1 /*
2 * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #include <Box2D/Dynamics/Joints/b2FrictionJoint.h>
20 #include <Box2D/Dynamics/b2Body.h>
21 #include <Box2D/Dynamics/b2TimeStep.h>
22 
23 // Point-to-point constraint
24 // Cdot = v2 - v1
25 //      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
26 // J = [-I -r1_skew I r2_skew ]
27 // Identity used:
28 // w k % (rx i + ry j) = w * (-ry i + rx j)
29 
30 // Angle constraint
31 // Cdot = w2 - w1
32 // J = [0 0 -1 0 0 1]
33 // K = invI1 + invI2
34 
Initialize(b2Body * bA,b2Body * bB,const b2Vec2 & anchor)35 void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
36 {
37 	bodyA = bA;
38 	bodyB = bB;
39 	localAnchorA = bodyA->GetLocalPoint(anchor);
40 	localAnchorB = bodyB->GetLocalPoint(anchor);
41 }
42 
b2FrictionJoint(const b2FrictionJointDef * def)43 b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
44 : b2Joint(def)
45 {
46 	m_localAnchorA = def->localAnchorA;
47 	m_localAnchorB = def->localAnchorB;
48 
49 	m_linearImpulse.SetZero();
50 	m_angularImpulse = 0.0f;
51 
52 	m_maxForce = def->maxForce;
53 	m_maxTorque = def->maxTorque;
54 }
55 
InitVelocityConstraints(const b2SolverData & data)56 void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data)
57 {
58 	m_indexA = m_bodyA->m_islandIndex;
59 	m_indexB = m_bodyB->m_islandIndex;
60 	m_localCenterA = m_bodyA->m_sweep.localCenter;
61 	m_localCenterB = m_bodyB->m_sweep.localCenter;
62 	m_invMassA = m_bodyA->m_invMass;
63 	m_invMassB = m_bodyB->m_invMass;
64 	m_invIA = m_bodyA->m_invI;
65 	m_invIB = m_bodyB->m_invI;
66 
67 	float32 aA = data.positions[m_indexA].a;
68 	b2Vec2 vA = data.velocities[m_indexA].v;
69 	float32 wA = data.velocities[m_indexA].w;
70 
71 	float32 aB = data.positions[m_indexB].a;
72 	b2Vec2 vB = data.velocities[m_indexB].v;
73 	float32 wB = data.velocities[m_indexB].w;
74 
75 	b2Rot qA(aA), qB(aB);
76 
77 	// Compute the effective mass matrix.
78 	m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
79 	m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
80 
81 	// J = [-I -r1_skew I r2_skew]
82 	//     [ 0       -1 0       1]
83 	// r_skew = [-ry; rx]
84 
85 	// Matlab
86 	// K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
87 	//     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
88 	//     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]
89 
90 	float32 mA = m_invMassA, mB = m_invMassB;
91 	float32 iA = m_invIA, iB = m_invIB;
92 
93 	b2Mat22 K;
94 	K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
95 	K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
96 	K.ey.x = K.ex.y;
97 	K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
98 
99 	m_linearMass = K.GetInverse();
100 
101 	m_angularMass = iA + iB;
102 	if (m_angularMass > 0.0f)
103 	{
104 		m_angularMass = 1.0f / m_angularMass;
105 	}
106 
107 	if (data.step.warmStarting)
108 	{
109 		// Scale impulses to support a variable time step.
110 		m_linearImpulse *= data.step.dtRatio;
111 		m_angularImpulse *= data.step.dtRatio;
112 
113 		b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
114 		vA -= mA * P;
115 		wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
116 		vB += mB * P;
117 		wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
118 	}
119 	else
120 	{
121 		m_linearImpulse.SetZero();
122 		m_angularImpulse = 0.0f;
123 	}
124 
125 	data.velocities[m_indexA].v = vA;
126 	data.velocities[m_indexA].w = wA;
127 	data.velocities[m_indexB].v = vB;
128 	data.velocities[m_indexB].w = wB;
129 }
130 
SolveVelocityConstraints(const b2SolverData & data)131 void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data)
132 {
133 	b2Vec2 vA = data.velocities[m_indexA].v;
134 	float32 wA = data.velocities[m_indexA].w;
135 	b2Vec2 vB = data.velocities[m_indexB].v;
136 	float32 wB = data.velocities[m_indexB].w;
137 
138 	float32 mA = m_invMassA, mB = m_invMassB;
139 	float32 iA = m_invIA, iB = m_invIB;
140 
141 	float32 h = data.step.dt;
142 
143 	// Solve angular friction
144 	{
145 		float32 Cdot = wB - wA;
146 		float32 impulse = -m_angularMass * Cdot;
147 
148 		float32 oldImpulse = m_angularImpulse;
149 		float32 maxImpulse = h * m_maxTorque;
150 		m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
151 		impulse = m_angularImpulse - oldImpulse;
152 
153 		wA -= iA * impulse;
154 		wB += iB * impulse;
155 	}
156 
157 	// Solve linear friction
158 	{
159 		b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
160 
161 		b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
162 		b2Vec2 oldImpulse = m_linearImpulse;
163 		m_linearImpulse += impulse;
164 
165 		float32 maxImpulse = h * m_maxForce;
166 
167 		if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
168 		{
169 			m_linearImpulse.Normalize();
170 			m_linearImpulse *= maxImpulse;
171 		}
172 
173 		impulse = m_linearImpulse - oldImpulse;
174 
175 		vA -= mA * impulse;
176 		wA -= iA * b2Cross(m_rA, impulse);
177 
178 		vB += mB * impulse;
179 		wB += iB * b2Cross(m_rB, impulse);
180 	}
181 
182 	data.velocities[m_indexA].v = vA;
183 	data.velocities[m_indexA].w = wA;
184 	data.velocities[m_indexB].v = vB;
185 	data.velocities[m_indexB].w = wB;
186 }
187 
SolvePositionConstraints(const b2SolverData & data)188 bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data)
189 {
190 	B2_NOT_USED(data);
191 
192 	return true;
193 }
194 
GetAnchorA() const195 b2Vec2 b2FrictionJoint::GetAnchorA() const
196 {
197 	return m_bodyA->GetWorldPoint(m_localAnchorA);
198 }
199 
GetAnchorB() const200 b2Vec2 b2FrictionJoint::GetAnchorB() const
201 {
202 	return m_bodyB->GetWorldPoint(m_localAnchorB);
203 }
204 
GetReactionForce(float32 inv_dt) const205 b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const
206 {
207 	return inv_dt * m_linearImpulse;
208 }
209 
GetReactionTorque(float32 inv_dt) const210 float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const
211 {
212 	return inv_dt * m_angularImpulse;
213 }
214 
SetMaxForce(float32 force)215 void b2FrictionJoint::SetMaxForce(float32 force)
216 {
217 	b2Assert(b2IsValid(force) && force >= 0.0f);
218 	m_maxForce = force;
219 }
220 
GetMaxForce() const221 float32 b2FrictionJoint::GetMaxForce() const
222 {
223 	return m_maxForce;
224 }
225 
SetMaxTorque(float32 torque)226 void b2FrictionJoint::SetMaxTorque(float32 torque)
227 {
228 	b2Assert(b2IsValid(torque) && torque >= 0.0f);
229 	m_maxTorque = torque;
230 }
231 
GetMaxTorque() const232 float32 b2FrictionJoint::GetMaxTorque() const
233 {
234 	return m_maxTorque;
235 }
236 
Dump()237 void b2FrictionJoint::Dump()
238 {
239 	int32 indexA = m_bodyA->m_islandIndex;
240 	int32 indexB = m_bodyB->m_islandIndex;
241 
242 	b2Log("  b2FrictionJointDef jd;\n");
243 	b2Log("  jd.bodyA = bodies[%d];\n", indexA);
244 	b2Log("  jd.bodyB = bodies[%d];\n", indexB);
245 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
246 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
247 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
248 	b2Log("  jd.maxForce = %.15lef;\n", m_maxForce);
249 	b2Log("  jd.maxTorque = %.15lef;\n", m_maxTorque);
250 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
251 }
252