1 // Copyright (c) 2016 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
16 #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
17 
18 #include <memory>
19 #include <ostream>
20 #include <string>
21 #include <unordered_map>
22 #include <utility>
23 #include <vector>
24 
25 #include "libspirv.hpp"
26 
27 namespace spvtools {
28 
29 namespace opt {
30 class Pass;
31 struct DescriptorSetAndBinding;
32 }  // namespace opt
33 
34 // C++ interface for SPIR-V optimization functionalities. It wraps the context
35 // (including target environment and the corresponding SPIR-V grammar) and
36 // provides methods for registering optimization passes and optimizing.
37 //
38 // Instances of this class provides basic thread-safety guarantee.
39 class Optimizer {
40  public:
41   // The token for an optimization pass. It is returned via one of the
42   // Create*Pass() standalone functions at the end of this header file and
43   // consumed by the RegisterPass() method. Tokens are one-time objects that
44   // only support move; copying is not allowed.
45   struct PassToken {
46     struct Impl;  // Opaque struct for holding inernal data.
47 
48     PassToken(std::unique_ptr<Impl>);
49 
50     // Tokens for built-in passes should be created using Create*Pass functions
51     // below; for out-of-tree passes, use this constructor instead.
52     // Note that this API isn't guaranteed to be stable and may change without
53     // preserving source or binary compatibility in the future.
54     PassToken(std::unique_ptr<opt::Pass>&& pass);
55 
56     // Tokens can only be moved. Copying is disabled.
57     PassToken(const PassToken&) = delete;
58     PassToken(PassToken&&);
59     PassToken& operator=(const PassToken&) = delete;
60     PassToken& operator=(PassToken&&);
61 
62     ~PassToken();
63 
64     std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
65   };
66 
67   // Constructs an instance with the given target |env|, which is used to decode
68   // the binaries to be optimized later.
69   //
70   // The instance will have an empty message consumer, which ignores all
71   // messages from the library. Use SetMessageConsumer() to supply a consumer
72   // if messages are of concern.
73   explicit Optimizer(spv_target_env env);
74 
75   // Disables copy/move constructor/assignment operations.
76   Optimizer(const Optimizer&) = delete;
77   Optimizer(Optimizer&&) = delete;
78   Optimizer& operator=(const Optimizer&) = delete;
79   Optimizer& operator=(Optimizer&&) = delete;
80 
81   // Destructs this instance.
82   ~Optimizer();
83 
84   // Sets the message consumer to the given |consumer|. The |consumer| will be
85   // invoked once for each message communicated from the library.
86   void SetMessageConsumer(MessageConsumer consumer);
87 
88   // Returns a reference to the registered message consumer.
89   const MessageConsumer& consumer() const;
90 
91   // Registers the given |pass| to this optimizer. Passes will be run in the
92   // exact order of registration. The token passed in will be consumed by this
93   // method.
94   Optimizer& RegisterPass(PassToken&& pass);
95 
96   // Registers passes that attempt to improve performance of generated code.
97   // This sequence of passes is subject to constant review and will change
98   // from time to time.
99   Optimizer& RegisterPerformancePasses();
100 
101   // Registers passes that attempt to improve the size of generated code.
102   // This sequence of passes is subject to constant review and will change
103   // from time to time.
104   Optimizer& RegisterSizePasses();
105 
106   // Registers passes that attempt to legalize the generated code.
107   //
108   // Note: this recipe is specially designed for legalizing SPIR-V. It should be
109   // used by compilers after translating HLSL source code literally. It should
110   // *not* be used by general workloads for performance or size improvement.
111   //
112   // This sequence of passes is subject to constant review and will change
113   // from time to time.
114   Optimizer& RegisterLegalizationPasses();
115 
116   // Register passes specified in the list of |flags|.  Each flag must be a
117   // string of a form accepted by Optimizer::FlagHasValidForm().
118   //
119   // If the list of flags contains an invalid entry, it returns false and an
120   // error message is emitted to the MessageConsumer object (use
121   // Optimizer::SetMessageConsumer to define a message consumer, if needed).
122   //
123   // If all the passes are registered successfully, it returns true.
124   bool RegisterPassesFromFlags(const std::vector<std::string>& flags);
125 
126   // Registers the optimization pass associated with |flag|.  This only accepts
127   // |flag| values of the form "--pass_name[=pass_args]".  If no such pass
128   // exists, it returns false.  Otherwise, the pass is registered and it returns
129   // true.
130   //
131   // The following flags have special meaning:
132   //
133   // -O: Registers all performance optimization passes
134   //     (Optimizer::RegisterPerformancePasses)
135   //
136   // -Os: Registers all size optimization passes
137   //      (Optimizer::RegisterSizePasses).
138   //
139   // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an
140   //                  HLSL front-end.
141   bool RegisterPassFromFlag(const std::string& flag);
142 
143   // Validates that |flag| has a valid format.  Strings accepted:
144   //
145   // --pass_name[=pass_args]
146   // -O
147   // -Os
148   //
149   // If |flag| takes one of the forms above, it returns true.  Otherwise, it
150   // returns false.
151   bool FlagHasValidForm(const std::string& flag) const;
152 
153   // Allows changing, after creation time, the target environment to be
154   // optimized for and validated.  Should be called before calling Run().
155   void SetTargetEnv(const spv_target_env env);
156 
157   // Optimizes the given SPIR-V module |original_binary| and writes the
158   // optimized binary into |optimized_binary|. The optimized binary uses
159   // the same SPIR-V version as the original binary.
160   //
161   // Returns true on successful optimization, whether or not the module is
162   // modified. Returns false if |original_binary| fails to validate or if errors
163   // occur when processing |original_binary| using any of the registered passes.
164   // In that case, no further passes are executed and the contents in
165   // |optimized_binary| may be invalid.
166   //
167   // By default, the binary is validated before any transforms are performed,
168   // and optionally after each transform.  Validation uses SPIR-V spec rules
169   // for the SPIR-V version named in the binary's header (at word offset 1).
170   // Additionally, if the target environment is a client API (such as
171   // Vulkan 1.1), then validate for that client API version, to the extent
172   // that it is verifiable from data in the binary itself.
173   //
174   // It's allowed to alias |original_binary| to the start of |optimized_binary|.
175   bool Run(const uint32_t* original_binary, size_t original_binary_size,
176            std::vector<uint32_t>* optimized_binary) const;
177 
178   // DEPRECATED: Same as above, except passes |options| to the validator when
179   // trying to validate the binary.  If |skip_validation| is true, then the
180   // caller is guaranteeing that |original_binary| is valid, and the validator
181   // will not be run.  The |max_id_bound| is the limit on the max id in the
182   // module.
183   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
184            std::vector<uint32_t>* optimized_binary,
185            const ValidatorOptions& options, bool skip_validation) const;
186 
187   // Same as above, except it takes an options object.  See the documentation
188   // for |OptimizerOptions| to see which options can be set.
189   //
190   // By default, the binary is validated before any transforms are performed,
191   // and optionally after each transform.  Validation uses SPIR-V spec rules
192   // for the SPIR-V version named in the binary's header (at word offset 1).
193   // Additionally, if the target environment is a client API (such as
194   // Vulkan 1.1), then validate for that client API version, to the extent
195   // that it is verifiable from data in the binary itself, or from the
196   // validator options set on the optimizer options.
197   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
198            std::vector<uint32_t>* optimized_binary,
199            const spv_optimizer_options opt_options) const;
200 
201   // Returns a vector of strings with all the pass names added to this
202   // optimizer's pass manager. These strings are valid until the associated
203   // pass manager is destroyed.
204   std::vector<const char*> GetPassNames() const;
205 
206   // Sets the option to print the disassembly before each pass and after the
207   // last pass.  If |out| is null, then no output is generated.  Otherwise,
208   // output is sent to the |out| output stream.
209   Optimizer& SetPrintAll(std::ostream* out);
210 
211   // Sets the option to print the resource utilization of each pass. If |out|
212   // is null, then no output is generated. Otherwise, output is sent to the
213   // |out| output stream.
214   Optimizer& SetTimeReport(std::ostream* out);
215 
216   // Sets the option to validate the module after each pass.
217   Optimizer& SetValidateAfterAll(bool validate);
218 
219  private:
220   struct Impl;                  // Opaque struct for holding internal data.
221   std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
222 };
223 
224 // Creates a null pass.
225 // A null pass does nothing to the SPIR-V module to be optimized.
226 Optimizer::PassToken CreateNullPass();
227 
228 // Creates a strip-debug-info pass.
229 // A strip-debug-info pass removes all debug instructions (as documented in
230 // Section 3.32.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
231 Optimizer::PassToken CreateStripDebugInfoPass();
232 
233 // Creates a strip-reflect-info pass.
234 // A strip-reflect-info pass removes all reflections instructions.
235 // For now, this is limited to removing decorations defined in
236 // SPV_GOOGLE_hlsl_functionality1.  The coverage may expand in
237 // the future.
238 Optimizer::PassToken CreateStripReflectInfoPass();
239 
240 // Creates an eliminate-dead-functions pass.
241 // An eliminate-dead-functions pass will remove all functions that are not in
242 // the call trees rooted at entry points and exported functions.  These
243 // functions are not needed because they will never be called.
244 Optimizer::PassToken CreateEliminateDeadFunctionsPass();
245 
246 // Creates an eliminate-dead-members pass.
247 // An eliminate-dead-members pass will remove all unused members of structures.
248 // This will not affect the data layout of the remaining members.
249 Optimizer::PassToken CreateEliminateDeadMembersPass();
250 
251 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
252 // to the default values in the form of string.
253 // A set-spec-constant-default-value pass sets the default values for the
254 // spec constants that have SpecId decorations (i.e., those defined by
255 // OpSpecConstant{|True|False} instructions).
256 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
257     const std::unordered_map<uint32_t, std::string>& id_value_map);
258 
259 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
260 // to the default values in the form of bit pattern.
261 // A set-spec-constant-default-value pass sets the default values for the
262 // spec constants that have SpecId decorations (i.e., those defined by
263 // OpSpecConstant{|True|False} instructions).
264 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
265     const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
266 
267 // Creates a flatten-decoration pass.
268 // A flatten-decoration pass replaces grouped decorations with equivalent
269 // ungrouped decorations.  That is, it replaces each OpDecorationGroup
270 // instruction and associated OpGroupDecorate and OpGroupMemberDecorate
271 // instructions with equivalent OpDecorate and OpMemberDecorate instructions.
272 // The pass does not attempt to preserve debug information for instructions
273 // it removes.
274 Optimizer::PassToken CreateFlattenDecorationPass();
275 
276 // Creates a freeze-spec-constant-value pass.
277 // A freeze-spec-constant pass specializes the value of spec constants to
278 // their default values. This pass only processes the spec constants that have
279 // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
280 // OpSpecConstantFalse instructions) and replaces them with their normal
281 // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
282 // corresponding SpecId annotation instructions will also be removed. This
283 // pass does not fold the newly added normal constants and does not process
284 // other spec constants defined by OpSpecConstantComposite or
285 // OpSpecConstantOp.
286 Optimizer::PassToken CreateFreezeSpecConstantValuePass();
287 
288 // Creates a fold-spec-constant-op-and-composite pass.
289 // A fold-spec-constant-op-and-composite pass folds spec constants defined by
290 // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
291 // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
292 // OpConstantComposite instructions. Note that spec constants defined with
293 // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
294 // not handled, as these instructions indicate their value are not determined
295 // and can be changed in future. A spec constant is foldable if all of its
296 // value(s) can be determined from the module. E.g., an integer spec constant
297 // defined with OpSpecConstantOp instruction can be folded if its value won't
298 // change later. This pass will replace the original OpSpecContantOp instruction
299 // with an OpConstant instruction. When folding composite spec constants,
300 // new instructions may be inserted to define the components of the composite
301 // constant first, then the original spec constants will be replaced by
302 // OpConstantComposite instructions.
303 //
304 // There are some operations not supported yet:
305 //   OpSConvert, OpFConvert, OpQuantizeToF16 and
306 //   all the operations under Kernel capability.
307 // TODO(qining): Add support for the operations listed above.
308 Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
309 
310 // Creates a unify-constant pass.
311 // A unify-constant pass de-duplicates the constants. Constants with the exact
312 // same value and identical form will be unified and only one constant will
313 // be kept for each unique pair of type and value.
314 // There are several cases not handled by this pass:
315 //  1) Constants defined by OpConstantNull instructions (null constants) and
316 //  constants defined by OpConstantFalse, OpConstant or OpConstantComposite
317 //  with value 0 (zero-valued normal constants) are not considered equivalent.
318 //  So null constants won't be used to replace zero-valued normal constants,
319 //  vice versa.
320 //  2) Whenever there are decorations to the constant's result id id, the
321 //  constant won't be handled, which means, it won't be used to replace any
322 //  other constants, neither can other constants replace it.
323 //  3) NaN in float point format with different bit patterns are not unified.
324 Optimizer::PassToken CreateUnifyConstantPass();
325 
326 // Creates a eliminate-dead-constant pass.
327 // A eliminate-dead-constant pass removes dead constants, including normal
328 // contants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
329 // OpConstantFalse and spec constants defined by OpSpecConstant,
330 // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
331 // OpSpecConstantOp.
332 Optimizer::PassToken CreateEliminateDeadConstantPass();
333 
334 // Creates a strength-reduction pass.
335 // A strength-reduction pass will look for opportunities to replace an
336 // instruction with an equivalent and less expensive one.  For example,
337 // multiplying by a power of 2 can be replaced by a bit shift.
338 Optimizer::PassToken CreateStrengthReductionPass();
339 
340 // Creates a block merge pass.
341 // This pass searches for blocks with a single Branch to a block with no
342 // other predecessors and merges the blocks into a single block. Continue
343 // blocks and Merge blocks are not candidates for the second block.
344 //
345 // The pass is most useful after Dead Branch Elimination, which can leave
346 // such sequences of blocks. Merging them makes subsequent passes more
347 // effective, such as single block local store-load elimination.
348 //
349 // While this pass reduces the number of occurrences of this sequence, at
350 // this time it does not guarantee all such sequences are eliminated.
351 //
352 // Presence of phi instructions can inhibit this optimization. Handling
353 // these is left for future improvements.
354 Optimizer::PassToken CreateBlockMergePass();
355 
356 // Creates an exhaustive inline pass.
357 // An exhaustive inline pass attempts to exhaustively inline all function
358 // calls in all functions in an entry point call tree. The intent is to enable,
359 // albeit through brute force, analysis and optimization across function
360 // calls by subsequent optimization passes. As the inlining is exhaustive,
361 // there is no attempt to optimize for size or runtime performance. Functions
362 // that are not in the call tree of an entry point are not changed.
363 Optimizer::PassToken CreateInlineExhaustivePass();
364 
365 // Creates an opaque inline pass.
366 // An opaque inline pass inlines all function calls in all functions in all
367 // entry point call trees where the called function contains an opaque type
368 // in either its parameter types or return type. An opaque type is currently
369 // defined as Image, Sampler or SampledImage. The intent is to enable, albeit
370 // through brute force, analysis and optimization across these function calls
371 // by subsequent passes in order to remove the storing of opaque types which is
372 // not legal in Vulkan. Functions that are not in the call tree of an entry
373 // point are not changed.
374 Optimizer::PassToken CreateInlineOpaquePass();
375 
376 // Creates a single-block local variable load/store elimination pass.
377 // For every entry point function, do single block memory optimization of
378 // function variables referenced only with non-access-chain loads and stores.
379 // For each targeted variable load, if previous store to that variable in the
380 // block, replace the load's result id with the value id of the store.
381 // If previous load within the block, replace the current load's result id
382 // with the previous load's result id. In either case, delete the current
383 // load. Finally, check if any remaining stores are useless, and delete store
384 // and variable if possible.
385 //
386 // The presence of access chain references and function calls can inhibit
387 // the above optimization.
388 //
389 // Only modules with relaxed logical addressing (see opt/instruction.h) are
390 // currently processed.
391 //
392 // This pass is most effective if preceeded by Inlining and
393 // LocalAccessChainConvert. This pass will reduce the work needed to be done
394 // by LocalSingleStoreElim and LocalMultiStoreElim.
395 //
396 // Only functions in the call tree of an entry point are processed.
397 Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
398 
399 // Create dead branch elimination pass.
400 // For each entry point function, this pass will look for SelectionMerge
401 // BranchConditionals with constant condition and convert to a Branch to
402 // the indicated label. It will delete resulting dead blocks.
403 //
404 // For all phi functions in merge block, replace all uses with the id
405 // corresponding to the living predecessor.
406 //
407 // Note that some branches and blocks may be left to avoid creating invalid
408 // control flow. Improving this is left to future work.
409 //
410 // This pass is most effective when preceeded by passes which eliminate
411 // local loads and stores, effectively propagating constant values where
412 // possible.
413 Optimizer::PassToken CreateDeadBranchElimPass();
414 
415 // Creates an SSA local variable load/store elimination pass.
416 // For every entry point function, eliminate all loads and stores of function
417 // scope variables only referenced with non-access-chain loads and stores.
418 // Eliminate the variables as well.
419 //
420 // The presence of access chain references and function calls can inhibit
421 // the above optimization.
422 //
423 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
424 // are currently processed. Currently modules with any extensions enabled are
425 // not processed. This is left for future work.
426 //
427 // This pass is most effective if preceeded by Inlining and
428 // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
429 // will reduce the work that this pass has to do.
430 Optimizer::PassToken CreateLocalMultiStoreElimPass();
431 
432 // Creates a local access chain conversion pass.
433 // A local access chain conversion pass identifies all function scope
434 // variables which are accessed only with loads, stores and access chains
435 // with constant indices. It then converts all loads and stores of such
436 // variables into equivalent sequences of loads, stores, extracts and inserts.
437 //
438 // This pass only processes entry point functions. It currently only converts
439 // non-nested, non-ptr access chains. It does not process modules with
440 // non-32-bit integer types present. Optional memory access options on loads
441 // and stores are ignored as we are only processing function scope variables.
442 //
443 // This pass unifies access to these variables to a single mode and simplifies
444 // subsequent analysis and elimination of these variables along with their
445 // loads and stores allowing values to propagate to their points of use where
446 // possible.
447 Optimizer::PassToken CreateLocalAccessChainConvertPass();
448 
449 // Creates a local single store elimination pass.
450 // For each entry point function, this pass eliminates loads and stores for
451 // function scope variable that are stored to only once, where possible. Only
452 // whole variable loads and stores are eliminated; access-chain references are
453 // not optimized. Replace all loads of such variables with the value that is
454 // stored and eliminate any resulting dead code.
455 //
456 // Currently, the presence of access chains and function calls can inhibit this
457 // pass, however the Inlining and LocalAccessChainConvert passes can make it
458 // more effective. In additional, many non-load/store memory operations are
459 // not supported and will prohibit optimization of a function. Support of
460 // these operations are future work.
461 //
462 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
463 // are currently processed.
464 //
465 // This pass will reduce the work needed to be done by LocalSingleBlockElim
466 // and LocalMultiStoreElim and can improve the effectiveness of other passes
467 // such as DeadBranchElimination which depend on values for their analysis.
468 Optimizer::PassToken CreateLocalSingleStoreElimPass();
469 
470 // Creates an insert/extract elimination pass.
471 // This pass processes each entry point function in the module, searching for
472 // extracts on a sequence of inserts. It further searches the sequence for an
473 // insert with indices identical to the extract. If such an insert can be
474 // found before hitting a conflicting insert, the extract's result id is
475 // replaced with the id of the values from the insert.
476 //
477 // Besides removing extracts this pass enables subsequent dead code elimination
478 // passes to delete the inserts. This pass performs best after access chains are
479 // converted to inserts and extracts and local loads and stores are eliminated.
480 Optimizer::PassToken CreateInsertExtractElimPass();
481 
482 // Creates a dead insert elimination pass.
483 // This pass processes each entry point function in the module, searching for
484 // unreferenced inserts into composite types. These are most often unused
485 // stores to vector components. They are unused because they are never
486 // referenced, or because there is another insert to the same component between
487 // the insert and the reference. After removing the inserts, dead code
488 // elimination is attempted on the inserted values.
489 //
490 // This pass performs best after access chains are converted to inserts and
491 // extracts and local loads and stores are eliminated. While executing this
492 // pass can be advantageous on its own, it is also advantageous to execute
493 // this pass after CreateInsertExtractPass() as it will remove any unused
494 // inserts created by that pass.
495 Optimizer::PassToken CreateDeadInsertElimPass();
496 
497 // Create aggressive dead code elimination pass
498 // This pass eliminates unused code from the module. In addition,
499 // it detects and eliminates code which may have spurious uses but which do
500 // not contribute to the output of the function. The most common cause of
501 // such code sequences is summations in loops whose result is no longer used
502 // due to dead code elimination. This optimization has additional compile
503 // time cost over standard dead code elimination.
504 //
505 // This pass only processes entry point functions. It also only processes
506 // shaders with relaxed logical addressing (see opt/instruction.h). It
507 // currently will not process functions with function calls. Unreachable
508 // functions are deleted.
509 //
510 // This pass will be made more effective by first running passes that remove
511 // dead control flow and inlines function calls.
512 //
513 // This pass can be especially useful after running Local Access Chain
514 // Conversion, which tends to cause cycles of dead code to be left after
515 // Store/Load elimination passes are completed. These cycles cannot be
516 // eliminated with standard dead code elimination.
517 //
518 // If |preserve_interface| is true, all non-io variables in the entry point
519 // interface are considered live and are not eliminated. This mode is needed
520 // by GPU-Assisted validation instrumentation, where a change in the interface
521 // is not allowed.
522 Optimizer::PassToken CreateAggressiveDCEPass(bool preserve_interface = false);
523 
524 // Creates a remove-unused-interface-variables pass.
525 // Removes variables referenced on the |OpEntryPoint| instruction that are not
526 // referenced in the entry point function or any function in its call tree. Note
527 // that this could cause the shader interface to no longer match other shader
528 // stages.
529 Optimizer::PassToken CreateRemoveUnusedInterfaceVariablesPass();
530 
531 // Creates an empty pass.
532 // This is deprecated and will be removed.
533 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
534 //                https://github.com/KhronosGroup/glslang/pull/2440
535 Optimizer::PassToken CreatePropagateLineInfoPass();
536 
537 // Creates an empty pass.
538 // This is deprecated and will be removed.
539 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
540 //                https://github.com/KhronosGroup/glslang/pull/2440
541 Optimizer::PassToken CreateRedundantLineInfoElimPass();
542 
543 // Creates a compact ids pass.
544 // The pass remaps result ids to a compact and gapless range starting from %1.
545 Optimizer::PassToken CreateCompactIdsPass();
546 
547 // Creates a remove duplicate pass.
548 // This pass removes various duplicates:
549 // * duplicate capabilities;
550 // * duplicate extended instruction imports;
551 // * duplicate types;
552 // * duplicate decorations.
553 Optimizer::PassToken CreateRemoveDuplicatesPass();
554 
555 // Creates a CFG cleanup pass.
556 // This pass removes cruft from the control flow graph of functions that are
557 // reachable from entry points and exported functions. It currently includes the
558 // following functionality:
559 //
560 // - Removal of unreachable basic blocks.
561 Optimizer::PassToken CreateCFGCleanupPass();
562 
563 // Create dead variable elimination pass.
564 // This pass will delete module scope variables, along with their decorations,
565 // that are not referenced.
566 Optimizer::PassToken CreateDeadVariableEliminationPass();
567 
568 // create merge return pass.
569 // changes functions that have multiple return statements so they have a single
570 // return statement.
571 //
572 // for structured control flow it is assumed that the only unreachable blocks in
573 // the function are trivial merge and continue blocks.
574 //
575 // a trivial merge block contains the label and an opunreachable instructions,
576 // nothing else.  a trivial continue block contain a label and an opbranch to
577 // the header, nothing else.
578 //
579 // these conditions are guaranteed to be met after running dead-branch
580 // elimination.
581 Optimizer::PassToken CreateMergeReturnPass();
582 
583 // Create value numbering pass.
584 // This pass will look for instructions in the same basic block that compute the
585 // same value, and remove the redundant ones.
586 Optimizer::PassToken CreateLocalRedundancyEliminationPass();
587 
588 // Create LICM pass.
589 // This pass will look for invariant instructions inside loops and hoist them to
590 // the loops preheader.
591 Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
592 
593 // Creates a loop fission pass.
594 // This pass will split all top level loops whose register pressure exceedes the
595 // given |threshold|.
596 Optimizer::PassToken CreateLoopFissionPass(size_t threshold);
597 
598 // Creates a loop fusion pass.
599 // This pass will look for adjacent loops that are compatible and legal to be
600 // fused. The fuse all such loops as long as the register usage for the fused
601 // loop stays under the threshold defined by |max_registers_per_loop|.
602 Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop);
603 
604 // Creates a loop peeling pass.
605 // This pass will look for conditions inside a loop that are true or false only
606 // for the N first or last iteration. For loop with such condition, those N
607 // iterations of the loop will be executed outside of the main loop.
608 // To limit code size explosion, the loop peeling can only happen if the code
609 // size growth for each loop is under |code_growth_threshold|.
610 Optimizer::PassToken CreateLoopPeelingPass();
611 
612 // Creates a loop unswitch pass.
613 // This pass will look for loop independent branch conditions and move the
614 // condition out of the loop and version the loop based on the taken branch.
615 // Works best after LICM and local multi store elimination pass.
616 Optimizer::PassToken CreateLoopUnswitchPass();
617 
618 // Create global value numbering pass.
619 // This pass will look for instructions where the same value is computed on all
620 // paths leading to the instruction.  Those instructions are deleted.
621 Optimizer::PassToken CreateRedundancyEliminationPass();
622 
623 // Create scalar replacement pass.
624 // This pass replaces composite function scope variables with variables for each
625 // element if those elements are accessed individually.  The parameter is a
626 // limit on the number of members in the composite variable that the pass will
627 // consider replacing.
628 Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100);
629 
630 // Create a private to local pass.
631 // This pass looks for variables delcared in the private storage class that are
632 // used in only one function.  Those variables are moved to the function storage
633 // class in the function that they are used.
634 Optimizer::PassToken CreatePrivateToLocalPass();
635 
636 // Creates a conditional constant propagation (CCP) pass.
637 // This pass implements the SSA-CCP algorithm in
638 //
639 //      Constant propagation with conditional branches,
640 //      Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
641 //
642 // Constant values in expressions and conditional jumps are folded and
643 // simplified. This may reduce code size by removing never executed jump targets
644 // and computations with constant operands.
645 Optimizer::PassToken CreateCCPPass();
646 
647 // Creates a workaround driver bugs pass.  This pass attempts to work around
648 // a known driver bug (issue #1209) by identifying the bad code sequences and
649 // rewriting them.
650 //
651 // Current workaround: Avoid OpUnreachable instructions in loops.
652 Optimizer::PassToken CreateWorkaround1209Pass();
653 
654 // Creates a pass that converts if-then-else like assignments into OpSelect.
655 Optimizer::PassToken CreateIfConversionPass();
656 
657 // Creates a pass that will replace instructions that are not valid for the
658 // current shader stage by constants.  Has no effect on non-shader modules.
659 Optimizer::PassToken CreateReplaceInvalidOpcodePass();
660 
661 // Creates a pass that simplifies instructions using the instruction folder.
662 Optimizer::PassToken CreateSimplificationPass();
663 
664 // Create loop unroller pass.
665 // Creates a pass to unroll loops which have the "Unroll" loop control
666 // mask set. The loops must meet a specific criteria in order to be unrolled
667 // safely this criteria is checked before doing the unroll by the
668 // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
669 // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
670 Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0);
671 
672 // Create the SSA rewrite pass.
673 // This pass converts load/store operations on function local variables into
674 // operations on SSA IDs.  This allows SSA optimizers to act on these variables.
675 // Only variables that are local to the function and of supported types are
676 // processed (see IsSSATargetVar for details).
677 Optimizer::PassToken CreateSSARewritePass();
678 
679 // Create pass to convert relaxed precision instructions to half precision.
680 // This pass converts as many relaxed float32 arithmetic operations to half as
681 // possible. It converts any float32 operands to half if needed. It converts
682 // any resulting half precision values back to float32 as needed. No variables
683 // are changed. No image operations are changed.
684 //
685 // Best if run after function scope store/load and composite operation
686 // eliminations are run. Also best if followed by instruction simplification,
687 // redundancy elimination and DCE.
688 Optimizer::PassToken CreateConvertRelaxedToHalfPass();
689 
690 // Create relax float ops pass.
691 // This pass decorates all float32 result instructions with RelaxedPrecision
692 // if not already so decorated.
693 Optimizer::PassToken CreateRelaxFloatOpsPass();
694 
695 // Create copy propagate arrays pass.
696 // This pass looks to copy propagate memory references for arrays.  It looks
697 // for specific code patterns to recognize array copies.
698 Optimizer::PassToken CreateCopyPropagateArraysPass();
699 
700 // Create a vector dce pass.
701 // This pass looks for components of vectors that are unused, and removes them
702 // from the vector.  Note this would still leave around lots of dead code that
703 // a pass of ADCE will be able to remove.
704 Optimizer::PassToken CreateVectorDCEPass();
705 
706 // Create a pass to reduce the size of loads.
707 // This pass looks for loads of structures where only a few of its members are
708 // used.  It replaces the loads feeding an OpExtract with an OpAccessChain and
709 // a load of the specific elements.  The parameter is a threshold to determine
710 // whether we have to replace the load or not.  If the ratio of the used
711 // components of the load is less than the threshold, we replace the load.
712 Optimizer::PassToken CreateReduceLoadSizePass(
713     double load_replacement_threshold = 0.9);
714 
715 // Create a pass to combine chained access chains.
716 // This pass looks for access chains fed by other access chains and combines
717 // them into a single instruction where possible.
718 Optimizer::PassToken CreateCombineAccessChainsPass();
719 
720 // Create a pass to instrument bindless descriptor checking
721 // This pass instruments all bindless references to check that descriptor
722 // array indices are inbounds, and if the descriptor indexing extension is
723 // enabled, that the descriptor has been initialized. If the reference is
724 // invalid, a record is written to the debug output buffer (if space allows)
725 // and a null value is returned. This pass is designed to support bindless
726 // validation in the Vulkan validation layers.
727 //
728 // TODO(greg-lunarg): Add support for buffer references. Currently only does
729 // checking for image references.
730 //
731 // Dead code elimination should be run after this pass as the original,
732 // potentially invalid code is not removed and could cause undefined behavior,
733 // including crashes. It may also be beneficial to run Simplification
734 // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to
735 // optimize instrument code involving the testing of compile-time constants.
736 // It is also generally recommended that this pass (and all
737 // instrumentation passes) be run after any legalization and optimization
738 // passes. This will give better analysis for the instrumentation and avoid
739 // potentially de-optimizing the instrument code, for example, inlining
740 // the debug record output function throughout the module.
741 //
742 // The instrumentation will read and write buffers in debug
743 // descriptor set |desc_set|. It will write |shader_id| in each output record
744 // to identify the shader module which generated the record.
745 // |desc_length_enable| controls instrumentation of runtime descriptor array
746 // references, |desc_init_enable| controls instrumentation of descriptor
747 // initialization checking, and |buff_oob_enable| controls instrumentation
748 // of storage and uniform buffer bounds checking, all of which require input
749 // buffer support. |texbuff_oob_enable| controls instrumentation of texel
750 // buffers, which does not require input buffer support.
751 Optimizer::PassToken CreateInstBindlessCheckPass(
752     uint32_t desc_set, uint32_t shader_id, bool desc_length_enable = false,
753     bool desc_init_enable = false, bool buff_oob_enable = false,
754     bool texbuff_oob_enable = false);
755 
756 // Create a pass to instrument physical buffer address checking
757 // This pass instruments all physical buffer address references to check that
758 // all referenced bytes fall in a valid buffer. If the reference is
759 // invalid, a record is written to the debug output buffer (if space allows)
760 // and a null value is returned. This pass is designed to support buffer
761 // address validation in the Vulkan validation layers.
762 //
763 // Dead code elimination should be run after this pass as the original,
764 // potentially invalid code is not removed and could cause undefined behavior,
765 // including crashes. Instruction simplification would likely also be
766 // beneficial. It is also generally recommended that this pass (and all
767 // instrumentation passes) be run after any legalization and optimization
768 // passes. This will give better analysis for the instrumentation and avoid
769 // potentially de-optimizing the instrument code, for example, inlining
770 // the debug record output function throughout the module.
771 //
772 // The instrumentation will read and write buffers in debug
773 // descriptor set |desc_set|. It will write |shader_id| in each output record
774 // to identify the shader module which generated the record.
775 Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t desc_set,
776                                                  uint32_t shader_id);
777 
778 // Create a pass to instrument OpDebugPrintf instructions.
779 // This pass replaces all OpDebugPrintf instructions with instructions to write
780 // a record containing the string id and the all specified values into a special
781 // printf output buffer (if space allows). This pass is designed to support
782 // the printf validation in the Vulkan validation layers.
783 //
784 // The instrumentation will write buffers in debug descriptor set |desc_set|.
785 // It will write |shader_id| in each output record to identify the shader
786 // module which generated the record.
787 Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set,
788                                                uint32_t shader_id);
789 
790 // Create a pass to upgrade to the VulkanKHR memory model.
791 // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR.
792 // Additionally, it modifies memory, image, atomic and barrier operations to
793 // conform to that model's requirements.
794 Optimizer::PassToken CreateUpgradeMemoryModelPass();
795 
796 // Create a pass to do code sinking.  Code sinking is a transformation
797 // where an instruction is moved into a more deeply nested construct.
798 Optimizer::PassToken CreateCodeSinkingPass();
799 
800 // Create a pass to fix incorrect storage classes.  In order to make code
801 // generation simpler, DXC may generate code where the storage classes do not
802 // match up correctly.  This pass will fix the errors that it can.
803 Optimizer::PassToken CreateFixStorageClassPass();
804 
805 // Creates a graphics robust access pass.
806 //
807 // This pass injects code to clamp indexed accesses to buffers and internal
808 // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules.
809 //
810 // TODO(dneto): Clamps coordinates and sample index for pointer calculations
811 // into storage images (OpImageTexelPointer).  For an cube array image, it
812 // assumes the maximum layer count times 6 is at most 0xffffffff.
813 //
814 // NOTE: This pass will fail with a message if:
815 // - The module is not a Shader module.
816 // - The module declares VariablePointers, VariablePointersStorageBuffer, or
817 //   RuntimeDescriptorArrayEXT capabilities.
818 // - The module uses an addressing model other than Logical
819 // - Access chain indices are wider than 64 bits.
820 // - Access chain index for a struct is not an OpConstant integer or is out
821 //   of range. (The module is already invalid if that is the case.)
822 // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits
823 // wide.
824 //
825 // NOTE: Access chain indices are always treated as signed integers.  So
826 //   if an array has a fixed size of more than 2^31 elements, then elements
827 //   from 2^31 and above are never accessible with a 32-bit index,
828 //   signed or unsigned.  For this case, this pass will clamp the index
829 //   between 0 and at 2^31-1, inclusive.
830 //   Similarly, if an array has more then 2^15 element and is accessed with
831 //   a 16-bit index, then elements from 2^15 and above are not accessible.
832 //   In this case, the pass will clamp the index between 0 and 2^15-1
833 //   inclusive.
834 Optimizer::PassToken CreateGraphicsRobustAccessPass();
835 
836 // Create a pass to replace a descriptor access using variable index.
837 // This pass replaces every access using a variable index to array variable
838 // |desc| that has a DescriptorSet and Binding decorations with a constant
839 // element of the array. In order to replace the access using a variable index
840 // with the constant element, it uses a switch statement.
841 Optimizer::PassToken CreateReplaceDescArrayAccessUsingVarIndexPass();
842 
843 // Create descriptor scalar replacement pass.
844 // This pass replaces every array variable |desc| that has a DescriptorSet and
845 // Binding decorations with a new variable for each element of the array.
846 // Suppose |desc| was bound at binding |b|.  Then the variable corresponding to
847 // |desc[i]| will have binding |b+i|.  The descriptor set will be the same.  It
848 // is assumed that no other variable already has a binding that will used by one
849 // of the new variables.  If not, the pass will generate invalid Spir-V.  All
850 // accesses to |desc| must be OpAccessChain instructions with a literal index
851 // for the first index.
852 Optimizer::PassToken CreateDescriptorScalarReplacementPass();
853 
854 // Create a pass to replace each OpKill instruction with a function call to a
855 // function that has a single OpKill.  Also replace each OpTerminateInvocation
856 // instruction  with a function call to a function that has a single
857 // OpTerminateInvocation.  This allows more code to be inlined.
858 Optimizer::PassToken CreateWrapOpKillPass();
859 
860 // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and
861 // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and
862 // capabilities.
863 Optimizer::PassToken CreateAmdExtToKhrPass();
864 
865 // Replaces the internal version of GLSLstd450 InterpolateAt* extended
866 // instructions with the externally valid version. The internal version allows
867 // an OpLoad of the interpolant for the first argument. This pass removes the
868 // OpLoad and replaces it with its pointer. glslang and possibly other
869 // frontends will create the internal version for HLSL. This pass will be part
870 // of HLSL legalization and should be called after interpolants have been
871 // propagated into their final positions.
872 Optimizer::PassToken CreateInterpolateFixupPass();
873 
874 // Creates a convert-to-sampled-image pass to convert images and/or
875 // samplers with given pairs of descriptor set and binding to sampled image.
876 // If a pair of an image and a sampler have the same pair of descriptor set and
877 // binding that is one of the given pairs, they will be converted to a sampled
878 // image. In addition, if only an image has the descriptor set and binding that
879 // is one of the given pairs, it will be converted to a sampled image as well.
880 Optimizer::PassToken CreateConvertToSampledImagePass(
881     const std::vector<opt::DescriptorSetAndBinding>&
882         descriptor_set_binding_pairs);
883 
884 }  // namespace spvtools
885 
886 #endif  // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
887