1 #include <iostream>
2 #include "precomp.hpp"
3 #include "epnp.h"
4 
5 namespace cv
6 {
7 
epnp(const Mat & cameraMatrix,const Mat & opoints,const Mat & ipoints)8 epnp::epnp(const Mat& cameraMatrix, const Mat& opoints, const Mat& ipoints)
9 {
10   if (cameraMatrix.depth() == CV_32F)
11       init_camera_parameters<float>(cameraMatrix);
12   else
13     init_camera_parameters<double>(cameraMatrix);
14 
15   number_of_correspondences = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
16 
17   pws.resize(3 * number_of_correspondences);
18   us.resize(2 * number_of_correspondences);
19 
20   if (opoints.depth() == ipoints.depth())
21   {
22     if (opoints.depth() == CV_32F)
23       init_points<Point3f,Point2f>(opoints, ipoints);
24     else
25       init_points<Point3d,Point2d>(opoints, ipoints);
26   }
27   else if (opoints.depth() == CV_32F)
28     init_points<Point3f,Point2d>(opoints, ipoints);
29   else
30     init_points<Point3d,Point2f>(opoints, ipoints);
31 
32   alphas.resize(4 * number_of_correspondences);
33   pcs.resize(3 * number_of_correspondences);
34 
35   max_nr = 0;
36   A1 = NULL;
37   A2 = NULL;
38 }
39 
~epnp()40 epnp::~epnp()
41 {
42     if (A1)
43         delete[] A1;
44     if (A2)
45         delete[] A2;
46 }
47 
choose_control_points(void)48 void epnp::choose_control_points(void)
49 {
50   // Take C0 as the reference points centroid:
51   cws[0][0] = cws[0][1] = cws[0][2] = 0;
52   for(int i = 0; i < number_of_correspondences; i++)
53     for(int j = 0; j < 3; j++)
54       cws[0][j] += pws[3 * i + j];
55 
56   for(int j = 0; j < 3; j++)
57     cws[0][j] /= number_of_correspondences;
58 
59 
60   // Take C1, C2, and C3 from PCA on the reference points:
61   CvMat * PW0 = cvCreateMat(number_of_correspondences, 3, CV_64F);
62 
63   double pw0tpw0[3 * 3] = {}, dc[3] = {}, uct[3 * 3] = {};
64   CvMat PW0tPW0 = cvMat(3, 3, CV_64F, pw0tpw0);
65   CvMat DC      = cvMat(3, 1, CV_64F, dc);
66   CvMat UCt     = cvMat(3, 3, CV_64F, uct);
67 
68   for(int i = 0; i < number_of_correspondences; i++)
69     for(int j = 0; j < 3; j++)
70       PW0->data.db[3 * i + j] = pws[3 * i + j] - cws[0][j];
71 
72   cvMulTransposed(PW0, &PW0tPW0, 1);
73   cvSVD(&PW0tPW0, &DC, &UCt, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
74 
75   cvReleaseMat(&PW0);
76 
77   for(int i = 1; i < 4; i++) {
78     double k = sqrt(dc[i - 1] / number_of_correspondences);
79     for(int j = 0; j < 3; j++)
80       cws[i][j] = cws[0][j] + k * uct[3 * (i - 1) + j];
81   }
82 }
83 
compute_barycentric_coordinates(void)84 void epnp::compute_barycentric_coordinates(void)
85 {
86   double cc[3 * 3] = {}, cc_inv[3 * 3] = {};
87   CvMat CC     = cvMat(3, 3, CV_64F, cc);
88   CvMat CC_inv = cvMat(3, 3, CV_64F, cc_inv);
89 
90   for(int i = 0; i < 3; i++)
91     for(int j = 1; j < 4; j++)
92       cc[3 * i + j - 1] = cws[j][i] - cws[0][i];
93 
94   cvInvert(&CC, &CC_inv, CV_SVD);
95   double * ci = cc_inv;
96   for(int i = 0; i < number_of_correspondences; i++) {
97     double * pi = &pws[0] + 3 * i;
98     double * a = &alphas[0] + 4 * i;
99 
100     for(int j = 0; j < 3; j++)
101     {
102       a[1 + j] =
103           ci[3 * j    ] * (pi[0] - cws[0][0]) +
104           ci[3 * j + 1] * (pi[1] - cws[0][1]) +
105           ci[3 * j + 2] * (pi[2] - cws[0][2]);
106     }
107     a[0] = 1.0f - a[1] - a[2] - a[3];
108   }
109 }
110 
fill_M(CvMat * M,const int row,const double * as,const double u,const double v)111 void epnp::fill_M(CvMat * M,
112       const int row, const double * as, const double u, const double v)
113 {
114   double * M1 = M->data.db + row * 12;
115   double * M2 = M1 + 12;
116 
117   for(int i = 0; i < 4; i++) {
118     M1[3 * i    ] = as[i] * fu;
119     M1[3 * i + 1] = 0.0;
120     M1[3 * i + 2] = as[i] * (uc - u);
121 
122     M2[3 * i    ] = 0.0;
123     M2[3 * i + 1] = as[i] * fv;
124     M2[3 * i + 2] = as[i] * (vc - v);
125   }
126 }
127 
compute_ccs(const double * betas,const double * ut)128 void epnp::compute_ccs(const double * betas, const double * ut)
129 {
130   for(int i = 0; i < 4; i++)
131     ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0f;
132 
133   for(int i = 0; i < 4; i++) {
134     const double * v = ut + 12 * (11 - i);
135     for(int j = 0; j < 4; j++)
136       for(int k = 0; k < 3; k++)
137         ccs[j][k] += betas[i] * v[3 * j + k];
138   }
139 }
140 
compute_pcs(void)141 void epnp::compute_pcs(void)
142 {
143   for(int i = 0; i < number_of_correspondences; i++) {
144     double * a = &alphas[0] + 4 * i;
145     double * pc = &pcs[0] + 3 * i;
146 
147     for(int j = 0; j < 3; j++)
148       pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j];
149   }
150 }
151 
compute_pose(Mat & R,Mat & t)152 void epnp::compute_pose(Mat& R, Mat& t)
153 {
154   choose_control_points();
155   compute_barycentric_coordinates();
156 
157   CvMat * M = cvCreateMat(2 * number_of_correspondences, 12, CV_64F);
158 
159   for(int i = 0; i < number_of_correspondences; i++)
160     fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]);
161 
162   double mtm[12 * 12] = {}, d[12] = {}, ut[12 * 12] = {};
163   CvMat MtM = cvMat(12, 12, CV_64F, mtm);
164   CvMat D   = cvMat(12,  1, CV_64F, d);
165   CvMat Ut  = cvMat(12, 12, CV_64F, ut);
166 
167   cvMulTransposed(M, &MtM, 1);
168   cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
169   cvReleaseMat(&M);
170 
171   double l_6x10[6 * 10] = {}, rho[6] = {};
172   CvMat L_6x10 = cvMat(6, 10, CV_64F, l_6x10);
173   CvMat Rho    = cvMat(6,  1, CV_64F, rho);
174 
175   compute_L_6x10(ut, l_6x10);
176   compute_rho(rho);
177 
178   double Betas[4][4] = {}, rep_errors[4] = {};
179   double Rs[4][3][3] = {}, ts[4][3] = {};
180 
181   find_betas_approx_1(&L_6x10, &Rho, Betas[1]);
182   gauss_newton(&L_6x10, &Rho, Betas[1]);
183   rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);
184 
185   find_betas_approx_2(&L_6x10, &Rho, Betas[2]);
186   gauss_newton(&L_6x10, &Rho, Betas[2]);
187   rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);
188 
189   find_betas_approx_3(&L_6x10, &Rho, Betas[3]);
190   gauss_newton(&L_6x10, &Rho, Betas[3]);
191   rep_errors[3] = compute_R_and_t(ut, Betas[3], Rs[3], ts[3]);
192 
193   int N = 1;
194   if (rep_errors[2] < rep_errors[1]) N = 2;
195   if (rep_errors[3] < rep_errors[N]) N = 3;
196 
197   Mat(3, 1, CV_64F, ts[N]).copyTo(t);
198   Mat(3, 3, CV_64F, Rs[N]).copyTo(R);
199 }
200 
copy_R_and_t(const double R_src[3][3],const double t_src[3],double R_dst[3][3],double t_dst[3])201 void epnp::copy_R_and_t(const double R_src[3][3], const double t_src[3],
202       double R_dst[3][3], double t_dst[3])
203 {
204   for(int i = 0; i < 3; i++) {
205     for(int j = 0; j < 3; j++)
206       R_dst[i][j] = R_src[i][j];
207     t_dst[i] = t_src[i];
208   }
209 }
210 
dist2(const double * p1,const double * p2)211 double epnp::dist2(const double * p1, const double * p2)
212 {
213   return
214     (p1[0] - p2[0]) * (p1[0] - p2[0]) +
215     (p1[1] - p2[1]) * (p1[1] - p2[1]) +
216     (p1[2] - p2[2]) * (p1[2] - p2[2]);
217 }
218 
dot(const double * v1,const double * v2)219 double epnp::dot(const double * v1, const double * v2)
220 {
221   return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
222 }
223 
estimate_R_and_t(double R[3][3],double t[3])224 void epnp::estimate_R_and_t(double R[3][3], double t[3])
225 {
226   double pc0[3] = {}, pw0[3] = {};
227 
228   pc0[0] = pc0[1] = pc0[2] = 0.0;
229   pw0[0] = pw0[1] = pw0[2] = 0.0;
230 
231   for(int i = 0; i < number_of_correspondences; i++) {
232     const double * pc = &pcs[3 * i];
233     const double * pw = &pws[3 * i];
234 
235     for(int j = 0; j < 3; j++) {
236       pc0[j] += pc[j];
237       pw0[j] += pw[j];
238     }
239   }
240   for(int j = 0; j < 3; j++) {
241     pc0[j] /= number_of_correspondences;
242     pw0[j] /= number_of_correspondences;
243   }
244 
245   double abt[3 * 3] = {}, abt_d[3] = {}, abt_u[3 * 3] = {}, abt_v[3 * 3] = {};
246   CvMat ABt   = cvMat(3, 3, CV_64F, abt);
247   CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d);
248   CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u);
249   CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v);
250 
251   cvSetZero(&ABt);
252   for(int i = 0; i < number_of_correspondences; i++) {
253     double * pc = &pcs[3 * i];
254     double * pw = &pws[3 * i];
255 
256     for(int j = 0; j < 3; j++) {
257       abt[3 * j    ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
258       abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
259       abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
260     }
261   }
262 
263   cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A);
264 
265   for(int i = 0; i < 3; i++)
266     for(int j = 0; j < 3; j++)
267       R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);
268 
269   const double det =
270     R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] -
271     R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1];
272 
273   if (det < 0) {
274     R[2][0] = -R[2][0];
275     R[2][1] = -R[2][1];
276     R[2][2] = -R[2][2];
277   }
278 
279   t[0] = pc0[0] - dot(R[0], pw0);
280   t[1] = pc0[1] - dot(R[1], pw0);
281   t[2] = pc0[2] - dot(R[2], pw0);
282 }
283 
solve_for_sign(void)284 void epnp::solve_for_sign(void)
285 {
286   if (pcs[2] < 0.0) {
287     for(int i = 0; i < 4; i++)
288       for(int j = 0; j < 3; j++)
289         ccs[i][j] = -ccs[i][j];
290 
291     for(int i = 0; i < number_of_correspondences; i++) {
292       pcs[3 * i    ] = -pcs[3 * i];
293       pcs[3 * i + 1] = -pcs[3 * i + 1];
294       pcs[3 * i + 2] = -pcs[3 * i + 2];
295     }
296   }
297 }
298 
compute_R_and_t(const double * ut,const double * betas,double R[3][3],double t[3])299 double epnp::compute_R_and_t(const double * ut, const double * betas,
300            double R[3][3], double t[3])
301 {
302   compute_ccs(betas, ut);
303   compute_pcs();
304 
305   solve_for_sign();
306 
307   estimate_R_and_t(R, t);
308 
309   return reprojection_error(R, t);
310 }
311 
reprojection_error(const double R[3][3],const double t[3])312 double epnp::reprojection_error(const double R[3][3], const double t[3])
313 {
314   double sum2 = 0.0;
315 
316   for(int i = 0; i < number_of_correspondences; i++) {
317     double * pw = &pws[3 * i];
318     double Xc = dot(R[0], pw) + t[0];
319     double Yc = dot(R[1], pw) + t[1];
320     double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]);
321     double ue = uc + fu * Xc * inv_Zc;
322     double ve = vc + fv * Yc * inv_Zc;
323     double u = us[2 * i], v = us[2 * i + 1];
324 
325     sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) );
326   }
327 
328   return sum2 / number_of_correspondences;
329 }
330 
331 // betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
332 // betas_approx_1 = [B11 B12     B13         B14]
333 
find_betas_approx_1(const CvMat * L_6x10,const CvMat * Rho,double * betas)334 void epnp::find_betas_approx_1(const CvMat * L_6x10, const CvMat * Rho,
335              double * betas)
336 {
337   double l_6x4[6 * 4] = {}, b4[4] = {};
338   CvMat L_6x4 = cvMat(6, 4, CV_64F, l_6x4);
339   CvMat B4    = cvMat(4, 1, CV_64F, b4);
340 
341   for(int i = 0; i < 6; i++) {
342     cvmSet(&L_6x4, i, 0, cvmGet(L_6x10, i, 0));
343     cvmSet(&L_6x4, i, 1, cvmGet(L_6x10, i, 1));
344     cvmSet(&L_6x4, i, 2, cvmGet(L_6x10, i, 3));
345     cvmSet(&L_6x4, i, 3, cvmGet(L_6x10, i, 6));
346   }
347 
348   cvSolve(&L_6x4, Rho, &B4, CV_SVD);
349 
350   if (b4[0] < 0) {
351     betas[0] = sqrt(-b4[0]);
352     betas[1] = -b4[1] / betas[0];
353     betas[2] = -b4[2] / betas[0];
354     betas[3] = -b4[3] / betas[0];
355   } else {
356     betas[0] = sqrt(b4[0]);
357     betas[1] = b4[1] / betas[0];
358     betas[2] = b4[2] / betas[0];
359     betas[3] = b4[3] / betas[0];
360   }
361 }
362 
363 // betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
364 // betas_approx_2 = [B11 B12 B22                            ]
365 
find_betas_approx_2(const CvMat * L_6x10,const CvMat * Rho,double * betas)366 void epnp::find_betas_approx_2(const CvMat * L_6x10, const CvMat * Rho,
367              double * betas)
368 {
369   double l_6x3[6 * 3] = {}, b3[3] = {};
370   CvMat L_6x3  = cvMat(6, 3, CV_64F, l_6x3);
371   CvMat B3     = cvMat(3, 1, CV_64F, b3);
372 
373   for(int i = 0; i < 6; i++) {
374     cvmSet(&L_6x3, i, 0, cvmGet(L_6x10, i, 0));
375     cvmSet(&L_6x3, i, 1, cvmGet(L_6x10, i, 1));
376     cvmSet(&L_6x3, i, 2, cvmGet(L_6x10, i, 2));
377   }
378 
379   cvSolve(&L_6x3, Rho, &B3, CV_SVD);
380 
381   if (b3[0] < 0) {
382     betas[0] = sqrt(-b3[0]);
383     betas[1] = (b3[2] < 0) ? sqrt(-b3[2]) : 0.0;
384   } else {
385     betas[0] = sqrt(b3[0]);
386     betas[1] = (b3[2] > 0) ? sqrt(b3[2]) : 0.0;
387   }
388 
389   if (b3[1] < 0) betas[0] = -betas[0];
390 
391   betas[2] = 0.0;
392   betas[3] = 0.0;
393 }
394 
395 // betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
396 // betas_approx_3 = [B11 B12 B22 B13 B23                    ]
397 
find_betas_approx_3(const CvMat * L_6x10,const CvMat * Rho,double * betas)398 void epnp::find_betas_approx_3(const CvMat * L_6x10, const CvMat * Rho,
399              double * betas)
400 {
401   double l_6x5[6 * 5] = {}, b5[5] = {};
402   CvMat L_6x5 = cvMat(6, 5, CV_64F, l_6x5);
403   CvMat B5    = cvMat(5, 1, CV_64F, b5);
404 
405   for(int i = 0; i < 6; i++) {
406     cvmSet(&L_6x5, i, 0, cvmGet(L_6x10, i, 0));
407     cvmSet(&L_6x5, i, 1, cvmGet(L_6x10, i, 1));
408     cvmSet(&L_6x5, i, 2, cvmGet(L_6x10, i, 2));
409     cvmSet(&L_6x5, i, 3, cvmGet(L_6x10, i, 3));
410     cvmSet(&L_6x5, i, 4, cvmGet(L_6x10, i, 4));
411   }
412 
413   cvSolve(&L_6x5, Rho, &B5, CV_SVD);
414 
415   if (b5[0] < 0) {
416     betas[0] = sqrt(-b5[0]);
417     betas[1] = (b5[2] < 0) ? sqrt(-b5[2]) : 0.0;
418   } else {
419     betas[0] = sqrt(b5[0]);
420     betas[1] = (b5[2] > 0) ? sqrt(b5[2]) : 0.0;
421   }
422   if (b5[1] < 0) betas[0] = -betas[0];
423   betas[2] = b5[3] / betas[0];
424   betas[3] = 0.0;
425 }
426 
compute_L_6x10(const double * ut,double * l_6x10)427 void epnp::compute_L_6x10(const double * ut, double * l_6x10)
428 {
429   const double * v[4];
430 
431   v[0] = ut + 12 * 11;
432   v[1] = ut + 12 * 10;
433   v[2] = ut + 12 *  9;
434   v[3] = ut + 12 *  8;
435 
436   double dv[4][6][3] = {};
437 
438   for(int i = 0; i < 4; i++) {
439     int a = 0, b = 1;
440     for(int j = 0; j < 6; j++) {
441       dv[i][j][0] = v[i][3 * a    ] - v[i][3 * b];
442       dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
443       dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];
444 
445       b++;
446       if (b > 3) {
447         a++;
448         b = a + 1;
449       }
450     }
451   }
452 
453   for(int i = 0; i < 6; i++) {
454     double * row = l_6x10 + 10 * i;
455 
456     row[0] =        dot(dv[0][i], dv[0][i]);
457     row[1] = 2.0f * dot(dv[0][i], dv[1][i]);
458     row[2] =        dot(dv[1][i], dv[1][i]);
459     row[3] = 2.0f * dot(dv[0][i], dv[2][i]);
460     row[4] = 2.0f * dot(dv[1][i], dv[2][i]);
461     row[5] =        dot(dv[2][i], dv[2][i]);
462     row[6] = 2.0f * dot(dv[0][i], dv[3][i]);
463     row[7] = 2.0f * dot(dv[1][i], dv[3][i]);
464     row[8] = 2.0f * dot(dv[2][i], dv[3][i]);
465     row[9] =        dot(dv[3][i], dv[3][i]);
466   }
467 }
468 
compute_rho(double * rho)469 void epnp::compute_rho(double * rho)
470 {
471   rho[0] = dist2(cws[0], cws[1]);
472   rho[1] = dist2(cws[0], cws[2]);
473   rho[2] = dist2(cws[0], cws[3]);
474   rho[3] = dist2(cws[1], cws[2]);
475   rho[4] = dist2(cws[1], cws[3]);
476   rho[5] = dist2(cws[2], cws[3]);
477 }
478 
compute_A_and_b_gauss_newton(const double * l_6x10,const double * rho,const double betas[4],CvMat * A,CvMat * b)479 void epnp::compute_A_and_b_gauss_newton(const double * l_6x10, const double * rho,
480           const double betas[4], CvMat * A, CvMat * b)
481 {
482   for(int i = 0; i < 6; i++) {
483     const double * rowL = l_6x10 + i * 10;
484     double * rowA = A->data.db + i * 4;
485 
486     rowA[0] = 2 * rowL[0] * betas[0] +     rowL[1] * betas[1] +     rowL[3] * betas[2] +     rowL[6] * betas[3];
487     rowA[1] =     rowL[1] * betas[0] + 2 * rowL[2] * betas[1] +     rowL[4] * betas[2] +     rowL[7] * betas[3];
488     rowA[2] =     rowL[3] * betas[0] +     rowL[4] * betas[1] + 2 * rowL[5] * betas[2] +     rowL[8] * betas[3];
489     rowA[3] =     rowL[6] * betas[0] +     rowL[7] * betas[1] +     rowL[8] * betas[2] + 2 * rowL[9] * betas[3];
490 
491     cvmSet(b, i, 0, rho[i] -
492      (
493       rowL[0] * betas[0] * betas[0] +
494       rowL[1] * betas[0] * betas[1] +
495       rowL[2] * betas[1] * betas[1] +
496       rowL[3] * betas[0] * betas[2] +
497       rowL[4] * betas[1] * betas[2] +
498       rowL[5] * betas[2] * betas[2] +
499       rowL[6] * betas[0] * betas[3] +
500       rowL[7] * betas[1] * betas[3] +
501       rowL[8] * betas[2] * betas[3] +
502       rowL[9] * betas[3] * betas[3]
503       ));
504   }
505 }
506 
gauss_newton(const CvMat * L_6x10,const CvMat * Rho,double betas[4])507 void epnp::gauss_newton(const CvMat * L_6x10, const CvMat * Rho, double betas[4])
508 {
509   const int iterations_number = 5;
510 
511   double a[6*4] = {}, b[6] = {}, x[4] = {};
512   CvMat A = cvMat(6, 4, CV_64F, a);
513   CvMat B = cvMat(6, 1, CV_64F, b);
514   CvMat X = cvMat(4, 1, CV_64F, x);
515 
516   for(int k = 0; k < iterations_number; k++)
517   {
518     compute_A_and_b_gauss_newton(L_6x10->data.db, Rho->data.db,
519     betas, &A, &B);
520     qr_solve(&A, &B, &X);
521     for(int i = 0; i < 4; i++)
522     betas[i] += x[i];
523   }
524 }
525 
qr_solve(CvMat * A,CvMat * b,CvMat * X)526 void epnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
527 {
528   const int nr = A->rows;
529   const int nc = A->cols;
530   if (nc <= 0 || nr <= 0)
531       return;
532 
533   if (max_nr != 0 && max_nr < nr)
534   {
535     delete [] A1;
536     delete [] A2;
537   }
538   if (max_nr < nr)
539   {
540     max_nr = nr;
541     A1 = new double[nr];
542     A2 = new double[nr];
543   }
544 
545   double * pA = A->data.db, * ppAkk = pA;
546   for(int k = 0; k < nc; k++)
547   {
548     double * ppAik1 = ppAkk, eta = fabs(*ppAik1);
549     for(int i = k + 1; i < nr; i++)
550     {
551       double elt = fabs(*ppAik1);
552       if (eta < elt) eta = elt;
553       ppAik1 += nc;
554     }
555     if (eta == 0)
556     {
557       A1[k] = A2[k] = 0.0;
558       //cerr << "God damnit, A is singular, this shouldn't happen." << endl;
559       return;
560     }
561     else
562     {
563       double * ppAik2 = ppAkk, sum2 = 0.0, inv_eta = 1. / eta;
564       for(int i = k; i < nr; i++)
565       {
566         *ppAik2 *= inv_eta;
567         sum2 += *ppAik2 * *ppAik2;
568         ppAik2 += nc;
569       }
570       double sigma = sqrt(sum2);
571       if (*ppAkk < 0)
572       sigma = -sigma;
573       *ppAkk += sigma;
574       A1[k] = sigma * *ppAkk;
575       A2[k] = -eta * sigma;
576       for(int j = k + 1; j < nc; j++)
577       {
578         double * ppAik = ppAkk, sum = 0;
579         for(int i = k; i < nr; i++)
580         {
581           sum += *ppAik * ppAik[j - k];
582           ppAik += nc;
583         }
584         double tau = sum / A1[k];
585         ppAik = ppAkk;
586         for(int i = k; i < nr; i++)
587         {
588           ppAik[j - k] -= tau * *ppAik;
589           ppAik += nc;
590         }
591       }
592     }
593     ppAkk += nc + 1;
594   }
595 
596   // b <- Qt b
597   double * ppAjj = pA, * pb = b->data.db;
598   for(int j = 0; j < nc; j++)
599   {
600     double * ppAij = ppAjj, tau = 0;
601     for(int i = j; i < nr; i++)
602     {
603       tau += *ppAij * pb[i];
604       ppAij += nc;
605     }
606     tau /= A1[j];
607     ppAij = ppAjj;
608     for(int i = j; i < nr; i++)
609     {
610       pb[i] -= tau * *ppAij;
611       ppAij += nc;
612     }
613     ppAjj += nc + 1;
614   }
615 
616   // X = R-1 b
617   double * pX = X->data.db;
618   pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
619   for(int i = nc - 2; i >= 0; i--)
620   {
621     double * ppAij = pA + i * nc + (i + 1), sum = 0;
622 
623     for(int j = i + 1; j < nc; j++)
624     {
625       sum += *ppAij * pX[j];
626       ppAij++;
627     }
628     pX[i] = (pb[i] - sum) / A2[i];
629   }
630 }
631 
632 }
633