1/*M///////////////////////////////////////////////////////////////////////////////////////
2//COPYRIGHT
3//
4//All contributions by the University of California:
5//Copyright (c) 2014, The Regents of the University of California (Regents)
6//All rights reserved.
7//
8//All other contributions:
9//Copyright (c) 2014, the respective contributors
10//All rights reserved.
11//
12//Caffe uses a shared copyright model: each contributor holds copyright over
13//their contributions to Caffe. The project versioning records all such
14//contribution and copyright details. If a contributor wants to further mark
15//their specific copyright on a particular contribution, they should indicate
16//their copyright solely in the commit message of the change when it is
17//committed.
18//
19//LICENSE
20//
21//Redistribution and use in source and binary forms, with or without
22//modification, are permitted provided that the following conditions are met:
23//
24//1. Redistributions of source code must retain the above copyright notice, this
25//   list of conditions and the following disclaimer.
26//2. Redistributions in binary form must reproduce the above copyright notice,
27//   this list of conditions and the following disclaimer in the documentation
28//   and/or other materials provided with the distribution.
29//
30//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
31//ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
32//WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
33//DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
34//ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
35//(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36//LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38//(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
39//SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41//CONTRIBUTION AGREEMENT
42//
43//By contributing to the BVLC/caffe repository through pull-request, comment,
44//or otherwise, the contributor releases their content to the
45//license and copyright terms herein.
46//
47//M*/
48
49syntax = "proto2";
50
51package opencv_caffe;
52
53// NVIDIA's Caffe feature is used to store fp16 weights, https://github.com/NVIDIA/caffe:
54// Math and storage types
55enum Type {
56  DOUBLE = 0;
57  FLOAT = 1;
58  FLOAT16 = 2;
59  INT = 3;  // math not supported
60  UINT = 4;  // math not supported
61}
62
63// Specifies the shape (dimensions) of a Blob.
64message BlobShape {
65  repeated int64 dim = 1 [packed = true];
66}
67
68message BlobProto {
69  optional BlobShape shape = 7;
70  repeated float data = 5 [packed = true];
71  repeated float diff = 6 [packed = true];
72  repeated double double_data = 8 [packed = true];
73  repeated double double_diff = 9 [packed = true];
74
75  // NVIDIA's Caffe fields begin.
76  optional Type raw_data_type = 10;
77  optional bytes raw_data = 12 [packed = false];
78  // NVIDIA's Caffe fields end.
79
80  // 4D dimensions -- deprecated.  Use "shape" instead.
81  optional int32 num = 1 [default = 0];
82  optional int32 channels = 2 [default = 0];
83  optional int32 height = 3 [default = 0];
84  optional int32 width = 4 [default = 0];
85}
86
87// The BlobProtoVector is simply a way to pass multiple blobproto instances
88// around.
89message BlobProtoVector {
90  repeated BlobProto blobs = 1;
91}
92
93message PermuteParameter {
94  // The new orders of the axes of data. Notice it should be with
95  // in the same range as the input data, and it starts from 0.
96  // Do not provide repeated order.
97  repeated uint32 order = 1;
98}
99
100// Message that stores parameters used by NormalizeBBoxLayer
101message NormalizeBBoxParameter {
102  optional bool across_spatial = 1 [default = true];
103  // Initial value of scale. Default is 1.0 for all
104  optional FillerParameter scale_filler = 2;
105  // Whether or not scale parameters are shared across channels.
106  optional bool channel_shared = 3 [default = true];
107  // Epsilon for not dividing by zero while normalizing variance
108  optional float eps = 4 [default = 1e-10];
109}
110
111// Message that store parameters used by PriorBoxLayer
112message PriorBoxParameter {
113  // Encode/decode type.
114  enum CodeType {
115    CORNER = 1;
116    CENTER_SIZE = 2;
117  }
118  // Minimum box size (in pixels). Required!
119  repeated float min_size = 1;
120  // Maximum box size (in pixels). Required!
121  repeated float max_size = 2;
122  // Various of aspect ratios. Duplicate ratios will be ignored.
123  // If none is provided, we use default ratio 1.
124  repeated float aspect_ratio = 3;
125  // If true, will flip each aspect ratio.
126  // For example, if there is aspect ratio "r",
127  // we will generate aspect ratio "1.0/r" as well.
128  optional bool flip = 4 [default = true];
129  // If true, will clip the prior so that it is within [0, 1]
130  optional bool clip = 5 [default = true];
131  // Variance for adjusting the prior bboxes.
132  repeated float variance = 6;
133  // By default, we calculate img_height, img_width, step_x, step_y based on
134  // bottom[0] (feat) and bottom[1] (img). Unless these values are explicitly
135  // provided.
136  // Explicitly provide the img_size.
137  optional uint32 img_size = 7;
138  // Either img_size or img_h/img_w should be specified; not both.
139  optional uint32 img_h = 8;
140  optional uint32 img_w = 9;
141  // Explicitly provide the step size.
142  optional float step = 10;
143  // Either step or step_h/step_w should be specified; not both.
144  optional float step_h = 11;
145  optional float step_w = 12;
146  // Offset to the top left corner of each cell.
147  optional float offset = 13 [default = 0.5];
148  // Offset to the top corner of each cell.
149  repeated float offset_h = 14;
150  // Offset to the left corner of each cell.
151  repeated float offset_w = 15;
152  // Priox boxes width (in pixels).
153  repeated float width = 16;
154  // Priox boxes height (in pixels).
155  repeated float height = 17;
156}
157
158// Message that store parameters used by DetectionOutputLayer
159message DetectionOutputParameter {
160  // Number of classes to be predicted. Required!
161  optional uint32 num_classes = 1;
162  // If true, bounding box are shared among different classes.
163  optional bool share_location = 2 [default = true];
164  // Background label id. If there is no background class,
165  // set it as -1.
166  optional int32 background_label_id = 3 [default = 0];
167  // Parameters used for non maximum suppression.
168  optional NonMaximumSuppressionParameter nms_param = 4;
169  // Parameters used for saving detection results.
170  optional SaveOutputParameter save_output_param = 5;
171  // Type of coding method for bbox.
172  optional PriorBoxParameter.CodeType code_type = 6 [default = CORNER];
173  // If true, variance is encoded in target; otherwise we need to adjust the
174  // predicted offset accordingly.
175  optional bool variance_encoded_in_target = 8 [default = false];
176  // Number of total bboxes to be kept per image after nms step.
177  // -1 means keeping all bboxes after nms step.
178  optional int32 keep_top_k = 7 [default = -1];
179  // Only consider detections whose confidences are larger than a threshold.
180  // If not provided, consider all boxes.
181  optional float confidence_threshold = 9;
182  // If prior boxes are normalized to [0, 1] or not.
183  optional bool normalized_bbox = 10 [default = true];
184  // OpenCV custom parameter
185  optional bool clip = 1000 [default = false];
186}
187
188message Datum {
189  optional int32 channels = 1;
190  optional int32 height = 2;
191  optional int32 width = 3;
192  // the actual image data, in bytes
193  optional bytes data = 4;
194  optional int32 label = 5;
195  // Optionally, the datum could also hold float data.
196  repeated float float_data = 6;
197  // If true data contains an encoded image that need to be decoded
198  optional bool encoded = 7 [default = false];
199}
200
201message FillerParameter {
202  // The filler type.
203  optional string type = 1 [default = 'constant'];
204  optional float value = 2 [default = 0]; // the value in constant filler
205  optional float min = 3 [default = 0]; // the min value in uniform filler
206  optional float max = 4 [default = 1]; // the max value in uniform filler
207  optional float mean = 5 [default = 0]; // the mean value in Gaussian filler
208  optional float std = 6 [default = 1]; // the std value in Gaussian filler
209  // The expected number of non-zero output weights for a given input in
210  // Gaussian filler -- the default -1 means don't perform sparsification.
211  optional int32 sparse = 7 [default = -1];
212  // Normalize the filler variance by fan_in, fan_out, or their average.
213  // Applies to 'xavier' and 'msra' fillers.
214  enum VarianceNorm {
215    FAN_IN = 0;
216    FAN_OUT = 1;
217    AVERAGE = 2;
218  }
219  optional VarianceNorm variance_norm = 8 [default = FAN_IN];
220}
221
222message NetParameter {
223  optional string name = 1; // consider giving the network a name
224  // DEPRECATED. See InputParameter. The input blobs to the network.
225  repeated string input = 3;
226  // DEPRECATED. See InputParameter. The shape of the input blobs.
227  repeated BlobShape input_shape = 8;
228
229  // 4D input dimensions -- deprecated.  Use "input_shape" instead.
230  // If specified, for each input blob there should be four
231  // values specifying the num, channels, height and width of the input blob.
232  // Thus, there should be a total of (4 * #input) numbers.
233  repeated int32 input_dim = 4;
234
235  // Whether the network will force every layer to carry out backward operation.
236  // If set False, then whether to carry out backward is determined
237  // automatically according to the net structure and learning rates.
238  optional bool force_backward = 5 [default = false];
239  // The current "state" of the network, including the phase, level, and stage.
240  // Some layers may be included/excluded depending on this state and the states
241  // specified in the layers' include and exclude fields.
242  optional NetState state = 6;
243
244  // Print debugging information about results while running Net::Forward,
245  // Net::Backward, and Net::Update.
246  optional bool debug_info = 7 [default = false];
247
248  // The layers that make up the net.  Each of their configurations, including
249  // connectivity and behavior, is specified as a LayerParameter.
250  repeated LayerParameter layer = 100;  // ID 100 so layers are printed last.
251
252  // DEPRECATED: use 'layer' instead.
253  repeated V1LayerParameter layers = 2;
254}
255
256// NOTE
257// Update the next available ID when you add a new SolverParameter field.
258//
259// SolverParameter next available ID: 41 (last added: type)
260message SolverParameter {
261  //////////////////////////////////////////////////////////////////////////////
262  // Specifying the train and test networks
263  //
264  // Exactly one train net must be specified using one of the following fields:
265  //     train_net_param, train_net, net_param, net
266  // One or more test nets may be specified using any of the following fields:
267  //     test_net_param, test_net, net_param, net
268  // If more than one test net field is specified (e.g., both net and
269  // test_net are specified), they will be evaluated in the field order given
270  // above: (1) test_net_param, (2) test_net, (3) net_param/net.
271  // A test_iter must be specified for each test_net.
272  // A test_level and/or a test_stage may also be specified for each test_net.
273  //////////////////////////////////////////////////////////////////////////////
274
275  // Proto filename for the train net, possibly combined with one or more
276  // test nets.
277  optional string net = 24;
278  // Inline train net param, possibly combined with one or more test nets.
279  optional NetParameter net_param = 25;
280
281  optional string train_net = 1; // Proto filename for the train net.
282  repeated string test_net = 2; // Proto filenames for the test nets.
283  optional NetParameter train_net_param = 21; // Inline train net params.
284  repeated NetParameter test_net_param = 22; // Inline test net params.
285
286  // The states for the train/test nets. Must be unspecified or
287  // specified once per net.
288  //
289  // By default, all states will have solver = true;
290  // train_state will have phase = TRAIN,
291  // and all test_state's will have phase = TEST.
292  // Other defaults are set according to the NetState defaults.
293  optional NetState train_state = 26;
294  repeated NetState test_state = 27;
295
296  // The number of iterations for each test net.
297  repeated int32 test_iter = 3;
298
299  // The number of iterations between two testing phases.
300  optional int32 test_interval = 4 [default = 0];
301  optional bool test_compute_loss = 19 [default = false];
302  // If true, run an initial test pass before the first iteration,
303  // ensuring memory availability and printing the starting value of the loss.
304  optional bool test_initialization = 32 [default = true];
305  optional float base_lr = 5; // The base learning rate
306  // the number of iterations between displaying info. If display = 0, no info
307  // will be displayed.
308  optional int32 display = 6;
309  // Display the loss averaged over the last average_loss iterations
310  optional int32 average_loss = 33 [default = 1];
311  optional int32 max_iter = 7; // the maximum number of iterations
312  // accumulate gradients over `iter_size` x `batch_size` instances
313  optional int32 iter_size = 36 [default = 1];
314
315  // The learning rate decay policy. The currently implemented learning rate
316  // policies are as follows:
317  //    - fixed: always return base_lr.
318  //    - step: return base_lr * gamma ^ (floor(iter / step))
319  //    - exp: return base_lr * gamma ^ iter
320  //    - inv: return base_lr * (1 + gamma * iter) ^ (- power)
321  //    - multistep: similar to step but it allows non uniform steps defined by
322  //      stepvalue
323  //    - poly: the effective learning rate follows a polynomial decay, to be
324  //      zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
325  //    - sigmoid: the effective learning rate follows a sigmod decay
326  //      return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
327  //
328  // where base_lr, max_iter, gamma, step, stepvalue and power are defined
329  // in the solver parameter protocol buffer, and iter is the current iteration.
330  optional string lr_policy = 8;
331  optional float gamma = 9; // The parameter to compute the learning rate.
332  optional float power = 10; // The parameter to compute the learning rate.
333  optional float momentum = 11; // The momentum value.
334  optional float weight_decay = 12; // The weight decay.
335  // regularization types supported: L1 and L2
336  // controlled by weight_decay
337  optional string regularization_type = 29 [default = "L2"];
338  // the stepsize for learning rate policy "step"
339  optional int32 stepsize = 13;
340  // the stepsize for learning rate policy "multistep"
341  repeated int32 stepvalue = 34;
342
343  // Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm,
344  // whenever their actual L2 norm is larger.
345  optional float clip_gradients = 35 [default = -1];
346
347  optional int32 snapshot = 14 [default = 0]; // The snapshot interval
348  optional string snapshot_prefix = 15; // The prefix for the snapshot.
349  // whether to snapshot diff in the results or not. Snapshotting diff will help
350  // debugging but the final protocol buffer size will be much larger.
351  optional bool snapshot_diff = 16 [default = false];
352  enum SnapshotFormat {
353    HDF5 = 0;
354    BINARYPROTO = 1;
355  }
356  optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO];
357  // the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default.
358  enum SolverMode {
359    CPU = 0;
360    GPU = 1;
361  }
362  optional SolverMode solver_mode = 17 [default = GPU];
363  // the device_id will that be used in GPU mode. Use device_id = 0 in default.
364  optional int32 device_id = 18 [default = 0];
365  // If non-negative, the seed with which the Solver will initialize the Caffe
366  // random number generator -- useful for reproducible results. Otherwise,
367  // (and by default) initialize using a seed derived from the system clock.
368  optional int64 random_seed = 20 [default = -1];
369
370  // type of the solver
371  optional string type = 40 [default = "SGD"];
372
373  // numerical stability for RMSProp, AdaGrad and AdaDelta and Adam
374  optional float delta = 31 [default = 1e-8];
375  // parameters for the Adam solver
376  optional float momentum2 = 39 [default = 0.999];
377
378  // RMSProp decay value
379  // MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)
380  optional float rms_decay = 38 [default = 0.99];
381
382  // If true, print information about the state of the net that may help with
383  // debugging learning problems.
384  optional bool debug_info = 23 [default = false];
385
386  // If false, don't save a snapshot after training finishes.
387  optional bool snapshot_after_train = 28 [default = true];
388
389  // DEPRECATED: old solver enum types, use string instead
390  enum SolverType {
391    SGD = 0;
392    NESTEROV = 1;
393    ADAGRAD = 2;
394    RMSPROP = 3;
395    ADADELTA = 4;
396    ADAM = 5;
397  }
398  // DEPRECATED: use type instead of solver_type
399  optional SolverType solver_type = 30 [default = SGD];
400}
401
402// A message that stores the solver snapshots
403message SolverState {
404  optional int32 iter = 1; // The current iteration
405  optional string learned_net = 2; // The file that stores the learned net.
406  repeated BlobProto history = 3; // The history for sgd solvers
407  optional int32 current_step = 4 [default = 0]; // The current step for learning rate
408}
409
410enum Phase {
411   TRAIN = 0;
412   TEST = 1;
413}
414
415message NetState {
416  optional Phase phase = 1 [default = TEST];
417  optional int32 level = 2 [default = 0];
418  repeated string stage = 3;
419}
420
421message NetStateRule {
422  // Set phase to require the NetState have a particular phase (TRAIN or TEST)
423  // to meet this rule.
424  optional Phase phase = 1;
425
426  // Set the minimum and/or maximum levels in which the layer should be used.
427  // Leave undefined to meet the rule regardless of level.
428  optional int32 min_level = 2;
429  optional int32 max_level = 3;
430
431  // Customizable sets of stages to include or exclude.
432  // The net must have ALL of the specified stages and NONE of the specified
433  // "not_stage"s to meet the rule.
434  // (Use multiple NetStateRules to specify conjunctions of stages.)
435  repeated string stage = 4;
436  repeated string not_stage = 5;
437}
438
439// Specifies training parameters (multipliers on global learning constants,
440// and the name and other settings used for weight sharing).
441message ParamSpec {
442  // The names of the parameter blobs -- useful for sharing parameters among
443  // layers, but never required otherwise.  To share a parameter between two
444  // layers, give it a (non-empty) name.
445  optional string name = 1;
446
447  // Whether to require shared weights to have the same shape, or just the same
448  // count -- defaults to STRICT if unspecified.
449  optional DimCheckMode share_mode = 2;
450  enum DimCheckMode {
451    // STRICT (default) requires that num, channels, height, width each match.
452    STRICT = 0;
453    // PERMISSIVE requires only the count (num*channels*height*width) to match.
454    PERMISSIVE = 1;
455  }
456
457  // The multiplier on the global learning rate for this parameter.
458  optional float lr_mult = 3 [default = 1.0];
459
460  // The multiplier on the global weight decay for this parameter.
461  optional float decay_mult = 4 [default = 1.0];
462}
463
464// NOTE
465// Update the next available ID when you add a new LayerParameter field.
466//
467// LayerParameter next available layer-specific ID: 147 (last added: recurrent_param)
468message LayerParameter {
469  optional string name = 1; // the layer name
470  optional string type = 2; // the layer type
471  repeated string bottom = 3; // the name of each bottom blob
472  repeated string top = 4; // the name of each top blob
473
474  // The train / test phase for computation.
475  optional Phase phase = 10;
476
477  // The amount of weight to assign each top blob in the objective.
478  // Each layer assigns a default value, usually of either 0 or 1,
479  // to each top blob.
480  repeated float loss_weight = 5;
481
482  // Specifies training parameters (multipliers on global learning constants,
483  // and the name and other settings used for weight sharing).
484  repeated ParamSpec param = 6;
485
486  // The blobs containing the numeric parameters of the layer.
487  repeated BlobProto blobs = 7;
488
489  // Specifies whether to backpropagate to each bottom. If unspecified,
490  // Caffe will automatically infer whether each input needs backpropagation
491  // to compute parameter gradients. If set to true for some inputs,
492  // backpropagation to those inputs is forced; if set false for some inputs,
493  // backpropagation to those inputs is skipped.
494  //
495  // The size must be either 0 or equal to the number of bottoms.
496  repeated bool propagate_down = 11;
497
498  // Rules controlling whether and when a layer is included in the network,
499  // based on the current NetState.  You may specify a non-zero number of rules
500  // to include OR exclude, but not both.  If no include or exclude rules are
501  // specified, the layer is always included.  If the current NetState meets
502  // ANY (i.e., one or more) of the specified rules, the layer is
503  // included/excluded.
504  repeated NetStateRule include = 8;
505  repeated NetStateRule exclude = 9;
506
507  // Parameters for data pre-processing.
508  optional TransformationParameter transform_param = 100;
509
510  // Parameters shared by loss layers.
511  optional LossParameter loss_param = 101;
512
513  // Layer type-specific parameters.
514  //
515  // Note: certain layers may have more than one computational engine
516  // for their implementation. These layers include an Engine type and
517  // engine parameter for selecting the implementation.
518  // The default for the engine is set by the ENGINE switch at compile-time.
519  optional AccuracyParameter accuracy_param = 102;
520  optional ArgMaxParameter argmax_param = 103;
521  optional BatchNormParameter batch_norm_param = 139;
522  optional BiasParameter bias_param = 141;
523  optional ConcatParameter concat_param = 104;
524  optional ContrastiveLossParameter contrastive_loss_param = 105;
525  optional ConvolutionParameter convolution_param = 106;
526  optional CropParameter crop_param = 144;
527  optional DataParameter data_param = 107;
528  optional DetectionOutputParameter detection_output_param = 147;
529  optional DropoutParameter dropout_param = 108;
530  optional DummyDataParameter dummy_data_param = 109;
531  optional EltwiseParameter eltwise_param = 110;
532  optional ELUParameter elu_param = 140;
533  optional EmbedParameter embed_param = 137;
534  optional ExpParameter exp_param = 111;
535  optional FlattenParameter flatten_param = 135;
536  optional HDF5DataParameter hdf5_data_param = 112;
537  optional HDF5OutputParameter hdf5_output_param = 113;
538  optional HingeLossParameter hinge_loss_param = 114;
539  optional ImageDataParameter image_data_param = 115;
540  optional InfogainLossParameter infogain_loss_param = 116;
541  optional InnerProductParameter inner_product_param = 117;
542  optional InputParameter input_param = 143;
543  optional LogParameter log_param = 134;
544  optional LRNParameter lrn_param = 118;
545  optional MemoryDataParameter memory_data_param = 119;
546  optional MVNParameter mvn_param = 120;
547  optional NormalizeBBoxParameter norm_param = 149;
548  optional PermuteParameter permute_param = 148;
549  optional ParameterParameter parameter_param = 145;
550  optional PoolingParameter pooling_param = 121;
551  optional PowerParameter power_param = 122;
552  optional PReLUParameter prelu_param = 131;
553  optional PriorBoxParameter prior_box_param = 150;
554  optional ProposalParameter proposal_param = 201;
555  optional PSROIPoolingParameter psroi_pooling_param = 10002;  // https://github.com/daijifeng001/caffe-rfcn
556  optional PythonParameter python_param = 130;
557  optional RecurrentParameter recurrent_param = 146;
558  optional ReductionParameter reduction_param = 136;
559  optional ReLUParameter relu_param = 123;
560  optional ReshapeParameter reshape_param = 133;
561  optional ROIPoolingParameter roi_pooling_param = 8266711;  // https://github.com/rbgirshick/caffe-fast-rcnn/tree/fast-rcnn
562  optional ScaleParameter scale_param = 142;
563  optional SigmoidParameter sigmoid_param = 124;
564  optional SoftmaxParameter softmax_param = 125;
565  optional SPPParameter spp_param = 132;
566  optional SliceParameter slice_param = 126;
567  optional TanHParameter tanh_param = 127;
568  optional ThresholdParameter threshold_param = 128;
569  optional TileParameter tile_param = 138;
570  optional WindowDataParameter window_data_param = 129;
571}
572
573// Message that stores parameters used to apply transformation
574// to the data layer's data
575message TransformationParameter {
576  // For data pre-processing, we can do simple scaling and subtracting the
577  // data mean, if provided. Note that the mean subtraction is always carried
578  // out before scaling.
579  optional float scale = 1 [default = 1];
580  // Specify if we want to randomly mirror data.
581  optional bool mirror = 2 [default = false];
582  // Specify if we would like to randomly crop an image.
583  optional uint32 crop_size = 3 [default = 0];
584  // mean_file and mean_value cannot be specified at the same time
585  optional string mean_file = 4;
586  // if specified can be repeated once (would subtract it from all the channels)
587  // or can be repeated the same number of times as channels
588  // (would subtract them from the corresponding channel)
589  repeated float mean_value = 5;
590  // Force the decoded image to have 3 color channels.
591  optional bool force_color = 6 [default = false];
592  // Force the decoded image to have 1 color channels.
593  optional bool force_gray = 7 [default = false];
594}
595
596// Message that stores parameters shared by loss layers
597message LossParameter {
598  // If specified, ignore instances with the given label.
599  optional int32 ignore_label = 1;
600  // How to normalize the loss for loss layers that aggregate across batches,
601  // spatial dimensions, or other dimensions.  Currently only implemented in
602  // SoftmaxWithLoss and SigmoidCrossEntropyLoss layers.
603  enum NormalizationMode {
604    // Divide by the number of examples in the batch times spatial dimensions.
605    // Outputs that receive the ignore label will NOT be ignored in computing
606    // the normalization factor.
607    FULL = 0;
608    // Divide by the total number of output locations that do not take the
609    // ignore_label.  If ignore_label is not set, this behaves like FULL.
610    VALID = 1;
611    // Divide by the batch size.
612    BATCH_SIZE = 2;
613    // Do not normalize the loss.
614    NONE = 3;
615  }
616  // For historical reasons, the default normalization for
617  // SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID.
618  optional NormalizationMode normalization = 3 [default = VALID];
619  // Deprecated.  Ignored if normalization is specified.  If normalization
620  // is not specified, then setting this to false will be equivalent to
621  // normalization = BATCH_SIZE to be consistent with previous behavior.
622  optional bool normalize = 2;
623}
624
625// Messages that store parameters used by individual layer types follow, in
626// alphabetical order.
627
628message AccuracyParameter {
629  // When computing accuracy, count as correct by comparing the true label to
630  // the top k scoring classes.  By default, only compare to the top scoring
631  // class (i.e. argmax).
632  optional uint32 top_k = 1 [default = 1];
633
634  // The "label" axis of the prediction blob, whose argmax corresponds to the
635  // predicted label -- may be negative to index from the end (e.g., -1 for the
636  // last axis).  For example, if axis == 1 and the predictions are
637  // (N x C x H x W), the label blob is expected to contain N*H*W ground truth
638  // labels with integer values in {0, 1, ..., C-1}.
639  optional int32 axis = 2 [default = 1];
640
641  // If specified, ignore instances with the given label.
642  optional int32 ignore_label = 3;
643}
644
645message ArgMaxParameter {
646  // If true produce pairs (argmax, maxval)
647  optional bool out_max_val = 1 [default = false];
648  optional uint32 top_k = 2 [default = 1];
649  // The axis along which to maximise -- may be negative to index from the
650  // end (e.g., -1 for the last axis).
651  // By default ArgMaxLayer maximizes over the flattened trailing dimensions
652  // for each index of the first / num dimension.
653  optional int32 axis = 3;
654}
655
656message ConcatParameter {
657  // The axis along which to concatenate -- may be negative to index from the
658  // end (e.g., -1 for the last axis).  Other axes must have the
659  // same dimension for all the bottom blobs.
660  // By default, ConcatLayer concatenates blobs along the "channels" axis (1).
661  optional int32 axis = 2 [default = 1];
662
663  // DEPRECATED: alias for "axis" -- does not support negative indexing.
664  optional uint32 concat_dim = 1 [default = 1];
665}
666
667message BatchNormParameter {
668  // If false, accumulate global mean/variance values via a moving average. If
669  // true, use those accumulated values instead of computing mean/variance
670  // across the batch.
671  optional bool use_global_stats = 1;
672  // How much does the moving average decay each iteration?
673  optional float moving_average_fraction = 2 [default = .999];
674  // Small value to add to the variance estimate so that we don't divide by
675  // zero.
676  optional float eps = 3 [default = 1e-5];
677  // It true, scale and add biases. Source: https://github.com/NVIDIA/caffe/
678  optional bool scale_bias = 7 [default = false];
679}
680
681message BiasParameter {
682  // The first axis of bottom[0] (the first input Blob) along which to apply
683  // bottom[1] (the second input Blob).  May be negative to index from the end
684  // (e.g., -1 for the last axis).
685  //
686  // For example, if bottom[0] is 4D with shape 100x3x40x60, the output
687  // top[0] will have the same shape, and bottom[1] may have any of the
688  // following shapes (for the given value of axis):
689  //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
690  //    (axis == 1 == -3)          3;     3x40;     3x40x60
691  //    (axis == 2 == -2)                   40;       40x60
692  //    (axis == 3 == -1)                                60
693  // Furthermore, bottom[1] may have the empty shape (regardless of the value of
694  // "axis") -- a scalar bias.
695  optional int32 axis = 1 [default = 1];
696
697  // (num_axes is ignored unless just one bottom is given and the bias is
698  // a learned parameter of the layer.  Otherwise, num_axes is determined by the
699  // number of axes by the second bottom.)
700  // The number of axes of the input (bottom[0]) covered by the bias
701  // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
702  // Set num_axes := 0, to add a zero-axis Blob: a scalar.
703  optional int32 num_axes = 2 [default = 1];
704
705  // (filler is ignored unless just one bottom is given and the bias is
706  // a learned parameter of the layer.)
707  // The initialization for the learned bias parameter.
708  // Default is the zero (0) initialization, resulting in the BiasLayer
709  // initially performing the identity operation.
710  optional FillerParameter filler = 3;
711}
712
713message ContrastiveLossParameter {
714  // margin for dissimilar pair
715  optional float margin = 1 [default = 1.0];
716  // The first implementation of this cost did not exactly match the cost of
717  // Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
718  // legacy_version = false (the default) uses (margin - d)^2 as proposed in the
719  // Hadsell paper. New models should probably use this version.
720  // legacy_version = true uses (margin - d^2). This is kept to support /
721  // reproduce existing models and results
722  optional bool legacy_version = 2 [default = false];
723}
724
725message ConvolutionParameter {
726  optional uint32 num_output = 1; // The number of outputs for the layer
727  optional bool bias_term = 2 [default = true]; // whether to have bias terms
728
729  // Pad, kernel size, and stride are all given as a single value for equal
730  // dimensions in all spatial dimensions, or once per spatial dimension.
731  repeated uint32 pad = 3; // The padding size; defaults to 0
732  repeated uint32 kernel_size = 4; // The kernel size
733  repeated uint32 stride = 6; // The stride; defaults to 1
734  // Factor used to dilate the kernel, (implicitly) zero-filling the resulting
735  // holes. (Kernel dilation is sometimes referred to by its use in the
736  // algorithme à trous from Holschneider et al. 1987.)
737  repeated uint32 dilation = 18; // The dilation; defaults to 1
738
739  // For 2D convolution only, the *_h and *_w versions may also be used to
740  // specify both spatial dimensions.
741  optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
742  optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
743  optional uint32 kernel_h = 11; // The kernel height (2D only)
744  optional uint32 kernel_w = 12; // The kernel width (2D only)
745  optional uint32 stride_h = 13; // The stride height (2D only)
746  optional uint32 stride_w = 14; // The stride width (2D only)
747
748  optional uint32 group = 5 [default = 1]; // The group size for group conv
749
750  optional FillerParameter weight_filler = 7; // The filler for the weight
751  optional FillerParameter bias_filler = 8; // The filler for the bias
752  enum Engine {
753    DEFAULT = 0;
754    CAFFE = 1;
755    CUDNN = 2;
756  }
757  optional Engine engine = 15 [default = DEFAULT];
758
759  // The axis to interpret as "channels" when performing convolution.
760  // Preceding dimensions are treated as independent inputs;
761  // succeeding dimensions are treated as "spatial".
762  // With (N, C, H, W) inputs, and axis == 1 (the default), we perform
763  // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
764  // groups g>1) filters across the spatial axes (H, W) of the input.
765  // With (N, C, D, H, W) inputs, and axis == 1, we perform
766  // N independent 3D convolutions, sliding (C/g)-channels
767  // filters across the spatial axes (D, H, W) of the input.
768  optional int32 axis = 16 [default = 1];
769
770  // Whether to force use of the general ND convolution, even if a specific
771  // implementation for blobs of the appropriate number of spatial dimensions
772  // is available. (Currently, there is only a 2D-specific convolution
773  // implementation; for input blobs with num_axes != 2, this option is
774  // ignored and the ND implementation will be used.)
775  optional bool force_nd_im2col = 17 [default = false];
776}
777
778message CropParameter {
779  // To crop, elements of the first bottom are selected to fit the dimensions
780  // of the second, reference bottom. The crop is configured by
781  // - the crop `axis` to pick the dimensions for cropping
782  // - the crop `offset` to set the shift for all/each dimension
783  // to align the cropped bottom with the reference bottom.
784  // All dimensions up to but excluding `axis` are preserved, while
785  // the dimensions including and trailing `axis` are cropped.
786  // If only one `offset` is set, then all dimensions are offset by this amount.
787  // Otherwise, the number of offsets must equal the number of cropped axes to
788  // shift the crop in each dimension accordingly.
789  // Note: standard dimensions are N,C,H,W so the default is a spatial crop,
790  // and `axis` may be negative to index from the end (e.g., -1 for the last
791  // axis).
792  optional int32 axis = 1 [default = 2];
793  repeated uint32 offset = 2;
794}
795
796message DataParameter {
797  enum DB {
798    LEVELDB = 0;
799    LMDB = 1;
800  }
801  // Specify the data source.
802  optional string source = 1;
803  // Specify the batch size.
804  optional uint32 batch_size = 4;
805  // The rand_skip variable is for the data layer to skip a few data points
806  // to avoid all asynchronous sgd clients to start at the same point. The skip
807  // point would be set as rand_skip * rand(0,1). Note that rand_skip should not
808  // be larger than the number of keys in the database.
809  // DEPRECATED. Each solver accesses a different subset of the database.
810  optional uint32 rand_skip = 7 [default = 0];
811  optional DB backend = 8 [default = LEVELDB];
812  // DEPRECATED. See TransformationParameter. For data pre-processing, we can do
813  // simple scaling and subtracting the data mean, if provided. Note that the
814  // mean subtraction is always carried out before scaling.
815  optional float scale = 2 [default = 1];
816  optional string mean_file = 3;
817  // DEPRECATED. See TransformationParameter. Specify if we would like to randomly
818  // crop an image.
819  optional uint32 crop_size = 5 [default = 0];
820  // DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
821  // data.
822  optional bool mirror = 6 [default = false];
823  // Force the encoded image to have 3 color channels
824  optional bool force_encoded_color = 9 [default = false];
825  // Prefetch queue (Number of batches to prefetch to host memory, increase if
826  // data access bandwidth varies).
827  optional uint32 prefetch = 10 [default = 4];
828}
829
830message NonMaximumSuppressionParameter {
831  // Threshold to be used in nms.
832  optional float nms_threshold = 1 [default = 0.3];
833  // Maximum number of results to be kept.
834  optional int32 top_k = 2;
835  // Parameter for adaptive nms.
836  optional float eta = 3 [default = 1.0];
837}
838
839message SaveOutputParameter {
840  // Output directory. If not empty, we will save the results.
841  optional string output_directory = 1;
842  // Output name prefix.
843  optional string output_name_prefix = 2;
844  // Output format.
845  //    VOC - PASCAL VOC output format.
846  //    COCO - MS COCO output format.
847  optional string output_format = 3;
848  // If you want to output results, must also provide the following two files.
849  // Otherwise, we will ignore saving results.
850  // label map file.
851  optional string label_map_file = 4;
852  // A file which contains a list of names and sizes with same order
853  // of the input DB. The file is in the following format:
854  //    name height width
855  //    ...
856  optional string name_size_file = 5;
857  // Number of test images. It can be less than the lines specified in
858  // name_size_file. For example, when we only want to evaluate on part
859  // of the test images.
860  optional uint32 num_test_image = 6;
861}
862
863message DropoutParameter {
864  optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio
865  // Faster-RCNN framework's parameter.
866  // source: https://github.com/rbgirshick/caffe-fast-rcnn/tree/faster-rcnn
867  optional bool scale_train = 2 [default = true];  // scale train or test phase
868}
869
870// DummyDataLayer fills any number of arbitrarily shaped blobs with random
871// (or constant) data generated by "Fillers" (see "message FillerParameter").
872message DummyDataParameter {
873  // This layer produces N >= 1 top blobs.  DummyDataParameter must specify 1 or N
874  // shape fields, and 0, 1 or N data_fillers.
875  //
876  // If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.
877  // If 1 data_filler is specified, it is applied to all top blobs.  If N are
878  // specified, the ith is applied to the ith top blob.
879  repeated FillerParameter data_filler = 1;
880  repeated BlobShape shape = 6;
881
882  // 4D dimensions -- deprecated.  Use "shape" instead.
883  repeated uint32 num = 2;
884  repeated uint32 channels = 3;
885  repeated uint32 height = 4;
886  repeated uint32 width = 5;
887}
888
889message EltwiseParameter {
890  enum EltwiseOp {
891    PROD = 0;
892    SUM = 1;
893    MAX = 2;
894  }
895  optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation
896  repeated float coeff = 2; // blob-wise coefficient for SUM operation
897
898  // Whether to use an asymptotically slower (for >2 inputs) but stabler method
899  // of computing the gradient for the PROD operation. (No effect for SUM op.)
900  optional bool stable_prod_grad = 3 [default = true];
901}
902
903// Message that stores parameters used by ELULayer
904message ELUParameter {
905  // Described in:
906  // Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
907  // Deep Network Learning by Exponential Linear Units (ELUs). arXiv
908  optional float alpha = 1 [default = 1];
909}
910
911// Message that stores parameters used by EmbedLayer
912message EmbedParameter {
913  optional uint32 num_output = 1; // The number of outputs for the layer
914  // The input is given as integers to be interpreted as one-hot
915  // vector indices with dimension num_input.  Hence num_input should be
916  // 1 greater than the maximum possible input value.
917  optional uint32 input_dim = 2;
918
919  optional bool bias_term = 3 [default = true]; // Whether to use a bias term
920  optional FillerParameter weight_filler = 4; // The filler for the weight
921  optional FillerParameter bias_filler = 5; // The filler for the bias
922
923}
924
925// Message that stores parameters used by ExpLayer
926message ExpParameter {
927  // ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.
928  // Or if base is set to the default (-1), base is set to e,
929  // so y = exp(shift + scale * x).
930  optional float base = 1 [default = -1.0];
931  optional float scale = 2 [default = 1.0];
932  optional float shift = 3 [default = 0.0];
933}
934
935/// Message that stores parameters used by FlattenLayer
936message FlattenParameter {
937  // The first axis to flatten: all preceding axes are retained in the output.
938  // May be negative to index from the end (e.g., -1 for the last axis).
939  optional int32 axis = 1 [default = 1];
940
941  // The last axis to flatten: all following axes are retained in the output.
942  // May be negative to index from the end (e.g., the default -1 for the last
943  // axis).
944  optional int32 end_axis = 2 [default = -1];
945}
946
947// Message that stores parameters used by HDF5DataLayer
948message HDF5DataParameter {
949  // Specify the data source.
950  optional string source = 1;
951  // Specify the batch size.
952  optional uint32 batch_size = 2;
953
954  // Specify whether to shuffle the data.
955  // If shuffle == true, the ordering of the HDF5 files is shuffled,
956  // and the ordering of data within any given HDF5 file is shuffled,
957  // but data between different files are not interleaved; all of a file's
958  // data are output (in a random order) before moving onto another file.
959  optional bool shuffle = 3 [default = false];
960}
961
962message HDF5OutputParameter {
963  optional string file_name = 1;
964}
965
966message HingeLossParameter {
967  enum Norm {
968    L1 = 1;
969    L2 = 2;
970  }
971  // Specify the Norm to use L1 or L2
972  optional Norm norm = 1 [default = L1];
973}
974
975message ImageDataParameter {
976  // Specify the data source.
977  optional string source = 1;
978  // Specify the batch size.
979  optional uint32 batch_size = 4 [default = 1];
980  // The rand_skip variable is for the data layer to skip a few data points
981  // to avoid all asynchronous sgd clients to start at the same point. The skip
982  // point would be set as rand_skip * rand(0,1). Note that rand_skip should not
983  // be larger than the number of keys in the database.
984  optional uint32 rand_skip = 7 [default = 0];
985  // Whether or not ImageLayer should shuffle the list of files at every epoch.
986  optional bool shuffle = 8 [default = false];
987  // It will also resize images if new_height or new_width are not zero.
988  optional uint32 new_height = 9 [default = 0];
989  optional uint32 new_width = 10 [default = 0];
990  // Specify if the images are color or gray
991  optional bool is_color = 11 [default = true];
992  // DEPRECATED. See TransformationParameter. For data pre-processing, we can do
993  // simple scaling and subtracting the data mean, if provided. Note that the
994  // mean subtraction is always carried out before scaling.
995  optional float scale = 2 [default = 1];
996  optional string mean_file = 3;
997  // DEPRECATED. See TransformationParameter. Specify if we would like to randomly
998  // crop an image.
999  optional uint32 crop_size = 5 [default = 0];
1000  // DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
1001  // data.
1002  optional bool mirror = 6 [default = false];
1003  optional string root_folder = 12 [default = ""];
1004}
1005
1006message InfogainLossParameter {
1007  // Specify the infogain matrix source.
1008  optional string source = 1;
1009}
1010
1011message InnerProductParameter {
1012  optional uint32 num_output = 1; // The number of outputs for the layer
1013  optional bool bias_term = 2 [default = true]; // whether to have bias terms
1014  optional FillerParameter weight_filler = 3; // The filler for the weight
1015  optional FillerParameter bias_filler = 4; // The filler for the bias
1016
1017  // The first axis to be lumped into a single inner product computation;
1018  // all preceding axes are retained in the output.
1019  // May be negative to index from the end (e.g., -1 for the last axis).
1020  optional int32 axis = 5 [default = 1];
1021  // Specify whether to transpose the weight matrix or not.
1022  // If transpose == true, any operations will be performed on the transpose
1023  // of the weight matrix. The weight matrix itself is not going to be transposed
1024  // but rather the transfer flag of operations will be toggled accordingly.
1025  optional bool transpose = 6 [default = false];
1026}
1027
1028message InputParameter {
1029  // This layer produces N >= 1 top blob(s) to be assigned manually.
1030  // Define N shapes to set a shape for each top.
1031  // Define 1 shape to set the same shape for every top.
1032  // Define no shape to defer to reshaping manually.
1033  repeated BlobShape shape = 1;
1034}
1035
1036// Message that stores parameters used by LogLayer
1037message LogParameter {
1038  // LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.
1039  // Or if base is set to the default (-1), base is set to e,
1040  // so y = ln(shift + scale * x) = log_e(shift + scale * x)
1041  optional float base = 1 [default = -1.0];
1042  optional float scale = 2 [default = 1.0];
1043  optional float shift = 3 [default = 0.0];
1044}
1045
1046// Message that stores parameters used by LRNLayer
1047message LRNParameter {
1048  optional uint32 local_size = 1 [default = 5];
1049  optional float alpha = 2 [default = 1.];
1050  optional float beta = 3 [default = 0.75];
1051  enum NormRegion {
1052    ACROSS_CHANNELS = 0;
1053    WITHIN_CHANNEL = 1;
1054  }
1055  optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS];
1056  optional float k = 5 [default = 1.];
1057  enum Engine {
1058    DEFAULT = 0;
1059    CAFFE = 1;
1060    CUDNN = 2;
1061  }
1062  optional Engine engine = 6 [default = DEFAULT];
1063}
1064
1065message MemoryDataParameter {
1066  optional uint32 batch_size = 1;
1067  optional uint32 channels = 2;
1068  optional uint32 height = 3;
1069  optional uint32 width = 4;
1070}
1071
1072message MVNParameter {
1073  // This parameter can be set to false to normalize mean only
1074  optional bool normalize_variance = 1 [default = true];
1075
1076  // This parameter can be set to true to perform DNN-like MVN
1077  optional bool across_channels = 2 [default = false];
1078
1079  // Epsilon for not dividing by zero while normalizing variance
1080  optional float eps = 3 [default = 1e-9];
1081}
1082
1083message ParameterParameter {
1084  optional BlobShape shape = 1;
1085}
1086
1087message PoolingParameter {
1088  enum PoolMethod {
1089    MAX = 0;
1090    AVE = 1;
1091    STOCHASTIC = 2;
1092  }
1093  optional PoolMethod pool = 1 [default = MAX]; // The pooling method
1094  // Pad, kernel size, and stride are all given as a single value for equal
1095  // dimensions in height and width or as Y, X pairs.
1096  optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)
1097  optional uint32 pad_h = 9 [default = 0]; // The padding height
1098  optional uint32 pad_w = 10 [default = 0]; // The padding width
1099  optional uint32 kernel_size = 2; // The kernel size (square)
1100  optional uint32 kernel_h = 5; // The kernel height
1101  optional uint32 kernel_w = 6; // The kernel width
1102  optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X)
1103  optional uint32 stride_h = 7; // The stride height
1104  optional uint32 stride_w = 8; // The stride width
1105  enum Engine {
1106    DEFAULT = 0;
1107    CAFFE = 1;
1108    CUDNN = 2;
1109  }
1110  optional Engine engine = 11 [default = DEFAULT];
1111  // If global_pooling then it will pool over the size of the bottom by doing
1112  // kernel_h = bottom->height and kernel_w = bottom->width
1113  optional bool global_pooling = 12 [default = false];
1114  // Specify floor/ceil mode
1115  // source: https://github.com/BVLC/caffe/pull/3057
1116  optional bool ceil_mode = 13 [default = true];
1117}
1118
1119message PowerParameter {
1120  // PowerLayer computes outputs y = (shift + scale * x) ^ power.
1121  optional float power = 1 [default = 1.0];
1122  optional float scale = 2 [default = 1.0];
1123  optional float shift = 3 [default = 0.0];
1124}
1125
1126message PythonParameter {
1127  optional string module = 1;
1128  optional string layer = 2;
1129  // This value is set to the attribute `param_str` of the `PythonLayer` object
1130  // in Python before calling the `setup()` method. This could be a number,
1131  // string, dictionary in Python dict format, JSON, etc. You may parse this
1132  // string in `setup` method and use it in `forward` and `backward`.
1133  optional string param_str = 3 [default = ''];
1134  // Whether this PythonLayer is shared among worker solvers during data parallelism.
1135  // If true, each worker solver sequentially run forward from this layer.
1136  // This value should be set true if you are using it as a data layer.
1137  optional bool share_in_parallel = 4 [default = false];
1138}
1139
1140// Message that stores parameters used by RecurrentLayer
1141message RecurrentParameter {
1142  // The dimension of the output (and usually hidden state) representation --
1143  // must be explicitly set to non-zero.
1144  optional uint32 num_output = 1 [default = 0];
1145
1146  optional FillerParameter weight_filler = 2; // The filler for the weight
1147  optional FillerParameter bias_filler = 3; // The filler for the bias
1148
1149  // Whether to enable displaying debug_info in the unrolled recurrent net.
1150  optional bool debug_info = 4 [default = false];
1151
1152  // Whether to add as additional inputs (bottoms) the initial hidden state
1153  // blobs, and add as additional outputs (tops) the final timestep hidden state
1154  // blobs.  The number of additional bottom/top blobs required depends on the
1155  // recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs.
1156  optional bool expose_hidden = 5 [default = false];
1157}
1158
1159// Message that stores parameters used by ReductionLayer
1160message ReductionParameter {
1161  enum ReductionOp {
1162    SUM = 1;
1163    ASUM = 2;
1164    SUMSQ = 3;
1165    MEAN = 4;
1166  }
1167
1168  optional ReductionOp operation = 1 [default = SUM]; // reduction operation
1169
1170  // The first axis to reduce to a scalar -- may be negative to index from the
1171  // end (e.g., -1 for the last axis).
1172  // (Currently, only reduction along ALL "tail" axes is supported; reduction
1173  // of axis M through N, where N < num_axes - 1, is unsupported.)
1174  // Suppose we have an n-axis bottom Blob with shape:
1175  //     (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).
1176  // If axis == m, the output Blob will have shape
1177  //     (d0, d1, d2, ..., d(m-1)),
1178  // and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))
1179  // times, each including (dm * d(m+1) * ... * d(n-1)) individual data.
1180  // If axis == 0 (the default), the output Blob always has the empty shape
1181  // (count 1), performing reduction across the entire input --
1182  // often useful for creating new loss functions.
1183  optional int32 axis = 2 [default = 0];
1184
1185  optional float coeff = 3 [default = 1.0]; // coefficient for output
1186}
1187
1188// Message that stores parameters used by ReLULayer
1189message ReLUParameter {
1190  // Allow non-zero slope for negative inputs to speed up optimization
1191  // Described in:
1192  // Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
1193  // improve neural network acoustic models. In ICML Workshop on Deep Learning
1194  // for Audio, Speech, and Language Processing.
1195  optional float negative_slope = 1 [default = 0];
1196  enum Engine {
1197    DEFAULT = 0;
1198    CAFFE = 1;
1199    CUDNN = 2;
1200  }
1201  optional Engine engine = 2 [default = DEFAULT];
1202}
1203
1204message ReshapeParameter {
1205  // Specify the output dimensions. If some of the dimensions are set to 0,
1206  // the corresponding dimension from the bottom layer is used (unchanged).
1207  // Exactly one dimension may be set to -1, in which case its value is
1208  // inferred from the count of the bottom blob and the remaining dimensions.
1209  // For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:
1210  //
1211  //   layer {
1212  //     type: "Reshape" bottom: "input" top: "output"
1213  //     reshape_param { ... }
1214  //   }
1215  //
1216  // If "input" is 2D with shape 2 x 8, then the following reshape_param
1217  // specifications are all equivalent, producing a 3D blob "output" with shape
1218  // 2 x 2 x 4:
1219  //
1220  //   reshape_param { shape { dim:  2  dim: 2  dim:  4 } }
1221  //   reshape_param { shape { dim:  0  dim: 2  dim:  4 } }
1222  //   reshape_param { shape { dim:  0  dim: 2  dim: -1 } }
1223  //   reshape_param { shape { dim:  0  dim:-1  dim:  4 } }
1224  //
1225  optional BlobShape shape = 1;
1226
1227  // axis and num_axes control the portion of the bottom blob's shape that are
1228  // replaced by (included in) the reshape. By default (axis == 0 and
1229  // num_axes == -1), the entire bottom blob shape is included in the reshape,
1230  // and hence the shape field must specify the entire output shape.
1231  //
1232  // axis may be non-zero to retain some portion of the beginning of the input
1233  // shape (and may be negative to index from the end; e.g., -1 to begin the
1234  // reshape after the last axis, including nothing in the reshape,
1235  // -2 to include only the last axis, etc.).
1236  //
1237  // For example, suppose "input" is a 2D blob with shape 2 x 8.
1238  // Then the following ReshapeLayer specifications are all equivalent,
1239  // producing a blob "output" with shape 2 x 2 x 4:
1240  //
1241  //   reshape_param { shape { dim: 2  dim: 2  dim: 4 } }
1242  //   reshape_param { shape { dim: 2  dim: 4 } axis:  1 }
1243  //   reshape_param { shape { dim: 2  dim: 4 } axis: -3 }
1244  //
1245  // num_axes specifies the extent of the reshape.
1246  // If num_axes >= 0 (and axis >= 0), the reshape will be performed only on
1247  // input axes in the range [axis, axis+num_axes].
1248  // num_axes may also be -1, the default, to include all remaining axes
1249  // (starting from axis).
1250  //
1251  // For example, suppose "input" is a 2D blob with shape 2 x 8.
1252  // Then the following ReshapeLayer specifications are equivalent,
1253  // producing a blob "output" with shape 1 x 2 x 8.
1254  //
1255  //   reshape_param { shape { dim:  1  dim: 2  dim:  8 } }
1256  //   reshape_param { shape { dim:  1  dim: 2  }  num_axes: 1 }
1257  //   reshape_param { shape { dim:  1  }  num_axes: 0 }
1258  //
1259  // On the other hand, these would produce output blob shape 2 x 1 x 8:
1260  //
1261  //   reshape_param { shape { dim: 2  dim: 1  dim: 8  }  }
1262  //   reshape_param { shape { dim: 1 }  axis: 1  num_axes: 0 }
1263  //
1264  optional int32 axis = 2 [default = 0];
1265  optional int32 num_axes = 3 [default = -1];
1266}
1267
1268message ScaleParameter {
1269  // The first axis of bottom[0] (the first input Blob) along which to apply
1270  // bottom[1] (the second input Blob).  May be negative to index from the end
1271  // (e.g., -1 for the last axis).
1272  //
1273  // For example, if bottom[0] is 4D with shape 100x3x40x60, the output
1274  // top[0] will have the same shape, and bottom[1] may have any of the
1275  // following shapes (for the given value of axis):
1276  //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
1277  //    (axis == 1 == -3)          3;     3x40;     3x40x60
1278  //    (axis == 2 == -2)                   40;       40x60
1279  //    (axis == 3 == -1)                                60
1280  // Furthermore, bottom[1] may have the empty shape (regardless of the value of
1281  // "axis") -- a scalar multiplier.
1282  optional int32 axis = 1 [default = 1];
1283
1284  // (num_axes is ignored unless just one bottom is given and the scale is
1285  // a learned parameter of the layer.  Otherwise, num_axes is determined by the
1286  // number of axes by the second bottom.)
1287  // The number of axes of the input (bottom[0]) covered by the scale
1288  // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
1289  // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
1290  optional int32 num_axes = 2 [default = 1];
1291
1292  // (filler is ignored unless just one bottom is given and the scale is
1293  // a learned parameter of the layer.)
1294  // The initialization for the learned scale parameter.
1295  // Default is the unit (1) initialization, resulting in the ScaleLayer
1296  // initially performing the identity operation.
1297  optional FillerParameter filler = 3;
1298
1299  // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
1300  // may be more efficient).  Initialized with bias_filler (defaults to 0).
1301  optional bool bias_term = 4 [default = false];
1302  optional FillerParameter bias_filler = 5;
1303}
1304
1305message SigmoidParameter {
1306  enum Engine {
1307    DEFAULT = 0;
1308    CAFFE = 1;
1309    CUDNN = 2;
1310  }
1311  optional Engine engine = 1 [default = DEFAULT];
1312}
1313
1314message SliceParameter {
1315  // The axis along which to slice -- may be negative to index from the end
1316  // (e.g., -1 for the last axis).
1317  // By default, SliceLayer concatenates blobs along the "channels" axis (1).
1318  optional int32 axis = 3 [default = 1];
1319  repeated uint32 slice_point = 2;
1320
1321  // DEPRECATED: alias for "axis" -- does not support negative indexing.
1322  optional uint32 slice_dim = 1 [default = 1];
1323}
1324
1325// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
1326message SoftmaxParameter {
1327  enum Engine {
1328    DEFAULT = 0;
1329    CAFFE = 1;
1330    CUDNN = 2;
1331  }
1332  optional Engine engine = 1 [default = DEFAULT];
1333
1334  // The axis along which to perform the softmax -- may be negative to index
1335  // from the end (e.g., -1 for the last axis).
1336  // Any other axes will be evaluated as independent softmaxes.
1337  optional int32 axis = 2 [default = 1];
1338}
1339
1340message TanHParameter {
1341  enum Engine {
1342    DEFAULT = 0;
1343    CAFFE = 1;
1344    CUDNN = 2;
1345  }
1346  optional Engine engine = 1 [default = DEFAULT];
1347}
1348
1349// Message that stores parameters used by TileLayer
1350message TileParameter {
1351  // The index of the axis to tile.
1352  optional int32 axis = 1 [default = 1];
1353
1354  // The number of copies (tiles) of the blob to output.
1355  optional int32 tiles = 2;
1356}
1357
1358// Message that stores parameters used by ThresholdLayer
1359message ThresholdParameter {
1360  optional float threshold = 1 [default = 0]; // Strictly positive values
1361}
1362
1363message WindowDataParameter {
1364  // Specify the data source.
1365  optional string source = 1;
1366  // For data pre-processing, we can do simple scaling and subtracting the
1367  // data mean, if provided. Note that the mean subtraction is always carried
1368  // out before scaling.
1369  optional float scale = 2 [default = 1];
1370  optional string mean_file = 3;
1371  // Specify the batch size.
1372  optional uint32 batch_size = 4;
1373  // Specify if we would like to randomly crop an image.
1374  optional uint32 crop_size = 5 [default = 0];
1375  // Specify if we want to randomly mirror data.
1376  optional bool mirror = 6 [default = false];
1377  // Foreground (object) overlap threshold
1378  optional float fg_threshold = 7 [default = 0.5];
1379  // Background (non-object) overlap threshold
1380  optional float bg_threshold = 8 [default = 0.5];
1381  // Fraction of batch that should be foreground objects
1382  optional float fg_fraction = 9 [default = 0.25];
1383  // Amount of contextual padding to add around a window
1384  // (used only by the window_data_layer)
1385  optional uint32 context_pad = 10 [default = 0];
1386  // Mode for cropping out a detection window
1387  // warp: cropped window is warped to a fixed size and aspect ratio
1388  // square: the tightest square around the window is cropped
1389  optional string crop_mode = 11 [default = "warp"];
1390  // cache_images: will load all images in memory for faster access
1391  optional bool cache_images = 12 [default = false];
1392  // append root_folder to locate images
1393  optional string root_folder = 13 [default = ""];
1394}
1395
1396message SPPParameter {
1397  enum PoolMethod {
1398    MAX = 0;
1399    AVE = 1;
1400    STOCHASTIC = 2;
1401  }
1402  optional uint32 pyramid_height = 1;
1403  optional PoolMethod pool = 2 [default = MAX]; // The pooling method
1404  enum Engine {
1405    DEFAULT = 0;
1406    CAFFE = 1;
1407    CUDNN = 2;
1408  }
1409  optional Engine engine = 6 [default = DEFAULT];
1410}
1411
1412// DEPRECATED: use LayerParameter.
1413message V1LayerParameter {
1414  repeated string bottom = 2;
1415  repeated string top = 3;
1416  optional string name = 4;
1417  repeated NetStateRule include = 32;
1418  repeated NetStateRule exclude = 33;
1419  enum LayerType {
1420    NONE = 0;
1421    ABSVAL = 35;
1422    ACCURACY = 1;
1423    ARGMAX = 30;
1424    BNLL = 2;
1425    CONCAT = 3;
1426    CONTRASTIVE_LOSS = 37;
1427    CONVOLUTION = 4;
1428    DATA = 5;
1429    DECONVOLUTION = 39;
1430    DROPOUT = 6;
1431    DUMMY_DATA = 32;
1432    EUCLIDEAN_LOSS = 7;
1433    ELTWISE = 25;
1434    EXP = 38;
1435    FLATTEN = 8;
1436    HDF5_DATA = 9;
1437    HDF5_OUTPUT = 10;
1438    HINGE_LOSS = 28;
1439    IM2COL = 11;
1440    IMAGE_DATA = 12;
1441    INFOGAIN_LOSS = 13;
1442    INNER_PRODUCT = 14;
1443    LRN = 15;
1444    MEMORY_DATA = 29;
1445    MULTINOMIAL_LOGISTIC_LOSS = 16;
1446    MVN = 34;
1447    POOLING = 17;
1448    POWER = 26;
1449    RELU = 18;
1450    SIGMOID = 19;
1451    SIGMOID_CROSS_ENTROPY_LOSS = 27;
1452    SILENCE = 36;
1453    SOFTMAX = 20;
1454    SOFTMAX_LOSS = 21;
1455    SPLIT = 22;
1456    SLICE = 33;
1457    TANH = 23;
1458    WINDOW_DATA = 24;
1459    THRESHOLD = 31;
1460  }
1461  optional LayerType type = 5;
1462  repeated BlobProto blobs = 6;
1463  repeated string param = 1001;
1464  repeated DimCheckMode blob_share_mode = 1002;
1465  enum DimCheckMode {
1466    STRICT = 0;
1467    PERMISSIVE = 1;
1468  }
1469  repeated float blobs_lr = 7;
1470  repeated float weight_decay = 8;
1471  repeated float loss_weight = 35;
1472  optional AccuracyParameter accuracy_param = 27;
1473  optional ArgMaxParameter argmax_param = 23;
1474  optional ConcatParameter concat_param = 9;
1475  optional ContrastiveLossParameter contrastive_loss_param = 40;
1476  optional ConvolutionParameter convolution_param = 10;
1477  optional DataParameter data_param = 11;
1478  optional DropoutParameter dropout_param = 12;
1479  optional DummyDataParameter dummy_data_param = 26;
1480  optional EltwiseParameter eltwise_param = 24;
1481  optional ExpParameter exp_param = 41;
1482  optional HDF5DataParameter hdf5_data_param = 13;
1483  optional HDF5OutputParameter hdf5_output_param = 14;
1484  optional HingeLossParameter hinge_loss_param = 29;
1485  optional ImageDataParameter image_data_param = 15;
1486  optional InfogainLossParameter infogain_loss_param = 16;
1487  optional InnerProductParameter inner_product_param = 17;
1488  optional LRNParameter lrn_param = 18;
1489  optional MemoryDataParameter memory_data_param = 22;
1490  optional MVNParameter mvn_param = 34;
1491  optional PoolingParameter pooling_param = 19;
1492  optional PowerParameter power_param = 21;
1493  optional ReLUParameter relu_param = 30;
1494  optional SigmoidParameter sigmoid_param = 38;
1495  optional SoftmaxParameter softmax_param = 39;
1496  optional SliceParameter slice_param = 31;
1497  optional TanHParameter tanh_param = 37;
1498  optional ThresholdParameter threshold_param = 25;
1499  optional WindowDataParameter window_data_param = 20;
1500  optional TransformationParameter transform_param = 36;
1501  optional LossParameter loss_param = 42;
1502  optional V0LayerParameter layer = 1;
1503}
1504
1505// DEPRECATED: V0LayerParameter is the old way of specifying layer parameters
1506// in Caffe.  We keep this message type around for legacy support.
1507message V0LayerParameter {
1508  optional string name = 1; // the layer name
1509  optional string type = 2; // the string to specify the layer type
1510
1511  // Parameters to specify layers with inner products.
1512  optional uint32 num_output = 3; // The number of outputs for the layer
1513  optional bool biasterm = 4 [default = true]; // whether to have bias terms
1514  optional FillerParameter weight_filler = 5; // The filler for the weight
1515  optional FillerParameter bias_filler = 6; // The filler for the bias
1516
1517  optional uint32 pad = 7 [default = 0]; // The padding size
1518  optional uint32 kernelsize = 8; // The kernel size
1519  optional uint32 group = 9 [default = 1]; // The group size for group conv
1520  optional uint32 stride = 10 [default = 1]; // The stride
1521  enum PoolMethod {
1522    MAX = 0;
1523    AVE = 1;
1524    STOCHASTIC = 2;
1525  }
1526  optional PoolMethod pool = 11 [default = MAX]; // The pooling method
1527  optional float dropout_ratio = 12 [default = 0.5]; // dropout ratio
1528
1529  optional uint32 local_size = 13 [default = 5]; // for local response norm
1530  optional float alpha = 14 [default = 1.]; // for local response norm
1531  optional float beta = 15 [default = 0.75]; // for local response norm
1532  optional float k = 22 [default = 1.];
1533
1534  // For data layers, specify the data source
1535  optional string source = 16;
1536  // For data pre-processing, we can do simple scaling and subtracting the
1537  // data mean, if provided. Note that the mean subtraction is always carried
1538  // out before scaling.
1539  optional float scale = 17 [default = 1];
1540  optional string meanfile = 18;
1541  // For data layers, specify the batch size.
1542  optional uint32 batchsize = 19;
1543  // For data layers, specify if we would like to randomly crop an image.
1544  optional uint32 cropsize = 20 [default = 0];
1545  // For data layers, specify if we want to randomly mirror data.
1546  optional bool mirror = 21 [default = false];
1547
1548  // The blobs containing the numeric parameters of the layer
1549  repeated BlobProto blobs = 50;
1550  // The ratio that is multiplied on the global learning rate. If you want to
1551  // set the learning ratio for one blob, you need to set it for all blobs.
1552  repeated float blobs_lr = 51;
1553  // The weight decay that is multiplied on the global weight decay.
1554  repeated float weight_decay = 52;
1555
1556  // The rand_skip variable is for the data layer to skip a few data points
1557  // to avoid all asynchronous sgd clients to start at the same point. The skip
1558  // point would be set as rand_skip * rand(0,1). Note that rand_skip should not
1559  // be larger than the number of keys in the database.
1560  optional uint32 rand_skip = 53 [default = 0];
1561
1562  // Fields related to detection (det_*)
1563  // foreground (object) overlap threshold
1564  optional float det_fg_threshold = 54 [default = 0.5];
1565  // background (non-object) overlap threshold
1566  optional float det_bg_threshold = 55 [default = 0.5];
1567  // Fraction of batch that should be foreground objects
1568  optional float det_fg_fraction = 56 [default = 0.25];
1569
1570  // optional bool OBSOLETE_can_clobber = 57 [default = true];
1571
1572  // Amount of contextual padding to add around a window
1573  // (used only by the window_data_layer)
1574  optional uint32 det_context_pad = 58 [default = 0];
1575
1576  // Mode for cropping out a detection window
1577  // warp: cropped window is warped to a fixed size and aspect ratio
1578  // square: the tightest square around the window is cropped
1579  optional string det_crop_mode = 59 [default = "warp"];
1580
1581  // For ReshapeLayer, one needs to specify the new dimensions.
1582  optional int32 new_num = 60 [default = 0];
1583  optional int32 new_channels = 61 [default = 0];
1584  optional int32 new_height = 62 [default = 0];
1585  optional int32 new_width = 63 [default = 0];
1586
1587  // Whether or not ImageLayer should shuffle the list of files at every epoch.
1588  // It will also resize images if new_height or new_width are not zero.
1589  optional bool shuffle_images = 64 [default = false];
1590
1591  // For ConcatLayer, one needs to specify the dimension for concatenation, and
1592  // the other dimensions must be the same for all the bottom blobs.
1593  // By default it will concatenate blobs along the channels dimension.
1594  optional uint32 concat_dim = 65 [default = 1];
1595
1596  optional HDF5OutputParameter hdf5_output_param = 1001;
1597}
1598
1599message PReLUParameter {
1600  // Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:
1601  // Surpassing Human-Level Performance on ImageNet Classification, 2015.
1602
1603  // Initial value of a_i. Default is a_i=0.25 for all i.
1604  optional FillerParameter filler = 1;
1605  // Whether or not slope parameters are shared across channels.
1606  optional bool channel_shared = 2 [default = false];
1607}
1608
1609// The normalized bounding box [0, 1] w.r.t. the input image size.
1610message NormalizedBBox {
1611  optional float xmin = 1;
1612  optional float ymin = 2;
1613  optional float xmax = 3;
1614  optional float ymax = 4;
1615  optional int32 label = 5;
1616  optional bool difficult = 6;
1617  optional float score = 7;
1618  optional float size = 8;
1619}
1620
1621// origin: https://github.com/rbgirshick/caffe-fast-rcnn/tree/fast-rcnn
1622// Message that stores parameters used by ROIPoolingLayer
1623message ROIPoolingParameter {
1624  // Pad, kernel size, and stride are all given as a single value for equal
1625  // dimensions in height and width or as Y, X pairs.
1626  optional uint32 pooled_h = 1 [default = 0]; // The pooled output height
1627  optional uint32 pooled_w = 2 [default = 0]; // The pooled output width
1628  // Multiplicative spatial scale factor to translate ROI coords from their
1629  // input scale to the scale used when pooling
1630  optional float spatial_scale = 3 [default = 1];
1631}
1632
1633message ProposalParameter {
1634  optional uint32 feat_stride = 1 [default = 16];
1635  optional uint32 base_size = 2 [default = 16];
1636  optional uint32 min_size = 3 [default = 16];
1637  repeated float ratio = 4;
1638  repeated float scale = 5;
1639  optional uint32 pre_nms_topn = 6 [default = 6000];
1640  optional uint32 post_nms_topn = 7 [default = 300];
1641  optional float nms_thresh = 8 [default = 0.7];
1642}
1643
1644// origin: https://github.com/daijifeng001/caffe-rfcn
1645message PSROIPoolingParameter {
1646  required float spatial_scale = 1;
1647  required int32 output_dim = 2; // output channel number
1648  required int32 group_size = 3; // equal to pooled_size
1649}
1650