1 #[cfg(feature = "serde")]
2 use serde::{Deserialize, Serialize};
3 
4 #[cfg(feature = "bytemuck")]
5 use bytemuck::{Pod, Zeroable};
6 
7 use core::{
8     cmp::Ordering,
9     fmt::{
10         Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
11     },
12     num::{FpCategory, ParseFloatError},
13     str::FromStr,
14 };
15 
16 pub(crate) mod convert;
17 
18 /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a `half`
19 /// format.
20 ///
21 /// This 16-bit floating point type is intended for efficient storage where the full range and
22 /// precision of a larger floating point value is not required. Because [`f16`] is primarily for
23 /// efficient storage, floating point operations such as addition, multiplication, etc. are not
24 /// implemented. Operations should be performed with `f32` or higher-precision types and converted
25 /// to/from [`f16`] as necessary.
26 ///
27 /// [`f16`]: struct.f16.html
28 /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
29 #[allow(non_camel_case_types)]
30 #[derive(Clone, Copy, Default)]
31 #[repr(transparent)]
32 #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
33 #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
34 pub struct f16(u16);
35 
36 #[cfg(feature = "num-traits")]
37 mod impl_num_traits {
38     use super::f16;
39     use num_traits::{FromPrimitive, ToPrimitive};
40 
41     impl ToPrimitive for f16 {
to_i64(&self) -> Option<i64>42         fn to_i64(&self) -> Option<i64> {
43             Self::to_f32(*self).to_i64()
44         }
to_u64(&self) -> Option<u64>45         fn to_u64(&self) -> Option<u64> {
46             Self::to_f32(*self).to_u64()
47         }
to_i8(&self) -> Option<i8>48         fn to_i8(&self) -> Option<i8> {
49             Self::to_f32(*self).to_i8()
50         }
to_u8(&self) -> Option<u8>51         fn to_u8(&self) -> Option<u8> {
52             Self::to_f32(*self).to_u8()
53         }
to_i16(&self) -> Option<i16>54         fn to_i16(&self) -> Option<i16> {
55             Self::to_f32(*self).to_i16()
56         }
to_u16(&self) -> Option<u16>57         fn to_u16(&self) -> Option<u16> {
58             Self::to_f32(*self).to_u16()
59         }
to_i32(&self) -> Option<i32>60         fn to_i32(&self) -> Option<i32> {
61             Self::to_f32(*self).to_i32()
62         }
to_u32(&self) -> Option<u32>63         fn to_u32(&self) -> Option<u32> {
64             Self::to_f32(*self).to_u32()
65         }
to_f32(&self) -> Option<f32>66         fn to_f32(&self) -> Option<f32> {
67             Some(Self::to_f32(*self))
68         }
to_f64(&self) -> Option<f64>69         fn to_f64(&self) -> Option<f64> {
70             Some(Self::to_f64(*self))
71         }
72     }
73 
74     impl FromPrimitive for f16 {
from_i64(n: i64) -> Option<Self>75         fn from_i64(n: i64) -> Option<Self> {
76             n.to_f32().map(|x| Self::from_f32(x))
77         }
from_u64(n: u64) -> Option<Self>78         fn from_u64(n: u64) -> Option<Self> {
79             n.to_f32().map(|x| Self::from_f32(x))
80         }
from_i8(n: i8) -> Option<Self>81         fn from_i8(n: i8) -> Option<Self> {
82             n.to_f32().map(|x| Self::from_f32(x))
83         }
from_u8(n: u8) -> Option<Self>84         fn from_u8(n: u8) -> Option<Self> {
85             n.to_f32().map(|x| Self::from_f32(x))
86         }
from_i16(n: i16) -> Option<Self>87         fn from_i16(n: i16) -> Option<Self> {
88             n.to_f32().map(|x| Self::from_f32(x))
89         }
from_u16(n: u16) -> Option<Self>90         fn from_u16(n: u16) -> Option<Self> {
91             n.to_f32().map(|x| Self::from_f32(x))
92         }
from_i32(n: i32) -> Option<Self>93         fn from_i32(n: i32) -> Option<Self> {
94             n.to_f32().map(|x| Self::from_f32(x))
95         }
from_u32(n: u32) -> Option<Self>96         fn from_u32(n: u32) -> Option<Self> {
97             n.to_f32().map(|x| Self::from_f32(x))
98         }
from_f32(n: f32) -> Option<Self>99         fn from_f32(n: f32) -> Option<Self> {
100             n.to_f32().map(|x| Self::from_f32(x))
101         }
from_f64(n: f64) -> Option<Self>102         fn from_f64(n: f64) -> Option<Self> {
103             n.to_f64().map(|x| Self::from_f64(x))
104         }
105     }
106 }
107 
108 #[deprecated(
109     since = "1.4.0",
110     note = "all constants moved to associated constants of [`f16`](../struct.f16.html)"
111 )]
112 pub mod consts {
113     //! Useful `f16` constants.
114 
115     use super::f16;
116 
117     /// Approximate number of [`f16`](../struct.f16.html) significant digits in base 10.
118     #[deprecated(
119         since = "1.4.0",
120         note = "moved to [`f16::DIGITS`](../struct.f16.html#associatedconstant.DIGITS)"
121     )]
122     pub const DIGITS: u32 = f16::DIGITS;
123     /// [`f16`](../struct.f16.html)
124     /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value.
125     ///
126     /// This is the difference between 1.0 and the next largest representable number.
127     #[deprecated(
128         since = "1.4.0",
129         note = "moved to [`f16::EPSILON`](../struct.f16.html#associatedconstant.EPSILON)"
130     )]
131     pub const EPSILON: f16 = f16::EPSILON;
132     /// [`f16`](../struct.f16.html) positive Infinity (+∞).
133     #[deprecated(
134         since = "1.4.0",
135         note = "moved to [`f16::INFINITY`](../struct.f16.html#associatedconstant.INFINITY)"
136     )]
137     pub const INFINITY: f16 = f16::INFINITY;
138     /// Number of [`f16`](../struct.f16.html) significant digits in base 2.
139     #[deprecated(
140         since = "1.4.0",
141         note = "moved to [`f16::MANTISSA_DIGITS`](../struct.f16.html#associatedconstant.MANTISSA_DIGITS)"
142     )]
143     pub const MANTISSA_DIGITS: u32 = f16::MANTISSA_DIGITS;
144     /// Largest finite [`f16`](../struct.f16.html) value.
145     #[deprecated(
146         since = "1.4.0",
147         note = "moved to [`f16::MAX`](../struct.f16.html#associatedconstant.MAX)"
148     )]
149     pub const MAX: f16 = f16::MAX;
150     /// Maximum possible [`f16`](../struct.f16.html) power of 10 exponent.
151     #[deprecated(
152         since = "1.4.0",
153         note = "moved to [`f16::MAX_10_EXP`](../struct.f16.html#associatedconstant.MAX_10_EXP)"
154     )]
155     pub const MAX_10_EXP: i32 = f16::MAX_10_EXP;
156     /// Maximum possible [`f16`](../struct.f16.html) power of 2 exponent.
157     #[deprecated(
158         since = "1.4.0",
159         note = "moved to [`f16::MAX_EXP`](../struct.f16.html#associatedconstant.MAX_EXP)"
160     )]
161     pub const MAX_EXP: i32 = f16::MAX_EXP;
162     /// Smallest finite [`f16`](../struct.f16.html) value.
163     #[deprecated(
164         since = "1.4.0",
165         note = "moved to [`f16::MIN`](../struct.f16.html#associatedconstant.MIN)"
166     )]
167     pub const MIN: f16 = f16::MIN;
168     /// Minimum possible normal [`f16`](../struct.f16.html) power of 10 exponent.
169     #[deprecated(
170         since = "1.4.0",
171         note = "moved to [`f16::MIN_10_EXP`](../struct.f16.html#associatedconstant.MIN_10_EXP)"
172     )]
173     pub const MIN_10_EXP: i32 = f16::MIN_10_EXP;
174     /// One greater than the minimum possible normal [`f16`](../struct.f16.html) power of 2 exponent.
175     #[deprecated(
176         since = "1.4.0",
177         note = "moved to [`f16::MIN_EXP`](../struct.f16.html#associatedconstant.MIN_EXP)"
178     )]
179     pub const MIN_EXP: i32 = f16::MIN_EXP;
180     /// Smallest positive normal [`f16`](../struct.f16.html) value.
181     #[deprecated(
182         since = "1.4.0",
183         note = "moved to [`f16::MIN_POSITIVE`](../struct.f16.html#associatedconstant.MIN_POSITIVE)"
184     )]
185     pub const MIN_POSITIVE: f16 = f16::MIN_POSITIVE;
186     /// [`f16`](../struct.f16.html) Not a Number (NaN).
187     #[deprecated(
188         since = "1.4.0",
189         note = "moved to [`f16::NAN`](../struct.f16.html#associatedconstant.NAN)"
190     )]
191     pub const NAN: f16 = f16::NAN;
192     /// [`f16`](../struct.f16.html) negative infinity (-∞).
193     #[deprecated(
194         since = "1.4.0",
195         note = "moved to [`f16::NEG_INFINITY`](../struct.f16.html#associatedconstant.NEG_INFINITY)"
196     )]
197     pub const NEG_INFINITY: f16 = f16::NEG_INFINITY;
198     /// The radix or base of the internal representation of [`f16`](../struct.f16.html).
199     #[deprecated(
200         since = "1.4.0",
201         note = "moved to [`f16::RADIX`](../struct.f16.html#associatedconstant.RADIX)"
202     )]
203     pub const RADIX: u32 = f16::RADIX;
204 
205     /// Minimum positive subnormal [`f16`](../struct.f16.html) value.
206     #[deprecated(
207         since = "1.4.0",
208         note = "moved to [`f16::MIN_POSITIVE_SUBNORMAL`](../struct.f16.html#associatedconstant.MIN_POSITIVE_SUBNORMAL)"
209     )]
210     pub const MIN_POSITIVE_SUBNORMAL: f16 = f16::MIN_POSITIVE_SUBNORMAL;
211     /// Maximum subnormal [`f16`](../struct.f16.html) value.
212     #[deprecated(
213         since = "1.4.0",
214         note = "moved to [`f16::MAX_SUBNORMAL`](../struct.f16.html#associatedconstant.MAX_SUBNORMAL)"
215     )]
216     pub const MAX_SUBNORMAL: f16 = f16::MAX_SUBNORMAL;
217 
218     /// [`f16`](../struct.f16.html) 1
219     #[deprecated(
220         since = "1.4.0",
221         note = "moved to [`f16::ONE`](../struct.f16.html#associatedconstant.ONE)"
222     )]
223     pub const ONE: f16 = f16::ONE;
224     /// [`f16`](../struct.f16.html) 0
225     #[deprecated(
226         since = "1.4.0",
227         note = "moved to [`f16::ZERO`](../struct.f16.html#associatedconstant.ZERO)"
228     )]
229     pub const ZERO: f16 = f16::ZERO;
230     /// [`f16`](../struct.f16.html) -0
231     #[deprecated(
232         since = "1.4.0",
233         note = "moved to [`f16::NEG_ZERO`](../struct.f16.html#associatedconstant.NEG_ZERO)"
234     )]
235     pub const NEG_ZERO: f16 = f16::NEG_ZERO;
236 
237     /// [`f16`](../struct.f16.html) Euler's number (ℯ).
238     #[deprecated(
239         since = "1.4.0",
240         note = "moved to [`f16::E`](../struct.f16.html#associatedconstant.E)"
241     )]
242     pub const E: f16 = f16::E;
243     /// [`f16`](../struct.f16.html) Archimedes' constant (π).
244     #[deprecated(
245         since = "1.4.0",
246         note = "moved to [`f16::PI`](../struct.f16.html#associatedconstant.PI)"
247     )]
248     pub const PI: f16 = f16::PI;
249     /// [`f16`](../struct.f16.html) 1/π
250     #[deprecated(
251         since = "1.4.0",
252         note = "moved to [`f16::FRAC_1_PI`](../struct.f16.html#associatedconstant.FRAC_1_PI)"
253     )]
254     pub const FRAC_1_PI: f16 = f16::FRAC_1_PI;
255     /// [`f16`](../struct.f16.html) 1/√2
256     #[deprecated(
257         since = "1.4.0",
258         note = "moved to [`f16::FRAC_1_SQRT_2`](../struct.f16.html#associatedconstant.FRAC_1_SQRT_2)"
259     )]
260     pub const FRAC_1_SQRT_2: f16 = f16::FRAC_1_SQRT_2;
261     /// [`f16`](../struct.f16.html) 2/π
262     #[deprecated(
263         since = "1.4.0",
264         note = "moved to [`f16::FRAC_2_PI`](../struct.f16.html#associatedconstant.FRAC_2_PI)"
265     )]
266     pub const FRAC_2_PI: f16 = f16::FRAC_2_PI;
267     /// [`f16`](../struct.f16.html) 2/√π
268     #[deprecated(
269         since = "1.4.0",
270         note = "moved to [`f16::FRAC_2_SQRT_PI`](../struct.f16.html#associatedconstant.FRAC_2_SQRT_PI)"
271     )]
272     pub const FRAC_2_SQRT_PI: f16 = f16::FRAC_2_SQRT_PI;
273     /// [`f16`](../struct.f16.html) π/2
274     #[deprecated(
275         since = "1.4.0",
276         note = "moved to [`f16::FRAC_PI_2`](../struct.f16.html#associatedconstant.FRAC_PI_2)"
277     )]
278     pub const FRAC_PI_2: f16 = f16::FRAC_PI_2;
279     /// [`f16`](../struct.f16.html) π/3
280     #[deprecated(
281         since = "1.4.0",
282         note = "moved to [`f16::FRAC_PI_3`](../struct.f16.html#associatedconstant.FRAC_PI_3)"
283     )]
284     pub const FRAC_PI_3: f16 = f16::FRAC_PI_3;
285     /// [`f16`](../struct.f16.html) π/4
286     #[deprecated(
287         since = "1.4.0",
288         note = "moved to [`f16::FRAC_PI_4`](../struct.f16.html#associatedconstant.FRAC_PI_4)"
289     )]
290     pub const FRAC_PI_4: f16 = f16::FRAC_PI_4;
291     /// [`f16`](../struct.f16.html) π/6
292     #[deprecated(
293         since = "1.4.0",
294         note = "moved to [`f16::FRAC_PI_6`](../struct.f16.html#associatedconstant.FRAC_PI_6)"
295     )]
296     pub const FRAC_PI_6: f16 = f16::FRAC_PI_6;
297     /// [`f16`](../struct.f16.html) π/8
298     #[deprecated(
299         since = "1.4.0",
300         note = "moved to [`f16::FRAC_PI_8`](../struct.f16.html#associatedconstant.FRAC_PI_8)"
301     )]
302     pub const FRAC_PI_8: f16 = f16::FRAC_PI_8;
303     /// [`f16`](../struct.f16.html) ���� 10
304     #[deprecated(
305         since = "1.4.0",
306         note = "moved to [`f16::LN_10`](../struct.f16.html#associatedconstant.LN_10)"
307     )]
308     pub const LN_10: f16 = f16::LN_10;
309     /// [`f16`](../struct.f16.html) ���� 2
310     #[deprecated(
311         since = "1.4.0",
312         note = "moved to [`f16::LN_2`](../struct.f16.html#associatedconstant.LN_2)"
313     )]
314     pub const LN_2: f16 = f16::LN_2;
315     /// [`f16`](../struct.f16.html) ������₁₀ℯ
316     #[deprecated(
317         since = "1.4.0",
318         note = "moved to [`f16::LOG10_E`](../struct.f16.html#associatedconstant.LOG10_E)"
319     )]
320     pub const LOG10_E: f16 = f16::LOG10_E;
321     /// [`f16`](../struct.f16.html) ������₂ℯ
322     #[deprecated(
323         since = "1.4.0",
324         note = "moved to [`f16::LOG2_E`](../struct.f16.html#associatedconstant.LOG2_E)"
325     )]
326     pub const LOG2_E: f16 = f16::LOG2_E;
327     /// [`f16`](../struct.f16.html) √2
328     #[deprecated(
329         since = "1.4.0",
330         note = "moved to [`f16::SQRT_2`](../struct.f16.html#associatedconstant.SQRT_2)"
331     )]
332     pub const SQRT_2: f16 = f16::SQRT_2;
333 }
334 
335 impl f16 {
336     /// Constructs a 16-bit floating point value from the raw bits.
337     #[inline]
from_bits(bits: u16) -> f16338     pub const fn from_bits(bits: u16) -> f16 {
339         f16(bits)
340     }
341 
342     /// Constructs a 16-bit floating point value from a 32-bit floating point value.
343     ///
344     /// If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are
345     /// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in
346     /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
347     /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit
348     /// value.
349     #[inline]
from_f32(value: f32) -> f16350     pub fn from_f32(value: f32) -> f16 {
351         f16(convert::f32_to_f16(value))
352     }
353 
354     /// Constructs a 16-bit floating point value from a 64-bit floating point value.
355     ///
356     /// If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are
357     /// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in
358     /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
359     /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit
360     /// value.
361     #[inline]
from_f64(value: f64) -> f16362     pub fn from_f64(value: f64) -> f16 {
363         f16(convert::f64_to_f16(value))
364     }
365 
366     /// Converts a [`f16`](struct.f16.html) into the underlying bit representation.
367     #[inline]
to_bits(self) -> u16368     pub const fn to_bits(self) -> u16 {
369         self.0
370     }
371 
372     /// Return the memory representation of the underlying bit representation as a byte array in
373     /// little-endian byte order.
374     ///
375     /// # Examples
376     ///
377     /// ```rust
378     /// # use half::prelude::*;
379     /// let bytes = f16::from_f32(12.5).to_le_bytes();
380     /// assert_eq!(bytes, [0x40, 0x4A]);
381     /// ```
382     #[inline]
to_le_bytes(self) -> [u8; 2]383     pub fn to_le_bytes(self) -> [u8; 2] {
384         self.0.to_le_bytes()
385     }
386 
387     /// Return the memory representation of the underlying bit representation as a byte array in
388     /// big-endian (network) byte order.
389     ///
390     /// # Examples
391     ///
392     /// ```rust
393     /// # use half::prelude::*;
394     /// let bytes = f16::from_f32(12.5).to_be_bytes();
395     /// assert_eq!(bytes, [0x4A, 0x40]);
396     /// ```
397     #[inline]
to_be_bytes(self) -> [u8; 2]398     pub fn to_be_bytes(self) -> [u8; 2] {
399         self.0.to_be_bytes()
400     }
401 
402     /// Return the memory representation of the underlying bit representation as a byte array in
403     /// native byte order.
404     ///
405     /// As the target platform's native endianness is used, portable code should use `to_be_bytes`
406     /// or `to_le_bytes`, as appropriate, instead.
407     ///
408     /// # Examples
409     ///
410     /// ```rust
411     /// # use half::prelude::*;
412     /// let bytes = f16::from_f32(12.5).to_ne_bytes();
413     /// assert_eq!(bytes, if cfg!(target_endian = "big") {
414     ///     [0x4A, 0x40]
415     /// } else {
416     ///     [0x40, 0x4A]
417     /// });
418     /// ```
419     #[inline]
to_ne_bytes(self) -> [u8; 2]420     pub fn to_ne_bytes(self) -> [u8; 2] {
421         self.0.to_ne_bytes()
422     }
423 
424     /// Create a floating point value from its representation as a byte array in little endian.
425     ///
426     /// # Examples
427     ///
428     /// ```rust
429     /// # use half::prelude::*;
430     /// let value = f16::from_le_bytes([0x40, 0x4A]);
431     /// assert_eq!(value, f16::from_f32(12.5));
432     /// ```
433     #[inline]
from_le_bytes(bytes: [u8; 2]) -> f16434     pub fn from_le_bytes(bytes: [u8; 2]) -> f16 {
435         f16::from_bits(u16::from_le_bytes(bytes))
436     }
437 
438     /// Create a floating point value from its representation as a byte array in big endian.
439     ///
440     /// # Examples
441     ///
442     /// ```rust
443     /// # use half::prelude::*;
444     /// let value = f16::from_be_bytes([0x4A, 0x40]);
445     /// assert_eq!(value, f16::from_f32(12.5));
446     /// ```
447     #[inline]
from_be_bytes(bytes: [u8; 2]) -> f16448     pub fn from_be_bytes(bytes: [u8; 2]) -> f16 {
449         f16::from_bits(u16::from_be_bytes(bytes))
450     }
451 
452     /// Create a floating point value from its representation as a byte array in native endian.
453     ///
454     /// As the target platform's native endianness is used, portable code likely wants to use
455     /// `from_be_bytes` or `from_le_bytes`, as appropriate instead.
456     ///
457     /// # Examples
458     ///
459     /// ```rust
460     /// # use half::prelude::*;
461     /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
462     ///     [0x4A, 0x40]
463     /// } else {
464     ///     [0x40, 0x4A]
465     /// });
466     /// assert_eq!(value, f16::from_f32(12.5));
467     /// ```
468     #[inline]
from_ne_bytes(bytes: [u8; 2]) -> f16469     pub fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
470         f16::from_bits(u16::from_ne_bytes(bytes))
471     }
472 
473     /// Converts a [`f16`](struct.f16.html) into the underlying bit representation.
474     #[deprecated(since = "1.2.0", note = "renamed to [`to_bits`](#method.to_bits)")]
475     #[inline]
as_bits(self) -> u16476     pub fn as_bits(self) -> u16 {
477         self.to_bits()
478     }
479 
480     /// Converts a [`f16`](struct.f16.html) value into a `f32` value.
481     ///
482     /// This conversion is lossless as all 16-bit floating point values can be represented exactly
483     /// in 32-bit floating point.
484     #[inline]
to_f32(self) -> f32485     pub fn to_f32(self) -> f32 {
486         convert::f16_to_f32(self.0)
487     }
488 
489     /// Converts a [`f16`](struct.f16.html) value into a `f64` value.
490     ///
491     /// This conversion is lossless as all 16-bit floating point values can be represented exactly
492     /// in 64-bit floating point.
493     #[inline]
to_f64(self) -> f64494     pub fn to_f64(self) -> f64 {
495         convert::f16_to_f64(self.0)
496     }
497 
498     /// Returns `true` if this value is `NaN` and `false` otherwise.
499     ///
500     /// # Examples
501     ///
502     /// ```rust
503     /// # use half::prelude::*;
504     ///
505     /// let nan = f16::NAN;
506     /// let f = f16::from_f32(7.0_f32);
507     ///
508     /// assert!(nan.is_nan());
509     /// assert!(!f.is_nan());
510     /// ```
511     #[inline]
is_nan(self) -> bool512     pub const fn is_nan(self) -> bool {
513         self.0 & 0x7FFFu16 > 0x7C00u16
514     }
515 
516     /// Returns `true` if this value is ±∞ and `false`
517     /// otherwise.
518     ///
519     /// # Examples
520     ///
521     /// ```rust
522     /// # use half::prelude::*;
523     ///
524     /// let f = f16::from_f32(7.0f32);
525     /// let inf = f16::INFINITY;
526     /// let neg_inf = f16::NEG_INFINITY;
527     /// let nan = f16::NAN;
528     ///
529     /// assert!(!f.is_infinite());
530     /// assert!(!nan.is_infinite());
531     ///
532     /// assert!(inf.is_infinite());
533     /// assert!(neg_inf.is_infinite());
534     /// ```
535     #[inline]
is_infinite(self) -> bool536     pub const fn is_infinite(self) -> bool {
537         self.0 & 0x7FFFu16 == 0x7C00u16
538     }
539 
540     /// Returns `true` if this number is neither infinite nor `NaN`.
541     ///
542     /// # Examples
543     ///
544     /// ```rust
545     /// # use half::prelude::*;
546     ///
547     /// let f = f16::from_f32(7.0f32);
548     /// let inf = f16::INFINITY;
549     /// let neg_inf = f16::NEG_INFINITY;
550     /// let nan = f16::NAN;
551     ///
552     /// assert!(f.is_finite());
553     ///
554     /// assert!(!nan.is_finite());
555     /// assert!(!inf.is_finite());
556     /// assert!(!neg_inf.is_finite());
557     /// ```
558     #[inline]
is_finite(self) -> bool559     pub const fn is_finite(self) -> bool {
560         self.0 & 0x7C00u16 != 0x7C00u16
561     }
562 
563     /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
564     ///
565     /// # Examples
566     ///
567     /// ```rust
568     /// # use half::prelude::*;
569     ///
570     /// let min = f16::MIN_POSITIVE;
571     /// let max = f16::MAX;
572     /// let lower_than_min = f16::from_f32(1.0e-10_f32);
573     /// let zero = f16::from_f32(0.0_f32);
574     ///
575     /// assert!(min.is_normal());
576     /// assert!(max.is_normal());
577     ///
578     /// assert!(!zero.is_normal());
579     /// assert!(!f16::NAN.is_normal());
580     /// assert!(!f16::INFINITY.is_normal());
581     /// // Values between `0` and `min` are Subnormal.
582     /// assert!(!lower_than_min.is_normal());
583     /// ```
584     #[inline]
is_normal(self) -> bool585     pub fn is_normal(self) -> bool {
586         let exp = self.0 & 0x7C00u16;
587         exp != 0x7C00u16 && exp != 0
588     }
589 
590     /// Returns the floating point category of the number.
591     ///
592     /// If only one property is going to be tested, it is generally faster to use the specific
593     /// predicate instead.
594     ///
595     /// # Examples
596     ///
597     /// ```rust
598     /// use std::num::FpCategory;
599     /// # use half::prelude::*;
600     ///
601     /// let num = f16::from_f32(12.4_f32);
602     /// let inf = f16::INFINITY;
603     ///
604     /// assert_eq!(num.classify(), FpCategory::Normal);
605     /// assert_eq!(inf.classify(), FpCategory::Infinite);
606     /// ```
classify(self) -> FpCategory607     pub fn classify(self) -> FpCategory {
608         let exp = self.0 & 0x7C00u16;
609         let man = self.0 & 0x03FFu16;
610         match (exp, man) {
611             (0, 0) => FpCategory::Zero,
612             (0, _) => FpCategory::Subnormal,
613             (0x7C00u16, 0) => FpCategory::Infinite,
614             (0x7C00u16, _) => FpCategory::Nan,
615             _ => FpCategory::Normal,
616         }
617     }
618 
619     /// Returns a number that represents the sign of `self`.
620     ///
621     /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
622     /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
623     /// * `NAN` if the number is `NAN`
624     ///
625     /// # Examples
626     ///
627     /// ```rust
628     /// # use half::prelude::*;
629     ///
630     /// let f = f16::from_f32(3.5_f32);
631     ///
632     /// assert_eq!(f.signum(), f16::from_f32(1.0));
633     /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
634     ///
635     /// assert!(f16::NAN.signum().is_nan());
636     /// ```
signum(self) -> f16637     pub fn signum(self) -> f16 {
638         if self.is_nan() {
639             self
640         } else if self.0 & 0x8000u16 != 0 {
641             f16::from_f32(-1.0)
642         } else {
643             f16::from_f32(1.0)
644         }
645     }
646 
647     /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
648     /// positive sign bit and +∞.
649     ///
650     /// # Examples
651     ///
652     /// ```rust
653     /// # use half::prelude::*;
654     ///
655     /// let nan = f16::NAN;
656     /// let f = f16::from_f32(7.0_f32);
657     /// let g = f16::from_f32(-7.0_f32);
658     ///
659     /// assert!(f.is_sign_positive());
660     /// assert!(!g.is_sign_positive());
661     /// // `NaN` can be either positive or negative
662     /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
663     /// ```
664     #[inline]
is_sign_positive(self) -> bool665     pub const fn is_sign_positive(self) -> bool {
666         self.0 & 0x8000u16 == 0
667     }
668 
669     /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
670     /// negative sign bit and −∞.
671     ///
672     /// # Examples
673     ///
674     /// ```rust
675     /// # use half::prelude::*;
676     ///
677     /// let nan = f16::NAN;
678     /// let f = f16::from_f32(7.0f32);
679     /// let g = f16::from_f32(-7.0f32);
680     ///
681     /// assert!(!f.is_sign_negative());
682     /// assert!(g.is_sign_negative());
683     /// // `NaN` can be either positive or negative
684     /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
685     /// ```
686     #[inline]
is_sign_negative(self) -> bool687     pub const fn is_sign_negative(self) -> bool {
688         self.0 & 0x8000u16 != 0
689     }
690 
691     /// Approximate number of [`f16`](struct.f16.html) significant digits in base 10.
692     pub const DIGITS: u32 = 3;
693     /// [`f16`](struct.f16.html)
694     /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value.
695     ///
696     /// This is the difference between 1.0 and the next largest representable number.
697     pub const EPSILON: f16 = f16(0x1400u16);
698     /// [`f16`](struct.f16.html) positive Infinity (+∞).
699     pub const INFINITY: f16 = f16(0x7C00u16);
700     /// Number of [`f16`](struct.f16.html) significant digits in base 2.
701     pub const MANTISSA_DIGITS: u32 = 11;
702     /// Largest finite [`f16`](struct.f16.html) value.
703     pub const MAX: f16 = f16(0x7BFF);
704     /// Maximum possible [`f16`](struct.f16.html) power of 10 exponent.
705     pub const MAX_10_EXP: i32 = 4;
706     /// Maximum possible [`f16`](struct.f16.html) power of 2 exponent.
707     pub const MAX_EXP: i32 = 16;
708     /// Smallest finite [`f16`](struct.f16.html) value.
709     pub const MIN: f16 = f16(0xFBFF);
710     /// Minimum possible normal [`f16`](struct.f16.html) power of 10 exponent.
711     pub const MIN_10_EXP: i32 = -4;
712     /// One greater than the minimum possible normal [`f16`](struct.f16.html) power of 2 exponent.
713     pub const MIN_EXP: i32 = -13;
714     /// Smallest positive normal [`f16`](struct.f16.html) value.
715     pub const MIN_POSITIVE: f16 = f16(0x0400u16);
716     /// [`f16`](struct.f16.html) Not a Number (NaN).
717     pub const NAN: f16 = f16(0x7E00u16);
718     /// [`f16`](struct.f16.html) negative infinity (-∞).
719     pub const NEG_INFINITY: f16 = f16(0xFC00u16);
720     /// The radix or base of the internal representation of [`f16`](struct.f16.html).
721     pub const RADIX: u32 = 2;
722 
723     /// Minimum positive subnormal [`f16`](struct.f16.html) value.
724     pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
725     /// Maximum subnormal [`f16`](struct.f16.html) value.
726     pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
727 
728     /// [`f16`](struct.f16.html) 1
729     pub const ONE: f16 = f16(0x3C00u16);
730     /// [`f16`](struct.f16.html) 0
731     pub const ZERO: f16 = f16(0x0000u16);
732     /// [`f16`](struct.f16.html) -0
733     pub const NEG_ZERO: f16 = f16(0x8000u16);
734 
735     /// [`f16`](struct.f16.html) Euler's number (ℯ).
736     pub const E: f16 = f16(0x4170u16);
737     /// [`f16`](struct.f16.html) Archimedes' constant (π).
738     pub const PI: f16 = f16(0x4248u16);
739     /// [`f16`](struct.f16.html) 1/π
740     pub const FRAC_1_PI: f16 = f16(0x3518u16);
741     /// [`f16`](struct.f16.html) 1/√2
742     pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
743     /// [`f16`](struct.f16.html) 2/π
744     pub const FRAC_2_PI: f16 = f16(0x3918u16);
745     /// [`f16`](struct.f16.html) 2/√π
746     pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
747     /// [`f16`](struct.f16.html) π/2
748     pub const FRAC_PI_2: f16 = f16(0x3E48u16);
749     /// [`f16`](struct.f16.html) π/3
750     pub const FRAC_PI_3: f16 = f16(0x3C30u16);
751     /// [`f16`](struct.f16.html) π/4
752     pub const FRAC_PI_4: f16 = f16(0x3A48u16);
753     /// [`f16`](struct.f16.html) π/6
754     pub const FRAC_PI_6: f16 = f16(0x3830u16);
755     /// [`f16`](struct.f16.html) π/8
756     pub const FRAC_PI_8: f16 = f16(0x3648u16);
757     /// [`f16`](struct.f16.html) ���� 10
758     pub const LN_10: f16 = f16(0x409Bu16);
759     /// [`f16`](struct.f16.html) ���� 2
760     pub const LN_2: f16 = f16(0x398Cu16);
761     /// [`f16`](struct.f16.html) ������₁₀ℯ
762     pub const LOG10_E: f16 = f16(0x36F3u16);
763     /// [`f16`](struct.f16.html) ������₁₀2
764     pub const LOG10_2: f16 = f16(0x34D1u16);
765     /// [`f16`](struct.f16.html) ������₂ℯ
766     pub const LOG2_E: f16 = f16(0x3DC5u16);
767     /// [`f16`](struct.f16.html) ������₂10
768     pub const LOG2_10: f16 = f16(0x42A5u16);
769     /// [`f16`](struct.f16.html) √2
770     pub const SQRT_2: f16 = f16(0x3DA8u16);
771 }
772 
773 impl From<f16> for f32 {
774     #[inline]
from(x: f16) -> f32775     fn from(x: f16) -> f32 {
776         x.to_f32()
777     }
778 }
779 
780 impl From<f16> for f64 {
781     #[inline]
from(x: f16) -> f64782     fn from(x: f16) -> f64 {
783         x.to_f64()
784     }
785 }
786 
787 impl From<i8> for f16 {
788     #[inline]
from(x: i8) -> f16789     fn from(x: i8) -> f16 {
790         // Convert to f32, then to f16
791         f16::from_f32(f32::from(x))
792     }
793 }
794 
795 impl From<u8> for f16 {
796     #[inline]
from(x: u8) -> f16797     fn from(x: u8) -> f16 {
798         // Convert to f32, then to f16
799         f16::from_f32(f32::from(x))
800     }
801 }
802 
803 impl PartialEq for f16 {
eq(&self, other: &f16) -> bool804     fn eq(&self, other: &f16) -> bool {
805         if self.is_nan() || other.is_nan() {
806             false
807         } else {
808             (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
809         }
810     }
811 }
812 
813 impl PartialOrd for f16 {
partial_cmp(&self, other: &f16) -> Option<Ordering>814     fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
815         if self.is_nan() || other.is_nan() {
816             None
817         } else {
818             let neg = self.0 & 0x8000u16 != 0;
819             let other_neg = other.0 & 0x8000u16 != 0;
820             match (neg, other_neg) {
821                 (false, false) => Some(self.0.cmp(&other.0)),
822                 (false, true) => {
823                     if (self.0 | other.0) & 0x7FFFu16 == 0 {
824                         Some(Ordering::Equal)
825                     } else {
826                         Some(Ordering::Greater)
827                     }
828                 }
829                 (true, false) => {
830                     if (self.0 | other.0) & 0x7FFFu16 == 0 {
831                         Some(Ordering::Equal)
832                     } else {
833                         Some(Ordering::Less)
834                     }
835                 }
836                 (true, true) => Some(other.0.cmp(&self.0)),
837             }
838         }
839     }
840 
lt(&self, other: &f16) -> bool841     fn lt(&self, other: &f16) -> bool {
842         if self.is_nan() || other.is_nan() {
843             false
844         } else {
845             let neg = self.0 & 0x8000u16 != 0;
846             let other_neg = other.0 & 0x8000u16 != 0;
847             match (neg, other_neg) {
848                 (false, false) => self.0 < other.0,
849                 (false, true) => false,
850                 (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
851                 (true, true) => self.0 > other.0,
852             }
853         }
854     }
855 
le(&self, other: &f16) -> bool856     fn le(&self, other: &f16) -> bool {
857         if self.is_nan() || other.is_nan() {
858             false
859         } else {
860             let neg = self.0 & 0x8000u16 != 0;
861             let other_neg = other.0 & 0x8000u16 != 0;
862             match (neg, other_neg) {
863                 (false, false) => self.0 <= other.0,
864                 (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
865                 (true, false) => true,
866                 (true, true) => self.0 >= other.0,
867             }
868         }
869     }
870 
gt(&self, other: &f16) -> bool871     fn gt(&self, other: &f16) -> bool {
872         if self.is_nan() || other.is_nan() {
873             false
874         } else {
875             let neg = self.0 & 0x8000u16 != 0;
876             let other_neg = other.0 & 0x8000u16 != 0;
877             match (neg, other_neg) {
878                 (false, false) => self.0 > other.0,
879                 (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
880                 (true, false) => false,
881                 (true, true) => self.0 < other.0,
882             }
883         }
884     }
885 
ge(&self, other: &f16) -> bool886     fn ge(&self, other: &f16) -> bool {
887         if self.is_nan() || other.is_nan() {
888             false
889         } else {
890             let neg = self.0 & 0x8000u16 != 0;
891             let other_neg = other.0 & 0x8000u16 != 0;
892             match (neg, other_neg) {
893                 (false, false) => self.0 >= other.0,
894                 (false, true) => true,
895                 (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
896                 (true, true) => self.0 <= other.0,
897             }
898         }
899     }
900 }
901 
902 impl FromStr for f16 {
903     type Err = ParseFloatError;
from_str(src: &str) -> Result<f16, ParseFloatError>904     fn from_str(src: &str) -> Result<f16, ParseFloatError> {
905         f32::from_str(src).map(f16::from_f32)
906     }
907 }
908 
909 impl Debug for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>910     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
911         write!(f, "{:?}", self.to_f32())
912     }
913 }
914 
915 impl Display for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>916     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
917         write!(f, "{}", self.to_f32())
918     }
919 }
920 
921 impl LowerExp for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>922     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
923         write!(f, "{:e}", self.to_f32())
924     }
925 }
926 
927 impl UpperExp for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>928     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
929         write!(f, "{:E}", self.to_f32())
930     }
931 }
932 
933 impl Binary for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>934     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
935         write!(f, "{:b}", self.0)
936     }
937 }
938 
939 impl Octal for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>940     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
941         write!(f, "{:o}", self.0)
942     }
943 }
944 
945 impl LowerHex for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>946     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
947         write!(f, "{:x}", self.0)
948     }
949 }
950 
951 impl UpperHex for f16 {
fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>952     fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
953         write!(f, "{:X}", self.0)
954     }
955 }
956 
957 #[allow(
958     clippy::cognitive_complexity,
959     clippy::float_cmp,
960     clippy::neg_cmp_op_on_partial_ord
961 )]
962 #[cfg(test)]
963 mod test {
964     use super::*;
965     use core;
966     use core::cmp::Ordering;
967     use quickcheck_macros::quickcheck;
968 
969     #[test]
test_f16_consts()970     fn test_f16_consts() {
971         // DIGITS
972         let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
973         assert_eq!(f16::DIGITS, digits);
974         // sanity check to show test is good
975         let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
976         assert_eq!(core::f32::DIGITS, digits32);
977 
978         // EPSILON
979         let one = f16::from_f32(1.0);
980         let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
981         let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
982         assert_eq!(f16::EPSILON, epsilon);
983         // sanity check to show test is good
984         let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
985         let epsilon32 = one_plus_epsilon32 - 1f32;
986         assert_eq!(core::f32::EPSILON, epsilon32);
987 
988         // MAX, MIN and MIN_POSITIVE
989         let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
990         let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
991         let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
992         assert_eq!(f16::MAX, max);
993         assert_eq!(f16::MIN, min);
994         assert_eq!(f16::MIN_POSITIVE, min_pos);
995         // sanity check to show test is good
996         let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
997         let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
998         let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
999         assert_eq!(core::f32::MAX, max32);
1000         assert_eq!(core::f32::MIN, min32);
1001         assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
1002 
1003         // MIN_10_EXP and MAX_10_EXP
1004         let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
1005         assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
1006         assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
1007         let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
1008         assert!(ten_to_max < f16::MAX.to_f32());
1009         assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
1010         // sanity check to show test is good
1011         let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
1012         assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
1013         assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
1014         let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
1015         assert!(ten_to_max32 < f64::from(core::f32::MAX));
1016         assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
1017     }
1018 
1019     #[test]
test_f16_consts_from_f32()1020     fn test_f16_consts_from_f32() {
1021         let one = f16::from_f32(1.0);
1022         let zero = f16::from_f32(0.0);
1023         let neg_zero = f16::from_f32(-0.0);
1024         let inf = f16::from_f32(core::f32::INFINITY);
1025         let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
1026         let nan = f16::from_f32(core::f32::NAN);
1027 
1028         assert_eq!(f16::ONE, one);
1029         assert_eq!(f16::ZERO, zero);
1030         assert!(zero.is_sign_positive());
1031         assert_eq!(f16::NEG_ZERO, neg_zero);
1032         assert!(neg_zero.is_sign_negative());
1033         assert_eq!(f16::INFINITY, inf);
1034         assert_eq!(f16::NEG_INFINITY, neg_inf);
1035         assert!(nan.is_nan());
1036         assert!(f16::NAN.is_nan());
1037 
1038         let e = f16::from_f32(core::f32::consts::E);
1039         let pi = f16::from_f32(core::f32::consts::PI);
1040         let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
1041         let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
1042         let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
1043         let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
1044         let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
1045         let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
1046         let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
1047         let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
1048         let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
1049         let ln_10 = f16::from_f32(core::f32::consts::LN_10);
1050         let ln_2 = f16::from_f32(core::f32::consts::LN_2);
1051         let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
1052         // core::f32::consts::LOG10_2 requires rustc 1.43.0
1053         let log10_2 = f16::from_f32(2f32.log10());
1054         let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
1055         // core::f32::consts::LOG2_10 requires rustc 1.43.0
1056         let log2_10 = f16::from_f32(10f32.log2());
1057         let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
1058 
1059         assert_eq!(f16::E, e);
1060         assert_eq!(f16::PI, pi);
1061         assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1062         assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1063         assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1064         assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1065         assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1066         assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1067         assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1068         assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1069         assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1070         assert_eq!(f16::LN_10, ln_10);
1071         assert_eq!(f16::LN_2, ln_2);
1072         assert_eq!(f16::LOG10_E, log10_e);
1073         assert_eq!(f16::LOG10_2, log10_2);
1074         assert_eq!(f16::LOG2_E, log2_e);
1075         assert_eq!(f16::LOG2_10, log2_10);
1076         assert_eq!(f16::SQRT_2, sqrt_2);
1077     }
1078 
1079     #[test]
test_f16_consts_from_f64()1080     fn test_f16_consts_from_f64() {
1081         let one = f16::from_f64(1.0);
1082         let zero = f16::from_f64(0.0);
1083         let neg_zero = f16::from_f64(-0.0);
1084         let inf = f16::from_f64(core::f64::INFINITY);
1085         let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
1086         let nan = f16::from_f64(core::f64::NAN);
1087 
1088         assert_eq!(f16::ONE, one);
1089         assert_eq!(f16::ZERO, zero);
1090         assert!(zero.is_sign_positive());
1091         assert_eq!(f16::NEG_ZERO, neg_zero);
1092         assert!(neg_zero.is_sign_negative());
1093         assert_eq!(f16::INFINITY, inf);
1094         assert_eq!(f16::NEG_INFINITY, neg_inf);
1095         assert!(nan.is_nan());
1096         assert!(f16::NAN.is_nan());
1097 
1098         let e = f16::from_f64(core::f64::consts::E);
1099         let pi = f16::from_f64(core::f64::consts::PI);
1100         let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
1101         let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
1102         let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
1103         let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
1104         let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
1105         let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
1106         let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
1107         let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
1108         let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
1109         let ln_10 = f16::from_f64(core::f64::consts::LN_10);
1110         let ln_2 = f16::from_f64(core::f64::consts::LN_2);
1111         let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
1112         // core::f64::consts::LOG10_2 requires rustc 1.43.0
1113         let log10_2 = f16::from_f64(2f64.log10());
1114         let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
1115         // core::f64::consts::LOG2_10 requires rustc 1.43.0
1116         let log2_10 = f16::from_f64(10f64.log2());
1117         let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
1118 
1119         assert_eq!(f16::E, e);
1120         assert_eq!(f16::PI, pi);
1121         assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1122         assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1123         assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1124         assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1125         assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1126         assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1127         assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1128         assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1129         assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1130         assert_eq!(f16::LN_10, ln_10);
1131         assert_eq!(f16::LN_2, ln_2);
1132         assert_eq!(f16::LOG10_E, log10_e);
1133         assert_eq!(f16::LOG10_2, log10_2);
1134         assert_eq!(f16::LOG2_E, log2_e);
1135         assert_eq!(f16::LOG2_10, log2_10);
1136         assert_eq!(f16::SQRT_2, sqrt_2);
1137     }
1138 
1139     #[test]
test_nan_conversion_to_smaller()1140     fn test_nan_conversion_to_smaller() {
1141         let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
1142         let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
1143         let nan32 = f32::from_bits(0x7F80_0001u32);
1144         let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1145         let nan32_from_64 = nan64 as f32;
1146         let neg_nan32_from_64 = neg_nan64 as f32;
1147         let nan16_from_64 = f16::from_f64(nan64);
1148         let neg_nan16_from_64 = f16::from_f64(neg_nan64);
1149         let nan16_from_32 = f16::from_f32(nan32);
1150         let neg_nan16_from_32 = f16::from_f32(neg_nan32);
1151 
1152         assert!(nan64.is_nan() && nan64.is_sign_positive());
1153         assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
1154         assert!(nan32.is_nan() && nan32.is_sign_positive());
1155         assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1156         assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive());
1157         assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative());
1158         assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive());
1159         assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative());
1160         assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive());
1161         assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative());
1162     }
1163 
1164     #[test]
test_nan_conversion_to_larger()1165     fn test_nan_conversion_to_larger() {
1166         let nan16 = f16::from_bits(0x7C01u16);
1167         let neg_nan16 = f16::from_bits(0xFC01u16);
1168         let nan32 = f32::from_bits(0x7F80_0001u32);
1169         let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1170         let nan32_from_16 = f32::from(nan16);
1171         let neg_nan32_from_16 = f32::from(neg_nan16);
1172         let nan64_from_16 = f64::from(nan16);
1173         let neg_nan64_from_16 = f64::from(neg_nan16);
1174         let nan64_from_32 = f64::from(nan32);
1175         let neg_nan64_from_32 = f64::from(neg_nan32);
1176 
1177         assert!(nan16.is_nan() && nan16.is_sign_positive());
1178         assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
1179         assert!(nan32.is_nan() && nan32.is_sign_positive());
1180         assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1181         assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive());
1182         assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative());
1183         assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive());
1184         assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative());
1185         assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive());
1186         assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative());
1187     }
1188 
1189     #[test]
test_f16_to_f32()1190     fn test_f16_to_f32() {
1191         let f = f16::from_f32(7.0);
1192         assert_eq!(f.to_f32(), 7.0f32);
1193 
1194         // 7.1 is NOT exactly representable in 16-bit, it's rounded
1195         let f = f16::from_f32(7.1);
1196         let diff = (f.to_f32() - 7.1f32).abs();
1197         // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1198         assert!(diff <= 4.0 * f16::EPSILON.to_f32());
1199 
1200         assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
1201         assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
1202 
1203         assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
1204         assert_eq!(
1205             f16::from_bits(0x0000_0005),
1206             f16::from_f32(5.0 * 2.0f32.powi(-24))
1207         );
1208     }
1209 
1210     #[test]
test_f16_to_f64()1211     fn test_f16_to_f64() {
1212         let f = f16::from_f64(7.0);
1213         assert_eq!(f.to_f64(), 7.0f64);
1214 
1215         // 7.1 is NOT exactly representable in 16-bit, it's rounded
1216         let f = f16::from_f64(7.1);
1217         let diff = (f.to_f64() - 7.1f64).abs();
1218         // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1219         assert!(diff <= 4.0 * f16::EPSILON.to_f64());
1220 
1221         assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
1222         assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
1223 
1224         assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
1225         assert_eq!(
1226             f16::from_bits(0x0000_0005),
1227             f16::from_f64(5.0 * 2.0f64.powi(-24))
1228         );
1229     }
1230 
1231     #[test]
test_comparisons()1232     fn test_comparisons() {
1233         let zero = f16::from_f64(0.0);
1234         let one = f16::from_f64(1.0);
1235         let neg_zero = f16::from_f64(-0.0);
1236         let neg_one = f16::from_f64(-1.0);
1237 
1238         assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
1239         assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
1240         assert!(zero == neg_zero);
1241         assert!(neg_zero == zero);
1242         assert!(!(zero != neg_zero));
1243         assert!(!(neg_zero != zero));
1244         assert!(!(zero < neg_zero));
1245         assert!(!(neg_zero < zero));
1246         assert!(zero <= neg_zero);
1247         assert!(neg_zero <= zero);
1248         assert!(!(zero > neg_zero));
1249         assert!(!(neg_zero > zero));
1250         assert!(zero >= neg_zero);
1251         assert!(neg_zero >= zero);
1252 
1253         assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
1254         assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
1255         assert!(!(one == neg_zero));
1256         assert!(!(neg_zero == one));
1257         assert!(one != neg_zero);
1258         assert!(neg_zero != one);
1259         assert!(!(one < neg_zero));
1260         assert!(neg_zero < one);
1261         assert!(!(one <= neg_zero));
1262         assert!(neg_zero <= one);
1263         assert!(one > neg_zero);
1264         assert!(!(neg_zero > one));
1265         assert!(one >= neg_zero);
1266         assert!(!(neg_zero >= one));
1267 
1268         assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
1269         assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
1270         assert!(!(one == neg_one));
1271         assert!(!(neg_one == one));
1272         assert!(one != neg_one);
1273         assert!(neg_one != one);
1274         assert!(!(one < neg_one));
1275         assert!(neg_one < one);
1276         assert!(!(one <= neg_one));
1277         assert!(neg_one <= one);
1278         assert!(one > neg_one);
1279         assert!(!(neg_one > one));
1280         assert!(one >= neg_one);
1281         assert!(!(neg_one >= one));
1282     }
1283 
1284     #[test]
1285     #[allow(clippy::erasing_op, clippy::identity_op)]
round_to_even_f32()1286     fn round_to_even_f32() {
1287         // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1288         let min_sub = f16::from_bits(1);
1289         let min_sub_f = (-24f32).exp2();
1290         assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
1291         assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
1292 
1293         // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1294         // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1295         // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1296         assert_eq!(
1297             f16::from_f32(min_sub_f * 0.49).to_bits(),
1298             min_sub.to_bits() * 0
1299         );
1300         assert_eq!(
1301             f16::from_f32(min_sub_f * 0.50).to_bits(),
1302             min_sub.to_bits() * 0
1303         );
1304         assert_eq!(
1305             f16::from_f32(min_sub_f * 0.51).to_bits(),
1306             min_sub.to_bits() * 1
1307         );
1308 
1309         // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1310         // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1311         // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1312         assert_eq!(
1313             f16::from_f32(min_sub_f * 1.49).to_bits(),
1314             min_sub.to_bits() * 1
1315         );
1316         assert_eq!(
1317             f16::from_f32(min_sub_f * 1.50).to_bits(),
1318             min_sub.to_bits() * 2
1319         );
1320         assert_eq!(
1321             f16::from_f32(min_sub_f * 1.51).to_bits(),
1322             min_sub.to_bits() * 2
1323         );
1324 
1325         // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1326         // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1327         // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1328         assert_eq!(
1329             f16::from_f32(min_sub_f * 2.49).to_bits(),
1330             min_sub.to_bits() * 2
1331         );
1332         assert_eq!(
1333             f16::from_f32(min_sub_f * 2.50).to_bits(),
1334             min_sub.to_bits() * 2
1335         );
1336         assert_eq!(
1337             f16::from_f32(min_sub_f * 2.51).to_bits(),
1338             min_sub.to_bits() * 3
1339         );
1340 
1341         assert_eq!(
1342             f16::from_f32(2000.49f32).to_bits(),
1343             f16::from_f32(2000.0).to_bits()
1344         );
1345         assert_eq!(
1346             f16::from_f32(2000.50f32).to_bits(),
1347             f16::from_f32(2000.0).to_bits()
1348         );
1349         assert_eq!(
1350             f16::from_f32(2000.51f32).to_bits(),
1351             f16::from_f32(2001.0).to_bits()
1352         );
1353         assert_eq!(
1354             f16::from_f32(2001.49f32).to_bits(),
1355             f16::from_f32(2001.0).to_bits()
1356         );
1357         assert_eq!(
1358             f16::from_f32(2001.50f32).to_bits(),
1359             f16::from_f32(2002.0).to_bits()
1360         );
1361         assert_eq!(
1362             f16::from_f32(2001.51f32).to_bits(),
1363             f16::from_f32(2002.0).to_bits()
1364         );
1365         assert_eq!(
1366             f16::from_f32(2002.49f32).to_bits(),
1367             f16::from_f32(2002.0).to_bits()
1368         );
1369         assert_eq!(
1370             f16::from_f32(2002.50f32).to_bits(),
1371             f16::from_f32(2002.0).to_bits()
1372         );
1373         assert_eq!(
1374             f16::from_f32(2002.51f32).to_bits(),
1375             f16::from_f32(2003.0).to_bits()
1376         );
1377     }
1378 
1379     #[test]
1380     #[allow(clippy::erasing_op, clippy::identity_op)]
round_to_even_f64()1381     fn round_to_even_f64() {
1382         // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1383         let min_sub = f16::from_bits(1);
1384         let min_sub_f = (-24f64).exp2();
1385         assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
1386         assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
1387 
1388         // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1389         // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1390         // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1391         assert_eq!(
1392             f16::from_f64(min_sub_f * 0.49).to_bits(),
1393             min_sub.to_bits() * 0
1394         );
1395         assert_eq!(
1396             f16::from_f64(min_sub_f * 0.50).to_bits(),
1397             min_sub.to_bits() * 0
1398         );
1399         assert_eq!(
1400             f16::from_f64(min_sub_f * 0.51).to_bits(),
1401             min_sub.to_bits() * 1
1402         );
1403 
1404         // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1405         // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1406         // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1407         assert_eq!(
1408             f16::from_f64(min_sub_f * 1.49).to_bits(),
1409             min_sub.to_bits() * 1
1410         );
1411         assert_eq!(
1412             f16::from_f64(min_sub_f * 1.50).to_bits(),
1413             min_sub.to_bits() * 2
1414         );
1415         assert_eq!(
1416             f16::from_f64(min_sub_f * 1.51).to_bits(),
1417             min_sub.to_bits() * 2
1418         );
1419 
1420         // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1421         // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1422         // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1423         assert_eq!(
1424             f16::from_f64(min_sub_f * 2.49).to_bits(),
1425             min_sub.to_bits() * 2
1426         );
1427         assert_eq!(
1428             f16::from_f64(min_sub_f * 2.50).to_bits(),
1429             min_sub.to_bits() * 2
1430         );
1431         assert_eq!(
1432             f16::from_f64(min_sub_f * 2.51).to_bits(),
1433             min_sub.to_bits() * 3
1434         );
1435 
1436         assert_eq!(
1437             f16::from_f64(2000.49f64).to_bits(),
1438             f16::from_f64(2000.0).to_bits()
1439         );
1440         assert_eq!(
1441             f16::from_f64(2000.50f64).to_bits(),
1442             f16::from_f64(2000.0).to_bits()
1443         );
1444         assert_eq!(
1445             f16::from_f64(2000.51f64).to_bits(),
1446             f16::from_f64(2001.0).to_bits()
1447         );
1448         assert_eq!(
1449             f16::from_f64(2001.49f64).to_bits(),
1450             f16::from_f64(2001.0).to_bits()
1451         );
1452         assert_eq!(
1453             f16::from_f64(2001.50f64).to_bits(),
1454             f16::from_f64(2002.0).to_bits()
1455         );
1456         assert_eq!(
1457             f16::from_f64(2001.51f64).to_bits(),
1458             f16::from_f64(2002.0).to_bits()
1459         );
1460         assert_eq!(
1461             f16::from_f64(2002.49f64).to_bits(),
1462             f16::from_f64(2002.0).to_bits()
1463         );
1464         assert_eq!(
1465             f16::from_f64(2002.50f64).to_bits(),
1466             f16::from_f64(2002.0).to_bits()
1467         );
1468         assert_eq!(
1469             f16::from_f64(2002.51f64).to_bits(),
1470             f16::from_f64(2003.0).to_bits()
1471         );
1472     }
1473 
1474     impl quickcheck::Arbitrary for f16 {
arbitrary<G: quickcheck::Gen>(g: &mut G) -> Self1475         fn arbitrary<G: quickcheck::Gen>(g: &mut G) -> Self {
1476             use rand::Rng;
1477             f16(g.gen())
1478         }
1479     }
1480 
1481     #[quickcheck]
qc_roundtrip_f16_f32_is_identity(f: f16) -> bool1482     fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
1483         let roundtrip = f16::from_f32(f.to_f32());
1484         if f.is_nan() {
1485             roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1486         } else {
1487             f.0 == roundtrip.0
1488         }
1489     }
1490 
1491     #[quickcheck]
qc_roundtrip_f16_f64_is_identity(f: f16) -> bool1492     fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
1493         let roundtrip = f16::from_f64(f.to_f64());
1494         if f.is_nan() {
1495             roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1496         } else {
1497             f.0 == roundtrip.0
1498         }
1499     }
1500 }
1501