1 /**************************************************************************
2  *
3  * Copyright 2010 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
18  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20  * USE OR OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * The above copyright notice and this permission notice (including the
23  * next paragraph) shall be included in all copies or substantial portions
24  * of the Software.
25  *
26  **************************************************************************/
27 
28 
29 #include "util/u_debug.h"
30 #include "util/u_cpu_detect.h"
31 #include "util/u_math.h"
32 #include "lp_bld_debug.h"
33 #include "lp_bld_const.h"
34 #include "lp_bld_format.h"
35 #include "lp_bld_gather.h"
36 #include "lp_bld_swizzle.h"
37 #include "lp_bld_type.h"
38 #include "lp_bld_init.h"
39 #include "lp_bld_intr.h"
40 #include "lp_bld_pack.h"
41 
42 
43 /**
44  * Get the pointer to one element from scatter positions in memory.
45  *
46  * @sa lp_build_gather()
47  */
48 LLVMValueRef
lp_build_gather_elem_ptr(struct gallivm_state * gallivm,unsigned length,LLVMValueRef base_ptr,LLVMValueRef offsets,unsigned i)49 lp_build_gather_elem_ptr(struct gallivm_state *gallivm,
50                          unsigned length,
51                          LLVMValueRef base_ptr,
52                          LLVMValueRef offsets,
53                          unsigned i)
54 {
55    LLVMValueRef offset;
56    LLVMValueRef ptr;
57 
58    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
59 
60    if (length == 1) {
61       assert(i == 0);
62       offset = offsets;
63    } else {
64       LLVMValueRef index = lp_build_const_int32(gallivm, i);
65       offset = LLVMBuildExtractElement(gallivm->builder, offsets, index, "");
66    }
67 
68    ptr = LLVMBuildGEP(gallivm->builder, base_ptr, &offset, 1, "");
69 
70    return ptr;
71 }
72 
73 
74 /**
75  * Gather one element from scatter positions in memory.
76  *
77  * @sa lp_build_gather()
78  */
79 LLVMValueRef
lp_build_gather_elem(struct gallivm_state * gallivm,unsigned length,unsigned src_width,unsigned dst_width,boolean aligned,LLVMValueRef base_ptr,LLVMValueRef offsets,unsigned i,boolean vector_justify)80 lp_build_gather_elem(struct gallivm_state *gallivm,
81                      unsigned length,
82                      unsigned src_width,
83                      unsigned dst_width,
84                      boolean aligned,
85                      LLVMValueRef base_ptr,
86                      LLVMValueRef offsets,
87                      unsigned i,
88                      boolean vector_justify)
89 {
90    LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, src_width);
91    LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
92    LLVMTypeRef dst_elem_type = LLVMIntTypeInContext(gallivm->context, dst_width);
93    LLVMValueRef ptr;
94    LLVMValueRef res;
95 
96    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
97 
98    ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
99    ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
100    res = LLVMBuildLoad(gallivm->builder, ptr, "");
101 
102    /* XXX
103     * On some archs we probably really want to avoid having to deal
104     * with alignments lower than 4 bytes (if fetch size is a power of
105     * two >= 32). On x86 it doesn't matter, however.
106     * We should be able to guarantee full alignment for any kind of texture
107     * fetch (except ARB_texture_buffer_range, oops), but not vertex fetch
108     * (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends
109     * but I don't think that's quite what we wanted).
110     * For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT
111     * looks like a good fit, but it seems this cap bit (and OpenGL) aren't
112     * enforcing what we want (which is what d3d10 does, the offset needs to
113     * be aligned to element size, but GL has bytes regardless of element
114     * size which would only leave us with minimum alignment restriction of 16
115     * which doesn't make much sense if the type isn't 4x32bit). Due to
116     * translation of offsets to first_elem in sampler_views it actually seems
117     * gallium could not do anything else except 16 no matter what...
118     */
119    if (!aligned) {
120       LLVMSetAlignment(res, 1);
121    } else if (!util_is_power_of_two_or_zero(src_width)) {
122       /*
123        * Full alignment is impossible, assume the caller really meant
124        * the individual elements were aligned (e.g. 3x32bit format).
125        * And yes the generated code may otherwise crash, llvm will
126        * really assume 128bit alignment with a 96bit fetch (I suppose
127        * that makes sense as it can just assume the upper 32bit to be
128        * whatever).
129        * Maybe the caller should be able to explicitly set this, but
130        * this should cover all the 3-channel formats.
131        */
132       if (((src_width / 24) * 24 == src_width) &&
133            util_is_power_of_two_or_zero(src_width / 24)) {
134           LLVMSetAlignment(res, src_width / 24);
135       } else {
136          LLVMSetAlignment(res, 1);
137       }
138    }
139 
140    assert(src_width <= dst_width);
141    if (src_width < dst_width) {
142       res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");
143       if (vector_justify) {
144 #if UTIL_ARCH_BIG_ENDIAN
145          res = LLVMBuildShl(gallivm->builder, res,
146                             LLVMConstInt(dst_elem_type, dst_width - src_width, 0), "");
147 #endif
148       }
149    }
150 
151    return res;
152 }
153 
154 
155 /**
156  * Gather one element from scatter positions in memory.
157  * Nearly the same as above, however the individual elements
158  * may be vectors themselves, and fetches may be float type.
159  * Can also do pad vector instead of ZExt.
160  *
161  * @sa lp_build_gather()
162  */
163 static LLVMValueRef
lp_build_gather_elem_vec(struct gallivm_state * gallivm,unsigned length,unsigned src_width,LLVMTypeRef src_type,struct lp_type dst_type,boolean aligned,LLVMValueRef base_ptr,LLVMValueRef offsets,unsigned i,boolean vector_justify)164 lp_build_gather_elem_vec(struct gallivm_state *gallivm,
165                          unsigned length,
166                          unsigned src_width,
167                          LLVMTypeRef src_type,
168                          struct lp_type dst_type,
169                          boolean aligned,
170                          LLVMValueRef base_ptr,
171                          LLVMValueRef offsets,
172                          unsigned i,
173                          boolean vector_justify)
174 {
175    LLVMValueRef ptr, res;
176    LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
177    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
178 
179    ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
180    ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
181    res = LLVMBuildLoad(gallivm->builder, ptr, "");
182 
183    /* XXX
184     * On some archs we probably really want to avoid having to deal
185     * with alignments lower than 4 bytes (if fetch size is a power of
186     * two >= 32). On x86 it doesn't matter, however.
187     * We should be able to guarantee full alignment for any kind of texture
188     * fetch (except ARB_texture_buffer_range, oops), but not vertex fetch
189     * (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends
190     * but I don't think that's quite what we wanted).
191     * For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT
192     * looks like a good fit, but it seems this cap bit (and OpenGL) aren't
193     * enforcing what we want (which is what d3d10 does, the offset needs to
194     * be aligned to element size, but GL has bytes regardless of element
195     * size which would only leave us with minimum alignment restriction of 16
196     * which doesn't make much sense if the type isn't 4x32bit). Due to
197     * translation of offsets to first_elem in sampler_views it actually seems
198     * gallium could not do anything else except 16 no matter what...
199     */
200    if (!aligned) {
201       LLVMSetAlignment(res, 1);
202    } else if (!util_is_power_of_two_or_zero(src_width)) {
203       /*
204        * Full alignment is impossible, assume the caller really meant
205        * the individual elements were aligned (e.g. 3x32bit format).
206        * And yes the generated code may otherwise crash, llvm will
207        * really assume 128bit alignment with a 96bit fetch (I suppose
208        * that makes sense as it can just assume the upper 32bit to be
209        * whatever).
210        * Maybe the caller should be able to explicitly set this, but
211        * this should cover all the 3-channel formats.
212        */
213       if (((src_width / 24) * 24 == src_width) &&
214            util_is_power_of_two_or_zero(src_width / 24)) {
215           LLVMSetAlignment(res, src_width / 24);
216       } else {
217          LLVMSetAlignment(res, 1);
218       }
219    }
220 
221    assert(src_width <= dst_type.width * dst_type.length);
222    if (src_width < dst_type.width * dst_type.length) {
223       if (dst_type.length > 1) {
224          res = lp_build_pad_vector(gallivm, res, dst_type.length);
225          /*
226           * vector_justify hopefully a non-issue since we only deal
227           * with src_width >= 32 here?
228           */
229       } else {
230          LLVMTypeRef dst_elem_type = lp_build_vec_type(gallivm, dst_type);
231 
232          /*
233           * Only valid if src_ptr_type is int type...
234           */
235          res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");
236 
237 #if UTIL_ARCH_BIG_ENDIAN
238          if (vector_justify) {
239          res = LLVMBuildShl(gallivm->builder, res,
240                             LLVMConstInt(dst_elem_type,
241                                          dst_type.width - src_width, 0), "");
242          }
243          if (src_width == 48) {
244             /* Load 3x16 bit vector.
245              * The sequence of loads on big-endian hardware proceeds as follows.
246              * 16-bit fields are denoted by X, Y, Z, and 0.  In memory, the sequence
247              * of three fields appears in the order X, Y, Z.
248              *
249              * Load 32-bit word: 0.0.X.Y
250              * Load 16-bit halfword: 0.0.0.Z
251              * Rotate left: 0.X.Y.0
252              * Bitwise OR: 0.X.Y.Z
253              *
254              * The order in which we need the fields in the result is 0.Z.Y.X,
255              * the same as on little-endian; permute 16-bit fields accordingly
256              * within 64-bit register:
257              */
258             LLVMValueRef shuffles[4] = {
259                lp_build_const_int32(gallivm, 2),
260                lp_build_const_int32(gallivm, 1),
261                lp_build_const_int32(gallivm, 0),
262                lp_build_const_int32(gallivm, 3),
263             };
264             res = LLVMBuildBitCast(gallivm->builder, res,
265                                    lp_build_vec_type(gallivm, lp_type_uint_vec(16, 4*16)), "");
266             res = LLVMBuildShuffleVector(gallivm->builder, res, res, LLVMConstVector(shuffles, 4), "");
267             res = LLVMBuildBitCast(gallivm->builder, res, dst_elem_type, "");
268          }
269 #endif
270       }
271    }
272    return res;
273 }
274 
275 
276 
277 
278 static LLVMValueRef
lp_build_gather_avx2(struct gallivm_state * gallivm,unsigned length,unsigned src_width,struct lp_type dst_type,LLVMValueRef base_ptr,LLVMValueRef offsets)279 lp_build_gather_avx2(struct gallivm_state *gallivm,
280                      unsigned length,
281                      unsigned src_width,
282                      struct lp_type dst_type,
283                      LLVMValueRef base_ptr,
284                      LLVMValueRef offsets)
285 {
286    LLVMBuilderRef builder = gallivm->builder;
287    LLVMTypeRef src_type, src_vec_type;
288    LLVMValueRef res;
289    struct lp_type res_type = dst_type;
290    res_type.length *= length;
291 
292    if (dst_type.floating) {
293       src_type = src_width == 64 ? LLVMDoubleTypeInContext(gallivm->context) :
294                                    LLVMFloatTypeInContext(gallivm->context);
295    } else {
296       src_type = LLVMIntTypeInContext(gallivm->context, src_width);
297    }
298    src_vec_type = LLVMVectorType(src_type, length);
299 
300    /* XXX should allow hw scaling (can handle i8, i16, i32, i64 for x86) */
301    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
302 
303    if (0) {
304       /*
305        * XXX: This will cause LLVM pre 3.7 to hang; it works on LLVM 3.8 but
306        * will not use the AVX2 gather instrinsics (even with llvm 4.0), at
307        * least with Haswell. See
308        * http://lists.llvm.org/pipermail/llvm-dev/2016-January/094448.html
309        * And the generated code doing the emulation is quite a bit worse
310        * than what we get by doing it ourselves too.
311        */
312       LLVMTypeRef i32_type = LLVMIntTypeInContext(gallivm->context, 32);
313       LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);
314       LLVMTypeRef i1_type = LLVMIntTypeInContext(gallivm->context, 1);
315       LLVMTypeRef i1_vec_type = LLVMVectorType(i1_type, length);
316       LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
317       LLVMValueRef src_ptr;
318 
319       base_ptr = LLVMBuildBitCast(builder, base_ptr, src_ptr_type, "");
320 
321       /* Rescale offsets from bytes to elements */
322       LLVMValueRef scale = LLVMConstInt(i32_type, src_width/8, 0);
323       scale = lp_build_broadcast(gallivm, i32_vec_type, scale);
324       assert(LLVMTypeOf(offsets) == i32_vec_type);
325       offsets = LLVMBuildSDiv(builder, offsets, scale, "");
326 
327       src_ptr = LLVMBuildGEP(builder, base_ptr, &offsets, 1, "vector-gep");
328 
329       char intrinsic[64];
330       snprintf(intrinsic, sizeof intrinsic, "llvm.masked.gather.v%u%s%u",
331                length, dst_type.floating ? "f" : "i", src_width);
332       LLVMValueRef alignment = LLVMConstInt(i32_type, src_width/8, 0);
333       LLVMValueRef mask = LLVMConstAllOnes(i1_vec_type);
334       LLVMValueRef passthru = LLVMGetUndef(src_vec_type);
335 
336       LLVMValueRef args[] = { src_ptr, alignment, mask, passthru };
337 
338       res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 4, 0);
339    } else {
340       LLVMTypeRef i8_type = LLVMIntTypeInContext(gallivm->context, 8);
341       const char *intrinsic = NULL;
342       unsigned l_idx = 0;
343 
344       assert(src_width == 32 || src_width == 64);
345       if (src_width == 32) {
346          assert(length == 4 || length == 8);
347       } else {
348          assert(length == 2 || length == 4);
349       }
350 
351       static const char *intrinsics[2][2][2] = {
352 
353          {{"llvm.x86.avx2.gather.d.d",
354            "llvm.x86.avx2.gather.d.d.256"},
355           {"llvm.x86.avx2.gather.d.q",
356            "llvm.x86.avx2.gather.d.q.256"}},
357 
358          {{"llvm.x86.avx2.gather.d.ps",
359            "llvm.x86.avx2.gather.d.ps.256"},
360           {"llvm.x86.avx2.gather.d.pd",
361            "llvm.x86.avx2.gather.d.pd.256"}},
362       };
363 
364       if ((src_width == 32 && length == 8) ||
365           (src_width == 64 && length == 4)) {
366          l_idx = 1;
367       }
368       intrinsic = intrinsics[dst_type.floating][src_width == 64][l_idx];
369 
370       LLVMValueRef passthru = LLVMGetUndef(src_vec_type);
371       LLVMValueRef mask = LLVMConstAllOnes(src_vec_type);
372       mask = LLVMConstBitCast(mask, src_vec_type);
373       LLVMValueRef scale = LLVMConstInt(i8_type, 1, 0);
374 
375       LLVMValueRef args[] = { passthru, base_ptr, offsets, mask, scale };
376 
377       res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 5, 0);
378    }
379    res = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, res_type), "");
380 
381    return res;
382 }
383 
384 
385 /**
386  * Gather elements from scatter positions in memory into a single vector.
387  * Use for fetching texels from a texture.
388  * For SSE, typical values are length=4, src_width=32, dst_width=32.
389  *
390  * When src_width < dst_width, the return value can be justified in
391  * one of two ways:
392  * "integer justification" is used when the caller treats the destination
393  * as a packed integer bitmask, as described by the channels' "shift" and
394  * "width" fields;
395  * "vector justification" is used when the caller casts the destination
396  * to a vector and needs channel X to be in vector element 0.
397  *
398  * @param length length of the offsets
399  * @param src_width src element width in bits
400  * @param dst_type result element type (src will be expanded to fit,
401  *        but truncation is not allowed)
402  *        (this may be a vector, must be pot sized)
403  * @param aligned whether the data is guaranteed to be aligned (to src_width)
404  * @param base_ptr base pointer, needs to be a i8 pointer type.
405  * @param offsets vector with offsets
406  * @param vector_justify select vector rather than integer justification
407  */
408 LLVMValueRef
lp_build_gather(struct gallivm_state * gallivm,unsigned length,unsigned src_width,struct lp_type dst_type,boolean aligned,LLVMValueRef base_ptr,LLVMValueRef offsets,boolean vector_justify)409 lp_build_gather(struct gallivm_state *gallivm,
410                 unsigned length,
411                 unsigned src_width,
412                 struct lp_type dst_type,
413                 boolean aligned,
414                 LLVMValueRef base_ptr,
415                 LLVMValueRef offsets,
416                 boolean vector_justify)
417 {
418    LLVMValueRef res;
419    boolean need_expansion = src_width < dst_type.width * dst_type.length;
420    boolean vec_fetch;
421    struct lp_type fetch_type, fetch_dst_type;
422    LLVMTypeRef src_type;
423 
424    assert(src_width <= dst_type.width * dst_type.length);
425 
426    /*
427     * This is quite a mess...
428     * Figure out if the fetch should be done as:
429     * a) scalar or vector
430     * b) float or int
431     *
432     * As an example, for a 96bit fetch expanded into 4x32bit, it is better
433     * to use (3x32bit) vector type (then pad the vector). Otherwise, the
434     * zext will cause extra instructions.
435     * However, the same isn't true for 3x16bit (the codegen for that is
436     * completely worthless on x86 simd, and for 3x8bit is is way worse
437     * still, don't try that... (To get really good code out of llvm for
438     * these cases, the only way is to decompose the fetches manually
439     * into 1x32bit/1x16bit, or 1x16/1x8bit respectively, although the latter
440     * case requires sse41, otherwise simple scalar zext is way better.
441     * But probably not important enough, so don't bother.)
442     * Also, we try to honor the floating bit of destination (but isn't
443     * possible if caller asks for instance for 2x32bit dst_type with
444     * 48bit fetch - the idea would be to use 3x16bit fetch, pad and
445     * cast to 2x32f type, so the fetch is always int and on top of that
446     * we avoid the vec pad and use scalar zext due the above mentioned
447     * issue).
448     * Note this is optimized for x86 sse2 and up backend. Could be tweaked
449     * for other archs if necessary...
450     */
451    if (((src_width % 32) == 0) && ((src_width % dst_type.width) == 0) &&
452        (dst_type.length > 1)) {
453       /* use vector fetch (if dst_type is vector) */
454       vec_fetch = TRUE;
455       if (dst_type.floating) {
456          fetch_type = lp_type_float_vec(dst_type.width, src_width);
457       } else {
458          fetch_type = lp_type_int_vec(dst_type.width, src_width);
459       }
460       /* intentionally not using lp_build_vec_type here */
461       src_type = LLVMVectorType(lp_build_elem_type(gallivm, fetch_type),
462                                 fetch_type.length);
463       fetch_dst_type = fetch_type;
464       fetch_dst_type.length = dst_type.length;
465     } else {
466       /* use scalar fetch */
467       vec_fetch = FALSE;
468       if (dst_type.floating && ((src_width == 32) || (src_width == 64))) {
469          fetch_type = lp_type_float(src_width);
470       } else {
471          fetch_type = lp_type_int(src_width);
472       }
473       src_type = lp_build_vec_type(gallivm, fetch_type);
474       fetch_dst_type = fetch_type;
475       fetch_dst_type.width = dst_type.width * dst_type.length;
476    }
477 
478    if (length == 1) {
479       /* Scalar */
480       res = lp_build_gather_elem_vec(gallivm, length,
481                                      src_width, src_type, fetch_dst_type,
482                                      aligned, base_ptr, offsets, 0,
483                                      vector_justify);
484       return LLVMBuildBitCast(gallivm->builder, res,
485                               lp_build_vec_type(gallivm, dst_type), "");
486       /*
487        * Excluding expansion from these paths because if you need it for
488        * 32bit/64bit fetches you're doing it wrong (this is gather, not
489        * conversion) and it would be awkward for floats.
490        */
491    } else if (util_get_cpu_caps()->has_avx2 && !need_expansion &&
492               src_width == 32 && (length == 4 || length == 8)) {
493       return lp_build_gather_avx2(gallivm, length, src_width, dst_type,
494                                   base_ptr, offsets);
495    /*
496     * This looks bad on paper wrt throughtput/latency on Haswell.
497     * Even on Broadwell it doesn't look stellar.
498     * Albeit no measurements were done (but tested to work).
499     * Should definitely enable on Skylake.
500     * (In general, should be more of a win if the fetch is 256bit wide -
501     * this is true for the 32bit case above too.)
502     */
503    } else if (0 && util_get_cpu_caps()->has_avx2 && !need_expansion &&
504               src_width == 64 && (length == 2 || length == 4)) {
505       return lp_build_gather_avx2(gallivm, length, src_width, dst_type,
506                                   base_ptr, offsets);
507    } else {
508       /* Vector */
509 
510       LLVMValueRef elems[LP_MAX_VECTOR_WIDTH / 8];
511       unsigned i;
512       boolean vec_zext = FALSE;
513       struct lp_type res_type, gather_res_type;
514       LLVMTypeRef res_t, gather_res_t;
515 
516       res_type = fetch_dst_type;
517       res_type.length *= length;
518       gather_res_type = res_type;
519 
520       if (src_width == 16 && dst_type.width == 32 && dst_type.length == 1) {
521          /*
522           * Note that llvm is never able to optimize zext/insert combos
523           * directly (i.e. zero the simd reg, then place the elements into
524           * the appropriate place directly). (I think this has to do with
525           * scalar/vector transition.) And scalar 16->32bit zext simd loads
526           * aren't possible (instead loading to scalar reg first).
527           * No idea about other archs...
528           * We could do this manually, but instead we just use a vector
529           * zext, which is simple enough (and, in fact, llvm might optimize
530           * this away).
531           * (We're not trying that with other bit widths as that might not be
532           * easier, in particular with 8 bit values at least with only sse2.)
533           */
534          assert(vec_fetch == FALSE);
535          gather_res_type.width /= 2;
536          fetch_dst_type = fetch_type;
537          src_type = lp_build_vec_type(gallivm, fetch_type);
538          vec_zext = TRUE;
539       }
540       res_t = lp_build_vec_type(gallivm, res_type);
541       gather_res_t = lp_build_vec_type(gallivm, gather_res_type);
542       res = LLVMGetUndef(gather_res_t);
543       for (i = 0; i < length; ++i) {
544          LLVMValueRef index = lp_build_const_int32(gallivm, i);
545          elems[i] = lp_build_gather_elem_vec(gallivm, length,
546                                              src_width, src_type, fetch_dst_type,
547                                              aligned, base_ptr, offsets, i,
548                                              vector_justify);
549          if (!vec_fetch) {
550             res = LLVMBuildInsertElement(gallivm->builder, res, elems[i], index, "");
551          }
552       }
553       if (vec_zext) {
554          res = LLVMBuildZExt(gallivm->builder, res, res_t, "");
555          if (vector_justify) {
556 #if UTIL_ARCH_BIG_ENDIAN
557             unsigned sv = dst_type.width - src_width;
558             res = LLVMBuildShl(gallivm->builder, res,
559                                lp_build_const_int_vec(gallivm, res_type, sv), "");
560 #endif
561          }
562       }
563       if (vec_fetch) {
564          /*
565           * Do bitcast now otherwise llvm might get some funny ideas wrt
566           * float/int types...
567           */
568          for (i = 0; i < length; i++) {
569             elems[i] = LLVMBuildBitCast(gallivm->builder, elems[i],
570                                         lp_build_vec_type(gallivm, dst_type), "");
571          }
572          res = lp_build_concat(gallivm, elems, dst_type, length);
573       } else {
574          struct lp_type really_final_type = dst_type;
575          assert(res_type.length * res_type.width ==
576                 dst_type.length * dst_type.width * length);
577          really_final_type.length *= length;
578          res = LLVMBuildBitCast(gallivm->builder, res,
579                                 lp_build_vec_type(gallivm, really_final_type), "");
580       }
581    }
582 
583    return res;
584 }
585 
586 LLVMValueRef
lp_build_gather_values(struct gallivm_state * gallivm,LLVMValueRef * values,unsigned value_count)587 lp_build_gather_values(struct gallivm_state * gallivm,
588                        LLVMValueRef * values,
589                        unsigned value_count)
590 {
591    LLVMTypeRef vec_type = LLVMVectorType(LLVMTypeOf(values[0]), value_count);
592    LLVMBuilderRef builder = gallivm->builder;
593    LLVMValueRef vec = LLVMGetUndef(vec_type);
594    unsigned i;
595 
596    for (i = 0; i < value_count; i++) {
597       LLVMValueRef index = lp_build_const_int32(gallivm, i);
598       vec = LLVMBuildInsertElement(builder, vec, values[i], index, "");
599    }
600    return vec;
601 }
602