b->mubuf().vtx_binding : (b->isMTBUF() ? b->mtbuf().vtx_binding : 0);
809    if (a_vtx_binding && a_vtx_binding == b_vtx_binding)
810       return true;
811 
812    if (a->format != b->format)
813       return false;
814 
815    /* Assume loads which don't use descriptors might load from similar addresses. */
816    if (a->isFlatLike())
817       return true;
818    if (a->isSMEM() && a->operands[0].bytes() == 8 && b->operands[0].bytes() == 8)
819       return true;
820 
821    /* If they load from the same descriptor, assume they might load from similar
822     * addresses.
823     */
824    if (a->isVMEM() || a->isSMEM())
825       return a->operands[0].tempId() == b->operands[0].tempId();
826 
827    return false;
828 }
829 
830 } // namespace aco
831