1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_eu.h"
29 
30 using namespace brw;
31 using namespace brw::surface_access;
32 
33 namespace brw {
34 
35 void
emit_nir_code()36 vec4_visitor::emit_nir_code()
37 {
38    if (nir->num_uniforms > 0)
39       nir_setup_uniforms();
40 
41    nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
42 }
43 
44 void
nir_setup_uniforms()45 vec4_visitor::nir_setup_uniforms()
46 {
47    uniforms = nir->num_uniforms / 16;
48 }
49 
50 void
nir_emit_impl(nir_function_impl * impl)51 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
52 {
53    nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
54    for (unsigned i = 0; i < impl->reg_alloc; i++) {
55       nir_locals[i] = dst_reg();
56    }
57 
58    foreach_list_typed(nir_register, reg, node, &impl->registers) {
59       unsigned array_elems =
60          reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
61       const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
62       nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
63 
64       if (reg->bit_size == 64)
65          nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
66    }
67 
68    nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
69 
70    nir_emit_cf_list(&impl->body);
71 }
72 
73 void
nir_emit_cf_list(exec_list * list)74 vec4_visitor::nir_emit_cf_list(exec_list *list)
75 {
76    exec_list_validate(list);
77    foreach_list_typed(nir_cf_node, node, node, list) {
78       switch (node->type) {
79       case nir_cf_node_if:
80          nir_emit_if(nir_cf_node_as_if(node));
81          break;
82 
83       case nir_cf_node_loop:
84          nir_emit_loop(nir_cf_node_as_loop(node));
85          break;
86 
87       case nir_cf_node_block:
88          nir_emit_block(nir_cf_node_as_block(node));
89          break;
90 
91       default:
92          unreachable("Invalid CFG node block");
93       }
94    }
95 }
96 
97 void
nir_emit_if(nir_if * if_stmt)98 vec4_visitor::nir_emit_if(nir_if *if_stmt)
99 {
100    /* First, put the condition in f0 */
101    src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
102    vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
103    inst->conditional_mod = BRW_CONDITIONAL_NZ;
104 
105    /* We can just predicate based on the X channel, as the condition only
106     * goes on its own line */
107    emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
108 
109    nir_emit_cf_list(&if_stmt->then_list);
110 
111    /* note: if the else is empty, dead CF elimination will remove it */
112    emit(BRW_OPCODE_ELSE);
113 
114    nir_emit_cf_list(&if_stmt->else_list);
115 
116    emit(BRW_OPCODE_ENDIF);
117 }
118 
119 void
nir_emit_loop(nir_loop * loop)120 vec4_visitor::nir_emit_loop(nir_loop *loop)
121 {
122    emit(BRW_OPCODE_DO);
123 
124    nir_emit_cf_list(&loop->body);
125 
126    emit(BRW_OPCODE_WHILE);
127 }
128 
129 void
nir_emit_block(nir_block * block)130 vec4_visitor::nir_emit_block(nir_block *block)
131 {
132    nir_foreach_instr(instr, block) {
133       nir_emit_instr(instr);
134    }
135 }
136 
137 void
nir_emit_instr(nir_instr * instr)138 vec4_visitor::nir_emit_instr(nir_instr *instr)
139 {
140    base_ir = instr;
141 
142    switch (instr->type) {
143    case nir_instr_type_load_const:
144       nir_emit_load_const(nir_instr_as_load_const(instr));
145       break;
146 
147    case nir_instr_type_intrinsic:
148       nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
149       break;
150 
151    case nir_instr_type_alu:
152       nir_emit_alu(nir_instr_as_alu(instr));
153       break;
154 
155    case nir_instr_type_jump:
156       nir_emit_jump(nir_instr_as_jump(instr));
157       break;
158 
159    case nir_instr_type_tex:
160       nir_emit_texture(nir_instr_as_tex(instr));
161       break;
162 
163    case nir_instr_type_ssa_undef:
164       nir_emit_undef(nir_instr_as_ssa_undef(instr));
165       break;
166 
167    default:
168       unreachable("VS instruction not yet implemented by NIR->vec4");
169    }
170 }
171 
172 static dst_reg
dst_reg_for_nir_reg(vec4_visitor * v,nir_register * nir_reg,unsigned base_offset,nir_src * indirect)173 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
174                     unsigned base_offset, nir_src *indirect)
175 {
176    dst_reg reg;
177 
178    reg = v->nir_locals[nir_reg->index];
179    if (nir_reg->bit_size == 64)
180       reg.type = BRW_REGISTER_TYPE_DF;
181    reg = offset(reg, 8, base_offset);
182    if (indirect) {
183       reg.reladdr =
184          new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
185                                                 BRW_REGISTER_TYPE_D,
186                                                 1));
187    }
188    return reg;
189 }
190 
191 dst_reg
get_nir_dest(const nir_dest & dest)192 vec4_visitor::get_nir_dest(const nir_dest &dest)
193 {
194    if (dest.is_ssa) {
195       dst_reg dst =
196          dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
197       if (dest.ssa.bit_size == 64)
198          dst.type = BRW_REGISTER_TYPE_DF;
199       nir_ssa_values[dest.ssa.index] = dst;
200       return dst;
201    } else {
202       return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
203                                  dest.reg.indirect);
204    }
205 }
206 
207 dst_reg
get_nir_dest(const nir_dest & dest,enum brw_reg_type type)208 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
209 {
210    return retype(get_nir_dest(dest), type);
211 }
212 
213 dst_reg
get_nir_dest(const nir_dest & dest,nir_alu_type type)214 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
215 {
216    return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
217 }
218 
219 src_reg
get_nir_src(const nir_src & src,enum brw_reg_type type,unsigned num_components)220 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
221                           unsigned num_components)
222 {
223    dst_reg reg;
224 
225    if (src.is_ssa) {
226       assert(src.ssa != NULL);
227       reg = nir_ssa_values[src.ssa->index];
228    }
229    else {
230       reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
231                                 src.reg.indirect);
232    }
233 
234    reg = retype(reg, type);
235 
236    src_reg reg_as_src = src_reg(reg);
237    reg_as_src.swizzle = brw_swizzle_for_size(num_components);
238    return reg_as_src;
239 }
240 
241 src_reg
get_nir_src(const nir_src & src,nir_alu_type type,unsigned num_components)242 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
243                           unsigned num_components)
244 {
245    return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
246                       num_components);
247 }
248 
249 src_reg
get_nir_src(const nir_src & src,unsigned num_components)250 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
251 {
252    /* if type is not specified, default to signed int */
253    return get_nir_src(src, nir_type_int32, num_components);
254 }
255 
256 src_reg
get_nir_src_imm(const nir_src & src)257 vec4_visitor::get_nir_src_imm(const nir_src &src)
258 {
259    assert(nir_src_num_components(src) == 1);
260    assert(nir_src_bit_size(src) == 32);
261    return nir_src_is_const(src) ? src_reg(brw_imm_d(nir_src_as_int(src))) :
262                                   get_nir_src(src, 1);
263 }
264 
265 src_reg
get_indirect_offset(nir_intrinsic_instr * instr)266 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
267 {
268    nir_src *offset_src = nir_get_io_offset_src(instr);
269 
270    if (nir_src_is_const(*offset_src)) {
271       /* The only constant offset we should find is 0.  brw_nir.c's
272        * add_const_offset_to_base() will fold other constant offsets
273        * into instr->const_index[0].
274        */
275       assert(nir_src_as_uint(*offset_src) == 0);
276       return src_reg();
277    }
278 
279    return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
280 }
281 
282 static src_reg
setup_imm_df(const vec4_builder & bld,double v)283 setup_imm_df(const vec4_builder &bld, double v)
284 {
285    const intel_device_info *devinfo = bld.shader->devinfo;
286    assert(devinfo->ver == 7);
287 
288    /* gfx7.5 does not support DF immediates straighforward but the DIM
289     * instruction allows to set the 64-bit immediate value.
290     */
291    if (devinfo->is_haswell) {
292       const vec4_builder ubld = bld.exec_all();
293       const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
294       ubld.DIM(dst, brw_imm_df(v));
295       return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
296    }
297 
298    /* gfx7 does not support DF immediates */
299    union {
300       double d;
301       struct {
302          uint32_t i1;
303          uint32_t i2;
304       };
305    } di;
306 
307    di.d = v;
308 
309    /* Write the low 32-bit of the constant to the X:UD channel and the
310     * high 32-bit to the Y:UD channel to build the constant in a VGRF.
311     * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
312     * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
313     * XXXX so any access to the VGRF only reads the constant data in these
314     * channels.
315     */
316    const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
317    for (unsigned n = 0; n < 2; n++) {
318       const vec4_builder ubld = bld.exec_all().group(4, n);
319       ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
320       ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
321    }
322 
323    return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
324 }
325 
326 void
nir_emit_load_const(nir_load_const_instr * instr)327 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
328 {
329    dst_reg reg;
330 
331    if (instr->def.bit_size == 64) {
332       reg = dst_reg(VGRF, alloc.allocate(2));
333       reg.type = BRW_REGISTER_TYPE_DF;
334    } else {
335       reg = dst_reg(VGRF, alloc.allocate(1));
336       reg.type = BRW_REGISTER_TYPE_D;
337    }
338 
339    const vec4_builder ibld = vec4_builder(this).at_end();
340    unsigned remaining = brw_writemask_for_size(instr->def.num_components);
341 
342    /* @FIXME: consider emitting vector operations to save some MOVs in
343     * cases where the components are representable in 8 bits.
344     * For now, we emit a MOV for each distinct value.
345     */
346    for (unsigned i = 0; i < instr->def.num_components; i++) {
347       unsigned writemask = 1 << i;
348 
349       if ((remaining & writemask) == 0)
350          continue;
351 
352       for (unsigned j = i; j < instr->def.num_components; j++) {
353          if ((instr->def.bit_size == 32 &&
354               instr->value[i].u32 == instr->value[j].u32) ||
355              (instr->def.bit_size == 64 &&
356               instr->value[i].f64 == instr->value[j].f64)) {
357             writemask |= 1 << j;
358          }
359       }
360 
361       reg.writemask = writemask;
362       if (instr->def.bit_size == 64) {
363          emit(MOV(reg, setup_imm_df(ibld, instr->value[i].f64)));
364       } else {
365          emit(MOV(reg, brw_imm_d(instr->value[i].i32)));
366       }
367 
368       remaining &= ~writemask;
369    }
370 
371    /* Set final writemask */
372    reg.writemask = brw_writemask_for_size(instr->def.num_components);
373 
374    nir_ssa_values[instr->def.index] = reg;
375 }
376 
377 src_reg
get_nir_ssbo_intrinsic_index(nir_intrinsic_instr * instr)378 vec4_visitor::get_nir_ssbo_intrinsic_index(nir_intrinsic_instr *instr)
379 {
380    /* SSBO stores are weird in that their index is in src[1] */
381    const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
382 
383    src_reg surf_index;
384    if (nir_src_is_const(instr->src[src])) {
385       unsigned index = prog_data->base.binding_table.ssbo_start +
386                        nir_src_as_uint(instr->src[src]);
387       surf_index = brw_imm_ud(index);
388    } else {
389       surf_index = src_reg(this, glsl_type::uint_type);
390       emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[src], 1),
391                brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
392       surf_index = emit_uniformize(surf_index);
393    }
394 
395    return surf_index;
396 }
397 
398 void
nir_emit_intrinsic(nir_intrinsic_instr * instr)399 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
400 {
401    dst_reg dest;
402    src_reg src;
403 
404    switch (instr->intrinsic) {
405 
406    case nir_intrinsic_load_input: {
407       assert(nir_dest_bit_size(instr->dest) == 32);
408       /* We set EmitNoIndirectInput for VS */
409       unsigned load_offset = nir_src_as_uint(instr->src[0]);
410 
411       dest = get_nir_dest(instr->dest);
412       dest.writemask = brw_writemask_for_size(instr->num_components);
413 
414       src = src_reg(ATTR, instr->const_index[0] + load_offset,
415                     glsl_type::uvec4_type);
416       src = retype(src, dest.type);
417 
418       /* Swizzle source based on component layout qualifier */
419       src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
420       emit(MOV(dest, src));
421       break;
422    }
423 
424    case nir_intrinsic_store_output: {
425       assert(nir_src_bit_size(instr->src[0]) == 32);
426       unsigned store_offset = nir_src_as_uint(instr->src[1]);
427       int varying = instr->const_index[0] + store_offset;
428       src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
429                         instr->num_components);
430 
431       unsigned c = nir_intrinsic_component(instr);
432       output_reg[varying][c] = dst_reg(src);
433       output_num_components[varying][c] = instr->num_components;
434       break;
435    }
436 
437    case nir_intrinsic_get_ssbo_size: {
438       assert(nir_src_num_components(instr->src[0]) == 1);
439       unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
440                             nir_src_as_uint(instr->src[0]) : 0;
441 
442       const unsigned index =
443          prog_data->base.binding_table.ssbo_start + ssbo_index;
444       dst_reg result_dst = get_nir_dest(instr->dest);
445       vec4_instruction *inst = new(mem_ctx)
446          vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
447 
448       inst->base_mrf = 2;
449       inst->mlen = 1; /* always at least one */
450       inst->src[1] = brw_imm_ud(index);
451 
452       /* MRF for the first parameter */
453       src_reg lod = brw_imm_d(0);
454       int param_base = inst->base_mrf;
455       int writemask = WRITEMASK_X;
456       emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
457 
458       emit(inst);
459       break;
460    }
461 
462    case nir_intrinsic_store_ssbo: {
463       assert(devinfo->ver == 7);
464 
465       /* brw_nir_lower_mem_access_bit_sizes takes care of this */
466       assert(nir_src_bit_size(instr->src[0]) == 32);
467       assert(nir_intrinsic_write_mask(instr) ==
468              (1u << instr->num_components) - 1);
469 
470       src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
471       src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
472                                   BRW_REGISTER_TYPE_UD);
473 
474       /* Value */
475       src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
476 
477       /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
478        * writes will use SIMD8 mode. In order to hide this and keep symmetry across
479        * typed and untyped messages and across hardware platforms, the
480        * current implementation of the untyped messages will transparently convert
481        * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
482        * and enabling only channel X on the SEND instruction.
483        *
484        * The above, works well for full vector writes, but not for partial writes
485        * where we want to write some channels and not others, like when we have
486        * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
487        * quite restrictive with regards to the channel enables we can configure in
488        * the message descriptor (not all combinations are allowed) we cannot simply
489        * implement these scenarios with a single message while keeping the
490        * aforementioned symmetry in the implementation. For now we de decided that
491        * it is better to keep the symmetry to reduce complexity, so in situations
492        * such as the one described we end up emitting two untyped write messages
493        * (one for xy and another for w).
494        *
495        * The code below packs consecutive channels into a single write message,
496        * detects gaps in the vector write and if needed, sends a second message
497        * with the remaining channels. If in the future we decide that we want to
498        * emit a single message at the expense of losing the symmetry in the
499        * implementation we can:
500        *
501        * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
502        *    message payload. In this mode we can write up to 8 offsets and dwords
503        *    to the red channel only (for the two vec4s in the SIMD4x2 execution)
504        *    and select which of the 8 channels carry data to write by setting the
505        *    appropriate writemask in the dst register of the SEND instruction.
506        *    It would require to write a new generator opcode specifically for
507        *    IvyBridge since we would need to prepare a SIMD8 payload that could
508        *    use any channel, not just X.
509        *
510        * 2) For Haswell+: Simply send a single write message but set the writemask
511        *    on the dst of the SEND instruction to select the channels we want to
512        *    write. It would require to modify the current messages to receive
513        *    and honor the writemask provided.
514        */
515       const vec4_builder bld = vec4_builder(this).at_end()
516                                .annotate(current_annotation, base_ir);
517 
518       emit_untyped_write(bld, surf_index, offset_reg, val_reg,
519                          1 /* dims */, instr->num_components /* size */,
520                          BRW_PREDICATE_NONE);
521       break;
522    }
523 
524    case nir_intrinsic_load_ssbo: {
525       assert(devinfo->ver == 7);
526 
527       /* brw_nir_lower_mem_access_bit_sizes takes care of this */
528       assert(nir_dest_bit_size(instr->dest) == 32);
529 
530       src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
531       src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
532                                   BRW_REGISTER_TYPE_UD);
533 
534       /* Read the vector */
535       const vec4_builder bld = vec4_builder(this).at_end()
536          .annotate(current_annotation, base_ir);
537 
538       src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
539                                               1 /* dims */, 4 /* size*/,
540                                               BRW_PREDICATE_NONE);
541       dst_reg dest = get_nir_dest(instr->dest);
542       read_result.type = dest.type;
543       read_result.swizzle = brw_swizzle_for_size(instr->num_components);
544       emit(MOV(dest, read_result));
545       break;
546    }
547 
548    case nir_intrinsic_ssbo_atomic_add:
549    case nir_intrinsic_ssbo_atomic_imin:
550    case nir_intrinsic_ssbo_atomic_umin:
551    case nir_intrinsic_ssbo_atomic_imax:
552    case nir_intrinsic_ssbo_atomic_umax:
553    case nir_intrinsic_ssbo_atomic_and:
554    case nir_intrinsic_ssbo_atomic_or:
555    case nir_intrinsic_ssbo_atomic_xor:
556    case nir_intrinsic_ssbo_atomic_exchange:
557    case nir_intrinsic_ssbo_atomic_comp_swap:
558       nir_emit_ssbo_atomic(brw_aop_for_nir_intrinsic(instr), instr);
559       break;
560 
561    case nir_intrinsic_load_vertex_id:
562       unreachable("should be lowered by lower_vertex_id()");
563 
564    case nir_intrinsic_load_vertex_id_zero_base:
565    case nir_intrinsic_load_base_vertex:
566    case nir_intrinsic_load_instance_id:
567    case nir_intrinsic_load_base_instance:
568    case nir_intrinsic_load_draw_id:
569    case nir_intrinsic_load_invocation_id:
570       unreachable("should be lowered by brw_nir_lower_vs_inputs()");
571 
572    case nir_intrinsic_load_uniform: {
573       /* Offsets are in bytes but they should always be multiples of 4 */
574       assert(nir_intrinsic_base(instr) % 4 == 0);
575 
576       dest = get_nir_dest(instr->dest);
577 
578       src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
579       src.type = dest.type;
580 
581       /* Uniforms don't actually have to be vec4 aligned.  In the case that
582        * it isn't, we have to use a swizzle to shift things around.  They
583        * do still have the std140 alignment requirement that vec2's have to
584        * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
585        *
586        * The swizzle also works in the indirect case as the generator adds
587        * the swizzle to the offset for us.
588        */
589       const int type_size = type_sz(src.type);
590       unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
591       assert(shift + instr->num_components <= 4);
592 
593       if (nir_src_is_const(instr->src[0])) {
594          const unsigned load_offset = nir_src_as_uint(instr->src[0]);
595          /* Offsets are in bytes but they should always be multiples of 4 */
596          assert(load_offset % 4 == 0);
597 
598          src.swizzle = brw_swizzle_for_size(instr->num_components);
599          dest.writemask = brw_writemask_for_size(instr->num_components);
600          unsigned offset = load_offset + shift * type_size;
601          src.offset = ROUND_DOWN_TO(offset, 16);
602          shift = (offset % 16) / type_size;
603          assert(shift + instr->num_components <= 4);
604          src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
605 
606          emit(MOV(dest, src));
607       } else {
608          /* Uniform arrays are vec4 aligned, because of std140 alignment
609           * rules.
610           */
611          assert(shift == 0);
612 
613          src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
614 
615          /* MOV_INDIRECT is going to stomp the whole thing anyway */
616          dest.writemask = WRITEMASK_XYZW;
617 
618          emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
619               indirect, brw_imm_ud(instr->const_index[1]));
620       }
621       break;
622    }
623 
624    case nir_intrinsic_load_ubo: {
625       src_reg surf_index;
626 
627       dest = get_nir_dest(instr->dest);
628 
629       if (nir_src_is_const(instr->src[0])) {
630          /* The block index is a constant, so just emit the binding table entry
631           * as an immediate.
632           */
633          const unsigned index = prog_data->base.binding_table.ubo_start +
634                                 nir_src_as_uint(instr->src[0]);
635          surf_index = brw_imm_ud(index);
636       } else {
637          /* The block index is not a constant. Evaluate the index expression
638           * per-channel and add the base UBO index; we have to select a value
639           * from any live channel.
640           */
641          surf_index = src_reg(this, glsl_type::uint_type);
642          emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
643                                                    instr->num_components),
644                   brw_imm_ud(prog_data->base.binding_table.ubo_start)));
645          surf_index = emit_uniformize(surf_index);
646       }
647 
648       src_reg push_reg;
649       src_reg offset_reg;
650       if (nir_src_is_const(instr->src[1])) {
651          unsigned load_offset = nir_src_as_uint(instr->src[1]);
652          unsigned aligned_offset = load_offset & ~15;
653          offset_reg = brw_imm_ud(aligned_offset);
654 
655          /* See if we've selected this as a push constant candidate */
656          if (nir_src_is_const(instr->src[0])) {
657             const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
658             const unsigned offset_256b = aligned_offset / 32;
659 
660             for (int i = 0; i < 4; i++) {
661                const struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i];
662                if (range->block == ubo_block &&
663                    offset_256b >= range->start &&
664                    offset_256b < range->start + range->length) {
665 
666                   push_reg = src_reg(dst_reg(UNIFORM, UBO_START + i));
667                   push_reg.type = dest.type;
668                   push_reg.offset = aligned_offset - 32 * range->start;
669                   break;
670                }
671             }
672          }
673       } else {
674          offset_reg = src_reg(this, glsl_type::uint_type);
675          emit(MOV(dst_reg(offset_reg),
676                   get_nir_src(instr->src[1], nir_type_uint32, 1)));
677       }
678 
679       src_reg packed_consts;
680       if (push_reg.file != BAD_FILE) {
681          packed_consts = push_reg;
682       } else if (nir_dest_bit_size(instr->dest) == 32) {
683          packed_consts = src_reg(this, glsl_type::vec4_type);
684          emit_pull_constant_load_reg(dst_reg(packed_consts),
685                                      surf_index,
686                                      offset_reg,
687                                      NULL, NULL /* before_block/inst */);
688          prog_data->base.has_ubo_pull = true;
689       } else {
690          src_reg temp = src_reg(this, glsl_type::dvec4_type);
691          src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
692 
693          emit_pull_constant_load_reg(dst_reg(temp_float),
694                                      surf_index, offset_reg, NULL, NULL);
695          if (offset_reg.file == IMM)
696             offset_reg.ud += 16;
697          else
698             emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
699          emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
700                                      surf_index, offset_reg, NULL, NULL);
701          prog_data->base.has_ubo_pull = true;
702 
703          packed_consts = src_reg(this, glsl_type::dvec4_type);
704          shuffle_64bit_data(dst_reg(packed_consts), temp, false);
705       }
706 
707       packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
708       if (nir_src_is_const(instr->src[1])) {
709          unsigned load_offset = nir_src_as_uint(instr->src[1]);
710          unsigned type_size = type_sz(dest.type);
711          packed_consts.swizzle +=
712             BRW_SWIZZLE4(load_offset % 16 / type_size,
713                          load_offset % 16 / type_size,
714                          load_offset % 16 / type_size,
715                          load_offset % 16 / type_size);
716       }
717 
718       emit(MOV(dest, retype(packed_consts, dest.type)));
719 
720       break;
721    }
722 
723    case nir_intrinsic_scoped_barrier:
724       assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
725       FALLTHROUGH;
726    case nir_intrinsic_memory_barrier: {
727       const vec4_builder bld =
728          vec4_builder(this).at_end().annotate(current_annotation, base_ir);
729       const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
730       vec4_instruction *fence =
731          bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp, brw_vec8_grf(0, 0));
732       fence->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
733       break;
734    }
735 
736    case nir_intrinsic_shader_clock: {
737       /* We cannot do anything if there is an event, so ignore it for now */
738       const src_reg shader_clock = get_timestamp();
739       const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
740 
741       dest = get_nir_dest(instr->dest, type);
742       emit(MOV(dest, shader_clock));
743       break;
744    }
745 
746    default:
747       unreachable("Unknown intrinsic");
748    }
749 }
750 
751 void
nir_emit_ssbo_atomic(int op,nir_intrinsic_instr * instr)752 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
753 {
754    dst_reg dest;
755    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
756       dest = get_nir_dest(instr->dest);
757 
758    src_reg surface = get_nir_ssbo_intrinsic_index(instr);
759    src_reg offset = get_nir_src(instr->src[1], 1);
760    src_reg data1;
761    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
762       data1 = get_nir_src(instr->src[2], 1);
763    src_reg data2;
764    if (op == BRW_AOP_CMPWR)
765       data2 = get_nir_src(instr->src[3], 1);
766 
767    /* Emit the actual atomic operation operation */
768    const vec4_builder bld =
769       vec4_builder(this).at_end().annotate(current_annotation, base_ir);
770 
771    src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
772                                                data1, data2,
773                                                1 /* dims */, 1 /* rsize */,
774                                                op,
775                                                BRW_PREDICATE_NONE);
776    dest.type = atomic_result.type;
777    bld.MOV(dest, atomic_result);
778 }
779 
780 static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])781 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
782 {
783    return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
784 }
785 
786 bool
optimize_predicate(nir_alu_instr * instr,enum brw_predicate * predicate)787 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
788                                  enum brw_predicate *predicate)
789 {
790    if (!instr->src[0].src.is_ssa ||
791        instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
792       return false;
793 
794    nir_alu_instr *cmp_instr =
795       nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
796 
797    switch (cmp_instr->op) {
798    case nir_op_b32any_fnequal2:
799    case nir_op_b32any_inequal2:
800    case nir_op_b32any_fnequal3:
801    case nir_op_b32any_inequal3:
802    case nir_op_b32any_fnequal4:
803    case nir_op_b32any_inequal4:
804       *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
805       break;
806    case nir_op_b32all_fequal2:
807    case nir_op_b32all_iequal2:
808    case nir_op_b32all_fequal3:
809    case nir_op_b32all_iequal3:
810    case nir_op_b32all_fequal4:
811    case nir_op_b32all_iequal4:
812       *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
813       break;
814    default:
815       return false;
816    }
817 
818    unsigned size_swizzle =
819       brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
820 
821    src_reg op[2];
822    assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
823    for (unsigned i = 0; i < 2; i++) {
824       nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
825       unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
826       type = (nir_alu_type) (((unsigned) type) | bit_size);
827       op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
828       unsigned base_swizzle =
829          brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
830       op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
831    }
832 
833    emit(CMP(dst_null_d(), op[0], op[1],
834             brw_cmod_for_nir_comparison(cmp_instr->op)));
835 
836    return true;
837 }
838 
839 static void
emit_find_msb_using_lzd(const vec4_builder & bld,const dst_reg & dst,const src_reg & src,bool is_signed)840 emit_find_msb_using_lzd(const vec4_builder &bld,
841                         const dst_reg &dst,
842                         const src_reg &src,
843                         bool is_signed)
844 {
845    vec4_instruction *inst;
846    src_reg temp = src;
847 
848    if (is_signed) {
849       /* LZD of an absolute value source almost always does the right
850        * thing.  There are two problem values:
851        *
852        * * 0x80000000.  Since abs(0x80000000) == 0x80000000, LZD returns
853        *   0.  However, findMSB(int(0x80000000)) == 30.
854        *
855        * * 0xffffffff.  Since abs(0xffffffff) == 1, LZD returns
856        *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
857        *
858        *    For a value of zero or negative one, -1 will be returned.
859        *
860        * * Negative powers of two.  LZD(abs(-(1<<x))) returns x, but
861        *   findMSB(-(1<<x)) should return x-1.
862        *
863        * For all negative number cases, including 0x80000000 and
864        * 0xffffffff, the correct value is obtained from LZD if instead of
865        * negating the (already negative) value the logical-not is used.  A
866        * conditonal logical-not can be achieved in two instructions.
867        */
868       temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
869 
870       bld.ASR(dst_reg(temp), src, brw_imm_d(31));
871       bld.XOR(dst_reg(temp), temp, src);
872    }
873 
874    bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
875            retype(temp, BRW_REGISTER_TYPE_UD));
876 
877    /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
878     * from the LSB side. Subtract the result from 31 to convert the MSB count
879     * into an LSB count.  If no bits are set, LZD will return 32.  31-32 = -1,
880     * which is exactly what findMSB() is supposed to return.
881     */
882    inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
883                   brw_imm_d(31));
884    inst->src[0].negate = true;
885 }
886 
887 void
emit_conversion_from_double(dst_reg dst,src_reg src)888 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src)
889 {
890    enum opcode op;
891    switch (dst.type) {
892    case BRW_REGISTER_TYPE_D:
893       op = VEC4_OPCODE_DOUBLE_TO_D32;
894       break;
895    case BRW_REGISTER_TYPE_UD:
896       op = VEC4_OPCODE_DOUBLE_TO_U32;
897       break;
898    case BRW_REGISTER_TYPE_F:
899       op = VEC4_OPCODE_DOUBLE_TO_F32;
900       break;
901    default:
902       unreachable("Unknown conversion");
903    }
904 
905    dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
906    emit(MOV(temp, src));
907    dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
908    emit(op, temp2, src_reg(temp));
909 
910    emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
911    emit(MOV(dst, src_reg(retype(temp2, dst.type))));
912 }
913 
914 void
emit_conversion_to_double(dst_reg dst,src_reg src)915 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src)
916 {
917    dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
918    src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
919    emit(MOV(dst_reg(tmp_src), src));
920    emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
921    emit(MOV(dst, src_reg(tmp_dst)));
922 }
923 
924 /**
925  * Try to use an immediate value for a source
926  *
927  * In cases of flow control, constant propagation is sometimes unable to
928  * determine that a register contains a constant value.  To work around this,
929  * try to emit a literal as one of the sources.  If \c try_src0_also is set,
930  * \c op[0] will also be tried for an immediate value.
931  *
932  * If \c op[0] is modified, the operands will be exchanged so that \c op[1]
933  * will always be the immediate value.
934  *
935  * \return The index of the source that was modified, 0 or 1, if successful.
936  * Otherwise, -1.
937  *
938  * \param op - Operands to the instruction
939  * \param try_src0_also - True if \c op[0] should also be a candidate for
940  *                        getting an immediate value.  This should only be set
941  *                        for commutative operations.
942  */
943 static int
try_immediate_source(const nir_alu_instr * instr,src_reg * op,bool try_src0_also)944 try_immediate_source(const nir_alu_instr *instr, src_reg *op,
945                      bool try_src0_also)
946 {
947    unsigned idx;
948 
949    /* MOV should be the only single-source instruction passed to this
950     * function.  Any other unary instruction with a constant source should
951     * have been constant-folded away!
952     */
953    assert(nir_op_infos[instr->op].num_inputs > 1 ||
954           instr->op == nir_op_mov);
955 
956    if (instr->op != nir_op_mov &&
957        nir_src_bit_size(instr->src[1].src) == 32 &&
958        nir_src_is_const(instr->src[1].src)) {
959       idx = 1;
960    } else if (try_src0_also &&
961          nir_src_bit_size(instr->src[0].src) == 32 &&
962          nir_src_is_const(instr->src[0].src)) {
963       idx = 0;
964    } else {
965       return -1;
966    }
967 
968    const enum brw_reg_type old_type = op[idx].type;
969 
970    switch (old_type) {
971    case BRW_REGISTER_TYPE_D:
972    case BRW_REGISTER_TYPE_UD: {
973       int first_comp = -1;
974       int d = 0;
975 
976       for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
977          if (nir_alu_instr_channel_used(instr, idx, i)) {
978             if (first_comp < 0) {
979                first_comp = i;
980                d = nir_src_comp_as_int(instr->src[idx].src,
981                                        instr->src[idx].swizzle[i]);
982             } else if (d != nir_src_comp_as_int(instr->src[idx].src,
983                                                 instr->src[idx].swizzle[i])) {
984                return -1;
985             }
986          }
987       }
988 
989       assert(first_comp >= 0);
990 
991       if (op[idx].abs)
992          d = MAX2(-d, d);
993 
994       if (op[idx].negate)
995          d = -d;
996 
997       op[idx] = retype(src_reg(brw_imm_d(d)), old_type);
998       break;
999    }
1000 
1001    case BRW_REGISTER_TYPE_F: {
1002       int first_comp = -1;
1003       float f[NIR_MAX_VEC_COMPONENTS] = { 0.0f };
1004       bool is_scalar = true;
1005 
1006       for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
1007          if (nir_alu_instr_channel_used(instr, idx, i)) {
1008             f[i] = nir_src_comp_as_float(instr->src[idx].src,
1009                                          instr->src[idx].swizzle[i]);
1010             if (first_comp < 0) {
1011                first_comp = i;
1012             } else if (f[first_comp] != f[i]) {
1013                is_scalar = false;
1014             }
1015          }
1016       }
1017 
1018       if (is_scalar) {
1019          if (op[idx].abs)
1020             f[first_comp] = fabs(f[first_comp]);
1021 
1022          if (op[idx].negate)
1023             f[first_comp] = -f[first_comp];
1024 
1025          op[idx] = src_reg(brw_imm_f(f[first_comp]));
1026          assert(op[idx].type == old_type);
1027       } else {
1028          uint8_t vf_values[4] = { 0, 0, 0, 0 };
1029 
1030          for (unsigned i = 0; i < ARRAY_SIZE(vf_values); i++) {
1031 
1032             if (op[idx].abs)
1033                f[i] = fabs(f[i]);
1034 
1035             if (op[idx].negate)
1036                f[i] = -f[i];
1037 
1038             const int vf = brw_float_to_vf(f[i]);
1039             if (vf == -1)
1040                return -1;
1041 
1042             vf_values[i] = vf;
1043          }
1044 
1045          op[idx] = src_reg(brw_imm_vf4(vf_values[0], vf_values[1],
1046                                        vf_values[2], vf_values[3]));
1047       }
1048       break;
1049    }
1050 
1051    default:
1052       unreachable("Non-32bit type.");
1053    }
1054 
1055    /* If the instruction has more than one source, the instruction format only
1056     * allows source 1 to be an immediate value.  If the immediate value was
1057     * source 0, then the sources must be exchanged.
1058     */
1059    if (idx == 0 && instr->op != nir_op_mov) {
1060       src_reg tmp = op[0];
1061       op[0] = op[1];
1062       op[1] = tmp;
1063    }
1064 
1065    return idx;
1066 }
1067 
1068 void
fix_float_operands(src_reg op[3],nir_alu_instr * instr)1069 vec4_visitor::fix_float_operands(src_reg op[3], nir_alu_instr *instr)
1070 {
1071    bool fixed[3] = { false, false, false };
1072 
1073    for (unsigned i = 0; i < 2; i++) {
1074       if (!nir_src_is_const(instr->src[i].src))
1075          continue;
1076 
1077       for (unsigned j = i + 1; j < 3; j++) {
1078          if (fixed[j])
1079             continue;
1080 
1081          if (!nir_src_is_const(instr->src[j].src))
1082             continue;
1083 
1084          if (nir_alu_srcs_equal(instr, instr, i, j)) {
1085             if (!fixed[i])
1086                op[i] = fix_3src_operand(op[i]);
1087 
1088             op[j] = op[i];
1089 
1090             fixed[i] = true;
1091             fixed[j] = true;
1092          } else if (nir_alu_srcs_negative_equal(instr, instr, i, j)) {
1093             if (!fixed[i])
1094                op[i] = fix_3src_operand(op[i]);
1095 
1096             op[j] = op[i];
1097             op[j].negate = !op[j].negate;
1098 
1099             fixed[i] = true;
1100             fixed[j] = true;
1101          }
1102       }
1103    }
1104 
1105    for (unsigned i = 0; i < 3; i++) {
1106       if (!fixed[i])
1107          op[i] = fix_3src_operand(op[i]);
1108    }
1109 }
1110 
1111 static bool
const_src_fits_in_16_bits(const nir_src & src,brw_reg_type type)1112 const_src_fits_in_16_bits(const nir_src &src, brw_reg_type type)
1113 {
1114    assert(nir_src_is_const(src));
1115    if (brw_reg_type_is_unsigned_integer(type)) {
1116       return nir_src_comp_as_uint(src, 0) <= UINT16_MAX;
1117    } else {
1118       const int64_t c = nir_src_comp_as_int(src, 0);
1119       return c <= INT16_MAX && c >= INT16_MIN;
1120    }
1121 }
1122 
1123 void
nir_emit_alu(nir_alu_instr * instr)1124 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1125 {
1126    vec4_instruction *inst;
1127 
1128    nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1129                                            nir_dest_bit_size(instr->dest.dest));
1130    dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1131    dst.writemask = instr->dest.write_mask;
1132 
1133    assert(!instr->dest.saturate);
1134 
1135    src_reg op[4];
1136    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1137       /* We don't lower to source modifiers, so they shouldn't exist. */
1138       assert(!instr->src[i].abs);
1139       assert(!instr->src[i].negate);
1140 
1141       nir_alu_type src_type = (nir_alu_type)
1142          (nir_op_infos[instr->op].input_types[i] |
1143           nir_src_bit_size(instr->src[i].src));
1144       op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1145       op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1146    }
1147 
1148 #ifndef NDEBUG
1149    /* On Gen7 and earlier, no functionality is exposed that should allow 8-bit
1150     * integer types to ever exist.
1151     */
1152    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1153       assert(type_sz(op[i].type) > 1);
1154 #endif
1155 
1156    switch (instr->op) {
1157    case nir_op_mov:
1158       try_immediate_source(instr, &op[0], true);
1159       inst = emit(MOV(dst, op[0]));
1160       break;
1161 
1162    case nir_op_vec2:
1163    case nir_op_vec3:
1164    case nir_op_vec4:
1165       unreachable("not reached: should be handled by lower_vec_to_movs()");
1166 
1167    case nir_op_i2f32:
1168    case nir_op_u2f32:
1169       inst = emit(MOV(dst, op[0]));
1170       break;
1171 
1172    case nir_op_f2f32:
1173    case nir_op_f2i32:
1174    case nir_op_f2u32:
1175       if (nir_src_bit_size(instr->src[0].src) == 64)
1176          emit_conversion_from_double(dst, op[0]);
1177       else
1178          inst = emit(MOV(dst, op[0]));
1179       break;
1180 
1181    case nir_op_f2f64:
1182    case nir_op_i2f64:
1183    case nir_op_u2f64:
1184       emit_conversion_to_double(dst, op[0]);
1185       break;
1186 
1187    case nir_op_fsat:
1188       inst = emit(MOV(dst, op[0]));
1189       inst->saturate = true;
1190       break;
1191 
1192    case nir_op_fneg:
1193    case nir_op_ineg:
1194       op[0].negate = true;
1195       inst = emit(MOV(dst, op[0]));
1196       break;
1197 
1198    case nir_op_fabs:
1199    case nir_op_iabs:
1200       op[0].negate = false;
1201       op[0].abs = true;
1202       inst = emit(MOV(dst, op[0]));
1203       break;
1204 
1205    case nir_op_iadd:
1206       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1207       FALLTHROUGH;
1208    case nir_op_fadd:
1209       try_immediate_source(instr, op, true);
1210       inst = emit(ADD(dst, op[0], op[1]));
1211       break;
1212 
1213    case nir_op_uadd_sat:
1214       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1215       inst = emit(ADD(dst, op[0], op[1]));
1216       inst->saturate = true;
1217       break;
1218 
1219    case nir_op_fmul:
1220       try_immediate_source(instr, op, true);
1221       inst = emit(MUL(dst, op[0], op[1]));
1222       break;
1223 
1224    case nir_op_imul: {
1225       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1226 
1227       /* For integer multiplication, the MUL uses the low 16 bits of one of
1228        * the operands (src0 through SNB, src1 on IVB and later). The MACH
1229        * accumulates in the contribution of the upper 16 bits of that
1230        * operand. If we can determine that one of the args is in the low
1231        * 16 bits, though, we can just emit a single MUL.
1232        */
1233       if (nir_src_is_const(instr->src[0].src) &&
1234           nir_alu_instr_src_read_mask(instr, 0) == 1 &&
1235           const_src_fits_in_16_bits(instr->src[0].src, op[0].type)) {
1236          if (devinfo->ver < 7)
1237             emit(MUL(dst, op[0], op[1]));
1238          else
1239             emit(MUL(dst, op[1], op[0]));
1240       } else if (nir_src_is_const(instr->src[1].src) &&
1241                  nir_alu_instr_src_read_mask(instr, 1) == 1 &&
1242                  const_src_fits_in_16_bits(instr->src[1].src, op[1].type)) {
1243          if (devinfo->ver < 7)
1244             emit(MUL(dst, op[1], op[0]));
1245          else
1246             emit(MUL(dst, op[0], op[1]));
1247       } else {
1248          struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1249 
1250          emit(MUL(acc, op[0], op[1]));
1251          emit(MACH(dst_null_d(), op[0], op[1]));
1252          emit(MOV(dst, src_reg(acc)));
1253       }
1254       break;
1255    }
1256 
1257    case nir_op_imul_high:
1258    case nir_op_umul_high: {
1259       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1260       struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1261 
1262       emit(MUL(acc, op[0], op[1]));
1263       emit(MACH(dst, op[0], op[1]));
1264       break;
1265    }
1266 
1267    case nir_op_frcp:
1268       inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1269       break;
1270 
1271    case nir_op_fexp2:
1272       inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1273       break;
1274 
1275    case nir_op_flog2:
1276       inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1277       break;
1278 
1279    case nir_op_fsin:
1280       inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1281       break;
1282 
1283    case nir_op_fcos:
1284       inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1285       break;
1286 
1287    case nir_op_idiv:
1288    case nir_op_udiv:
1289       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1290       emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1291       break;
1292 
1293    case nir_op_umod:
1294    case nir_op_irem:
1295       /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1296        * appears that our hardware just does the right thing for signed
1297        * remainder.
1298        */
1299       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1300       emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1301       break;
1302 
1303    case nir_op_imod: {
1304       /* Get a regular C-style remainder.  If a % b == 0, set the predicate. */
1305       inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1306 
1307       /* Math instructions don't support conditional mod */
1308       inst = emit(MOV(dst_null_d(), src_reg(dst)));
1309       inst->conditional_mod = BRW_CONDITIONAL_NZ;
1310 
1311       /* Now, we need to determine if signs of the sources are different.
1312        * When we XOR the sources, the top bit is 0 if they are the same and 1
1313        * if they are different.  We can then use a conditional modifier to
1314        * turn that into a predicate.  This leads us to an XOR.l instruction.
1315        *
1316        * Technically, according to the PRM, you're not allowed to use .l on a
1317        * XOR instruction.  However, emperical experiments and Curro's reading
1318        * of the simulator source both indicate that it's safe.
1319        */
1320       src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1321       inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1322       inst->predicate = BRW_PREDICATE_NORMAL;
1323       inst->conditional_mod = BRW_CONDITIONAL_L;
1324 
1325       /* If the result of the initial remainder operation is non-zero and the
1326        * two sources have different signs, add in a copy of op[1] to get the
1327        * final integer modulus value.
1328        */
1329       inst = emit(ADD(dst, src_reg(dst), op[1]));
1330       inst->predicate = BRW_PREDICATE_NORMAL;
1331       break;
1332    }
1333 
1334    case nir_op_ldexp:
1335       unreachable("not reached: should be handled by ldexp_to_arith()");
1336 
1337    case nir_op_fsqrt:
1338       inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1339       break;
1340 
1341    case nir_op_frsq:
1342       inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1343       break;
1344 
1345    case nir_op_fpow:
1346       inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1347       break;
1348 
1349    case nir_op_uadd_carry: {
1350       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1351       struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1352 
1353       emit(ADDC(dst_null_ud(), op[0], op[1]));
1354       emit(MOV(dst, src_reg(acc)));
1355       break;
1356    }
1357 
1358    case nir_op_usub_borrow: {
1359       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1360       struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1361 
1362       emit(SUBB(dst_null_ud(), op[0], op[1]));
1363       emit(MOV(dst, src_reg(acc)));
1364       break;
1365    }
1366 
1367    case nir_op_ftrunc:
1368       inst = emit(RNDZ(dst, op[0]));
1369       if (devinfo->ver < 6) {
1370          inst->conditional_mod = BRW_CONDITIONAL_R;
1371          inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1372          inst->predicate = BRW_PREDICATE_NORMAL;
1373          inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1374       }
1375       break;
1376 
1377    case nir_op_fceil: {
1378       src_reg tmp = src_reg(this, glsl_type::float_type);
1379       tmp.swizzle =
1380          brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1381                               instr->src[0].src.ssa->num_components :
1382                               instr->src[0].src.reg.reg->num_components);
1383 
1384       op[0].negate = !op[0].negate;
1385       emit(RNDD(dst_reg(tmp), op[0]));
1386       tmp.negate = true;
1387       inst = emit(MOV(dst, tmp));
1388       break;
1389    }
1390 
1391    case nir_op_ffloor:
1392       inst = emit(RNDD(dst, op[0]));
1393       break;
1394 
1395    case nir_op_ffract:
1396       inst = emit(FRC(dst, op[0]));
1397       break;
1398 
1399    case nir_op_fround_even:
1400       inst = emit(RNDE(dst, op[0]));
1401       if (devinfo->ver < 6) {
1402          inst->conditional_mod = BRW_CONDITIONAL_R;
1403          inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1404          inst->predicate = BRW_PREDICATE_NORMAL;
1405          inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1406       }
1407       break;
1408 
1409    case nir_op_fquantize2f16: {
1410       /* See also vec4_visitor::emit_pack_half_2x16() */
1411       src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1412       src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1413       src_reg zero = src_reg(this, glsl_type::vec4_type);
1414 
1415       /* Check for denormal */
1416       src_reg abs_src0 = op[0];
1417       abs_src0.abs = true;
1418       emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1419                BRW_CONDITIONAL_L));
1420       /* Get the appropriately signed zero */
1421       emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1422                retype(op[0], BRW_REGISTER_TYPE_UD),
1423                brw_imm_ud(0x80000000)));
1424       /* Do the actual F32 -> F16 -> F32 conversion */
1425       emit(F32TO16(dst_reg(tmp16), op[0]));
1426       emit(F16TO32(dst_reg(tmp32), tmp16));
1427       /* Select that or zero based on normal status */
1428       inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1429       inst->predicate = BRW_PREDICATE_NORMAL;
1430       break;
1431    }
1432 
1433    case nir_op_imin:
1434    case nir_op_umin:
1435       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1436       FALLTHROUGH;
1437    case nir_op_fmin:
1438       try_immediate_source(instr, op, true);
1439       inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1440       break;
1441 
1442    case nir_op_imax:
1443    case nir_op_umax:
1444       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1445       FALLTHROUGH;
1446    case nir_op_fmax:
1447       try_immediate_source(instr, op, true);
1448       inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1449       break;
1450 
1451    case nir_op_fddx:
1452    case nir_op_fddx_coarse:
1453    case nir_op_fddx_fine:
1454    case nir_op_fddy:
1455    case nir_op_fddy_coarse:
1456    case nir_op_fddy_fine:
1457       unreachable("derivatives are not valid in vertex shaders");
1458 
1459    case nir_op_ilt32:
1460    case nir_op_ult32:
1461    case nir_op_ige32:
1462    case nir_op_uge32:
1463    case nir_op_ieq32:
1464    case nir_op_ine32:
1465       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1466       FALLTHROUGH;
1467    case nir_op_flt32:
1468    case nir_op_fge32:
1469    case nir_op_feq32:
1470    case nir_op_fneu32: {
1471       enum brw_conditional_mod conditional_mod =
1472          brw_cmod_for_nir_comparison(instr->op);
1473 
1474       if (nir_src_bit_size(instr->src[0].src) < 64) {
1475          /* If the order of the sources is changed due to an immediate value,
1476           * then the condition must also be changed.
1477           */
1478          if (try_immediate_source(instr, op, true) == 0)
1479             conditional_mod = brw_swap_cmod(conditional_mod);
1480 
1481          emit(CMP(dst, op[0], op[1], conditional_mod));
1482       } else {
1483          /* Produce a 32-bit boolean result from the DF comparison by selecting
1484           * only the low 32-bit in each DF produced. Do this in a temporary
1485           * so we can then move from there to the result using align16 again
1486           * to honor the original writemask.
1487           */
1488          dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1489          emit(CMP(temp, op[0], op[1], conditional_mod));
1490          dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1491          emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1492          emit(MOV(dst, src_reg(result)));
1493       }
1494       break;
1495    }
1496 
1497    case nir_op_b32all_iequal2:
1498    case nir_op_b32all_iequal3:
1499    case nir_op_b32all_iequal4:
1500       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1501       FALLTHROUGH;
1502    case nir_op_b32all_fequal2:
1503    case nir_op_b32all_fequal3:
1504    case nir_op_b32all_fequal4: {
1505       unsigned swiz =
1506          brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1507 
1508       emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1509                brw_cmod_for_nir_comparison(instr->op)));
1510       emit(MOV(dst, brw_imm_d(0)));
1511       inst = emit(MOV(dst, brw_imm_d(~0)));
1512       inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1513       break;
1514    }
1515 
1516    case nir_op_b32any_inequal2:
1517    case nir_op_b32any_inequal3:
1518    case nir_op_b32any_inequal4:
1519       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1520       FALLTHROUGH;
1521    case nir_op_b32any_fnequal2:
1522    case nir_op_b32any_fnequal3:
1523    case nir_op_b32any_fnequal4: {
1524       unsigned swiz =
1525          brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1526 
1527       emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1528                brw_cmod_for_nir_comparison(instr->op)));
1529 
1530       emit(MOV(dst, brw_imm_d(0)));
1531       inst = emit(MOV(dst, brw_imm_d(~0)));
1532       inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1533       break;
1534    }
1535 
1536    case nir_op_inot:
1537       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1538       emit(NOT(dst, op[0]));
1539       break;
1540 
1541    case nir_op_ixor:
1542       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1543       try_immediate_source(instr, op, true);
1544       emit(XOR(dst, op[0], op[1]));
1545       break;
1546 
1547    case nir_op_ior:
1548       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1549       try_immediate_source(instr, op, true);
1550       emit(OR(dst, op[0], op[1]));
1551       break;
1552 
1553    case nir_op_iand:
1554       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1555       try_immediate_source(instr, op, true);
1556       emit(AND(dst, op[0], op[1]));
1557       break;
1558 
1559    case nir_op_b2i32:
1560    case nir_op_b2f32:
1561    case nir_op_b2f64:
1562       if (nir_dest_bit_size(instr->dest.dest) > 32) {
1563          assert(dst.type == BRW_REGISTER_TYPE_DF);
1564          emit_conversion_to_double(dst, negate(op[0]));
1565       } else {
1566          emit(MOV(dst, negate(op[0])));
1567       }
1568       break;
1569 
1570    case nir_op_f2b32:
1571       if (nir_src_bit_size(instr->src[0].src) == 64) {
1572          /* We use a MOV with conditional_mod to check if the provided value is
1573           * 0.0. We want this to flush denormalized numbers to zero, so we set a
1574           * source modifier on the source operand to trigger this, as source
1575           * modifiers don't affect the result of the testing against 0.0.
1576           */
1577          src_reg value = op[0];
1578          value.abs = true;
1579          vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1580          inst->conditional_mod = BRW_CONDITIONAL_NZ;
1581 
1582          src_reg one = src_reg(this, glsl_type::ivec4_type);
1583          emit(MOV(dst_reg(one), brw_imm_d(~0)));
1584          inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1585          inst->predicate = BRW_PREDICATE_NORMAL;
1586       } else {
1587          emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1588       }
1589       break;
1590 
1591    case nir_op_i2b32:
1592       emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1593       break;
1594 
1595    case nir_op_unpack_half_2x16_split_x:
1596    case nir_op_unpack_half_2x16_split_y:
1597    case nir_op_pack_half_2x16_split:
1598       unreachable("not reached: should not occur in vertex shader");
1599 
1600    case nir_op_unpack_snorm_2x16:
1601    case nir_op_unpack_unorm_2x16:
1602    case nir_op_pack_snorm_2x16:
1603    case nir_op_pack_unorm_2x16:
1604       unreachable("not reached: should be handled by lower_packing_builtins");
1605 
1606    case nir_op_pack_uvec4_to_uint:
1607       unreachable("not reached");
1608 
1609    case nir_op_pack_uvec2_to_uint: {
1610       dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1611       tmp1.writemask = WRITEMASK_X;
1612       op[0].swizzle = BRW_SWIZZLE_YYYY;
1613       emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1614 
1615       dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1616       tmp2.writemask = WRITEMASK_X;
1617       op[0].swizzle = BRW_SWIZZLE_XXXX;
1618       emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1619 
1620       emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1621       break;
1622    }
1623 
1624    case nir_op_pack_64_2x32_split: {
1625       dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1626       dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1627       emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1628       emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1629       emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1630       emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1631       emit(MOV(dst, src_reg(result)));
1632       break;
1633    }
1634 
1635    case nir_op_unpack_64_2x32_split_x:
1636    case nir_op_unpack_64_2x32_split_y: {
1637       enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1638          VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1639       dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1640       emit(MOV(tmp, op[0]));
1641       dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1642       emit(oper, tmp2, src_reg(tmp));
1643       emit(MOV(dst, src_reg(tmp2)));
1644       break;
1645    }
1646 
1647    case nir_op_unpack_half_2x16:
1648       /* As NIR does not guarantee that we have a correct swizzle outside the
1649        * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1650        * uses the source operand in an operation with WRITEMASK_Y while our
1651        * source operand has only size 1, it accessed incorrect data producing
1652        * regressions in Piglit. We repeat the swizzle of the first component on the
1653        * rest of components to avoid regressions. In the vec4_visitor IR code path
1654        * this is not needed because the operand has already the correct swizzle.
1655        */
1656       op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1657       emit_unpack_half_2x16(dst, op[0]);
1658       break;
1659 
1660    case nir_op_pack_half_2x16:
1661       emit_pack_half_2x16(dst, op[0]);
1662       break;
1663 
1664    case nir_op_unpack_unorm_4x8:
1665       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1666       emit_unpack_unorm_4x8(dst, op[0]);
1667       break;
1668 
1669    case nir_op_pack_unorm_4x8:
1670       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1671       emit_pack_unorm_4x8(dst, op[0]);
1672       break;
1673 
1674    case nir_op_unpack_snorm_4x8:
1675       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1676       emit_unpack_snorm_4x8(dst, op[0]);
1677       break;
1678 
1679    case nir_op_pack_snorm_4x8:
1680       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1681       emit_pack_snorm_4x8(dst, op[0]);
1682       break;
1683 
1684    case nir_op_bitfield_reverse:
1685       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1686       emit(BFREV(dst, op[0]));
1687       break;
1688 
1689    case nir_op_bit_count:
1690       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1691       emit(CBIT(dst, op[0]));
1692       break;
1693 
1694    case nir_op_ufind_msb:
1695       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1696       emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1697       break;
1698 
1699    case nir_op_ifind_msb: {
1700       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1701       vec4_builder bld = vec4_builder(this).at_end();
1702       src_reg src(dst);
1703 
1704       if (devinfo->ver < 7) {
1705          emit_find_msb_using_lzd(bld, dst, op[0], true);
1706       } else {
1707          emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1708 
1709          /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1710           * count from the LSB side. If FBH didn't return an error
1711           * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1712           * count into an LSB count.
1713           */
1714          bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1715 
1716          inst = bld.ADD(dst, src, brw_imm_d(31));
1717          inst->predicate = BRW_PREDICATE_NORMAL;
1718          inst->src[0].negate = true;
1719       }
1720       break;
1721    }
1722 
1723    case nir_op_find_lsb: {
1724       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1725       vec4_builder bld = vec4_builder(this).at_end();
1726 
1727       if (devinfo->ver < 7) {
1728          dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1729 
1730          /* (x & -x) generates a value that consists of only the LSB of x.
1731           * For all powers of 2, findMSB(y) == findLSB(y).
1732           */
1733          src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1734          src_reg negated_src = src;
1735 
1736          /* One must be negated, and the other must be non-negated.  It
1737           * doesn't matter which is which.
1738           */
1739          negated_src.negate = true;
1740          src.negate = false;
1741 
1742          bld.AND(temp, src, negated_src);
1743          emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1744       } else {
1745          bld.FBL(dst, op[0]);
1746       }
1747       break;
1748    }
1749 
1750    case nir_op_ubitfield_extract:
1751    case nir_op_ibitfield_extract:
1752       unreachable("should have been lowered");
1753    case nir_op_ubfe:
1754    case nir_op_ibfe:
1755       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1756       op[0] = fix_3src_operand(op[0]);
1757       op[1] = fix_3src_operand(op[1]);
1758       op[2] = fix_3src_operand(op[2]);
1759 
1760       emit(BFE(dst, op[2], op[1], op[0]));
1761       break;
1762 
1763    case nir_op_bfm:
1764       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1765       emit(BFI1(dst, op[0], op[1]));
1766       break;
1767 
1768    case nir_op_bfi:
1769       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1770       op[0] = fix_3src_operand(op[0]);
1771       op[1] = fix_3src_operand(op[1]);
1772       op[2] = fix_3src_operand(op[2]);
1773 
1774       emit(BFI2(dst, op[0], op[1], op[2]));
1775       break;
1776 
1777    case nir_op_bitfield_insert:
1778       unreachable("not reached: should have been lowered");
1779 
1780    case nir_op_fsign:
1781        if (type_sz(op[0].type) < 8) {
1782          /* AND(val, 0x80000000) gives the sign bit.
1783           *
1784           * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1785           * zero.
1786           */
1787          emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1788 
1789          op[0].type = BRW_REGISTER_TYPE_UD;
1790          dst.type = BRW_REGISTER_TYPE_UD;
1791          emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1792 
1793          inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1794          inst->predicate = BRW_PREDICATE_NORMAL;
1795          dst.type = BRW_REGISTER_TYPE_F;
1796       } else {
1797          /* For doubles we do the same but we need to consider:
1798           *
1799           * - We use a MOV with conditional_mod instead of a CMP so that we can
1800           *   skip loading a 0.0 immediate. We use a source modifier on the
1801           *   source of the MOV so that we flush denormalized values to 0.
1802           *   Since we want to compare against 0, this won't alter the result.
1803           * - We need to extract the high 32-bit of each DF where the sign
1804           *   is stored.
1805           * - We need to produce a DF result.
1806           */
1807 
1808          /* Check for zero */
1809          src_reg value = op[0];
1810          value.abs = true;
1811          inst = emit(MOV(dst_null_df(), value));
1812          inst->conditional_mod = BRW_CONDITIONAL_NZ;
1813 
1814          /* AND each high 32-bit channel with 0x80000000u */
1815          dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1816          emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1817          emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1818 
1819          /* Add 1.0 to each channel, predicated to skip the cases where the
1820           * channel's value was 0
1821           */
1822          inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1823          inst->predicate = BRW_PREDICATE_NORMAL;
1824 
1825          /* Now convert the result from float to double */
1826          emit_conversion_to_double(dst, retype(src_reg(tmp),
1827                                                BRW_REGISTER_TYPE_F));
1828       }
1829       break;
1830 
1831    case nir_op_ishl:
1832       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1833       try_immediate_source(instr, op, false);
1834       emit(SHL(dst, op[0], op[1]));
1835       break;
1836 
1837    case nir_op_ishr:
1838       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1839       try_immediate_source(instr, op, false);
1840       emit(ASR(dst, op[0], op[1]));
1841       break;
1842 
1843    case nir_op_ushr:
1844       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1845       try_immediate_source(instr, op, false);
1846       emit(SHR(dst, op[0], op[1]));
1847       break;
1848 
1849    case nir_op_ffma:
1850       if (type_sz(dst.type) == 8) {
1851          dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1852          emit(MUL(mul_dst, op[1], op[0]));
1853          inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1854       } else {
1855          fix_float_operands(op, instr);
1856          inst = emit(MAD(dst, op[2], op[1], op[0]));
1857       }
1858       break;
1859 
1860    case nir_op_flrp:
1861       fix_float_operands(op, instr);
1862       inst = emit(LRP(dst, op[2], op[1], op[0]));
1863       break;
1864 
1865    case nir_op_b32csel:
1866       enum brw_predicate predicate;
1867       if (!optimize_predicate(instr, &predicate)) {
1868          emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1869          switch (dst.writemask) {
1870          case WRITEMASK_X:
1871             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1872             break;
1873          case WRITEMASK_Y:
1874             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1875             break;
1876          case WRITEMASK_Z:
1877             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1878             break;
1879          case WRITEMASK_W:
1880             predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1881             break;
1882          default:
1883             predicate = BRW_PREDICATE_NORMAL;
1884             break;
1885          }
1886       }
1887       inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1888       inst->predicate = predicate;
1889       break;
1890 
1891    case nir_op_fdot2_replicated:
1892       try_immediate_source(instr, op, true);
1893       inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1894       break;
1895 
1896    case nir_op_fdot3_replicated:
1897       try_immediate_source(instr, op, true);
1898       inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1899       break;
1900 
1901    case nir_op_fdot4_replicated:
1902       try_immediate_source(instr, op, true);
1903       inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1904       break;
1905 
1906    case nir_op_fdph_replicated:
1907       try_immediate_source(instr, op, false);
1908       inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1909       break;
1910 
1911    case nir_op_fdiv:
1912       unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1913 
1914    case nir_op_fmod:
1915       unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1916 
1917    case nir_op_fsub:
1918    case nir_op_isub:
1919       unreachable("not reached: should be handled by ir_sub_to_add_neg");
1920 
1921    default:
1922       unreachable("Unimplemented ALU operation");
1923    }
1924 
1925    /* If we need to do a boolean resolve, replace the result with -(x & 1)
1926     * to sign extend the low bit to 0/~0
1927     */
1928    if (devinfo->ver <= 5 &&
1929        (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1930        BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1931       dst_reg masked = dst_reg(this, glsl_type::int_type);
1932       masked.writemask = dst.writemask;
1933       emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1934       src_reg masked_neg = src_reg(masked);
1935       masked_neg.negate = true;
1936       emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1937    }
1938 }
1939 
1940 void
nir_emit_jump(nir_jump_instr * instr)1941 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1942 {
1943    switch (instr->type) {
1944    case nir_jump_break:
1945       emit(BRW_OPCODE_BREAK);
1946       break;
1947 
1948    case nir_jump_continue:
1949       emit(BRW_OPCODE_CONTINUE);
1950       break;
1951 
1952    case nir_jump_return:
1953       FALLTHROUGH;
1954    default:
1955       unreachable("unknown jump");
1956    }
1957 }
1958 
1959 static enum ir_texture_opcode
ir_texture_opcode_for_nir_texop(nir_texop texop)1960 ir_texture_opcode_for_nir_texop(nir_texop texop)
1961 {
1962    enum ir_texture_opcode op;
1963 
1964    switch (texop) {
1965    case nir_texop_lod: op = ir_lod; break;
1966    case nir_texop_query_levels: op = ir_query_levels; break;
1967    case nir_texop_texture_samples: op = ir_texture_samples; break;
1968    case nir_texop_tex: op = ir_tex; break;
1969    case nir_texop_tg4: op = ir_tg4; break;
1970    case nir_texop_txb: op = ir_txb; break;
1971    case nir_texop_txd: op = ir_txd; break;
1972    case nir_texop_txf: op = ir_txf; break;
1973    case nir_texop_txf_ms: op = ir_txf_ms; break;
1974    case nir_texop_txl: op = ir_txl; break;
1975    case nir_texop_txs: op = ir_txs; break;
1976    case nir_texop_samples_identical: op = ir_samples_identical; break;
1977    default:
1978       unreachable("unknown texture opcode");
1979    }
1980 
1981    return op;
1982 }
1983 
1984 void
nir_emit_texture(nir_tex_instr * instr)1985 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1986 {
1987    unsigned texture = instr->texture_index;
1988    unsigned sampler = instr->sampler_index;
1989    src_reg texture_reg = brw_imm_ud(texture);
1990    src_reg sampler_reg = brw_imm_ud(sampler);
1991    src_reg coordinate;
1992    const glsl_type *coord_type = NULL;
1993    src_reg shadow_comparator;
1994    src_reg offset_value;
1995    src_reg lod, lod2;
1996    src_reg sample_index;
1997    src_reg mcs;
1998 
1999    dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2000 
2001    /* The hardware requires a LOD for buffer textures */
2002    if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2003       lod = brw_imm_d(0);
2004 
2005    /* Load the texture operation sources */
2006    uint32_t constant_offset = 0;
2007    for (unsigned i = 0; i < instr->num_srcs; i++) {
2008       switch (instr->src[i].src_type) {
2009       case nir_tex_src_comparator:
2010          shadow_comparator = get_nir_src(instr->src[i].src,
2011                                          BRW_REGISTER_TYPE_F, 1);
2012          break;
2013 
2014       case nir_tex_src_coord: {
2015          unsigned src_size = nir_tex_instr_src_size(instr, i);
2016 
2017          switch (instr->op) {
2018          case nir_texop_txf:
2019          case nir_texop_txf_ms:
2020          case nir_texop_samples_identical:
2021             coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2022                                      src_size);
2023             coord_type = glsl_type::ivec(src_size);
2024             break;
2025 
2026          default:
2027             coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2028                                      src_size);
2029             coord_type = glsl_type::vec(src_size);
2030             break;
2031          }
2032          break;
2033       }
2034 
2035       case nir_tex_src_ddx:
2036          lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2037                            nir_tex_instr_src_size(instr, i));
2038          break;
2039 
2040       case nir_tex_src_ddy:
2041          lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2042                            nir_tex_instr_src_size(instr, i));
2043          break;
2044 
2045       case nir_tex_src_lod:
2046          switch (instr->op) {
2047          case nir_texop_txs:
2048          case nir_texop_txf:
2049             lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2050             break;
2051 
2052          default:
2053             lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2054             break;
2055          }
2056          break;
2057 
2058       case nir_tex_src_ms_index: {
2059          sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2060          break;
2061       }
2062 
2063       case nir_tex_src_offset:
2064          if (!brw_texture_offset(instr, i, &constant_offset)) {
2065             offset_value =
2066                get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2067          }
2068          break;
2069 
2070       case nir_tex_src_texture_offset: {
2071          /* Emit code to evaluate the actual indexing expression */
2072          src_reg src = get_nir_src(instr->src[i].src, 1);
2073          src_reg temp(this, glsl_type::uint_type);
2074          emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2075          texture_reg = emit_uniformize(temp);
2076          break;
2077       }
2078 
2079       case nir_tex_src_sampler_offset: {
2080          /* Emit code to evaluate the actual indexing expression */
2081          src_reg src = get_nir_src(instr->src[i].src, 1);
2082          src_reg temp(this, glsl_type::uint_type);
2083          emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2084          sampler_reg = emit_uniformize(temp);
2085          break;
2086       }
2087 
2088       case nir_tex_src_projector:
2089          unreachable("Should be lowered by nir_lower_tex");
2090 
2091       case nir_tex_src_bias:
2092          unreachable("LOD bias is not valid for vertex shaders.\n");
2093 
2094       default:
2095          unreachable("unknown texture source");
2096       }
2097    }
2098 
2099    if (instr->op == nir_texop_txf_ms ||
2100        instr->op == nir_texop_samples_identical) {
2101       assert(coord_type != NULL);
2102       if (devinfo->ver >= 7 &&
2103           key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2104          mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2105       } else {
2106          mcs = brw_imm_ud(0u);
2107       }
2108    }
2109 
2110    /* Stuff the channel select bits in the top of the texture offset */
2111    if (instr->op == nir_texop_tg4) {
2112       if (instr->component == 1 &&
2113           (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2114          /* gather4 sampler is broken for green channel on RG32F --
2115           * we must ask for blue instead.
2116           */
2117          constant_offset |= 2 << 16;
2118       } else {
2119          constant_offset |= instr->component << 16;
2120       }
2121    }
2122 
2123    ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2124 
2125    emit_texture(op, dest, nir_tex_instr_dest_size(instr),
2126                 coordinate, instr->coord_components,
2127                 shadow_comparator,
2128                 lod, lod2, sample_index,
2129                 constant_offset, offset_value, mcs,
2130                 texture, texture_reg, sampler_reg);
2131 }
2132 
2133 void
nir_emit_undef(nir_ssa_undef_instr * instr)2134 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2135 {
2136    nir_ssa_values[instr->def.index] =
2137       dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2138 }
2139 
2140 /* SIMD4x2 64bit data is stored in register space like this:
2141  *
2142  * r0.0:DF  x0 y0 z0 w0
2143  * r1.0:DF  x1 y1 z1 w1
2144  *
2145  * When we need to write data such as this to memory using 32-bit write
2146  * messages we need to shuffle it in this fashion:
2147  *
2148  * r0.0:DF  x0 y0 x1 y1 (to be written at base offset)
2149  * r0.0:DF  z0 w0 z1 w1 (to be written at base offset + 16)
2150  *
2151  * We need to do the inverse operation when we read using 32-bit messages,
2152  * which we can do by applying the same exact shuffling on the 64-bit data
2153  * read, only that because the data for each vertex is positioned differently
2154  * we need to apply different channel enables.
2155  *
2156  * This function takes 64bit data and shuffles it as explained above.
2157  *
2158  * The @for_write parameter is used to specify if the shuffling is being done
2159  * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2160  * write message (for_write = true), or instead we are doing the inverse
2161  * operation and we have just read 64-bit data using a 32-bit messages that we
2162  * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2163  *
2164  * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2165  * otherwise the instructions are emitted normally at the end. The function
2166  * returns the last instruction inserted.
2167  *
2168  * Notice that @src and @dst cannot be the same register.
2169  */
2170 vec4_instruction *
shuffle_64bit_data(dst_reg dst,src_reg src,bool for_write,bool for_scratch,bblock_t * block,vec4_instruction * ref)2171 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2172                                  bool for_scratch,
2173                                  bblock_t *block, vec4_instruction *ref)
2174 {
2175    assert(type_sz(src.type) == 8);
2176    assert(type_sz(dst.type) == 8);
2177    assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2178    assert(!ref == !block);
2179 
2180    opcode mov_op = for_scratch ? VEC4_OPCODE_MOV_FOR_SCRATCH : BRW_OPCODE_MOV;
2181 
2182    const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2183                                    vec4_builder(this).at(block, ref->next);
2184 
2185    /* Resolve swizzle in src */
2186    if (src.swizzle != BRW_SWIZZLE_XYZW) {
2187       dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2188       bld.emit(mov_op, data, src);
2189       src = src_reg(data);
2190    }
2191 
2192    /* dst+0.XY = src+0.XY */
2193    bld.group(4, 0).emit(mov_op, writemask(dst, WRITEMASK_XY), src);
2194 
2195    /* dst+0.ZW = src+1.XY */
2196    bld.group(4, for_write ? 1 : 0)
2197             .emit(mov_op, writemask(dst, WRITEMASK_ZW),
2198                   swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2199 
2200    /* dst+1.XY = src+0.ZW */
2201    bld.group(4, for_write ? 0 : 1)
2202             .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2203                   swizzle(src, BRW_SWIZZLE_ZWZW));
2204 
2205    /* dst+1.ZW = src+1.ZW */
2206    return bld.group(4, 1)
2207             .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2208                   byte_offset(src, REG_SIZE));
2209 }
2210 
2211 }
2212