1 use std::io::Write;
2 use std::io;
3 
4 use deflate_state::DeflateState;
5 use encoder_state::EncoderState;
6 use lzvalue::LZValue;
7 use lz77::{lz77_compress_block, LZ77Status};
8 use huffman_lengths::{gen_huffman_lengths, write_huffman_lengths, BlockType};
9 use bitstream::LsbWriter;
10 use stored_block::{compress_block_stored, write_stored_header, MAX_STORED_BLOCK_LENGTH};
11 
12 const LARGEST_OUTPUT_BUF_SIZE: usize = 1024 * 32;
13 
14 /// Flush mode to use when compressing input received in multiple steps.
15 ///
16 /// (The more obscure ZLIB flush modes are not implemented.)
17 #[derive(Eq, PartialEq, Debug, Copy, Clone)]
18 pub enum Flush {
19     // Simply wait for more input when we are out of input data to process.
20     None,
21     // Send a "sync block", corresponding to Z_SYNC_FLUSH in zlib. This finishes compressing and
22     // outputting all pending data, and then outputs an empty stored block.
23     // (That is, the block header indicating a stored block followed by `0000FFFF`).
24     Sync,
25     _Partial,
26     _Block,
27     _Full,
28     // Finish compressing and output all remaining input.
29     Finish,
30 }
31 
32 /// Write all the lz77 encoded data in the buffer using the specified `EncoderState`, and finish
33 /// with the end of block code.
flush_to_bitstream(buffer: &[LZValue], state: &mut EncoderState)34 pub fn flush_to_bitstream(buffer: &[LZValue], state: &mut EncoderState) {
35     for &b in buffer {
36         state.write_lzvalue(b.value());
37     }
38     state.write_end_of_block()
39 }
40 
41 /// Compress the input data using only fixed huffman codes.
42 ///
43 /// Currently only used in tests.
44 #[cfg(test)]
compress_data_fixed(input: &[u8]) -> Vec<u8>45 pub fn compress_data_fixed(input: &[u8]) -> Vec<u8> {
46     use lz77::lz77_compress;
47 
48     let mut state = EncoderState::fixed(Vec::new());
49     let compressed = lz77_compress(input).unwrap();
50 
51     // We currently don't split blocks here(this function is just used for tests anyhow)
52     state.write_start_of_block(true, true);
53     flush_to_bitstream(&compressed, &mut state);
54 
55     state.flush();
56     state.reset(Vec::new())
57 }
58 
write_stored_block(input: &[u8], mut writer: &mut LsbWriter, final_block: bool)59 fn write_stored_block(input: &[u8], mut writer: &mut LsbWriter, final_block: bool) {
60 
61     // If the input is not zero, we write stored blocks for the input data.
62     if !input.is_empty() {
63         let mut i = input.chunks(MAX_STORED_BLOCK_LENGTH).peekable();
64 
65         while let Some(chunk) = i.next() {
66             let last_chunk = i.peek().is_none();
67             // Write the block header
68             write_stored_header(writer, final_block && last_chunk);
69 
70             // Write the actual data.
71             compress_block_stored(chunk, &mut writer).expect("Write error");
72 
73         }
74     } else {
75         // If the input length is zero, we output an empty block. This is used for syncing.
76         write_stored_header(writer, final_block);
77         compress_block_stored(&[], &mut writer).expect("Write error");
78     }
79 }
80 
81 /// Inner compression function used by both the writers and the simple compression functions.
compress_data_dynamic_n<W: Write>( input: &[u8], deflate_state: &mut DeflateState<W>, flush: Flush, ) -> io::Result<usize>82 pub fn compress_data_dynamic_n<W: Write>(
83     input: &[u8],
84     deflate_state: &mut DeflateState<W>,
85     flush: Flush,
86 ) -> io::Result<usize> {
87     let mut bytes_written = 0;
88 
89     let mut slice = input;
90 
91     loop {
92         let output_buf_len = deflate_state.output_buf().len();
93         let output_buf_pos = deflate_state.output_buf_pos;
94         // If the output buffer has too much data in it already, flush it before doing anything
95         // else.
96         if output_buf_len > LARGEST_OUTPUT_BUF_SIZE {
97             let written = deflate_state
98                 .inner
99                 .as_mut()
100                 .expect("Missing writer!")
101                 .write(&deflate_state.encoder_state.inner_vec()[output_buf_pos..])?;
102 
103             if written < output_buf_len.checked_sub(output_buf_pos).unwrap() {
104                 // Only some of the data was flushed, so keep track of where we were.
105                 deflate_state.output_buf_pos += written;
106             } else {
107                 // If we flushed all of the output, reset the output buffer.
108                 deflate_state.output_buf_pos = 0;
109                 deflate_state.output_buf().clear();
110             }
111 
112             if bytes_written == 0 {
113                 // If the buffer was already full when the function was called, this has to be
114                 // returned rather than Ok(0) to indicate that we didn't write anything, but are
115                 // not done yet.
116                 return Err(io::Error::new(
117                     io::ErrorKind::Interrupted,
118                     "Internal buffer full.",
119                 ));
120             } else {
121                 return Ok(bytes_written);
122             }
123         }
124 
125         if deflate_state.lz77_state.is_last_block() {
126             // The last block has already been written, so we don't ave anything to compress.
127             break;
128         }
129 
130         let (written, status, position) = lz77_compress_block(
131             slice,
132             &mut deflate_state.lz77_state,
133             &mut deflate_state.input_buffer,
134             &mut deflate_state.lz77_writer,
135             flush,
136         );
137 
138         // Bytes written in this call
139         bytes_written += written;
140         // Total bytes written since the compression process started
141         // TODO: Should we realistically have to worry about overflowing here?
142         deflate_state.bytes_written += written as u64;
143 
144         if status == LZ77Status::NeedInput {
145             // If we've consumed all the data input so far, and we're not
146             // finishing or syncing or ending the block here, simply return
147             // the number of bytes consumed so far.
148             return Ok(bytes_written);
149         }
150 
151         // Increment start of input data
152         slice = &slice[written..];
153 
154         // We need to check if this is the last block as the header will then be
155         // slightly different to indicate this.
156         let last_block = deflate_state.lz77_state.is_last_block();
157 
158         let current_block_input_bytes = deflate_state.lz77_state.current_block_input_bytes();
159 
160         if cfg!(debug_assertions) {
161             deflate_state
162                 .bytes_written_control
163                 .add(current_block_input_bytes);
164         }
165 
166         let partial_bits = deflate_state.encoder_state.writer.pending_bits();
167 
168         let res = {
169             let (l_freqs, d_freqs) = deflate_state.lz77_writer.get_frequencies();
170             let (l_lengths, d_lengths) =
171                 deflate_state.encoder_state.huffman_table.get_lengths_mut();
172 
173             gen_huffman_lengths(
174                 l_freqs,
175                 d_freqs,
176                 current_block_input_bytes,
177                 partial_bits,
178                 l_lengths,
179                 d_lengths,
180                 &mut deflate_state.length_buffers,
181             )
182         };
183 
184         // Check if we've actually managed to compress the input, and output stored blocks
185         // if not.
186         match res {
187             BlockType::Dynamic(header) => {
188                 // Write the block header.
189                 deflate_state
190                     .encoder_state
191                     .write_start_of_block(false, last_block);
192 
193                 // Output the lengths of the huffman codes used in this block.
194                 write_huffman_lengths(
195                     &header,
196                     &deflate_state.encoder_state.huffman_table,
197                     &mut deflate_state.length_buffers.length_buf,
198                     &mut deflate_state.encoder_state.writer,
199                 );
200 
201                 // Uupdate the huffman codes that will be used to encode the
202                 // lz77-compressed data.
203                 deflate_state
204                     .encoder_state
205                     .huffman_table
206                     .update_from_lengths();
207 
208 
209                 // Write the huffman compressed data and the end of block marker.
210                 flush_to_bitstream(
211                     deflate_state.lz77_writer.get_buffer(),
212                     &mut deflate_state.encoder_state,
213                 );
214             }
215             BlockType::Fixed => {
216                 // Write the block header for fixed code blocks.
217                 deflate_state
218                     .encoder_state
219                     .write_start_of_block(true, last_block);
220 
221                 // Use the pre-defined static huffman codes.
222                 deflate_state.encoder_state.set_huffman_to_fixed();
223 
224                 // Write the compressed data and the end of block marker.
225                 flush_to_bitstream(
226                     deflate_state.lz77_writer.get_buffer(),
227                     &mut deflate_state.encoder_state,
228                 );
229             }
230             BlockType::Stored => {
231                 // If compression fails, output a stored block instead.
232 
233                 let start_pos = position.saturating_sub(current_block_input_bytes as usize);
234 
235                 assert!(
236                     position >= current_block_input_bytes as usize,
237                     "Error! Trying to output a stored block with forgotten data!\
238                      if you encounter this error, please file an issue!"
239                 );
240 
241                 write_stored_block(
242                     &deflate_state.input_buffer.get_buffer()[start_pos..position],
243                     &mut deflate_state.encoder_state.writer,
244                     flush == Flush::Finish && last_block,
245                 );
246             }
247         };
248 
249         // Clear the current lz77 data in the writer for the next call.
250         deflate_state.lz77_writer.clear();
251         // We are done with the block, so we reset the number of bytes taken
252         // for the next one.
253         deflate_state.lz77_state.reset_input_bytes();
254 
255         // We are done for now.
256         if status == LZ77Status::Finished {
257             // This flush mode means that there should be an empty stored block at the end.
258             if flush == Flush::Sync {
259                 write_stored_block(&[], &mut deflate_state.encoder_state.writer, false);
260             } else if !deflate_state.lz77_state.is_last_block() {
261                 // Make sure a block with the last block header has been output.
262                 // Not sure this can actually happen, but we make sure to finish properly
263                 // if it somehow does.
264                 // An empty fixed block is the shortest.
265                 let es = &mut deflate_state.encoder_state;
266                 es.set_huffman_to_fixed();
267                 es.write_start_of_block(true, true);
268                 es.write_end_of_block();
269             }
270             break;
271         }
272     }
273 
274     // If we reach this point, the remaining data in the buffers is to be flushed.
275     deflate_state.encoder_state.flush();
276     // Make sure we've output everything, and return the number of bytes written if everything
277     // went well.
278     let output_buf_pos = deflate_state.output_buf_pos;
279     let written_to_writer = deflate_state
280         .inner
281         .as_mut()
282         .expect("Missing writer!")
283         .write(&deflate_state.encoder_state.inner_vec()[output_buf_pos..])?;
284     if written_to_writer <
285         deflate_state
286             .output_buf()
287             .len()
288             .checked_sub(output_buf_pos)
289             .unwrap()
290     {
291         deflate_state.output_buf_pos += written_to_writer;
292     } else {
293         // If we sucessfully wrote all the data, we can clear the output buffer.
294         deflate_state.output_buf_pos = 0;
295         deflate_state.output_buf().clear();
296     }
297     Ok(bytes_written)
298 }
299 
300 #[cfg(test)]
301 mod test {
302     use super::*;
303     use test_utils::{get_test_data, decompress_to_end};
304 
305     #[test]
306     /// Test compressing a short string using fixed encoding.
fixed_string_mem()307     fn fixed_string_mem() {
308         let test_data = String::from("                    GNU GENERAL PUBLIC LICENSE").into_bytes();
309         let compressed = compress_data_fixed(&test_data);
310 
311         let result = decompress_to_end(&compressed);
312 
313         assert_eq!(test_data, result);
314     }
315 
316     #[test]
fixed_data()317     fn fixed_data() {
318         let data = vec![190u8; 400];
319         let compressed = compress_data_fixed(&data);
320         let result = decompress_to_end(&compressed);
321 
322         assert_eq!(data, result);
323     }
324 
325     /// Test deflate example.
326     ///
327     /// Check if the encoder produces the same code as the example given by Mark Adler here:
328     /// https://stackoverflow.com/questions/17398931/deflate-encoding-with-static-huffman-codes/17415203
329     #[test]
fixed_example()330     fn fixed_example() {
331         let test_data = b"Deflate late";
332         // let check =
333         // [0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0xc8, 0x49, 0x2c, 0x49, 0x5, 0x0];
334         let check = [
335             0x73,
336             0x49,
337             0x4d,
338             0xcb,
339             0x49,
340             0x2c,
341             0x49,
342             0x55,
343             0x00,
344             0x11,
345             0x00,
346         ];
347         let compressed = compress_data_fixed(test_data);
348         assert_eq!(&compressed, &check);
349         let decompressed = decompress_to_end(&compressed);
350         assert_eq!(&decompressed, test_data)
351     }
352 
353     #[test]
354     /// Test compression from a file.
fixed_string_file()355     fn fixed_string_file() {
356         let input = get_test_data();
357 
358         let compressed = compress_data_fixed(&input);
359         println!("Fixed codes compressed len: {}", compressed.len());
360         let result = decompress_to_end(&compressed);
361 
362         assert_eq!(input.len(), result.len());
363         // Not using assert_eq here deliberately to avoid massive amounts of output spam.
364         assert!(input == result);
365     }
366 }
367