1/// @ref gtx_matrix_decompose
2/// @file glm/gtx/matrix_decompose.inl
3
4namespace glm{
5namespace detail
6{
7	/// Make a linear combination of two vectors and return the result.
8	// result = (a * ascl) + (b * bscl)
9	template<typename T, precision P>
10	GLM_FUNC_QUALIFIER vec<3, T, P> combine(
11		vec<3, T, P> const & a,
12		vec<3, T, P> const & b,
13		T ascl, T bscl)
14	{
15		return (a * ascl) + (b * bscl);
16	}
17
18	template<typename T, precision P>
19	GLM_FUNC_QUALIFIER vec<3, T, P> scale(vec<3, T, P> const& v, T desiredLength)
20	{
21		return v * desiredLength / length(v);
22	}
23}//namespace detail
24
25	// Matrix decompose
26	// http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
27	// Decomposes the mode matrix to translations,rotation scale components
28
29	template<typename T, precision P>
30	GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, P> const & ModelMatrix, vec<3, T, P> & Scale, tquat<T, P> & Orientation, vec<3, T, P> & Translation, vec<3, T, P> & Skew, vec<4, T, P> & Perspective)
31	{
32		mat<4, 4, T, P> LocalMatrix(ModelMatrix);
33
34		// Normalize the matrix.
35		if(LocalMatrix[3][3] == static_cast<T>(0))
36			return false;
37
38		for(length_t i = 0; i < 4; ++i)
39		for(length_t j = 0; j < 4; ++j)
40			LocalMatrix[i][j] /= LocalMatrix[3][3];
41
42		// perspectiveMatrix is used to solve for perspective, but it also provides
43		// an easy way to test for singularity of the upper 3x3 component.
44		mat<4, 4, T, P> PerspectiveMatrix(LocalMatrix);
45
46		for(length_t i = 0; i < 3; i++)
47			PerspectiveMatrix[i][3] = static_cast<T>(0);
48		PerspectiveMatrix[3][3] = static_cast<T>(1);
49
50		/// TODO: Fixme!
51		if(determinant(PerspectiveMatrix) == static_cast<T>(0))
52			return false;
53
54		// First, isolate perspective.  This is the messiest.
55		if(LocalMatrix[0][3] != static_cast<T>(0) || LocalMatrix[1][3] != static_cast<T>(0) || LocalMatrix[2][3] != static_cast<T>(0))
56		{
57			// rightHandSide is the right hand side of the equation.
58			vec<4, T, P> RightHandSide;
59			RightHandSide[0] = LocalMatrix[0][3];
60			RightHandSide[1] = LocalMatrix[1][3];
61			RightHandSide[2] = LocalMatrix[2][3];
62			RightHandSide[3] = LocalMatrix[3][3];
63
64			// Solve the equation by inverting PerspectiveMatrix and multiplying
65			// rightHandSide by the inverse.  (This is the easiest way, not
66			// necessarily the best.)
67			mat<4, 4, T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);//   inverse(PerspectiveMatrix, inversePerspectiveMatrix);
68			mat<4, 4, T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);//   transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
69
70			Perspective = TransposedInversePerspectiveMatrix * RightHandSide;
71			//  v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
72
73			// Clear the perspective partition
74			LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0);
75			LocalMatrix[3][3] = static_cast<T>(1);
76		}
77		else
78		{
79			// No perspective.
80			Perspective = vec<4, T, P>(0, 0, 0, 1);
81		}
82
83		// Next take care of translation (easy).
84		Translation = vec<3, T, P>(LocalMatrix[3]);
85		LocalMatrix[3] = vec<4, T, P>(0, 0, 0, LocalMatrix[3].w);
86
87		vec<3, T, P> Row[3], Pdum3;
88
89		// Now get scale and shear.
90		for(length_t i = 0; i < 3; ++i)
91			for(int j = 0; j < 3; ++j)
92				Row[i][j] = LocalMatrix[i][j];
93
94		// Compute X scale factor and normalize first row.
95		Scale.x = length(Row[0]);// v3Length(Row[0]);
96
97		Row[0] = detail::scale(Row[0], static_cast<T>(1));
98
99		// Compute XY shear factor and make 2nd row orthogonal to 1st.
100		Skew.z = dot(Row[0], Row[1]);
101		Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);
102
103		// Now, compute Y scale and normalize 2nd row.
104		Scale.y = length(Row[1]);
105		Row[1] = detail::scale(Row[1], static_cast<T>(1));
106		Skew.z /= Scale.y;
107
108		// Compute XZ and YZ shears, orthogonalize 3rd row.
109		Skew.y = glm::dot(Row[0], Row[2]);
110		Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
111		Skew.x = glm::dot(Row[1], Row[2]);
112		Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);
113
114		// Next, get Z scale and normalize 3rd row.
115		Scale.z = length(Row[2]);
116		Row[2] = detail::scale(Row[2], static_cast<T>(1));
117		Skew.y /= Scale.z;
118		Skew.x /= Scale.z;
119
120		// At this point, the matrix (in rows[]) is orthonormal.
121		// Check for a coordinate system flip.  If the determinant
122		// is -1, then negate the matrix and the scaling factors.
123		Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
124		if(dot(Row[0], Pdum3) < 0)
125		{
126			for(length_t i = 0; i < 3; i++)
127			{
128				Scale[i] *= static_cast<T>(-1);
129				Row[i] *= static_cast<T>(-1);
130			}
131		}
132
133		// Now, get the rotations out, as described in the gem.
134
135		// FIXME - Add the ability to return either quaternions (which are
136		// easier to recompose with) or Euler angles (rx, ry, rz), which
137		// are easier for authors to deal with. The latter will only be useful
138		// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
139		// will leave the Euler angle code here for now.
140
141		// ret.rotateY = asin(-Row[0][2]);
142		// if (cos(ret.rotateY) != 0) {
143		//     ret.rotateX = atan2(Row[1][2], Row[2][2]);
144		//     ret.rotateZ = atan2(Row[0][1], Row[0][0]);
145		// } else {
146		//     ret.rotateX = atan2(-Row[2][0], Row[1][1]);
147		//     ret.rotateZ = 0;
148		// }
149
150		int i, j, k = 0;
151		float root, trace = Row[0].x + Row[1].y + Row[2].z;
152		if(trace > static_cast<T>(0))
153		{
154			root = sqrt(trace + static_cast<T>(1.0));
155			Orientation.w = static_cast<T>(0.5) * root;
156			root = static_cast<T>(0.5) / root;
157			Orientation.x = root * (Row[1].z - Row[2].y);
158			Orientation.y = root * (Row[2].x - Row[0].z);
159			Orientation.z = root * (Row[0].y - Row[1].x);
160		} // End if > 0
161		else
162		{
163			static int Next[3] = {1, 2, 0};
164			i = 0;
165			if(Row[1].y > Row[0].x) i = 1;
166			if(Row[2].z > Row[i][i]) i = 2;
167			j = Next[i];
168			k = Next[j];
169
170			root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast<T>(1.0));
171
172			Orientation[i] = static_cast<T>(0.5) * root;
173			root = static_cast<T>(0.5) / root;
174			Orientation[j] = root * (Row[i][j] + Row[j][i]);
175			Orientation[k] = root * (Row[i][k] + Row[k][i]);
176			Orientation.w = root * (Row[j][k] - Row[k][j]);
177		} // End if <= 0
178
179		return true;
180	}
181}//namespace glm
182