1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 /****************************************************************************************\
46 *                                       Watershed                                        *
47 \****************************************************************************************/
48 
49 namespace cv
50 {
51 // A node represents a pixel to label
52 struct WSNode
53 {
54     int next;
55     int mask_ofs;
56     int img_ofs;
57 };
58 
59 // Queue for WSNodes
60 struct WSQueue
61 {
WSQueuecv::WSQueue62     WSQueue() { first = last = 0; }
63     int first, last;
64 };
65 
66 
67 static int
allocWSNodes(std::vector<WSNode> & storage)68 allocWSNodes( std::vector<WSNode>& storage )
69 {
70     int sz = (int)storage.size();
71     int newsz = MAX(128, sz*3/2);
72 
73     storage.resize(newsz);
74     if( sz == 0 )
75     {
76         storage[0].next = 0;
77         sz = 1;
78     }
79     for( int i = sz; i < newsz-1; i++ )
80         storage[i].next = i+1;
81     storage[newsz-1].next = 0;
82     return sz;
83 }
84 
85 }
86 
87 
watershed(InputArray _src,InputOutputArray _markers)88 void cv::watershed( InputArray _src, InputOutputArray _markers )
89 {
90     CV_INSTRUMENT_REGION();
91 
92     // Labels for pixels
93     const int IN_QUEUE = -2; // Pixel visited
94     const int WSHED = -1; // Pixel belongs to watershed
95 
96     // possible bit values = 2^8
97     const int NQ = 256;
98 
99     Mat src = _src.getMat(), dst = _markers.getMat();
100     Size size = src.size();
101 
102     // Vector of every created node
103     std::vector<WSNode> storage;
104     int free_node = 0, node;
105     // Priority queue of queues of nodes
106     // from high priority (0) to low priority (255)
107     WSQueue q[NQ];
108     // Non-empty queue with highest priority
109     int active_queue;
110     int i, j;
111     // Color differences
112     int db, dg, dr;
113     int subs_tab[513];
114 
115     // MAX(a,b) = b + MAX(a-b,0)
116     #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
117     // MIN(a,b) = a - MAX(a-b,0)
118     #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])
119 
120     // Create a new node with offsets mofs and iofs in queue idx
121     #define ws_push(idx,mofs,iofs)          \
122     {                                       \
123         if( !free_node )                    \
124             free_node = allocWSNodes( storage );\
125         node = free_node;                   \
126         free_node = storage[free_node].next;\
127         storage[node].next = 0;             \
128         storage[node].mask_ofs = mofs;      \
129         storage[node].img_ofs = iofs;       \
130         if( q[idx].last )                   \
131             storage[q[idx].last].next=node; \
132         else                                \
133             q[idx].first = node;            \
134         q[idx].last = node;                 \
135     }
136 
137     // Get next node from queue idx
138     #define ws_pop(idx,mofs,iofs)           \
139     {                                       \
140         node = q[idx].first;                \
141         q[idx].first = storage[node].next;  \
142         if( !storage[node].next )           \
143             q[idx].last = 0;                \
144         storage[node].next = free_node;     \
145         free_node = node;                   \
146         mofs = storage[node].mask_ofs;      \
147         iofs = storage[node].img_ofs;       \
148     }
149 
150     // Get highest absolute channel difference in diff
151     #define c_diff(ptr1,ptr2,diff)           \
152     {                                        \
153         db = std::abs((ptr1)[0] - (ptr2)[0]);\
154         dg = std::abs((ptr1)[1] - (ptr2)[1]);\
155         dr = std::abs((ptr1)[2] - (ptr2)[2]);\
156         diff = ws_max(db,dg);                \
157         diff = ws_max(diff,dr);              \
158         assert( 0 <= diff && diff <= 255 );  \
159     }
160 
161     CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 );
162     CV_Assert( src.size() == dst.size() );
163 
164     // Current pixel in input image
165     const uchar* img = src.ptr();
166     // Step size to next row in input image
167     int istep = int(src.step/sizeof(img[0]));
168 
169     // Current pixel in mask image
170     int* mask = dst.ptr<int>();
171     // Step size to next row in mask image
172     int mstep = int(dst.step / sizeof(mask[0]));
173 
174     for( i = 0; i < 256; i++ )
175         subs_tab[i] = 0;
176     for( i = 256; i <= 512; i++ )
177         subs_tab[i] = i - 256;
178 
179     // draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
180     for( j = 0; j < size.width; j++ )
181         mask[j] = mask[j + mstep*(size.height-1)] = WSHED;
182 
183     // initial phase: put all the neighbor pixels of each marker to the ordered queue -
184     // determine the initial boundaries of the basins
185     for( i = 1; i < size.height-1; i++ )
186     {
187         img += istep; mask += mstep;
188         mask[0] = mask[size.width-1] = WSHED; // boundary pixels
189 
190         for( j = 1; j < size.width-1; j++ )
191         {
192             int* m = mask + j;
193             if( m[0] < 0 ) m[0] = 0;
194             if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
195             {
196                 // Find smallest difference to adjacent markers
197                 const uchar* ptr = img + j*3;
198                 int idx = 256, t;
199                 if( m[-1] > 0 )
200                     c_diff( ptr, ptr - 3, idx );
201                 if( m[1] > 0 )
202                 {
203                     c_diff( ptr, ptr + 3, t );
204                     idx = ws_min( idx, t );
205                 }
206                 if( m[-mstep] > 0 )
207                 {
208                     c_diff( ptr, ptr - istep, t );
209                     idx = ws_min( idx, t );
210                 }
211                 if( m[mstep] > 0 )
212                 {
213                     c_diff( ptr, ptr + istep, t );
214                     idx = ws_min( idx, t );
215                 }
216 
217                 // Add to according queue
218                 assert( 0 <= idx && idx <= 255 );
219                 ws_push( idx, i*mstep + j, i*istep + j*3 );
220                 m[0] = IN_QUEUE;
221             }
222         }
223     }
224 
225     // find the first non-empty queue
226     for( i = 0; i < NQ; i++ )
227         if( q[i].first )
228             break;
229 
230     // if there is no markers, exit immediately
231     if( i == NQ )
232         return;
233 
234     active_queue = i;
235     img = src.ptr();
236     mask = dst.ptr<int>();
237 
238     // recursively fill the basins
239     for(;;)
240     {
241         int mofs, iofs;
242         int lab = 0, t;
243         int* m;
244         const uchar* ptr;
245 
246         // Get non-empty queue with highest priority
247         // Exit condition: empty priority queue
248         if( q[active_queue].first == 0 )
249         {
250             for( i = active_queue+1; i < NQ; i++ )
251                 if( q[i].first )
252                     break;
253             if( i == NQ )
254                 break;
255             active_queue = i;
256         }
257 
258         // Get next node
259         ws_pop( active_queue, mofs, iofs );
260 
261         // Calculate pointer to current pixel in input and marker image
262         m = mask + mofs;
263         ptr = img + iofs;
264 
265         // Check surrounding pixels for labels
266         // to determine label for current pixel
267         t = m[-1]; // Left
268         if( t > 0 ) lab = t;
269         t = m[1]; // Right
270         if( t > 0 )
271         {
272             if( lab == 0 ) lab = t;
273             else if( t != lab ) lab = WSHED;
274         }
275         t = m[-mstep]; // Top
276         if( t > 0 )
277         {
278             if( lab == 0 ) lab = t;
279             else if( t != lab ) lab = WSHED;
280         }
281         t = m[mstep]; // Bottom
282         if( t > 0 )
283         {
284             if( lab == 0 ) lab = t;
285             else if( t != lab ) lab = WSHED;
286         }
287 
288         // Set label to current pixel in marker image
289         assert( lab != 0 );
290         m[0] = lab;
291 
292         if( lab == WSHED )
293             continue;
294 
295         // Add adjacent, unlabeled pixels to corresponding queue
296         if( m[-1] == 0 )
297         {
298             c_diff( ptr, ptr - 3, t );
299             ws_push( t, mofs - 1, iofs - 3 );
300             active_queue = ws_min( active_queue, t );
301             m[-1] = IN_QUEUE;
302         }
303         if( m[1] == 0 )
304         {
305             c_diff( ptr, ptr + 3, t );
306             ws_push( t, mofs + 1, iofs + 3 );
307             active_queue = ws_min( active_queue, t );
308             m[1] = IN_QUEUE;
309         }
310         if( m[-mstep] == 0 )
311         {
312             c_diff( ptr, ptr - istep, t );
313             ws_push( t, mofs - mstep, iofs - istep );
314             active_queue = ws_min( active_queue, t );
315             m[-mstep] = IN_QUEUE;
316         }
317         if( m[mstep] == 0 )
318         {
319             c_diff( ptr, ptr + istep, t );
320             ws_push( t, mofs + mstep, iofs + istep );
321             active_queue = ws_min( active_queue, t );
322             m[mstep] = IN_QUEUE;
323         }
324     }
325 }
326 
327 
328 /****************************************************************************************\
329 *                                         Meanshift                                      *
330 \****************************************************************************************/
331 
332 
pyrMeanShiftFiltering(InputArray _src,OutputArray _dst,double sp0,double sr,int max_level,TermCriteria termcrit)333 void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
334                                 double sp0, double sr, int max_level,
335                                 TermCriteria termcrit )
336 {
337     CV_INSTRUMENT_REGION();
338 
339     Mat src0 = _src.getMat();
340 
341     if( src0.empty() )
342         return;
343 
344     _dst.create( src0.size(), src0.type() );
345     Mat dst0 = _dst.getMat();
346 
347     const int cn = 3;
348     const int MAX_LEVELS = 8;
349 
350     if( (unsigned)max_level > (unsigned)MAX_LEVELS )
351         CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );
352 
353     std::vector<cv::Mat> src_pyramid(max_level+1);
354     std::vector<cv::Mat> dst_pyramid(max_level+1);
355     cv::Mat mask0;
356     int i, j, level;
357     //uchar* submask = 0;
358 
359     #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
360         tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)
361 
362     double sr2 = sr * sr;
363     int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
364     int tab[768];
365 
366 
367     if( src0.type() != CV_8UC3 )
368         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
369 
370     if( src0.type() != dst0.type() )
371         CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );
372 
373     if( src0.size() != dst0.size() )
374         CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
375 
376     if( !(termcrit.type & CV_TERMCRIT_ITER) )
377         termcrit.maxCount = 5;
378     termcrit.maxCount = MAX(termcrit.maxCount,1);
379     termcrit.maxCount = MIN(termcrit.maxCount,100);
380     if( !(termcrit.type & CV_TERMCRIT_EPS) )
381         termcrit.epsilon = 1.f;
382     termcrit.epsilon = MAX(termcrit.epsilon, 0.f);
383 
384     for( i = 0; i < 768; i++ )
385         tab[i] = (i - 255)*(i - 255);
386 
387     // 1. construct pyramid
388     src_pyramid[0] = src0;
389     dst_pyramid[0] = dst0;
390     for( level = 1; level <= max_level; level++ )
391     {
392         src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
393                         (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
394         dst_pyramid[level].create( src_pyramid[level].rows,
395                         src_pyramid[level].cols, src_pyramid[level].type() );
396         cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
397         //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
398     }
399 
400     mask0.create(src0.rows, src0.cols, CV_8UC1);
401     //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));
402 
403     // 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
404     for( level = max_level; level >= 0; level-- )
405     {
406         cv::Mat src = src_pyramid[level];
407         cv::Size size = src.size();
408         const uchar* sptr = src.ptr();
409         int sstep = (int)src.step;
410         uchar* dptr;
411         int dstep;
412         float sp = (float)(sp0 / (1 << level));
413         sp = MAX( sp, 1 );
414 
415         cv::Mat m;
416         if( level < max_level )
417         {
418             cv::Size size1 = dst_pyramid[level+1].size();
419             m = cv::Mat(size.height, size.width, CV_8UC1, mask0.ptr());
420             dstep = (int)dst_pyramid[level+1].step;
421             dptr = dst_pyramid[level+1].ptr() + dstep + cn;
422             //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
423             cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
424             m.setTo(cv::Scalar::all(0));
425 
426             for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3)
427             {
428                 uchar* mask = m.ptr(1 + i * 2);
429                 for( j = 1; j < size1.width-1; j++, dptr += cn )
430                 {
431                     int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
432                     mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
433                         cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
434                 }
435             }
436 
437             cv::dilate( m, m, cv::Mat() );
438         }
439 
440         dptr = dst_pyramid[level].ptr();
441         dstep = (int)dst_pyramid[level].step;
442 
443         for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
444                                           dptr += dstep - size.width*3
445         )
446         {
447             uchar* mask = m.empty() ? NULL : m.ptr(i);
448             for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
449             {
450                 int x0 = j, y0 = i, x1, y1, iter;
451                 int c0, c1, c2;
452 
453                 if( mask && !mask[j] )
454                     continue;
455 
456                 c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];
457 
458                 // iterate meanshift procedure
459                 for( iter = 0; iter < termcrit.maxCount; iter++ )
460                 {
461                     const uchar* ptr;
462                     int x, y, count = 0;
463                     int minx, miny, maxx, maxy;
464                     int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
465                     double icount;
466                     int stop_flag;
467 
468                     //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
469                     minx = cvRound(x0 - sp); minx = MAX(minx, 0);
470                     miny = cvRound(y0 - sp); miny = MAX(miny, 0);
471                     maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
472                     maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
473                     ptr = sptr + (miny - i)*sstep + (minx - j)*3;
474 
475                     for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
476                     {
477                         int row_count = 0;
478                         x = minx;
479                         #if CV_ENABLE_UNROLLED
480                         for( ; x + 3 <= maxx; x += 4, ptr += 12 )
481                         {
482                             int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
483                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
484                             {
485                                 s0 += t0; s1 += t1; s2 += t2;
486                                 sx += x; row_count++;
487                             }
488                             t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
489                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
490                             {
491                                 s0 += t0; s1 += t1; s2 += t2;
492                                 sx += x+1; row_count++;
493                             }
494                             t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
495                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
496                             {
497                                 s0 += t0; s1 += t1; s2 += t2;
498                                 sx += x+2; row_count++;
499                             }
500                             t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
501                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
502                             {
503                                 s0 += t0; s1 += t1; s2 += t2;
504                                 sx += x+3; row_count++;
505                             }
506                         }
507                         #endif
508                         for( ; x <= maxx; x++, ptr += 3 )
509                         {
510                             int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
511                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
512                             {
513                                 s0 += t0; s1 += t1; s2 += t2;
514                                 sx += x; row_count++;
515                             }
516                         }
517                         count += row_count;
518                         sy += y*row_count;
519                     }
520 
521                     if( count == 0 )
522                         break;
523 
524                     icount = 1./count;
525                     x1 = cvRound(sx*icount);
526                     y1 = cvRound(sy*icount);
527                     s0 = cvRound(s0*icount);
528                     s1 = cvRound(s1*icount);
529                     s2 = cvRound(s2*icount);
530 
531                     stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) +
532                         tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
533                         tab[s2 - c2 + 255] <= termcrit.epsilon;
534 
535                     x0 = x1; y0 = y1;
536                     c0 = s0; c1 = s1; c2 = s2;
537 
538                     if( stop_flag )
539                         break;
540                 }
541 
542                 dptr[0] = (uchar)c0;
543                 dptr[1] = (uchar)c1;
544                 dptr[2] = (uchar)c2;
545             }
546         }
547     }
548 }
549 
550 
551 ///////////////////////////////////////////////////////////////////////////////////////////////
552 
cvWatershed(const CvArr * _src,CvArr * _markers)553 CV_IMPL void cvWatershed( const CvArr* _src, CvArr* _markers )
554 {
555     cv::Mat src = cv::cvarrToMat(_src), markers = cv::cvarrToMat(_markers);
556     cv::watershed(src, markers);
557 }
558 
559 
560 CV_IMPL void
cvPyrMeanShiftFiltering(const CvArr * srcarr,CvArr * dstarr,double sp0,double sr,int max_level,CvTermCriteria termcrit)561 cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
562                         double sp0, double sr, int max_level,
563                         CvTermCriteria termcrit )
564 {
565     cv::Mat src = cv::cvarrToMat(srcarr);
566     const cv::Mat dst = cv::cvarrToMat(dstarr);
567 
568     cv::pyrMeanShiftFiltering(src, dst, sp0, sr, max_level, termcrit);
569 }
570