1|// Low-level VM code for PowerPC 32 bit or 32on64 bit mode.
2|// Bytecode interpreter, fast functions and helper functions.
3|// Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h
4|
5|.arch ppc
6|.section code_op, code_sub
7|
8|.actionlist build_actionlist
9|.globals GLOB_
10|.globalnames globnames
11|.externnames extnames
12|
13|// Note: The ragged indentation of the instructions is intentional.
14|//       The starting columns indicate data dependencies.
15|
16|//-----------------------------------------------------------------------
17|
18|// DynASM defines used by the PPC port:
19|//
20|// P64     64 bit pointers (only for GPR64 testing).
21|//         Note: see vm_ppc64.dasc for a full PPC64 _LP64 port.
22|// GPR64   64 bit registers (but possibly 32 bit pointers, e.g. PS3).
23|//         Affects reg saves, stack layout, carry/overflow/dot flags etc.
24|// FRAME32 Use 32 bit frame layout, even with GPR64 (Xbox 360).
25|// TOC     Need table of contents (64 bit or 32 bit variant, e.g. PS3).
26|//         Function pointers are really a struct: code, TOC, env (optional).
27|// TOCENV  Function pointers have an environment pointer, too (not on PS3).
28|// PPE     Power Processor Element of Cell (PS3) or Xenon (Xbox 360).
29|//         Must avoid (slow) micro-coded instructions.
30|
31|.if P64
32|.define TOC, 1
33|.define TOCENV, 1
34|.macro lpx, a, b, c; ldx a, b, c; .endmacro
35|.macro lp, a, b; ld a, b; .endmacro
36|.macro stp, a, b; std a, b; .endmacro
37|.define decode_OPP, decode_OP8
38|.if FFI
39|// Missing: Calling conventions, 64 bit regs, TOC.
40|.error lib_ffi not yet implemented for PPC64
41|.endif
42|.else
43|.macro lpx, a, b, c; lwzx a, b, c; .endmacro
44|.macro lp, a, b; lwz a, b; .endmacro
45|.macro stp, a, b; stw a, b; .endmacro
46|.define decode_OPP, decode_OP4
47|.endif
48|
49|// Convenience macros for TOC handling.
50|.if TOC
51|// Linker needs a TOC patch area for every external call relocation.
52|.macro blex, target; bl extern target@plt; nop; .endmacro
53|.macro .toc, a, b; a, b; .endmacro
54|.if P64
55|.define TOC_OFS,	 8
56|.define ENV_OFS,	16
57|.else
58|.define TOC_OFS,	4
59|.define ENV_OFS,	8
60|.endif
61|.else  // No TOC.
62|.macro blex, target; bl extern target@plt; .endmacro
63|.macro .toc, a, b; .endmacro
64|.endif
65|.macro .tocenv, a, b; .if TOCENV; a, b; .endif; .endmacro
66|
67|.macro .gpr64, a, b; .if GPR64; a, b; .endif; .endmacro
68|
69|.macro andix., y, a, i
70|.if PPE
71|  rlwinm y, a, 0, 31-lj_fls(i), 31-lj_ffs(i)
72|  cmpwi y, 0
73|.else
74|  andi. y, a, i
75|.endif
76|.endmacro
77|
78|.macro clrso, reg
79|.if PPE
80|  li reg, 0
81|  mtxer reg
82|.else
83|  mcrxr cr0
84|.endif
85|.endmacro
86|
87|.macro checkov, reg, noov
88|.if PPE
89|  mfxer reg
90|  add reg, reg, reg
91|  cmpwi reg, 0
92|   li reg, 0
93|   mtxer reg
94|  bgey noov
95|.else
96|  mcrxr cr0
97|  bley noov
98|.endif
99|.endmacro
100|
101|//-----------------------------------------------------------------------
102|
103|// Fixed register assignments for the interpreter.
104|// Don't use: r1 = sp, r2 and r13 = reserved (TOC, TLS or SDATA)
105|
106|// The following must be C callee-save (but BASE is often refetched).
107|.define BASE,		r14	// Base of current Lua stack frame.
108|.define KBASE,		r15	// Constants of current Lua function.
109|.define PC,		r16	// Next PC.
110|.define DISPATCH,	r17	// Opcode dispatch table.
111|.define LREG,		r18	// Register holding lua_State (also in SAVE_L).
112|.define MULTRES,	r19	// Size of multi-result: (nresults+1)*8.
113|.define JGL,		r31	// On-trace: global_State + 32768.
114|
115|// Constants for type-comparisons, stores and conversions. C callee-save.
116|.define TISNUM,	r22
117|.define TISNIL,	r23
118|.define ZERO,		r24
119|.define TOBIT,		f30	// 2^52 + 2^51.
120|.define TONUM,		f31	// 2^52 + 2^51 + 2^31.
121|
122|// The following temporaries are not saved across C calls, except for RA.
123|.define RA,		r20	// Callee-save.
124|.define RB,		r10
125|.define RC,		r11
126|.define RD,		r12
127|.define INS,		r7	// Overlaps CARG5.
128|
129|.define TMP0,		r0
130|.define TMP1,		r8
131|.define TMP2,		r9
132|.define TMP3,		r6	// Overlaps CARG4.
133|
134|// Saved temporaries.
135|.define SAVE0,		r21
136|
137|// Calling conventions.
138|.define CARG1,		r3
139|.define CARG2,		r4
140|.define CARG3,		r5
141|.define CARG4,		r6	// Overlaps TMP3.
142|.define CARG5,		r7	// Overlaps INS.
143|
144|.define FARG1,		f1
145|.define FARG2,		f2
146|
147|.define CRET1,		r3
148|.define CRET2,		r4
149|
150|.define TOCREG,	r2	// TOC register (only used by C code).
151|.define ENVREG,	r11	// Environment pointer (nested C functions).
152|
153|// Stack layout while in interpreter. Must match with lj_frame.h.
154|.if GPR64
155|.if FRAME32
156|
157|//			456(sp) // \ 32/64 bit C frame info
158|.define TONUM_LO,	452(sp) // |
159|.define TONUM_HI,	448(sp) // |
160|.define TMPD_LO,	444(sp) // |
161|.define TMPD_HI,	440(sp) // |
162|.define SAVE_CR,	432(sp) // | 64 bit CR save.
163|.define SAVE_ERRF,	424(sp) //  > Parameter save area.
164|.define SAVE_NRES,	420(sp) // |
165|.define SAVE_L,	416(sp) // |
166|.define SAVE_PC,	412(sp) // |
167|.define SAVE_MULTRES,	408(sp) // |
168|.define SAVE_CFRAME,	400(sp) // / 64 bit C frame chain.
169|//			392(sp) // Reserved.
170|.define CFRAME_SPACE,	384     // Delta for sp.
171|// Back chain for sp:	384(sp) <-- sp entering interpreter
172|.define SAVE_LR,	376(sp) // 32 bit LR stored in hi-part.
173|.define SAVE_GPR_,	232     // .. 232+18*8: 64 bit GPR saves.
174|.define SAVE_FPR_,	88      // .. 88+18*8: 64 bit FPR saves.
175|//			80(sp) // Needed for 16 byte stack frame alignment.
176|//			16(sp)  // Callee parameter save area (ABI mandated).
177|//			8(sp)   // Reserved
178|// Back chain for sp:	0(sp)   <-- sp while in interpreter
179|// 32 bit sp stored in hi-part of 0(sp).
180|
181|.define TMPD_BLO,	447(sp)
182|.define TMPD,		TMPD_HI
183|.define TONUM_D,	TONUM_HI
184|
185|.else
186|
187|//			508(sp) // \ 32 bit C frame info.
188|.define SAVE_ERRF,	472(sp) // |
189|.define SAVE_NRES,	468(sp) // |
190|.define SAVE_L,	464(sp) //  > Parameter save area.
191|.define SAVE_PC,	460(sp) // |
192|.define SAVE_MULTRES,	456(sp) // |
193|.define SAVE_CFRAME,	448(sp) // / 64 bit C frame chain.
194|.define SAVE_LR,	416(sp)
195|.define CFRAME_SPACE,	400     // Delta for sp.
196|// Back chain for sp:	400(sp) <-- sp entering interpreter
197|.define SAVE_FPR_,	256     // .. 256+18*8: 64 bit FPR saves.
198|.define SAVE_GPR_,	112     // .. 112+18*8: 64 bit GPR saves.
199|//			48(sp)  // Callee parameter save area (ABI mandated).
200|.define SAVE_TOC,	40(sp)  // TOC save area.
201|.define TMPD_LO,	36(sp)  // \ Link editor temp (ABI mandated).
202|.define TMPD_HI,	32(sp)  // /
203|.define TONUM_LO,	28(sp)  // \ Compiler temp (ABI mandated).
204|.define TONUM_HI,	24(sp)  // /
205|// Next frame lr:	16(sp)
206|.define SAVE_CR,	8(sp)  // 64 bit CR save.
207|// Back chain for sp:	0(sp)	<-- sp while in interpreter
208|
209|.define TMPD_BLO,	39(sp)
210|.define TMPD,		TMPD_HI
211|.define TONUM_D,	TONUM_HI
212|
213|.endif
214|.else
215|
216|.define SAVE_LR,	276(sp)
217|.define CFRAME_SPACE,	272     // Delta for sp.
218|// Back chain for sp:	272(sp) <-- sp entering interpreter
219|.define SAVE_FPR_,	128     // .. 128+18*8: 64 bit FPR saves.
220|.define SAVE_GPR_,	56      // .. 56+18*4: 32 bit GPR saves.
221|.define SAVE_CR,	52(sp)  // 32 bit CR save.
222|.define SAVE_ERRF,	48(sp)  // 32 bit C frame info.
223|.define SAVE_NRES,	44(sp)
224|.define SAVE_CFRAME,	40(sp)
225|.define SAVE_L,	36(sp)
226|.define SAVE_PC,	32(sp)
227|.define SAVE_MULTRES,	28(sp)
228|.define UNUSED1,	24(sp)
229|.define TMPD_LO,	20(sp)
230|.define TMPD_HI,	16(sp)
231|.define TONUM_LO,	12(sp)
232|.define TONUM_HI,	8(sp)
233|// Next frame lr:	4(sp)
234|// Back chain for sp:	0(sp)	<-- sp while in interpreter
235|
236|.define TMPD_BLO,	23(sp)
237|.define TMPD,		TMPD_HI
238|.define TONUM_D,	TONUM_HI
239|
240|.endif
241|
242|.macro save_, reg
243|.if GPR64
244|  std r..reg, SAVE_GPR_+(reg-14)*8(sp)
245|.else
246|  stw r..reg, SAVE_GPR_+(reg-14)*4(sp)
247|.endif
248|  stfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
249|.endmacro
250|.macro rest_, reg
251|.if GPR64
252|  ld r..reg, SAVE_GPR_+(reg-14)*8(sp)
253|.else
254|  lwz r..reg, SAVE_GPR_+(reg-14)*4(sp)
255|.endif
256|  lfd f..reg, SAVE_FPR_+(reg-14)*8(sp)
257|.endmacro
258|
259|.macro saveregs
260|.if GPR64 and not FRAME32
261|  stdu sp, -CFRAME_SPACE(sp)
262|.else
263|  stwu sp, -CFRAME_SPACE(sp)
264|.endif
265|  save_ 14; save_ 15; save_ 16
266|  mflr r0
267|  save_ 17; save_ 18; save_ 19; save_ 20; save_ 21; save_ 22
268|.if GPR64 and not FRAME32
269|  std r0, SAVE_LR
270|.else
271|  stw r0, SAVE_LR
272|.endif
273|  save_ 23; save_ 24; save_ 25
274|  mfcr r0
275|  save_ 26; save_ 27; save_ 28; save_ 29; save_ 30; save_ 31
276|.if GPR64
277|  std r0, SAVE_CR
278|.else
279|  stw r0, SAVE_CR
280|.endif
281|  .toc std TOCREG, SAVE_TOC
282|.endmacro
283|
284|.macro restoreregs
285|.if GPR64 and not FRAME32
286|  ld r0, SAVE_LR
287|.else
288|  lwz r0, SAVE_LR
289|.endif
290|.if GPR64
291|  ld r12, SAVE_CR
292|.else
293|  lwz r12, SAVE_CR
294|.endif
295|  rest_ 14; rest_ 15; rest_ 16; rest_ 17; rest_ 18; rest_ 19
296|  mtlr r0;
297|.if PPE; mtocrf 0x20, r12; .else; mtcrf 0x38, r12; .endif
298|  rest_ 20; rest_ 21; rest_ 22; rest_ 23; rest_ 24; rest_ 25
299|.if PPE; mtocrf 0x10, r12; .endif
300|  rest_ 26; rest_ 27; rest_ 28; rest_ 29; rest_ 30; rest_ 31
301|.if PPE; mtocrf 0x08, r12; .endif
302|  addi sp, sp, CFRAME_SPACE
303|.endmacro
304|
305|// Type definitions. Some of these are only used for documentation.
306|.type L,		lua_State,	LREG
307|.type GL,		global_State
308|.type TVALUE,		TValue
309|.type GCOBJ,		GCobj
310|.type STR,		GCstr
311|.type TAB,		GCtab
312|.type LFUNC,		GCfuncL
313|.type CFUNC,		GCfuncC
314|.type PROTO,		GCproto
315|.type UPVAL,		GCupval
316|.type NODE,		Node
317|.type NARGS8,		int
318|.type TRACE,		GCtrace
319|.type SBUF,		SBuf
320|
321|//-----------------------------------------------------------------------
322|
323|// Trap for not-yet-implemented parts.
324|.macro NYI; tw 4, sp, sp; .endmacro
325|
326|// int/FP conversions.
327|.macro tonum_i, freg, reg
328|  xoris reg, reg, 0x8000
329|  stw reg, TONUM_LO
330|  lfd freg, TONUM_D
331|  fsub freg, freg, TONUM
332|.endmacro
333|
334|.macro tonum_u, freg, reg
335|  stw reg, TONUM_LO
336|  lfd freg, TONUM_D
337|  fsub freg, freg, TOBIT
338|.endmacro
339|
340|.macro toint, reg, freg, tmpfreg
341|  fctiwz tmpfreg, freg
342|  stfd tmpfreg, TMPD
343|  lwz reg, TMPD_LO
344|.endmacro
345|
346|.macro toint, reg, freg
347|  toint reg, freg, freg
348|.endmacro
349|
350|//-----------------------------------------------------------------------
351|
352|// Access to frame relative to BASE.
353|.define FRAME_PC,	-8
354|.define FRAME_FUNC,	-4
355|
356|// Instruction decode.
357|.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro
358|.macro decode_OP8, dst, ins; rlwinm dst, ins, 3, 21, 28; .endmacro
359|.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro
360|.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro
361|.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro
362|.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro
363|
364|.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro
365|.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro
366|
367|// Instruction fetch.
368|.macro ins_NEXT1
369|  lwz INS, 0(PC)
370|   addi PC, PC, 4
371|.endmacro
372|// Instruction decode+dispatch. Note: optimized for e300!
373|.macro ins_NEXT2
374|  decode_OPP TMP1, INS
375|  lpx TMP0, DISPATCH, TMP1
376|  mtctr TMP0
377|   decode_RB8 RB, INS
378|   decode_RD8 RD, INS
379|   decode_RA8 RA, INS
380|   decode_RC8 RC, INS
381|  bctr
382|.endmacro
383|.macro ins_NEXT
384|  ins_NEXT1
385|  ins_NEXT2
386|.endmacro
387|
388|// Instruction footer.
389|.if 1
390|  // Replicated dispatch. Less unpredictable branches, but higher I-Cache use.
391|  .define ins_next, ins_NEXT
392|  .define ins_next_, ins_NEXT
393|  .define ins_next1, ins_NEXT1
394|  .define ins_next2, ins_NEXT2
395|.else
396|  // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch.
397|  // Affects only certain kinds of benchmarks (and only with -j off).
398|  .macro ins_next
399|    b ->ins_next
400|  .endmacro
401|  .macro ins_next1
402|  .endmacro
403|  .macro ins_next2
404|    b ->ins_next
405|  .endmacro
406|  .macro ins_next_
407|  ->ins_next:
408|    ins_NEXT
409|  .endmacro
410|.endif
411|
412|// Call decode and dispatch.
413|.macro ins_callt
414|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
415|  lwz PC, LFUNC:RB->pc
416|  lwz INS, 0(PC)
417|   addi PC, PC, 4
418|  decode_OPP TMP1, INS
419|   decode_RA8 RA, INS
420|  lpx TMP0, DISPATCH, TMP1
421|   add RA, RA, BASE
422|  mtctr TMP0
423|  bctr
424|.endmacro
425|
426|.macro ins_call
427|  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC
428|  stw PC, FRAME_PC(BASE)
429|  ins_callt
430|.endmacro
431|
432|//-----------------------------------------------------------------------
433|
434|// Macros to test operand types.
435|.macro checknum, reg; cmplw reg, TISNUM; .endmacro
436|.macro checknum, cr, reg; cmplw cr, reg, TISNUM; .endmacro
437|.macro checkstr, reg; cmpwi reg, LJ_TSTR; .endmacro
438|.macro checktab, reg; cmpwi reg, LJ_TTAB; .endmacro
439|.macro checkfunc, reg; cmpwi reg, LJ_TFUNC; .endmacro
440|.macro checknil, reg; cmpwi reg, LJ_TNIL; .endmacro
441|
442|.macro branch_RD
443|  srwi TMP0, RD, 1
444|  addis PC, PC, -(BCBIAS_J*4 >> 16)
445|  add PC, PC, TMP0
446|.endmacro
447|
448|// Assumes DISPATCH is relative to GL.
449#define DISPATCH_GL(field)	(GG_DISP2G + (int)offsetof(global_State, field))
450#define DISPATCH_J(field)	(GG_DISP2J + (int)offsetof(jit_State, field))
451|
452#define PC2PROTO(field)  ((int)offsetof(GCproto, field)-(int)sizeof(GCproto))
453|
454|.macro hotcheck, delta, target
455|  rlwinm TMP1, PC, 31, 25, 30
456|  addi TMP1, TMP1, GG_DISP2HOT
457|  lhzx TMP2, DISPATCH, TMP1
458|  addic. TMP2, TMP2, -delta
459|  sthx TMP2, DISPATCH, TMP1
460|  blt target
461|.endmacro
462|
463|.macro hotloop
464|  hotcheck HOTCOUNT_LOOP, ->vm_hotloop
465|.endmacro
466|
467|.macro hotcall
468|  hotcheck HOTCOUNT_CALL, ->vm_hotcall
469|.endmacro
470|
471|// Set current VM state. Uses TMP0.
472|.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro
473|.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro
474|
475|// Move table write barrier back. Overwrites mark and tmp.
476|.macro barrierback, tab, mark, tmp
477|  lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH)
478|  // Assumes LJ_GC_BLACK is 0x04.
479|   rlwinm mark, mark, 0, 30, 28		// black2gray(tab)
480|  stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH)
481|   stb mark, tab->marked
482|  stw tmp, tab->gclist
483|.endmacro
484|
485|//-----------------------------------------------------------------------
486
487/* Generate subroutines used by opcodes and other parts of the VM. */
488/* The .code_sub section should be last to help static branch prediction. */
489static void build_subroutines(BuildCtx *ctx)
490{
491  |.code_sub
492  |
493  |//-----------------------------------------------------------------------
494  |//-- Return handling ----------------------------------------------------
495  |//-----------------------------------------------------------------------
496  |
497  |->vm_returnp:
498  |  // See vm_return. Also: TMP2 = previous base.
499  |  andix. TMP0, PC, FRAME_P
500  |   li TMP1, LJ_TTRUE
501  |  beq ->cont_dispatch
502  |
503  |  // Return from pcall or xpcall fast func.
504  |  lwz PC, FRAME_PC(TMP2)		// Fetch PC of previous frame.
505  |  mr BASE, TMP2			// Restore caller base.
506  |  // Prepending may overwrite the pcall frame, so do it at the end.
507  |   stwu TMP1, FRAME_PC(RA)		// Prepend true to results.
508  |
509  |->vm_returnc:
510  |  addi RD, RD, 8			// RD = (nresults+1)*8.
511  |   andix. TMP0, PC, FRAME_TYPE
512  |  cmpwi cr1, RD, 0
513  |  li CRET1, LUA_YIELD
514  |  beq cr1, ->vm_unwind_c_eh
515  |  mr MULTRES, RD
516  |   beq ->BC_RET_Z			// Handle regular return to Lua.
517  |
518  |->vm_return:
519  |  // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return
520  |  // TMP0 = PC & FRAME_TYPE
521  |  cmpwi TMP0, FRAME_C
522  |   rlwinm TMP2, PC, 0, 0, 28
523  |    li_vmstate C
524  |   sub TMP2, BASE, TMP2		// TMP2 = previous base.
525  |  bney ->vm_returnp
526  |
527  |  addic. TMP1, RD, -8
528  |   stp TMP2, L->base
529  |   lwz TMP2, SAVE_NRES
530  |    subi BASE, BASE, 8
531  |    st_vmstate
532  |   slwi TMP2, TMP2, 3
533  |  beq >2
534  |1:
535  |  addic. TMP1, TMP1, -8
536  |   lfd f0, 0(RA)
537  |    addi RA, RA, 8
538  |   stfd f0, 0(BASE)
539  |    addi BASE, BASE, 8
540  |  bney <1
541  |
542  |2:
543  |  cmpw TMP2, RD			// More/less results wanted?
544  |  bne >6
545  |3:
546  |  stp BASE, L->top			// Store new top.
547  |
548  |->vm_leave_cp:
549  |  lp TMP0, SAVE_CFRAME		// Restore previous C frame.
550  |   li CRET1, 0			// Ok return status for vm_pcall.
551  |  stp TMP0, L->cframe
552  |
553  |->vm_leave_unw:
554  |  restoreregs
555  |  blr
556  |
557  |6:
558  |  ble >7				// Less results wanted?
559  |  // More results wanted. Check stack size and fill up results with nil.
560  |  lwz TMP1, L->maxstack
561  |  cmplw BASE, TMP1
562  |  bge >8
563  |  stw TISNIL, 0(BASE)
564  |  addi RD, RD, 8
565  |  addi BASE, BASE, 8
566  |  b <2
567  |
568  |7:  // Less results wanted.
569  |  subfic TMP3, TMP2, 0		// LUA_MULTRET+1 case?
570  |   sub TMP0, RD, TMP2
571  |  subfe TMP1, TMP1, TMP1		// TMP1 = TMP2 == 0 ? 0 : -1
572  |   and TMP0, TMP0, TMP1
573  |  sub BASE, BASE, TMP0		// Either keep top or shrink it.
574  |  b <3
575  |
576  |8:  // Corner case: need to grow stack for filling up results.
577  |  // This can happen if:
578  |  // - A C function grows the stack (a lot).
579  |  // - The GC shrinks the stack in between.
580  |  // - A return back from a lua_call() with (high) nresults adjustment.
581  |  stp BASE, L->top			// Save current top held in BASE (yes).
582  |   mr SAVE0, RD
583  |  srwi CARG2, TMP2, 3
584  |  mr CARG1, L
585  |  bl extern lj_state_growstack	// (lua_State *L, int n)
586  |    lwz TMP2, SAVE_NRES
587  |   mr RD, SAVE0
588  |    slwi TMP2, TMP2, 3
589  |  lp BASE, L->top			// Need the (realloced) L->top in BASE.
590  |  b <2
591  |
592  |->vm_unwind_c:			// Unwind C stack, return from vm_pcall.
593  |  // (void *cframe, int errcode)
594  |  mr sp, CARG1
595  |  mr CRET1, CARG2
596  |->vm_unwind_c_eh:			// Landing pad for external unwinder.
597  |  lwz L, SAVE_L
598  |  .toc ld TOCREG, SAVE_TOC
599  |   li TMP0, ~LJ_VMST_C
600  |  lwz GL:TMP1, L->glref
601  |   stw TMP0, GL:TMP1->vmstate
602  |  b ->vm_leave_unw
603  |
604  |->vm_unwind_ff:			// Unwind C stack, return from ff pcall.
605  |  // (void *cframe)
606  |.if GPR64
607  |  rldicr sp, CARG1, 0, 61
608  |.else
609  |  rlwinm sp, CARG1, 0, 0, 29
610  |.endif
611  |->vm_unwind_ff_eh:			// Landing pad for external unwinder.
612  |  lwz L, SAVE_L
613  |  .toc ld TOCREG, SAVE_TOC
614  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
615  |  lp BASE, L->base
616  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
617  |   lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
618  |     li ZERO, 0
619  |     stw TMP3, TMPD
620  |  li TMP1, LJ_TFALSE
621  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
622  |     li TISNIL, LJ_TNIL
623  |    li_vmstate INTERP
624  |     lfs TOBIT, TMPD
625  |  lwz PC, FRAME_PC(BASE)		// Fetch PC of previous frame.
626  |  la RA, -8(BASE)			// Results start at BASE-8.
627  |     stw TMP3, TMPD
628  |   addi DISPATCH, DISPATCH, GG_G2DISP
629  |  stw TMP1, 0(RA)			// Prepend false to error message.
630  |  li RD, 16				// 2 results: false + error message.
631  |    st_vmstate
632  |     lfs TONUM, TMPD
633  |  b ->vm_returnc
634  |
635  |//-----------------------------------------------------------------------
636  |//-- Grow stack for calls -----------------------------------------------
637  |//-----------------------------------------------------------------------
638  |
639  |->vm_growstack_c:			// Grow stack for C function.
640  |  li CARG2, LUA_MINSTACK
641  |  b >2
642  |
643  |->vm_growstack_l:			// Grow stack for Lua function.
644  |  // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC
645  |  add RC, BASE, RC
646  |   sub RA, RA, BASE
647  |  stp BASE, L->base
648  |   addi PC, PC, 4			// Must point after first instruction.
649  |  stp RC, L->top
650  |   srwi CARG2, RA, 3
651  |2:
652  |  // L->base = new base, L->top = top
653  |   stw PC, SAVE_PC
654  |  mr CARG1, L
655  |  bl extern lj_state_growstack	// (lua_State *L, int n)
656  |  lp BASE, L->base
657  |  lp RC, L->top
658  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
659  |  sub RC, RC, BASE
660  |  // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC
661  |  ins_callt				// Just retry the call.
662  |
663  |//-----------------------------------------------------------------------
664  |//-- Entry points into the assembler VM ---------------------------------
665  |//-----------------------------------------------------------------------
666  |
667  |->vm_resume:				// Setup C frame and resume thread.
668  |  // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0)
669  |  saveregs
670  |  mr L, CARG1
671  |    lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
672  |  mr BASE, CARG2
673  |    lbz TMP1, L->status
674  |   stw L, SAVE_L
675  |  li PC, FRAME_CP
676  |  addi TMP0, sp, CFRAME_RESUME
677  |    addi DISPATCH, DISPATCH, GG_G2DISP
678  |   stw CARG3, SAVE_NRES
679  |    cmplwi TMP1, 0
680  |   stw CARG3, SAVE_ERRF
681  |   stp CARG3, SAVE_CFRAME
682  |   stw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
683  |  stp TMP0, L->cframe
684  |    beq >3
685  |
686  |  // Resume after yield (like a return).
687  |  stw L, DISPATCH_GL(cur_L)(DISPATCH)
688  |  mr RA, BASE
689  |   lp BASE, L->base
690  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
691  |   lp TMP1, L->top
692  |  lwz PC, FRAME_PC(BASE)
693  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
694  |    stb CARG3, L->status
695  |     stw TMP3, TMPD
696  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
697  |     lfs TOBIT, TMPD
698  |   sub RD, TMP1, BASE
699  |     stw TMP3, TMPD
700  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
701  |   addi RD, RD, 8
702  |     stw TMP0, TONUM_HI
703  |    li_vmstate INTERP
704  |     li ZERO, 0
705  |    st_vmstate
706  |  andix. TMP0, PC, FRAME_TYPE
707  |   mr MULTRES, RD
708  |     lfs TONUM, TMPD
709  |     li TISNIL, LJ_TNIL
710  |  beq ->BC_RET_Z
711  |  b ->vm_return
712  |
713  |->vm_pcall:				// Setup protected C frame and enter VM.
714  |  // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef)
715  |  saveregs
716  |  li PC, FRAME_CP
717  |  stw CARG4, SAVE_ERRF
718  |  b >1
719  |
720  |->vm_call:				// Setup C frame and enter VM.
721  |  // (lua_State *L, TValue *base, int nres1)
722  |  saveregs
723  |  li PC, FRAME_C
724  |
725  |1:  // Entry point for vm_pcall above (PC = ftype).
726  |  lp TMP1, L:CARG1->cframe
727  |    mr L, CARG1
728  |   stw CARG3, SAVE_NRES
729  |    lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
730  |   stw CARG1, SAVE_L
731  |     mr BASE, CARG2
732  |    addi DISPATCH, DISPATCH, GG_G2DISP
733  |   stw CARG1, SAVE_PC		// Any value outside of bytecode is ok.
734  |  stp TMP1, SAVE_CFRAME
735  |  stp sp, L->cframe			// Add our C frame to cframe chain.
736  |
737  |3:  // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype).
738  |  stw L, DISPATCH_GL(cur_L)(DISPATCH)
739  |  lp TMP2, L->base			// TMP2 = old base (used in vmeta_call).
740  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
741  |   lp TMP1, L->top
742  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
743  |  add PC, PC, BASE
744  |     stw TMP3, TMPD
745  |     li ZERO, 0
746  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
747  |     lfs TOBIT, TMPD
748  |  sub PC, PC, TMP2			// PC = frame delta + frame type
749  |     stw TMP3, TMPD
750  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
751  |   sub NARGS8:RC, TMP1, BASE
752  |     stw TMP0, TONUM_HI
753  |    li_vmstate INTERP
754  |     lfs TONUM, TMPD
755  |     li TISNIL, LJ_TNIL
756  |    st_vmstate
757  |
758  |->vm_call_dispatch:
759  |  // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC
760  |  lwz TMP0, FRAME_PC(BASE)
761  |   lwz LFUNC:RB, FRAME_FUNC(BASE)
762  |  checkfunc TMP0; bne ->vmeta_call
763  |
764  |->vm_call_dispatch_f:
765  |  ins_call
766  |  // BASE = new base, RB = func, RC = nargs*8, PC = caller PC
767  |
768  |->vm_cpcall:				// Setup protected C frame, call C.
769  |  // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp)
770  |  saveregs
771  |  mr L, CARG1
772  |   lwz TMP0, L:CARG1->stack
773  |  stw CARG1, SAVE_L
774  |   lp TMP1, L->top
775  |     lwz DISPATCH, L->glref		// Setup pointer to dispatch table.
776  |  stw CARG1, SAVE_PC			// Any value outside of bytecode is ok.
777  |   sub TMP0, TMP0, TMP1		// Compute -savestack(L, L->top).
778  |    lp TMP1, L->cframe
779  |     addi DISPATCH, DISPATCH, GG_G2DISP
780  |  .toc lp CARG4, 0(CARG4)
781  |  li TMP2, 0
782  |   stw TMP0, SAVE_NRES		// Neg. delta means cframe w/o frame.
783  |  stw TMP2, SAVE_ERRF		// No error function.
784  |    stp TMP1, SAVE_CFRAME
785  |    stp sp, L->cframe		// Add our C frame to cframe chain.
786  |     stw L, DISPATCH_GL(cur_L)(DISPATCH)
787  |  mtctr CARG4
788  |  bctrl			// (lua_State *L, lua_CFunction func, void *ud)
789  |.if PPE
790  |  mr BASE, CRET1
791  |  cmpwi CRET1, 0
792  |.else
793  |  mr. BASE, CRET1
794  |.endif
795  |   li PC, FRAME_CP
796  |  bne <3				// Else continue with the call.
797  |  b ->vm_leave_cp			// No base? Just remove C frame.
798  |
799  |//-----------------------------------------------------------------------
800  |//-- Metamethod handling ------------------------------------------------
801  |//-----------------------------------------------------------------------
802  |
803  |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the
804  |// stack, so BASE doesn't need to be reloaded across these calls.
805  |
806  |//-- Continuation dispatch ----------------------------------------------
807  |
808  |->cont_dispatch:
809  |  // BASE = meta base, RA = resultptr, RD = (nresults+1)*8
810  |  lwz TMP0, -12(BASE)		// Continuation.
811  |   mr RB, BASE
812  |   mr BASE, TMP2			// Restore caller BASE.
813  |    lwz LFUNC:TMP1, FRAME_FUNC(TMP2)
814  |.if FFI
815  |  cmplwi TMP0, 1
816  |.endif
817  |     lwz PC, -16(RB)			// Restore PC from [cont|PC].
818  |   subi TMP2, RD, 8
819  |    lwz TMP1, LFUNC:TMP1->pc
820  |   stwx TISNIL, RA, TMP2		// Ensure one valid arg.
821  |.if FFI
822  |  ble >1
823  |.endif
824  |    lwz KBASE, PC2PROTO(k)(TMP1)
825  |  // BASE = base, RA = resultptr, RB = meta base
826  |  mtctr TMP0
827  |  bctr				// Jump to continuation.
828  |
829  |.if FFI
830  |1:
831  |  beq ->cont_ffi_callback		// cont = 1: return from FFI callback.
832  |  // cont = 0: tailcall from C function.
833  |  subi TMP1, RB, 16
834  |  sub RC, TMP1, BASE
835  |  b ->vm_call_tail
836  |.endif
837  |
838  |->cont_cat:				// RA = resultptr, RB = meta base
839  |  lwz INS, -4(PC)
840  |   subi CARG2, RB, 16
841  |  decode_RB8 SAVE0, INS
842  |   lfd f0, 0(RA)
843  |  add TMP1, BASE, SAVE0
844  |   stp BASE, L->base
845  |  cmplw TMP1, CARG2
846  |   sub CARG3, CARG2, TMP1
847  |  decode_RA8 RA, INS
848  |   stfd f0, 0(CARG2)
849  |  bney ->BC_CAT_Z
850  |   stfdx f0, BASE, RA
851  |  b ->cont_nop
852  |
853  |//-- Table indexing metamethods -----------------------------------------
854  |
855  |->vmeta_tgets1:
856  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
857  |  li TMP0, LJ_TSTR
858  |   decode_RB8 RB, INS
859  |  stw STR:RC, 4(CARG3)
860  |   add CARG2, BASE, RB
861  |  stw TMP0, 0(CARG3)
862  |  b >1
863  |
864  |->vmeta_tgets:
865  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
866  |  li TMP0, LJ_TTAB
867  |  stw TAB:RB, 4(CARG2)
868  |   la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
869  |  stw TMP0, 0(CARG2)
870  |   li TMP1, LJ_TSTR
871  |   stw STR:RC, 4(CARG3)
872  |   stw TMP1, 0(CARG3)
873  |  b >1
874  |
875  |->vmeta_tgetb:			// TMP0 = index
876  |.if not DUALNUM
877  |  tonum_u f0, TMP0
878  |.endif
879  |   decode_RB8 RB, INS
880  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
881  |   add CARG2, BASE, RB
882  |.if DUALNUM
883  |  stw TISNUM, 0(CARG3)
884  |  stw TMP0, 4(CARG3)
885  |.else
886  |  stfd f0, 0(CARG3)
887  |.endif
888  |  b >1
889  |
890  |->vmeta_tgetv:
891  |  decode_RB8 RB, INS
892  |   decode_RC8 RC, INS
893  |  add CARG2, BASE, RB
894  |   add CARG3, BASE, RC
895  |1:
896  |  stp BASE, L->base
897  |  mr CARG1, L
898  |  stw PC, SAVE_PC
899  |  bl extern lj_meta_tget		// (lua_State *L, TValue *o, TValue *k)
900  |  // Returns TValue * (finished) or NULL (metamethod).
901  |  cmplwi CRET1, 0
902  |  beq >3
903  |   lfd f0, 0(CRET1)
904  |  ins_next1
905  |   stfdx f0, BASE, RA
906  |  ins_next2
907  |
908  |3:  // Call __index metamethod.
909  |  // BASE = base, L->top = new base, stack = cont/func/t/k
910  |  subfic TMP1, BASE, FRAME_CONT
911  |  lp BASE, L->top
912  |  stw PC, -16(BASE)			// [cont|PC]
913  |   add PC, TMP1, BASE
914  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
915  |   li NARGS8:RC, 16			// 2 args for func(t, k).
916  |  b ->vm_call_dispatch_f
917  |
918  |->vmeta_tgetr:
919  |  bl extern lj_tab_getinth		// (GCtab *t, int32_t key)
920  |  // Returns cTValue * or NULL.
921  |  cmplwi CRET1, 0
922  |  beq >1
923  |  lfd f14, 0(CRET1)
924  |  b ->BC_TGETR_Z
925  |1:
926  |  stwx TISNIL, BASE, RA
927  |  b ->cont_nop
928  |
929  |//-----------------------------------------------------------------------
930  |
931  |->vmeta_tsets1:
932  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
933  |  li TMP0, LJ_TSTR
934  |   decode_RB8 RB, INS
935  |  stw STR:RC, 4(CARG3)
936  |   add CARG2, BASE, RB
937  |  stw TMP0, 0(CARG3)
938  |  b >1
939  |
940  |->vmeta_tsets:
941  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
942  |  li TMP0, LJ_TTAB
943  |  stw TAB:RB, 4(CARG2)
944  |   la CARG3, DISPATCH_GL(tmptv2)(DISPATCH)
945  |  stw TMP0, 0(CARG2)
946  |   li TMP1, LJ_TSTR
947  |   stw STR:RC, 4(CARG3)
948  |   stw TMP1, 0(CARG3)
949  |  b >1
950  |
951  |->vmeta_tsetb:			// TMP0 = index
952  |.if not DUALNUM
953  |  tonum_u f0, TMP0
954  |.endif
955  |   decode_RB8 RB, INS
956  |  la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
957  |   add CARG2, BASE, RB
958  |.if DUALNUM
959  |  stw TISNUM, 0(CARG3)
960  |  stw TMP0, 4(CARG3)
961  |.else
962  |  stfd f0, 0(CARG3)
963  |.endif
964  |  b >1
965  |
966  |->vmeta_tsetv:
967  |  decode_RB8 RB, INS
968  |   decode_RC8 RC, INS
969  |  add CARG2, BASE, RB
970  |   add CARG3, BASE, RC
971  |1:
972  |  stp BASE, L->base
973  |  mr CARG1, L
974  |  stw PC, SAVE_PC
975  |  bl extern lj_meta_tset		// (lua_State *L, TValue *o, TValue *k)
976  |  // Returns TValue * (finished) or NULL (metamethod).
977  |  cmplwi CRET1, 0
978  |   lfdx f0, BASE, RA
979  |  beq >3
980  |  // NOBARRIER: lj_meta_tset ensures the table is not black.
981  |  ins_next1
982  |   stfd f0, 0(CRET1)
983  |  ins_next2
984  |
985  |3:  // Call __newindex metamethod.
986  |  // BASE = base, L->top = new base, stack = cont/func/t/k/(v)
987  |  subfic TMP1, BASE, FRAME_CONT
988  |  lp BASE, L->top
989  |  stw PC, -16(BASE)			// [cont|PC]
990  |   add PC, TMP1, BASE
991  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
992  |   li NARGS8:RC, 24			// 3 args for func(t, k, v)
993  |  stfd f0, 16(BASE)			// Copy value to third argument.
994  |  b ->vm_call_dispatch_f
995  |
996  |->vmeta_tsetr:
997  |  stp BASE, L->base
998  |  stw PC, SAVE_PC
999  |  bl extern lj_tab_setinth  // (lua_State *L, GCtab *t, int32_t key)
1000  |  // Returns TValue *.
1001  |  stfd f14, 0(CRET1)
1002  |  b ->cont_nop
1003  |
1004  |//-- Comparison metamethods ---------------------------------------------
1005  |
1006  |->vmeta_comp:
1007  |  mr CARG1, L
1008  |   subi PC, PC, 4
1009  |.if DUALNUM
1010  |  mr CARG2, RA
1011  |.else
1012  |  add CARG2, BASE, RA
1013  |.endif
1014  |   stw PC, SAVE_PC
1015  |.if DUALNUM
1016  |  mr CARG3, RD
1017  |.else
1018  |  add CARG3, BASE, RD
1019  |.endif
1020  |   stp BASE, L->base
1021  |  decode_OP1 CARG4, INS
1022  |  bl extern lj_meta_comp  // (lua_State *L, TValue *o1, *o2, int op)
1023  |  // Returns 0/1 or TValue * (metamethod).
1024  |3:
1025  |  cmplwi CRET1, 1
1026  |  bgt ->vmeta_binop
1027  |  subfic CRET1, CRET1, 0
1028  |4:
1029  |  lwz INS, 0(PC)
1030  |   addi PC, PC, 4
1031  |  decode_RD4 TMP2, INS
1032  |  addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
1033  |  and TMP2, TMP2, CRET1
1034  |  add PC, PC, TMP2
1035  |->cont_nop:
1036  |  ins_next
1037  |
1038  |->cont_ra:				// RA = resultptr
1039  |  lwz INS, -4(PC)
1040  |   lfd f0, 0(RA)
1041  |  decode_RA8 TMP1, INS
1042  |   stfdx f0, BASE, TMP1
1043  |  b ->cont_nop
1044  |
1045  |->cont_condt:			// RA = resultptr
1046  |  lwz TMP0, 0(RA)
1047  |  .gpr64 extsw TMP0, TMP0
1048  |  subfic TMP0, TMP0, LJ_TTRUE	// Branch if result is true.
1049  |  subfe CRET1, CRET1, CRET1
1050  |  not CRET1, CRET1
1051  |  b <4
1052  |
1053  |->cont_condf:			// RA = resultptr
1054  |  lwz TMP0, 0(RA)
1055  |  .gpr64 extsw TMP0, TMP0
1056  |  subfic TMP0, TMP0, LJ_TTRUE	// Branch if result is false.
1057  |  subfe CRET1, CRET1, CRET1
1058  |  b <4
1059  |
1060  |->vmeta_equal:
1061  |  // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV.
1062  |  subi PC, PC, 4
1063  |   stp BASE, L->base
1064  |  mr CARG1, L
1065  |   stw PC, SAVE_PC
1066  |  bl extern lj_meta_equal  // (lua_State *L, GCobj *o1, *o2, int ne)
1067  |  // Returns 0/1 or TValue * (metamethod).
1068  |  b <3
1069  |
1070  |->vmeta_equal_cd:
1071  |.if FFI
1072  |  mr CARG2, INS
1073  |  subi PC, PC, 4
1074  |   stp BASE, L->base
1075  |  mr CARG1, L
1076  |   stw PC, SAVE_PC
1077  |  bl extern lj_meta_equal_cd		// (lua_State *L, BCIns op)
1078  |  // Returns 0/1 or TValue * (metamethod).
1079  |  b <3
1080  |.endif
1081  |
1082  |->vmeta_istype:
1083  |  subi PC, PC, 4
1084  |   stp BASE, L->base
1085  |   srwi CARG2, RA, 3
1086  |   mr CARG1, L
1087  |   srwi CARG3, RD, 3
1088  |  stw PC, SAVE_PC
1089  |  bl extern lj_meta_istype  // (lua_State *L, BCReg ra, BCReg tp)
1090  |  b ->cont_nop
1091  |
1092  |//-- Arithmetic metamethods ---------------------------------------------
1093  |
1094  |->vmeta_arith_nv:
1095  |  add CARG3, KBASE, RC
1096  |  add CARG4, BASE, RB
1097  |  b >1
1098  |->vmeta_arith_nv2:
1099  |.if DUALNUM
1100  |  mr CARG3, RC
1101  |  mr CARG4, RB
1102  |  b >1
1103  |.endif
1104  |
1105  |->vmeta_unm:
1106  |  mr CARG3, RD
1107  |  mr CARG4, RD
1108  |  b >1
1109  |
1110  |->vmeta_arith_vn:
1111  |  add CARG3, BASE, RB
1112  |  add CARG4, KBASE, RC
1113  |  b >1
1114  |
1115  |->vmeta_arith_vv:
1116  |  add CARG3, BASE, RB
1117  |  add CARG4, BASE, RC
1118  |.if DUALNUM
1119  |  b >1
1120  |.endif
1121  |->vmeta_arith_vn2:
1122  |->vmeta_arith_vv2:
1123  |.if DUALNUM
1124  |  mr CARG3, RB
1125  |  mr CARG4, RC
1126  |.endif
1127  |1:
1128  |  add CARG2, BASE, RA
1129  |   stp BASE, L->base
1130  |  mr CARG1, L
1131  |   stw PC, SAVE_PC
1132  |  decode_OP1 CARG5, INS		// Caveat: CARG5 overlaps INS.
1133  |  bl extern lj_meta_arith  // (lua_State *L, TValue *ra,*rb,*rc, BCReg op)
1134  |  // Returns NULL (finished) or TValue * (metamethod).
1135  |  cmplwi CRET1, 0
1136  |  beq ->cont_nop
1137  |
1138  |  // Call metamethod for binary op.
1139  |->vmeta_binop:
1140  |  // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2
1141  |  sub TMP1, CRET1, BASE
1142  |   stw PC, -16(CRET1)		// [cont|PC]
1143  |   mr TMP2, BASE
1144  |  addi PC, TMP1, FRAME_CONT
1145  |   mr BASE, CRET1
1146  |  li NARGS8:RC, 16			// 2 args for func(o1, o2).
1147  |  b ->vm_call_dispatch
1148  |
1149  |->vmeta_len:
1150#if LJ_52
1151  |  mr SAVE0, CARG1
1152#endif
1153  |  mr CARG2, RD
1154  |   stp BASE, L->base
1155  |  mr CARG1, L
1156  |   stw PC, SAVE_PC
1157  |  bl extern lj_meta_len		// (lua_State *L, TValue *o)
1158  |  // Returns NULL (retry) or TValue * (metamethod base).
1159#if LJ_52
1160  |  cmplwi CRET1, 0
1161  |  bne ->vmeta_binop			// Binop call for compatibility.
1162  |  mr CARG1, SAVE0
1163  |  b ->BC_LEN_Z
1164#else
1165  |  b ->vmeta_binop			// Binop call for compatibility.
1166#endif
1167  |
1168  |//-- Call metamethod ----------------------------------------------------
1169  |
1170  |->vmeta_call:			// Resolve and call __call metamethod.
1171  |  // TMP2 = old base, BASE = new base, RC = nargs*8
1172  |  mr CARG1, L
1173  |   stp TMP2, L->base			// This is the callers base!
1174  |  subi CARG2, BASE, 8
1175  |   stw PC, SAVE_PC
1176  |  add CARG3, BASE, RC
1177  |   mr SAVE0, NARGS8:RC
1178  |  bl extern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
1179  |  lwz LFUNC:RB, FRAME_FUNC(BASE)	// Guaranteed to be a function here.
1180  |   addi NARGS8:RC, SAVE0, 8		// Got one more argument now.
1181  |  ins_call
1182  |
1183  |->vmeta_callt:			// Resolve __call for BC_CALLT.
1184  |  // BASE = old base, RA = new base, RC = nargs*8
1185  |  mr CARG1, L
1186  |   stp BASE, L->base
1187  |  subi CARG2, RA, 8
1188  |   stw PC, SAVE_PC
1189  |  add CARG3, RA, RC
1190  |   mr SAVE0, NARGS8:RC
1191  |  bl extern lj_meta_call	// (lua_State *L, TValue *func, TValue *top)
1192  |  lwz TMP1, FRAME_PC(BASE)
1193  |   addi NARGS8:RC, SAVE0, 8		// Got one more argument now.
1194  |   lwz LFUNC:RB, FRAME_FUNC(RA)	// Guaranteed to be a function here.
1195  |  b ->BC_CALLT_Z
1196  |
1197  |//-- Argument coercion for 'for' statement ------------------------------
1198  |
1199  |->vmeta_for:
1200  |  mr CARG1, L
1201  |   stp BASE, L->base
1202  |  mr CARG2, RA
1203  |   stw PC, SAVE_PC
1204  |  mr SAVE0, INS
1205  |  bl extern lj_meta_for	// (lua_State *L, TValue *base)
1206  |.if JIT
1207  |   decode_OP1 TMP0, SAVE0
1208  |.endif
1209  |  decode_RA8 RA, SAVE0
1210  |.if JIT
1211  |   cmpwi TMP0, BC_JFORI
1212  |.endif
1213  |  decode_RD8 RD, SAVE0
1214  |.if JIT
1215  |   beqy =>BC_JFORI
1216  |.endif
1217  |  b =>BC_FORI
1218  |
1219  |//-----------------------------------------------------------------------
1220  |//-- Fast functions -----------------------------------------------------
1221  |//-----------------------------------------------------------------------
1222  |
1223  |.macro .ffunc, name
1224  |->ff_ .. name:
1225  |.endmacro
1226  |
1227  |.macro .ffunc_1, name
1228  |->ff_ .. name:
1229  |  cmplwi NARGS8:RC, 8
1230  |   lwz CARG3, 0(BASE)
1231  |    lwz CARG1, 4(BASE)
1232  |  blt ->fff_fallback
1233  |.endmacro
1234  |
1235  |.macro .ffunc_2, name
1236  |->ff_ .. name:
1237  |  cmplwi NARGS8:RC, 16
1238  |   lwz CARG3, 0(BASE)
1239  |    lwz CARG4, 8(BASE)
1240  |   lwz CARG1, 4(BASE)
1241  |    lwz CARG2, 12(BASE)
1242  |  blt ->fff_fallback
1243  |.endmacro
1244  |
1245  |.macro .ffunc_n, name
1246  |->ff_ .. name:
1247  |  cmplwi NARGS8:RC, 8
1248  |   lwz CARG3, 0(BASE)
1249  |    lfd FARG1, 0(BASE)
1250  |  blt ->fff_fallback
1251  |  checknum CARG3; bge ->fff_fallback
1252  |.endmacro
1253  |
1254  |.macro .ffunc_nn, name
1255  |->ff_ .. name:
1256  |  cmplwi NARGS8:RC, 16
1257  |   lwz CARG3, 0(BASE)
1258  |    lfd FARG1, 0(BASE)
1259  |   lwz CARG4, 8(BASE)
1260  |    lfd FARG2, 8(BASE)
1261  |  blt ->fff_fallback
1262  |  checknum CARG3; bge ->fff_fallback
1263  |  checknum CARG4; bge ->fff_fallback
1264  |.endmacro
1265  |
1266  |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1.
1267  |.macro ffgccheck
1268  |  lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
1269  |  lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
1270  |  cmplw TMP0, TMP1
1271  |  bgel ->fff_gcstep
1272  |.endmacro
1273  |
1274  |//-- Base library: checks -----------------------------------------------
1275  |
1276  |.ffunc_1 assert
1277  |  li TMP1, LJ_TFALSE
1278  |   la RA, -8(BASE)
1279  |  cmplw cr1, CARG3, TMP1
1280  |    lwz PC, FRAME_PC(BASE)
1281  |  bge cr1, ->fff_fallback
1282  |   stw CARG3, 0(RA)
1283  |  addi RD, NARGS8:RC, 8		// Compute (nresults+1)*8.
1284  |   stw CARG1, 4(RA)
1285  |  beq ->fff_res			// Done if exactly 1 argument.
1286  |  li TMP1, 8
1287  |  subi RC, RC, 8
1288  |1:
1289  |  cmplw TMP1, RC
1290  |   lfdx f0, BASE, TMP1
1291  |   stfdx f0, RA, TMP1
1292  |    addi TMP1, TMP1, 8
1293  |  bney <1
1294  |  b ->fff_res
1295  |
1296  |.ffunc type
1297  |  cmplwi NARGS8:RC, 8
1298  |   lwz CARG1, 0(BASE)
1299  |  blt ->fff_fallback
1300  |  .gpr64 extsw CARG1, CARG1
1301  |  subfc TMP0, TISNUM, CARG1
1302  |  subfe TMP2, CARG1, CARG1
1303  |  orc TMP1, TMP2, TMP0
1304  |  addi TMP1, TMP1, ~LJ_TISNUM+1
1305  |  slwi TMP1, TMP1, 3
1306  |   la TMP2, CFUNC:RB->upvalue
1307  |  lfdx FARG1, TMP2, TMP1
1308  |  b ->fff_resn
1309  |
1310  |//-- Base library: getters and setters ---------------------------------
1311  |
1312  |.ffunc_1 getmetatable
1313  |  checktab CARG3; bne >6
1314  |1:  // Field metatable must be at same offset for GCtab and GCudata!
1315  |  lwz TAB:CARG1, TAB:CARG1->metatable
1316  |2:
1317  |  li CARG3, LJ_TNIL
1318  |   cmplwi TAB:CARG1, 0
1319  |  lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH)
1320  |   beq ->fff_restv
1321  |  lwz TMP0, TAB:CARG1->hmask
1322  |   li CARG3, LJ_TTAB			// Use metatable as default result.
1323  |  lwz TMP1, STR:RC->hash
1324  |  lwz NODE:TMP2, TAB:CARG1->node
1325  |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
1326  |  slwi TMP0, TMP1, 5
1327  |  slwi TMP1, TMP1, 3
1328  |  sub TMP1, TMP0, TMP1
1329  |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
1330  |3:  // Rearranged logic, because we expect _not_ to find the key.
1331  |  lwz CARG4, NODE:TMP2->key
1332  |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
1333  |    lwz CARG2, NODE:TMP2->val
1334  |     lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
1335  |  checkstr CARG4; bne >4
1336  |   cmpw TMP0, STR:RC; beq >5
1337  |4:
1338  |  lwz NODE:TMP2, NODE:TMP2->next
1339  |  cmplwi NODE:TMP2, 0
1340  |  beq ->fff_restv			// Not found, keep default result.
1341  |  b <3
1342  |5:
1343  |  checknil CARG2
1344  |  beq ->fff_restv			// Ditto for nil value.
1345  |  mr CARG3, CARG2			// Return value of mt.__metatable.
1346  |  mr CARG1, TMP1
1347  |  b ->fff_restv
1348  |
1349  |6:
1350  |  cmpwi CARG3, LJ_TUDATA; beq <1
1351  |  .gpr64 extsw CARG3, CARG3
1352  |  subfc TMP0, TISNUM, CARG3
1353  |  subfe TMP2, CARG3, CARG3
1354  |  orc TMP1, TMP2, TMP0
1355  |  addi TMP1, TMP1, ~LJ_TISNUM+1
1356  |  slwi TMP1, TMP1, 2
1357  |   la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH)
1358  |  lwzx TAB:CARG1, TMP2, TMP1
1359  |  b <2
1360  |
1361  |.ffunc_2 setmetatable
1362  |  // Fast path: no mt for table yet and not clearing the mt.
1363  |   checktab CARG3; bne ->fff_fallback
1364  |  lwz TAB:TMP1, TAB:CARG1->metatable
1365  |   checktab CARG4; bne ->fff_fallback
1366  |  cmplwi TAB:TMP1, 0
1367  |   lbz TMP3, TAB:CARG1->marked
1368  |  bne ->fff_fallback
1369  |   andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
1370  |    stw TAB:CARG2, TAB:CARG1->metatable
1371  |   beq ->fff_restv
1372  |  barrierback TAB:CARG1, TMP3, TMP0
1373  |  b ->fff_restv
1374  |
1375  |.ffunc rawget
1376  |  cmplwi NARGS8:RC, 16
1377  |   lwz CARG4, 0(BASE)
1378  |    lwz TAB:CARG2, 4(BASE)
1379  |  blt ->fff_fallback
1380  |  checktab CARG4; bne ->fff_fallback
1381  |   la CARG3, 8(BASE)
1382  |   mr CARG1, L
1383  |  bl extern lj_tab_get  // (lua_State *L, GCtab *t, cTValue *key)
1384  |  // Returns cTValue *.
1385  |  lfd FARG1, 0(CRET1)
1386  |  b ->fff_resn
1387  |
1388  |//-- Base library: conversions ------------------------------------------
1389  |
1390  |.ffunc tonumber
1391  |  // Only handles the number case inline (without a base argument).
1392  |  cmplwi NARGS8:RC, 8
1393  |   lwz CARG1, 0(BASE)
1394  |    lfd FARG1, 0(BASE)
1395  |  bne ->fff_fallback			// Exactly one argument.
1396  |   checknum CARG1; bgt ->fff_fallback
1397  |  b ->fff_resn
1398  |
1399  |.ffunc_1 tostring
1400  |  // Only handles the string or number case inline.
1401  |  checkstr CARG3
1402  |  // A __tostring method in the string base metatable is ignored.
1403  |  beq ->fff_restv			// String key?
1404  |  // Handle numbers inline, unless a number base metatable is present.
1405  |  lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH)
1406  |  checknum CARG3
1407  |  cmplwi cr1, TMP0, 0
1408  |   stp BASE, L->base			// Add frame since C call can throw.
1409  |  crorc 4*cr0+eq, 4*cr0+gt, 4*cr1+eq
1410  |   stw PC, SAVE_PC			// Redundant (but a defined value).
1411  |  beq ->fff_fallback
1412  |  ffgccheck
1413  |  mr CARG1, L
1414  |  mr CARG2, BASE
1415  |.if DUALNUM
1416  |  bl extern lj_strfmt_number		// (lua_State *L, cTValue *o)
1417  |.else
1418  |  bl extern lj_strfmt_num		// (lua_State *L, lua_Number *np)
1419  |.endif
1420  |  // Returns GCstr *.
1421  |  li CARG3, LJ_TSTR
1422  |  b ->fff_restv
1423  |
1424  |//-- Base library: iterators -------------------------------------------
1425  |
1426  |.ffunc next
1427  |  cmplwi NARGS8:RC, 8
1428  |   lwz CARG1, 0(BASE)
1429  |    lwz TAB:CARG2, 4(BASE)
1430  |  blt ->fff_fallback
1431  |   stwx TISNIL, BASE, NARGS8:RC	// Set missing 2nd arg to nil.
1432  |  checktab CARG1
1433  |   lwz PC, FRAME_PC(BASE)
1434  |  bne ->fff_fallback
1435  |   stp BASE, L->base			// Add frame since C call can throw.
1436  |  mr CARG1, L
1437  |   stp BASE, L->top			// Dummy frame length is ok.
1438  |  la CARG3, 8(BASE)
1439  |   stw PC, SAVE_PC
1440  |  bl extern lj_tab_next	// (lua_State *L, GCtab *t, TValue *key)
1441  |  // Returns 0 at end of traversal.
1442  |  cmplwi CRET1, 0
1443  |   li CARG3, LJ_TNIL
1444  |  beq ->fff_restv			// End of traversal: return nil.
1445  |  lfd f0, 8(BASE)			// Copy key and value to results.
1446  |   la RA, -8(BASE)
1447  |  lfd f1, 16(BASE)
1448  |  stfd f0, 0(RA)
1449  |   li RD, (2+1)*8
1450  |  stfd f1, 8(RA)
1451  |  b ->fff_res
1452  |
1453  |.ffunc_1 pairs
1454  |  checktab CARG3
1455  |   lwz PC, FRAME_PC(BASE)
1456  |  bne ->fff_fallback
1457#if LJ_52
1458  |   lwz TAB:TMP2, TAB:CARG1->metatable
1459  |  lfd f0, CFUNC:RB->upvalue[0]
1460  |   cmplwi TAB:TMP2, 0
1461  |  la RA, -8(BASE)
1462  |   bne ->fff_fallback
1463#else
1464  |  lfd f0, CFUNC:RB->upvalue[0]
1465  |  la RA, -8(BASE)
1466#endif
1467  |   stw TISNIL, 8(BASE)
1468  |  li RD, (3+1)*8
1469  |  stfd f0, 0(RA)
1470  |  b ->fff_res
1471  |
1472  |.ffunc ipairs_aux
1473  |  cmplwi NARGS8:RC, 16
1474  |   lwz CARG3, 0(BASE)
1475  |    lwz TAB:CARG1, 4(BASE)
1476  |   lwz CARG4, 8(BASE)
1477  |.if DUALNUM
1478  |    lwz TMP2, 12(BASE)
1479  |.else
1480  |    lfd FARG2, 8(BASE)
1481  |.endif
1482  |  blt ->fff_fallback
1483  |  checktab CARG3
1484  |  checknum cr1, CARG4
1485  |   lwz PC, FRAME_PC(BASE)
1486  |.if DUALNUM
1487  |  bne ->fff_fallback
1488  |  bne cr1, ->fff_fallback
1489  |.else
1490  |    lus TMP0, 0x3ff0
1491  |    stw ZERO, TMPD_LO
1492  |  bne ->fff_fallback
1493  |    stw TMP0, TMPD_HI
1494  |  bge cr1, ->fff_fallback
1495  |    lfd FARG1, TMPD
1496  |  toint TMP2, FARG2, f0
1497  |.endif
1498  |   lwz TMP0, TAB:CARG1->asize
1499  |   lwz TMP1, TAB:CARG1->array
1500  |.if not DUALNUM
1501  |  fadd FARG2, FARG2, FARG1
1502  |.endif
1503  |  addi TMP2, TMP2, 1
1504  |   la RA, -8(BASE)
1505  |  cmplw TMP0, TMP2
1506  |.if DUALNUM
1507  |  stw TISNUM, 0(RA)
1508  |   slwi TMP3, TMP2, 3
1509  |  stw TMP2, 4(RA)
1510  |.else
1511  |   slwi TMP3, TMP2, 3
1512  |  stfd FARG2, 0(RA)
1513  |.endif
1514  |  ble >2				// Not in array part?
1515  |  lwzx TMP2, TMP1, TMP3
1516  |  lfdx f0, TMP1, TMP3
1517  |1:
1518  |  checknil TMP2
1519  |   li RD, (0+1)*8
1520  |  beq ->fff_res			// End of iteration, return 0 results.
1521  |   li RD, (2+1)*8
1522  |  stfd f0, 8(RA)
1523  |  b ->fff_res
1524  |2:  // Check for empty hash part first. Otherwise call C function.
1525  |  lwz TMP0, TAB:CARG1->hmask
1526  |  cmplwi TMP0, 0
1527  |   li RD, (0+1)*8
1528  |  beq ->fff_res
1529  |   mr CARG2, TMP2
1530  |  bl extern lj_tab_getinth		// (GCtab *t, int32_t key)
1531  |  // Returns cTValue * or NULL.
1532  |  cmplwi CRET1, 0
1533  |   li RD, (0+1)*8
1534  |  beq ->fff_res
1535  |  lwz TMP2, 0(CRET1)
1536  |  lfd f0, 0(CRET1)
1537  |  b <1
1538  |
1539  |.ffunc_1 ipairs
1540  |  checktab CARG3
1541  |   lwz PC, FRAME_PC(BASE)
1542  |  bne ->fff_fallback
1543#if LJ_52
1544  |   lwz TAB:TMP2, TAB:CARG1->metatable
1545  |  lfd f0, CFUNC:RB->upvalue[0]
1546  |   cmplwi TAB:TMP2, 0
1547  |  la RA, -8(BASE)
1548  |   bne ->fff_fallback
1549#else
1550  |  lfd f0, CFUNC:RB->upvalue[0]
1551  |  la RA, -8(BASE)
1552#endif
1553  |.if DUALNUM
1554  |  stw TISNUM, 8(BASE)
1555  |.else
1556  |  stw ZERO, 8(BASE)
1557  |.endif
1558  |   stw ZERO, 12(BASE)
1559  |  li RD, (3+1)*8
1560  |  stfd f0, 0(RA)
1561  |  b ->fff_res
1562  |
1563  |//-- Base library: catch errors ----------------------------------------
1564  |
1565  |.ffunc pcall
1566  |  cmplwi NARGS8:RC, 8
1567  |   lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
1568  |  blt ->fff_fallback
1569  |   mr TMP2, BASE
1570  |   la BASE, 8(BASE)
1571  |  // Remember active hook before pcall.
1572  |  rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31
1573  |   subi NARGS8:RC, NARGS8:RC, 8
1574  |  addi PC, TMP3, 8+FRAME_PCALL
1575  |  b ->vm_call_dispatch
1576  |
1577  |.ffunc xpcall
1578  |  cmplwi NARGS8:RC, 16
1579  |   lwz CARG4, 8(BASE)
1580  |    lfd FARG2, 8(BASE)
1581  |    lfd FARG1, 0(BASE)
1582  |  blt ->fff_fallback
1583  |  lbz TMP1, DISPATCH_GL(hookmask)(DISPATCH)
1584  |   mr TMP2, BASE
1585  |  checkfunc CARG4; bne ->fff_fallback  // Traceback must be a function.
1586  |   la BASE, 16(BASE)
1587  |  // Remember active hook before pcall.
1588  |  rlwinm TMP1, TMP1, 32-HOOK_ACTIVE_SHIFT, 31, 31
1589  |    stfd FARG2, 0(TMP2)		// Swap function and traceback.
1590  |  subi NARGS8:RC, NARGS8:RC, 16
1591  |    stfd FARG1, 8(TMP2)
1592  |  addi PC, TMP1, 16+FRAME_PCALL
1593  |  b ->vm_call_dispatch
1594  |
1595  |//-- Coroutine library --------------------------------------------------
1596  |
1597  |.macro coroutine_resume_wrap, resume
1598  |.if resume
1599  |.ffunc_1 coroutine_resume
1600  |  cmpwi CARG3, LJ_TTHREAD; bne ->fff_fallback
1601  |.else
1602  |.ffunc coroutine_wrap_aux
1603  |  lwz L:CARG1, CFUNC:RB->upvalue[0].gcr
1604  |.endif
1605  |  lbz TMP0, L:CARG1->status
1606  |   lp TMP1, L:CARG1->cframe
1607  |    lp CARG2, L:CARG1->top
1608  |  cmplwi cr0, TMP0, LUA_YIELD
1609  |    lp TMP2, L:CARG1->base
1610  |   cmplwi cr1, TMP1, 0
1611  |   lwz TMP0, L:CARG1->maxstack
1612  |    cmplw cr7, CARG2, TMP2
1613  |   lwz PC, FRAME_PC(BASE)
1614  |  crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq		// st>LUA_YIELD || cframe!=0
1615  |   add TMP2, CARG2, NARGS8:RC
1616  |  crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq	// base==top && st!=LUA_YIELD
1617  |   cmplw cr1, TMP2, TMP0
1618  |  cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt
1619  |   stw PC, SAVE_PC
1620  |  cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt		// cond1 || cond2 || stackov
1621  |   stp BASE, L->base
1622  |  blt cr6, ->fff_fallback
1623  |1:
1624  |.if resume
1625  |  addi BASE, BASE, 8			// Keep resumed thread in stack for GC.
1626  |  subi NARGS8:RC, NARGS8:RC, 8
1627  |  subi TMP2, TMP2, 8
1628  |.endif
1629  |  stp TMP2, L:CARG1->top
1630  |  li TMP1, 0
1631  |  stp BASE, L->top
1632  |2:  // Move args to coroutine.
1633  |  cmpw TMP1, NARGS8:RC
1634  |   lfdx f0, BASE, TMP1
1635  |  beq >3
1636  |   stfdx f0, CARG2, TMP1
1637  |  addi TMP1, TMP1, 8
1638  |  b <2
1639  |3:
1640  |  li CARG3, 0
1641  |   mr L:SAVE0, L:CARG1
1642  |  li CARG4, 0
1643  |  bl ->vm_resume			// (lua_State *L, TValue *base, 0, 0)
1644  |  // Returns thread status.
1645  |4:
1646  |  lp TMP2, L:SAVE0->base
1647  |   cmplwi CRET1, LUA_YIELD
1648  |  lp TMP3, L:SAVE0->top
1649  |    li_vmstate INTERP
1650  |  lp BASE, L->base
1651  |    stw L, DISPATCH_GL(cur_L)(DISPATCH)
1652  |    st_vmstate
1653  |   bgt >8
1654  |  sub RD, TMP3, TMP2
1655  |   lwz TMP0, L->maxstack
1656  |  cmplwi RD, 0
1657  |   add TMP1, BASE, RD
1658  |  beq >6				// No results?
1659  |  cmplw TMP1, TMP0
1660  |   li TMP1, 0
1661  |  bgt >9				// Need to grow stack?
1662  |
1663  |  subi TMP3, RD, 8
1664  |   stp TMP2, L:SAVE0->top		// Clear coroutine stack.
1665  |5:  // Move results from coroutine.
1666  |  cmplw TMP1, TMP3
1667  |   lfdx f0, TMP2, TMP1
1668  |   stfdx f0, BASE, TMP1
1669  |    addi TMP1, TMP1, 8
1670  |  bne <5
1671  |6:
1672  |  andix. TMP0, PC, FRAME_TYPE
1673  |.if resume
1674  |  li TMP1, LJ_TTRUE
1675  |   la RA, -8(BASE)
1676  |  stw TMP1, -8(BASE)			// Prepend true to results.
1677  |  addi RD, RD, 16
1678  |.else
1679  |  mr RA, BASE
1680  |  addi RD, RD, 8
1681  |.endif
1682  |7:
1683  |    stw PC, SAVE_PC
1684  |   mr MULTRES, RD
1685  |  beq ->BC_RET_Z
1686  |  b ->vm_return
1687  |
1688  |8:  // Coroutine returned with error (at co->top-1).
1689  |.if resume
1690  |  andix. TMP0, PC, FRAME_TYPE
1691  |  la TMP3, -8(TMP3)
1692  |   li TMP1, LJ_TFALSE
1693  |  lfd f0, 0(TMP3)
1694  |   stp TMP3, L:SAVE0->top		// Remove error from coroutine stack.
1695  |    li RD, (2+1)*8
1696  |   stw TMP1, -8(BASE)		// Prepend false to results.
1697  |    la RA, -8(BASE)
1698  |  stfd f0, 0(BASE)			// Copy error message.
1699  |  b <7
1700  |.else
1701  |  mr CARG1, L
1702  |  mr CARG2, L:SAVE0
1703  |  bl extern lj_ffh_coroutine_wrap_err  // (lua_State *L, lua_State *co)
1704  |.endif
1705  |
1706  |9:  // Handle stack expansion on return from yield.
1707  |  mr CARG1, L
1708  |  srwi CARG2, RD, 3
1709  |  bl extern lj_state_growstack	// (lua_State *L, int n)
1710  |  li CRET1, 0
1711  |  b <4
1712  |.endmacro
1713  |
1714  |  coroutine_resume_wrap 1		// coroutine.resume
1715  |  coroutine_resume_wrap 0		// coroutine.wrap
1716  |
1717  |.ffunc coroutine_yield
1718  |  lp TMP0, L->cframe
1719  |   add TMP1, BASE, NARGS8:RC
1720  |   stp BASE, L->base
1721  |  andix. TMP0, TMP0, CFRAME_RESUME
1722  |   stp TMP1, L->top
1723  |    li CRET1, LUA_YIELD
1724  |  beq ->fff_fallback
1725  |   stp ZERO, L->cframe
1726  |    stb CRET1, L->status
1727  |  b ->vm_leave_unw
1728  |
1729  |//-- Math library -------------------------------------------------------
1730  |
1731  |.ffunc_1 math_abs
1732  |  checknum CARG3
1733  |.if DUALNUM
1734  |  bne >2
1735  |  srawi TMP1, CARG1, 31
1736  |  xor TMP2, TMP1, CARG1
1737  |.if GPR64
1738  |  lus TMP0, 0x8000
1739  |  sub CARG1, TMP2, TMP1
1740  |  cmplw CARG1, TMP0
1741  |  beq >1
1742  |.else
1743  |  sub. CARG1, TMP2, TMP1
1744  |  blt >1
1745  |.endif
1746  |->fff_resi:
1747  |  lwz PC, FRAME_PC(BASE)
1748  |  la RA, -8(BASE)
1749  |  stw TISNUM, -8(BASE)
1750  |  stw CRET1, -4(BASE)
1751  |  b ->fff_res1
1752  |1:
1753  |  lus CARG3, 0x41e0	// 2^31.
1754  |  li CARG1, 0
1755  |  b ->fff_restv
1756  |2:
1757  |.endif
1758  |  bge ->fff_fallback
1759  |  rlwinm CARG3, CARG3, 0, 1, 31
1760  |  // Fallthrough.
1761  |
1762  |->fff_restv:
1763  |  // CARG3/CARG1 = TValue result.
1764  |  lwz PC, FRAME_PC(BASE)
1765  |   stw CARG3, -8(BASE)
1766  |  la RA, -8(BASE)
1767  |   stw CARG1, -4(BASE)
1768  |->fff_res1:
1769  |  // RA = results, PC = return.
1770  |  li RD, (1+1)*8
1771  |->fff_res:
1772  |  // RA = results, RD = (nresults+1)*8, PC = return.
1773  |  andix. TMP0, PC, FRAME_TYPE
1774  |   mr MULTRES, RD
1775  |  bney ->vm_return
1776  |  lwz INS, -4(PC)
1777  |  decode_RB8 RB, INS
1778  |5:
1779  |  cmplw RB, RD			// More results expected?
1780  |   decode_RA8 TMP0, INS
1781  |  bgt >6
1782  |  ins_next1
1783  |  // Adjust BASE. KBASE is assumed to be set for the calling frame.
1784  |   sub BASE, RA, TMP0
1785  |  ins_next2
1786  |
1787  |6:  // Fill up results with nil.
1788  |  subi TMP1, RD, 8
1789  |   addi RD, RD, 8
1790  |  stwx TISNIL, RA, TMP1
1791  |  b <5
1792  |
1793  |.macro math_extern, func
1794  |  .ffunc_n math_ .. func
1795  |  blex func
1796  |  b ->fff_resn
1797  |.endmacro
1798  |
1799  |.macro math_extern2, func
1800  |  .ffunc_nn math_ .. func
1801  |  blex func
1802  |  b ->fff_resn
1803  |.endmacro
1804  |
1805  |.macro math_round, func
1806  |  .ffunc_1 math_ .. func
1807  |   checknum CARG3; beqy ->fff_restv
1808  |  rlwinm TMP2, CARG3, 12, 21, 31
1809  |   bge ->fff_fallback
1810  |  addic. TMP2, TMP2, -1023		// exp = exponent(x) - 1023
1811  |  cmplwi cr1, TMP2, 31		// 0 <= exp < 31?
1812  |   subfic TMP0, TMP2, 31
1813  |  blt >3
1814  |  slwi TMP1, CARG3, 11
1815  |   srwi TMP3, CARG1, 21
1816  |  oris TMP1, TMP1, 0x8000
1817  |   addi TMP2, TMP2, 1
1818  |  or TMP1, TMP1, TMP3
1819  |   slwi CARG2, CARG1, 11
1820  |  bge cr1, >4
1821  |   slw TMP3, TMP1, TMP2
1822  |  srw RD, TMP1, TMP0
1823  |   or TMP3, TMP3, CARG2
1824  |  srawi TMP2, CARG3, 31
1825  |.if "func" == "floor"
1826  |  and TMP1, TMP3, TMP2
1827  |  addic TMP0, TMP1, -1
1828  |  subfe TMP1, TMP0, TMP1
1829  |  add CARG1, RD, TMP1
1830  |  xor CARG1, CARG1, TMP2
1831  |  sub CARG1, CARG1, TMP2
1832  |  b ->fff_resi
1833  |.else
1834  |  andc TMP1, TMP3, TMP2
1835  |  addic TMP0, TMP1, -1
1836  |  subfe TMP1, TMP0, TMP1
1837  |  add CARG1, RD, TMP1
1838  |  cmpw CARG1, RD
1839  |  xor CARG1, CARG1, TMP2
1840  |  sub CARG1, CARG1, TMP2
1841  |  bge ->fff_resi
1842  |  // Overflow to 2^31.
1843  |  lus CARG3, 0x41e0			// 2^31.
1844  |  li CARG1, 0
1845  |  b ->fff_restv
1846  |.endif
1847  |3:  // |x| < 1
1848  |  slwi TMP2, CARG3, 1
1849  |   srawi TMP1, CARG3, 31
1850  |  or TMP2, CARG1, TMP2		// ztest = (hi+hi) | lo
1851  |.if "func" == "floor"
1852  |  and TMP1, TMP2, TMP1		// (ztest & sign) == 0 ? 0 : -1
1853  |  subfic TMP2, TMP1, 0
1854  |  subfe CARG1, CARG1, CARG1
1855  |.else
1856  |  andc TMP1, TMP2, TMP1		// (ztest & ~sign) == 0 ? 0 : 1
1857  |  addic TMP2, TMP1, -1
1858  |  subfe CARG1, TMP2, TMP1
1859  |.endif
1860  |  b ->fff_resi
1861  |4:  // exp >= 31. Check for -(2^31).
1862  |  xoris TMP1, TMP1, 0x8000
1863  |  srawi TMP2, CARG3, 31
1864  |.if "func" == "floor"
1865  |  or TMP1, TMP1, CARG2
1866  |.endif
1867  |.if PPE
1868  |  orc TMP1, TMP1, TMP2
1869  |  cmpwi TMP1, 0
1870  |.else
1871  |  orc. TMP1, TMP1, TMP2
1872  |.endif
1873  |  crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
1874  |  lus CARG1, 0x8000			// -(2^31).
1875  |  beqy ->fff_resi
1876  |5:
1877  |  lfd FARG1, 0(BASE)
1878  |  blex func
1879  |  b ->fff_resn
1880  |.endmacro
1881  |
1882  |.if DUALNUM
1883  |  math_round floor
1884  |  math_round ceil
1885  |.else
1886  |  // NYI: use internal implementation.
1887  |  math_extern floor
1888  |  math_extern ceil
1889  |.endif
1890  |
1891  |.if SQRT
1892  |.ffunc_n math_sqrt
1893  |  fsqrt FARG1, FARG1
1894  |  b ->fff_resn
1895  |.else
1896  |  math_extern sqrt
1897  |.endif
1898  |
1899  |.ffunc math_log
1900  |  cmplwi NARGS8:RC, 8
1901  |   lwz CARG3, 0(BASE)
1902  |    lfd FARG1, 0(BASE)
1903  |  bne ->fff_fallback			// Need exactly 1 argument.
1904  |  checknum CARG3; bge ->fff_fallback
1905  |  blex log
1906  |  b ->fff_resn
1907  |
1908  |  math_extern log10
1909  |  math_extern exp
1910  |  math_extern sin
1911  |  math_extern cos
1912  |  math_extern tan
1913  |  math_extern asin
1914  |  math_extern acos
1915  |  math_extern atan
1916  |  math_extern sinh
1917  |  math_extern cosh
1918  |  math_extern tanh
1919  |  math_extern2 pow
1920  |  math_extern2 atan2
1921  |  math_extern2 fmod
1922  |
1923  |.if DUALNUM
1924  |.ffunc math_ldexp
1925  |  cmplwi NARGS8:RC, 16
1926  |   lwz CARG3, 0(BASE)
1927  |    lfd FARG1, 0(BASE)
1928  |   lwz CARG4, 8(BASE)
1929  |.if GPR64
1930  |    lwz CARG2, 12(BASE)
1931  |.else
1932  |    lwz CARG1, 12(BASE)
1933  |.endif
1934  |  blt ->fff_fallback
1935  |  checknum CARG3; bge ->fff_fallback
1936  |  checknum CARG4; bne ->fff_fallback
1937  |.else
1938  |.ffunc_nn math_ldexp
1939  |.if GPR64
1940  |  toint CARG2, FARG2
1941  |.else
1942  |  toint CARG1, FARG2
1943  |.endif
1944  |.endif
1945  |  blex ldexp
1946  |  b ->fff_resn
1947  |
1948  |.ffunc_n math_frexp
1949  |.if GPR64
1950  |  la CARG2, DISPATCH_GL(tmptv)(DISPATCH)
1951  |.else
1952  |  la CARG1, DISPATCH_GL(tmptv)(DISPATCH)
1953  |.endif
1954  |   lwz PC, FRAME_PC(BASE)
1955  |  blex frexp
1956  |   lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH)
1957  |   la RA, -8(BASE)
1958  |.if not DUALNUM
1959  |   tonum_i FARG2, TMP1
1960  |.endif
1961  |  stfd FARG1, 0(RA)
1962  |  li RD, (2+1)*8
1963  |.if DUALNUM
1964  |   stw TISNUM, 8(RA)
1965  |   stw TMP1, 12(RA)
1966  |.else
1967  |   stfd FARG2, 8(RA)
1968  |.endif
1969  |  b ->fff_res
1970  |
1971  |.ffunc_n math_modf
1972  |.if GPR64
1973  |  la CARG2, -8(BASE)
1974  |.else
1975  |  la CARG1, -8(BASE)
1976  |.endif
1977  |   lwz PC, FRAME_PC(BASE)
1978  |  blex modf
1979  |   la RA, -8(BASE)
1980  |  stfd FARG1, 0(BASE)
1981  |  li RD, (2+1)*8
1982  |  b ->fff_res
1983  |
1984  |.macro math_minmax, name, ismax
1985  |.if DUALNUM
1986  |  .ffunc_1 name
1987  |  checknum CARG3
1988  |   addi TMP1, BASE, 8
1989  |   add TMP2, BASE, NARGS8:RC
1990  |  bne >4
1991  |1:  // Handle integers.
1992  |  lwz CARG4, 0(TMP1)
1993  |   cmplw cr1, TMP1, TMP2
1994  |  lwz CARG2, 4(TMP1)
1995  |   bge cr1, ->fff_resi
1996  |  checknum CARG4
1997  |   xoris TMP0, CARG1, 0x8000
1998  |   xoris TMP3, CARG2, 0x8000
1999  |  bne >3
2000  |  subfc TMP3, TMP3, TMP0
2001  |  subfe TMP0, TMP0, TMP0
2002  |.if ismax
2003  |  andc TMP3, TMP3, TMP0
2004  |.else
2005  |  and TMP3, TMP3, TMP0
2006  |.endif
2007  |  add CARG1, TMP3, CARG2
2008  |.if GPR64
2009  |  rldicl CARG1, CARG1, 0, 32
2010  |.endif
2011  |   addi TMP1, TMP1, 8
2012  |  b <1
2013  |3:
2014  |  bge ->fff_fallback
2015  |  // Convert intermediate result to number and continue below.
2016  |  tonum_i FARG1, CARG1
2017  |  lfd FARG2, 0(TMP1)
2018  |  b >6
2019  |4:
2020  |   lfd FARG1, 0(BASE)
2021  |  bge ->fff_fallback
2022  |5:  // Handle numbers.
2023  |  lwz CARG4, 0(TMP1)
2024  |   cmplw cr1, TMP1, TMP2
2025  |  lfd FARG2, 0(TMP1)
2026  |   bge cr1, ->fff_resn
2027  |  checknum CARG4; bge >7
2028  |6:
2029  |  fsub f0, FARG1, FARG2
2030  |   addi TMP1, TMP1, 8
2031  |.if ismax
2032  |  fsel FARG1, f0, FARG1, FARG2
2033  |.else
2034  |  fsel FARG1, f0, FARG2, FARG1
2035  |.endif
2036  |  b <5
2037  |7:  // Convert integer to number and continue above.
2038  |   lwz CARG2, 4(TMP1)
2039  |  bne ->fff_fallback
2040  |  tonum_i FARG2, CARG2
2041  |  b <6
2042  |.else
2043  |  .ffunc_n name
2044  |  li TMP1, 8
2045  |1:
2046  |   lwzx CARG2, BASE, TMP1
2047  |   lfdx FARG2, BASE, TMP1
2048  |  cmplw cr1, TMP1, NARGS8:RC
2049  |   checknum CARG2
2050  |  bge cr1, ->fff_resn
2051  |   bge ->fff_fallback
2052  |  fsub f0, FARG1, FARG2
2053  |   addi TMP1, TMP1, 8
2054  |.if ismax
2055  |  fsel FARG1, f0, FARG1, FARG2
2056  |.else
2057  |  fsel FARG1, f0, FARG2, FARG1
2058  |.endif
2059  |  b <1
2060  |.endif
2061  |.endmacro
2062  |
2063  |  math_minmax math_min, 0
2064  |  math_minmax math_max, 1
2065  |
2066  |//-- String library -----------------------------------------------------
2067  |
2068  |.ffunc string_byte			// Only handle the 1-arg case here.
2069  |  cmplwi NARGS8:RC, 8
2070  |   lwz CARG3, 0(BASE)
2071  |    lwz STR:CARG1, 4(BASE)
2072  |  bne ->fff_fallback			// Need exactly 1 argument.
2073  |   checkstr CARG3
2074  |   bne ->fff_fallback
2075  |  lwz TMP0, STR:CARG1->len
2076  |.if DUALNUM
2077  |   lbz CARG1, STR:CARG1[1]		// Access is always ok (NUL at end).
2078  |   li RD, (0+1)*8
2079  |   lwz PC, FRAME_PC(BASE)
2080  |  cmplwi TMP0, 0
2081  |   la RA, -8(BASE)
2082  |  beqy ->fff_res
2083  |  b ->fff_resi
2084  |.else
2085  |   lbz TMP1, STR:CARG1[1]		// Access is always ok (NUL at end).
2086  |  addic TMP3, TMP0, -1		// RD = ((str->len != 0)+1)*8
2087  |  subfe RD, TMP3, TMP0
2088  |   stw TMP1, TONUM_LO		// Inlined tonum_u f0, TMP1.
2089  |  addi RD, RD, 1
2090  |   lfd f0, TONUM_D
2091  |  la RA, -8(BASE)
2092  |  lwz PC, FRAME_PC(BASE)
2093  |   fsub f0, f0, TOBIT
2094  |  slwi RD, RD, 3
2095  |   stfd f0, 0(RA)
2096  |  b ->fff_res
2097  |.endif
2098  |
2099  |.ffunc string_char			// Only handle the 1-arg case here.
2100  |  ffgccheck
2101  |  cmplwi NARGS8:RC, 8
2102  |   lwz CARG3, 0(BASE)
2103  |.if DUALNUM
2104  |    lwz TMP0, 4(BASE)
2105  |  bne ->fff_fallback			// Exactly 1 argument.
2106  |  checknum CARG3; bne ->fff_fallback
2107  |   la CARG2, 7(BASE)
2108  |.else
2109  |    lfd FARG1, 0(BASE)
2110  |  bne ->fff_fallback			// Exactly 1 argument.
2111  |  checknum CARG3; bge ->fff_fallback
2112  |  toint TMP0, FARG1
2113  |   la CARG2, TMPD_BLO
2114  |.endif
2115  |   li CARG3, 1
2116  |  cmplwi TMP0, 255; bgt ->fff_fallback
2117  |->fff_newstr:
2118  |  mr CARG1, L
2119  |  stp BASE, L->base
2120  |  stw PC, SAVE_PC
2121  |  bl extern lj_str_new		// (lua_State *L, char *str, size_t l)
2122  |->fff_resstr:
2123  |  // Returns GCstr *.
2124  |  lp BASE, L->base
2125  |  li CARG3, LJ_TSTR
2126  |  b ->fff_restv
2127  |
2128  |.ffunc string_sub
2129  |  ffgccheck
2130  |  cmplwi NARGS8:RC, 16
2131  |   lwz CARG3, 16(BASE)
2132  |.if not DUALNUM
2133  |    lfd f0, 16(BASE)
2134  |.endif
2135  |   lwz TMP0, 0(BASE)
2136  |    lwz STR:CARG1, 4(BASE)
2137  |  blt ->fff_fallback
2138  |   lwz CARG2, 8(BASE)
2139  |.if DUALNUM
2140  |    lwz TMP1, 12(BASE)
2141  |.else
2142  |    lfd f1, 8(BASE)
2143  |.endif
2144  |   li TMP2, -1
2145  |  beq >1
2146  |.if DUALNUM
2147  |  checknum CARG3
2148  |   lwz TMP2, 20(BASE)
2149  |  bne ->fff_fallback
2150  |1:
2151  |  checknum CARG2; bne ->fff_fallback
2152  |.else
2153  |  checknum CARG3; bge ->fff_fallback
2154  |  toint TMP2, f0
2155  |1:
2156  |  checknum CARG2; bge ->fff_fallback
2157  |.endif
2158  |  checkstr TMP0; bne ->fff_fallback
2159  |.if not DUALNUM
2160  |   toint TMP1, f1
2161  |.endif
2162  |   lwz TMP0, STR:CARG1->len
2163  |  cmplw TMP0, TMP2			// len < end? (unsigned compare)
2164  |   addi TMP3, TMP2, 1
2165  |  blt >5
2166  |2:
2167  |  cmpwi TMP1, 0			// start <= 0?
2168  |   add TMP3, TMP1, TMP0
2169  |  ble >7
2170  |3:
2171  |  sub CARG3, TMP2, TMP1
2172  |    addi CARG2, STR:CARG1, #STR-1
2173  |  srawi TMP0, CARG3, 31
2174  |   addi CARG3, CARG3, 1
2175  |    add CARG2, CARG2, TMP1
2176  |  andc CARG3, CARG3, TMP0
2177  |.if GPR64
2178  |  rldicl CARG2, CARG2, 0, 32
2179  |  rldicl CARG3, CARG3, 0, 32
2180  |.endif
2181  |  b ->fff_newstr
2182  |
2183  |5:  // Negative end or overflow.
2184  |  cmpw TMP0, TMP2			// len >= end? (signed compare)
2185  |   add TMP2, TMP0, TMP3		// Negative end: end = end+len+1.
2186  |  bge <2
2187  |   mr TMP2, TMP0			// Overflow: end = len.
2188  |  b <2
2189  |
2190  |7:  // Negative start or underflow.
2191  |  .gpr64 extsw TMP1, TMP1
2192  |  addic CARG3, TMP1, -1
2193  |  subfe CARG3, CARG3, CARG3
2194  |   srawi CARG2, TMP3, 31		// Note: modifies carry.
2195  |  andc TMP3, TMP3, CARG3
2196  |   andc TMP1, TMP3, CARG2
2197  |  addi TMP1, TMP1, 1			// start = 1 + (start ? start+len : 0)
2198  |  b <3
2199  |
2200  |.macro ffstring_op, name
2201  |  .ffunc string_ .. name
2202  |  ffgccheck
2203  |  cmplwi NARGS8:RC, 8
2204  |   lwz CARG3, 0(BASE)
2205  |    lwz STR:CARG2, 4(BASE)
2206  |  blt ->fff_fallback
2207  |  checkstr CARG3
2208  |   la SBUF:CARG1, DISPATCH_GL(tmpbuf)(DISPATCH)
2209  |  bne ->fff_fallback
2210  |   lwz TMP0, SBUF:CARG1->b
2211  |  stw L, SBUF:CARG1->L
2212  |  stp BASE, L->base
2213  |  stw PC, SAVE_PC
2214  |   stw TMP0, SBUF:CARG1->p
2215  |  bl extern lj_buf_putstr_ .. name
2216  |  bl extern lj_buf_tostr
2217  |  b ->fff_resstr
2218  |.endmacro
2219  |
2220  |ffstring_op reverse
2221  |ffstring_op lower
2222  |ffstring_op upper
2223  |
2224  |//-- Bit library --------------------------------------------------------
2225  |
2226  |.macro .ffunc_bit, name
2227  |.if DUALNUM
2228  |  .ffunc_1 bit_..name
2229  |  checknum CARG3; bnel ->fff_tobit_fb
2230  |.else
2231  |  .ffunc_n bit_..name
2232  |  fadd FARG1, FARG1, TOBIT
2233  |  stfd FARG1, TMPD
2234  |  lwz CARG1, TMPD_LO
2235  |.endif
2236  |.endmacro
2237  |
2238  |.macro .ffunc_bit_op, name, ins
2239  |  .ffunc_bit name
2240  |  addi TMP1, BASE, 8
2241  |  add TMP2, BASE, NARGS8:RC
2242  |1:
2243  |  lwz CARG4, 0(TMP1)
2244  |   cmplw cr1, TMP1, TMP2
2245  |.if DUALNUM
2246  |  lwz CARG2, 4(TMP1)
2247  |.else
2248  |  lfd FARG1, 0(TMP1)
2249  |.endif
2250  |   bgey cr1, ->fff_resi
2251  |  checknum CARG4
2252  |.if DUALNUM
2253  |  bnel ->fff_bitop_fb
2254  |.else
2255  |  fadd FARG1, FARG1, TOBIT
2256  |  bge ->fff_fallback
2257  |  stfd FARG1, TMPD
2258  |  lwz CARG2, TMPD_LO
2259  |.endif
2260  |  ins CARG1, CARG1, CARG2
2261  |   addi TMP1, TMP1, 8
2262  |  b <1
2263  |.endmacro
2264  |
2265  |.ffunc_bit_op band, and
2266  |.ffunc_bit_op bor, or
2267  |.ffunc_bit_op bxor, xor
2268  |
2269  |.ffunc_bit bswap
2270  |  rotlwi TMP0, CARG1, 8
2271  |  rlwimi TMP0, CARG1, 24, 0, 7
2272  |  rlwimi TMP0, CARG1, 24, 16, 23
2273  |  mr CRET1, TMP0
2274  |  b ->fff_resi
2275  |
2276  |.ffunc_bit bnot
2277  |  not CRET1, CARG1
2278  |  b ->fff_resi
2279  |
2280  |.macro .ffunc_bit_sh, name, ins, shmod
2281  |.if DUALNUM
2282  |  .ffunc_2 bit_..name
2283  |  checknum CARG3; bnel ->fff_tobit_fb
2284  |  // Note: no inline conversion from number for 2nd argument!
2285  |  checknum CARG4; bne ->fff_fallback
2286  |.else
2287  |  .ffunc_nn bit_..name
2288  |  fadd FARG1, FARG1, TOBIT
2289  |  fadd FARG2, FARG2, TOBIT
2290  |  stfd FARG1, TMPD
2291  |  lwz CARG1, TMPD_LO
2292  |  stfd FARG2, TMPD
2293  |  lwz CARG2, TMPD_LO
2294  |.endif
2295  |.if shmod == 1
2296  |  rlwinm CARG2, CARG2, 0, 27, 31
2297  |.elif shmod == 2
2298  |  neg CARG2, CARG2
2299  |.endif
2300  |  ins CRET1, CARG1, CARG2
2301  |  b ->fff_resi
2302  |.endmacro
2303  |
2304  |.ffunc_bit_sh lshift, slw, 1
2305  |.ffunc_bit_sh rshift, srw, 1
2306  |.ffunc_bit_sh arshift, sraw, 1
2307  |.ffunc_bit_sh rol, rotlw, 0
2308  |.ffunc_bit_sh ror, rotlw, 2
2309  |
2310  |.ffunc_bit tobit
2311  |.if DUALNUM
2312  |  b ->fff_resi
2313  |.else
2314  |->fff_resi:
2315  |  tonum_i FARG1, CRET1
2316  |.endif
2317  |->fff_resn:
2318  |  lwz PC, FRAME_PC(BASE)
2319  |  la RA, -8(BASE)
2320  |  stfd FARG1, -8(BASE)
2321  |  b ->fff_res1
2322  |
2323  |// Fallback FP number to bit conversion.
2324  |->fff_tobit_fb:
2325  |.if DUALNUM
2326  |  lfd FARG1, 0(BASE)
2327  |  bgt ->fff_fallback
2328  |  fadd FARG1, FARG1, TOBIT
2329  |  stfd FARG1, TMPD
2330  |  lwz CARG1, TMPD_LO
2331  |  blr
2332  |.endif
2333  |->fff_bitop_fb:
2334  |.if DUALNUM
2335  |  lfd FARG1, 0(TMP1)
2336  |  bgt ->fff_fallback
2337  |  fadd FARG1, FARG1, TOBIT
2338  |  stfd FARG1, TMPD
2339  |  lwz CARG2, TMPD_LO
2340  |  blr
2341  |.endif
2342  |
2343  |//-----------------------------------------------------------------------
2344  |
2345  |->fff_fallback:			// Call fast function fallback handler.
2346  |  // BASE = new base, RB = CFUNC, RC = nargs*8
2347  |  lp TMP3, CFUNC:RB->f
2348  |    add TMP1, BASE, NARGS8:RC
2349  |   lwz PC, FRAME_PC(BASE)		// Fallback may overwrite PC.
2350  |    addi TMP0, TMP1, 8*LUA_MINSTACK
2351  |     lwz TMP2, L->maxstack
2352  |   stw PC, SAVE_PC			// Redundant (but a defined value).
2353  |  .toc lp TMP3, 0(TMP3)
2354  |  cmplw TMP0, TMP2
2355  |     stp BASE, L->base
2356  |    stp TMP1, L->top
2357  |   mr CARG1, L
2358  |  bgt >5				// Need to grow stack.
2359  |  mtctr TMP3
2360  |  bctrl				// (lua_State *L)
2361  |  // Either throws an error, or recovers and returns -1, 0 or nresults+1.
2362  |  lp BASE, L->base
2363  |  cmpwi CRET1, 0
2364  |   slwi RD, CRET1, 3
2365  |   la RA, -8(BASE)
2366  |  bgt ->fff_res			// Returned nresults+1?
2367  |1:  // Returned 0 or -1: retry fast path.
2368  |  lp TMP0, L->top
2369  |   lwz LFUNC:RB, FRAME_FUNC(BASE)
2370  |  sub NARGS8:RC, TMP0, BASE
2371  |  bne ->vm_call_tail			// Returned -1?
2372  |  ins_callt				// Returned 0: retry fast path.
2373  |
2374  |// Reconstruct previous base for vmeta_call during tailcall.
2375  |->vm_call_tail:
2376  |  andix. TMP0, PC, FRAME_TYPE
2377  |   rlwinm TMP1, PC, 0, 0, 28
2378  |  bne >3
2379  |  lwz INS, -4(PC)
2380  |  decode_RA8 TMP1, INS
2381  |  addi TMP1, TMP1, 8
2382  |3:
2383  |  sub TMP2, BASE, TMP1
2384  |  b ->vm_call_dispatch		// Resolve again for tailcall.
2385  |
2386  |5:  // Grow stack for fallback handler.
2387  |  li CARG2, LUA_MINSTACK
2388  |  bl extern lj_state_growstack	// (lua_State *L, int n)
2389  |  lp BASE, L->base
2390  |  cmpw TMP0, TMP0			// Set 4*cr0+eq to force retry.
2391  |  b <1
2392  |
2393  |->fff_gcstep:			// Call GC step function.
2394  |  // BASE = new base, RC = nargs*8
2395  |  mflr SAVE0
2396  |   stp BASE, L->base
2397  |  add TMP0, BASE, NARGS8:RC
2398  |   stw PC, SAVE_PC			// Redundant (but a defined value).
2399  |  stp TMP0, L->top
2400  |  mr CARG1, L
2401  |  bl extern lj_gc_step		// (lua_State *L)
2402  |   lp BASE, L->base
2403  |  mtlr SAVE0
2404  |    lp TMP0, L->top
2405  |   sub NARGS8:RC, TMP0, BASE
2406  |   lwz CFUNC:RB, FRAME_FUNC(BASE)
2407  |  blr
2408  |
2409  |//-----------------------------------------------------------------------
2410  |//-- Special dispatch targets -------------------------------------------
2411  |//-----------------------------------------------------------------------
2412  |
2413  |->vm_record:				// Dispatch target for recording phase.
2414  |.if JIT
2415  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2416  |  andix. TMP0, TMP3, HOOK_VMEVENT	// No recording while in vmevent.
2417  |  bne >5
2418  |  // Decrement the hookcount for consistency, but always do the call.
2419  |   lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2420  |  andix. TMP0, TMP3, HOOK_ACTIVE
2421  |  bne >1
2422  |   subi TMP2, TMP2, 1
2423  |  andi. TMP0, TMP3, LUA_MASKLINE|LUA_MASKCOUNT
2424  |  beqy >1
2425  |   stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2426  |  b >1
2427  |.endif
2428  |
2429  |->vm_rethook:			// Dispatch target for return hooks.
2430  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2431  |  andix. TMP0, TMP3, HOOK_ACTIVE	// Hook already active?
2432  |  beq >1
2433  |5:  // Re-dispatch to static ins.
2434  |  addi TMP1, TMP1, GG_DISP2STATIC	// Assumes decode_OPP TMP1, INS.
2435  |  lpx TMP0, DISPATCH, TMP1
2436  |  mtctr TMP0
2437  |  bctr
2438  |
2439  |->vm_inshook:			// Dispatch target for instr/line hooks.
2440  |  lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH)
2441  |  lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2442  |  andix. TMP0, TMP3, HOOK_ACTIVE	// Hook already active?
2443  |   rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0
2444  |  bne <5
2445  |
2446  |   cmpwi cr1, TMP0, 0
2447  |  addic. TMP2, TMP2, -1
2448  |   beq cr1, <5
2449  |  stw TMP2, DISPATCH_GL(hookcount)(DISPATCH)
2450  |  beq >1
2451  |   bge cr1, <5
2452  |1:
2453  |  mr CARG1, L
2454  |   stw MULTRES, SAVE_MULTRES
2455  |  mr CARG2, PC
2456  |   stp BASE, L->base
2457  |  // SAVE_PC must hold the _previous_ PC. The callee updates it with PC.
2458  |  bl extern lj_dispatch_ins		// (lua_State *L, const BCIns *pc)
2459  |3:
2460  |  lp BASE, L->base
2461  |4:  // Re-dispatch to static ins.
2462  |  lwz INS, -4(PC)
2463  |  decode_OPP TMP1, INS
2464  |   decode_RB8 RB, INS
2465  |  addi TMP1, TMP1, GG_DISP2STATIC
2466  |   decode_RD8 RD, INS
2467  |  lpx TMP0, DISPATCH, TMP1
2468  |   decode_RA8 RA, INS
2469  |   decode_RC8 RC, INS
2470  |  mtctr TMP0
2471  |  bctr
2472  |
2473  |->cont_hook:				// Continue from hook yield.
2474  |  addi PC, PC, 4
2475  |  lwz MULTRES, -20(RB)		// Restore MULTRES for *M ins.
2476  |  b <4
2477  |
2478  |->vm_hotloop:			// Hot loop counter underflow.
2479  |.if JIT
2480  |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
2481  |   addi CARG1, DISPATCH, GG_DISP2J
2482  |   stw PC, SAVE_PC
2483  |  lwz TMP1, LFUNC:TMP1->pc
2484  |   mr CARG2, PC
2485  |   stw L, DISPATCH_J(L)(DISPATCH)
2486  |  lbz TMP1, PC2PROTO(framesize)(TMP1)
2487  |   stp BASE, L->base
2488  |  slwi TMP1, TMP1, 3
2489  |  add TMP1, BASE, TMP1
2490  |  stp TMP1, L->top
2491  |  bl extern lj_trace_hot		// (jit_State *J, const BCIns *pc)
2492  |  b <3
2493  |.endif
2494  |
2495  |->vm_callhook:			// Dispatch target for call hooks.
2496  |  mr CARG2, PC
2497  |.if JIT
2498  |  b >1
2499  |.endif
2500  |
2501  |->vm_hotcall:			// Hot call counter underflow.
2502  |.if JIT
2503  |  ori CARG2, PC, 1
2504  |1:
2505  |.endif
2506  |  add TMP0, BASE, RC
2507  |   stw PC, SAVE_PC
2508  |  mr CARG1, L
2509  |   stp BASE, L->base
2510  |  sub RA, RA, BASE
2511  |   stp TMP0, L->top
2512  |  bl extern lj_dispatch_call		// (lua_State *L, const BCIns *pc)
2513  |  // Returns ASMFunction.
2514  |  lp BASE, L->base
2515  |   lp TMP0, L->top
2516  |   stw ZERO, SAVE_PC			// Invalidate for subsequent line hook.
2517  |  sub NARGS8:RC, TMP0, BASE
2518  |  add RA, BASE, RA
2519  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
2520  |  lwz INS, -4(PC)
2521  |  mtctr CRET1
2522  |  bctr
2523  |
2524  |->cont_stitch:			// Trace stitching.
2525  |.if JIT
2526  |  // RA = resultptr, RB = meta base
2527  |  lwz INS, -4(PC)
2528  |    lwz TRACE:TMP2, -20(RB)		// Save previous trace.
2529  |   addic. TMP1, MULTRES, -8
2530  |  decode_RA8 RC, INS			// Call base.
2531  |   beq >2
2532  |1:  // Move results down.
2533  |  lfd f0, 0(RA)
2534  |   addic. TMP1, TMP1, -8
2535  |    addi RA, RA, 8
2536  |  stfdx f0, BASE, RC
2537  |    addi RC, RC, 8
2538  |   bne <1
2539  |2:
2540  |   decode_RA8 RA, INS
2541  |   decode_RB8 RB, INS
2542  |   add RA, RA, RB
2543  |3:
2544  |   cmplw RA, RC
2545  |   bgt >9				// More results wanted?
2546  |
2547  |  lhz TMP3, TRACE:TMP2->traceno
2548  |  lhz RD, TRACE:TMP2->link
2549  |  cmpw RD, TMP3
2550  |   cmpwi cr1, RD, 0
2551  |  beq ->cont_nop			// Blacklisted.
2552  |    slwi RD, RD, 3
2553  |   bne cr1, =>BC_JLOOP		// Jump to stitched trace.
2554  |
2555  |  // Stitch a new trace to the previous trace.
2556  |  stw TMP3, DISPATCH_J(exitno)(DISPATCH)
2557  |  stp L, DISPATCH_J(L)(DISPATCH)
2558  |  stp BASE, L->base
2559  |  addi CARG1, DISPATCH, GG_DISP2J
2560  |  mr CARG2, PC
2561  |  bl extern lj_dispatch_stitch	// (jit_State *J, const BCIns *pc)
2562  |  lp BASE, L->base
2563  |  b ->cont_nop
2564  |
2565  |9:
2566  |  stwx TISNIL, BASE, RC
2567  |  addi RC, RC, 8
2568  |  b <3
2569  |.endif
2570  |
2571  |->vm_profhook:			// Dispatch target for profiler hook.
2572#if LJ_HASPROFILE
2573  |  mr CARG1, L
2574  |   stw MULTRES, SAVE_MULTRES
2575  |  mr CARG2, PC
2576  |   stp BASE, L->base
2577  |  bl extern lj_dispatch_profile	// (lua_State *L, const BCIns *pc)
2578  |  // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction.
2579  |  lp BASE, L->base
2580  |  subi PC, PC, 4
2581  |  b ->cont_nop
2582#endif
2583  |
2584  |//-----------------------------------------------------------------------
2585  |//-- Trace exit handler -------------------------------------------------
2586  |//-----------------------------------------------------------------------
2587  |
2588  |.macro savex_, a, b, c, d
2589  |  stfd f..a, 16+a*8(sp)
2590  |  stfd f..b, 16+b*8(sp)
2591  |  stfd f..c, 16+c*8(sp)
2592  |  stfd f..d, 16+d*8(sp)
2593  |.endmacro
2594  |
2595  |->vm_exit_handler:
2596  |.if JIT
2597  |  addi sp, sp, -(16+32*8+32*4)
2598  |  stmw r2, 16+32*8+2*4(sp)
2599  |    addi DISPATCH, JGL, -GG_DISP2G-32768
2600  |    li CARG2, ~LJ_VMST_EXIT
2601  |   lwz CARG1, 16+32*8+32*4(sp)	// Get stack chain.
2602  |    stw CARG2, DISPATCH_GL(vmstate)(DISPATCH)
2603  |  savex_ 0,1,2,3
2604  |   stw CARG1, 0(sp)			// Store extended stack chain.
2605  |   clrso TMP1
2606  |  savex_ 4,5,6,7
2607  |   addi CARG2, sp, 16+32*8+32*4	// Recompute original value of sp.
2608  |  savex_ 8,9,10,11
2609  |   stw CARG2, 16+32*8+1*4(sp)	// Store sp in RID_SP.
2610  |  savex_ 12,13,14,15
2611  |   mflr CARG3
2612  |   li TMP1, 0
2613  |  savex_ 16,17,18,19
2614  |   stw TMP1, 16+32*8+0*4(sp)		// Clear RID_TMP.
2615  |  savex_ 20,21,22,23
2616  |   lhz CARG4, 2(CARG3)		// Load trace number.
2617  |  savex_ 24,25,26,27
2618  |  lwz L, DISPATCH_GL(cur_L)(DISPATCH)
2619  |  savex_ 28,29,30,31
2620  |   sub CARG3, TMP0, CARG3		// Compute exit number.
2621  |  lp BASE, DISPATCH_GL(jit_base)(DISPATCH)
2622  |   srwi CARG3, CARG3, 2
2623  |  stp L, DISPATCH_J(L)(DISPATCH)
2624  |   subi CARG3, CARG3, 2
2625  |  stp BASE, L->base
2626  |   stw CARG4, DISPATCH_J(parent)(DISPATCH)
2627  |  stw TMP1, DISPATCH_GL(jit_base)(DISPATCH)
2628  |  addi CARG1, DISPATCH, GG_DISP2J
2629  |   stw CARG3, DISPATCH_J(exitno)(DISPATCH)
2630  |  addi CARG2, sp, 16
2631  |  bl extern lj_trace_exit		// (jit_State *J, ExitState *ex)
2632  |  // Returns MULTRES (unscaled) or negated error code.
2633  |  lp TMP1, L->cframe
2634  |  lwz TMP2, 0(sp)
2635  |   lp BASE, L->base
2636  |.if GPR64
2637  |  rldicr sp, TMP1, 0, 61
2638  |.else
2639  |  rlwinm sp, TMP1, 0, 0, 29
2640  |.endif
2641  |   lwz PC, SAVE_PC			// Get SAVE_PC.
2642  |  stw TMP2, 0(sp)
2643  |  stw L, SAVE_L			// Set SAVE_L (on-trace resume/yield).
2644  |  b >1
2645  |.endif
2646  |->vm_exit_interp:
2647  |.if JIT
2648  |  // CARG1 = MULTRES or negated error code, BASE, PC and JGL set.
2649  |  lwz L, SAVE_L
2650  |  addi DISPATCH, JGL, -GG_DISP2G-32768
2651  |  stp BASE, L->base
2652  |1:
2653  |  cmpwi CARG1, 0
2654  |  blt >9				// Check for error from exit.
2655  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
2656  |   slwi MULTRES, CARG1, 3
2657  |    li TMP2, 0
2658  |   stw MULTRES, SAVE_MULTRES
2659  |  lwz TMP1, LFUNC:RB->pc
2660  |    stw TMP2, DISPATCH_GL(jit_base)(DISPATCH)
2661  |  lwz KBASE, PC2PROTO(k)(TMP1)
2662  |  // Setup type comparison constants.
2663  |  li TISNUM, LJ_TISNUM
2664  |  lus TMP3, 0x59c0			// TOBIT = 2^52 + 2^51 (float).
2665  |  stw TMP3, TMPD
2666  |  li ZERO, 0
2667  |  ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
2668  |  lfs TOBIT, TMPD
2669  |  stw TMP3, TMPD
2670  |  lus TMP0, 0x4338			// Hiword of 2^52 + 2^51 (double)
2671  |    li TISNIL, LJ_TNIL
2672  |  stw TMP0, TONUM_HI
2673  |  lfs TONUM, TMPD
2674  |  // Modified copy of ins_next which handles function header dispatch, too.
2675  |  lwz INS, 0(PC)
2676  |   addi PC, PC, 4
2677  |    // Assumes TISNIL == ~LJ_VMST_INTERP == -1.
2678  |    stw TISNIL, DISPATCH_GL(vmstate)(DISPATCH)
2679  |  decode_OPP TMP1, INS
2680  |   decode_RA8 RA, INS
2681  |  lpx TMP0, DISPATCH, TMP1
2682  |  mtctr TMP0
2683  |  cmplwi TMP1, BC_FUNCF*4		// Function header?
2684  |  bge >2
2685  |   decode_RB8 RB, INS
2686  |   decode_RD8 RD, INS
2687  |   decode_RC8 RC, INS
2688  |  bctr
2689  |2:
2690  |  cmplwi TMP1, (BC_FUNCC+2)*4	// Fast function?
2691  |  blt >3
2692  |  // Check frame below fast function.
2693  |  lwz TMP1, FRAME_PC(BASE)
2694  |  andix. TMP0, TMP1, FRAME_TYPE
2695  |  bney >3				// Trace stitching continuation?
2696  |  // Otherwise set KBASE for Lua function below fast function.
2697  |  lwz TMP2, -4(TMP1)
2698  |  decode_RA8 TMP0, TMP2
2699  |  sub TMP1, BASE, TMP0
2700  |  lwz LFUNC:TMP2, -12(TMP1)
2701  |  lwz TMP1, LFUNC:TMP2->pc
2702  |  lwz KBASE, PC2PROTO(k)(TMP1)
2703  |3:
2704  |   subi RC, MULTRES, 8
2705  |   add RA, RA, BASE
2706  |  bctr
2707  |
2708  |9:  // Rethrow error from the right C frame.
2709  |  neg CARG2, CARG1
2710  |  mr CARG1, L
2711  |  bl extern lj_err_throw		// (lua_State *L, int errcode)
2712  |.endif
2713  |
2714  |//-----------------------------------------------------------------------
2715  |//-- Math helper functions ----------------------------------------------
2716  |//-----------------------------------------------------------------------
2717  |
2718  |// NYI: Use internal implementations of floor, ceil, trunc.
2719  |
2720  |->vm_modi:
2721  |  divwo. TMP0, CARG1, CARG2
2722  |  bso >1
2723  |.if GPR64
2724  |   xor CARG3, CARG1, CARG2
2725  |   cmpwi CARG3, 0
2726  |.else
2727  |   xor. CARG3, CARG1, CARG2
2728  |.endif
2729  |  mullw TMP0, TMP0, CARG2
2730  |  sub CARG1, CARG1, TMP0
2731  |   bgelr
2732  |  cmpwi CARG1, 0; beqlr
2733  |  add CARG1, CARG1, CARG2
2734  |  blr
2735  |1:
2736  |  cmpwi CARG2, 0
2737  |   li CARG1, 0
2738  |  beqlr
2739  |  clrso TMP0			// Clear SO for -2147483648 % -1 and return 0.
2740  |  blr
2741  |
2742  |//-----------------------------------------------------------------------
2743  |//-- Miscellaneous functions --------------------------------------------
2744  |//-----------------------------------------------------------------------
2745  |
2746  |// void lj_vm_cachesync(void *start, void *end)
2747  |// Flush D-Cache and invalidate I-Cache. Assumes 32 byte cache line size.
2748  |// This is a good lower bound, except for very ancient PPC models.
2749  |->vm_cachesync:
2750  |.if JIT or FFI
2751  |  // Compute start of first cache line and number of cache lines.
2752  |  rlwinm CARG1, CARG1, 0, 0, 26
2753  |  sub CARG2, CARG2, CARG1
2754  |  addi CARG2, CARG2, 31
2755  |  rlwinm. CARG2, CARG2, 27, 5, 31
2756  |  beqlr
2757  |  mtctr CARG2
2758  |  mr CARG3, CARG1
2759  |1:  // Flush D-Cache.
2760  |  dcbst r0, CARG1
2761  |  addi CARG1, CARG1, 32
2762  |  bdnz <1
2763  |  sync
2764  |  mtctr CARG2
2765  |1:  // Invalidate I-Cache.
2766  |  icbi r0, CARG3
2767  |  addi CARG3, CARG3, 32
2768  |  bdnz <1
2769  |  isync
2770  |  blr
2771  |.endif
2772  |
2773  |//-----------------------------------------------------------------------
2774  |//-- FFI helper functions -----------------------------------------------
2775  |//-----------------------------------------------------------------------
2776  |
2777  |// Handler for callback functions. Callback slot number in r11, g in r12.
2778  |->vm_ffi_callback:
2779  |.if FFI
2780  |.type CTSTATE, CTState, PC
2781  |  saveregs
2782  |  lwz CTSTATE, GL:r12->ctype_state
2783  |   addi DISPATCH, r12, GG_G2DISP
2784  |  stw r11, CTSTATE->cb.slot
2785  |  stw r3, CTSTATE->cb.gpr[0]
2786  |   stfd f1, CTSTATE->cb.fpr[0]
2787  |  stw r4, CTSTATE->cb.gpr[1]
2788  |   stfd f2, CTSTATE->cb.fpr[1]
2789  |  stw r5, CTSTATE->cb.gpr[2]
2790  |   stfd f3, CTSTATE->cb.fpr[2]
2791  |  stw r6, CTSTATE->cb.gpr[3]
2792  |   stfd f4, CTSTATE->cb.fpr[3]
2793  |  stw r7, CTSTATE->cb.gpr[4]
2794  |   stfd f5, CTSTATE->cb.fpr[4]
2795  |  stw r8, CTSTATE->cb.gpr[5]
2796  |   stfd f6, CTSTATE->cb.fpr[5]
2797  |  stw r9, CTSTATE->cb.gpr[6]
2798  |   stfd f7, CTSTATE->cb.fpr[6]
2799  |  stw r10, CTSTATE->cb.gpr[7]
2800  |   stfd f8, CTSTATE->cb.fpr[7]
2801  |  addi TMP0, sp, CFRAME_SPACE+8
2802  |  stw TMP0, CTSTATE->cb.stack
2803  |   mr CARG1, CTSTATE
2804  |  stw CTSTATE, SAVE_PC		// Any value outside of bytecode is ok.
2805  |   mr CARG2, sp
2806  |  bl extern lj_ccallback_enter	// (CTState *cts, void *cf)
2807  |  // Returns lua_State *.
2808  |  lp BASE, L:CRET1->base
2809  |     li TISNUM, LJ_TISNUM		// Setup type comparison constants.
2810  |  lp RC, L:CRET1->top
2811  |     lus TMP3, 0x59c0		// TOBIT = 2^52 + 2^51 (float).
2812  |     li ZERO, 0
2813  |   mr L, CRET1
2814  |     stw TMP3, TMPD
2815  |     lus TMP0, 0x4338		// Hiword of 2^52 + 2^51 (double)
2816  |  lwz LFUNC:RB, FRAME_FUNC(BASE)
2817  |     ori TMP3, TMP3, 0x0004		// TONUM = 2^52 + 2^51 + 2^31 (float).
2818  |     stw TMP0, TONUM_HI
2819  |     li TISNIL, LJ_TNIL
2820  |    li_vmstate INTERP
2821  |     lfs TOBIT, TMPD
2822  |     stw TMP3, TMPD
2823  |  sub RC, RC, BASE
2824  |    st_vmstate
2825  |     lfs TONUM, TMPD
2826  |  ins_callt
2827  |.endif
2828  |
2829  |->cont_ffi_callback:			// Return from FFI callback.
2830  |.if FFI
2831  |  lwz CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH)
2832  |   stp BASE, L->base
2833  |   stp RB, L->top
2834  |  stp L, CTSTATE->L
2835  |  mr CARG1, CTSTATE
2836  |  mr CARG2, RA
2837  |  bl extern lj_ccallback_leave	// (CTState *cts, TValue *o)
2838  |  lwz CRET1, CTSTATE->cb.gpr[0]
2839  |  lfd FARG1, CTSTATE->cb.fpr[0]
2840  |  lwz CRET2, CTSTATE->cb.gpr[1]
2841  |  b ->vm_leave_unw
2842  |.endif
2843  |
2844  |->vm_ffi_call:			// Call C function via FFI.
2845  |  // Caveat: needs special frame unwinding, see below.
2846  |.if FFI
2847  |  .type CCSTATE, CCallState, CARG1
2848  |  lwz TMP1, CCSTATE->spadj
2849  |    mflr TMP0
2850  |   lbz CARG2, CCSTATE->nsp
2851  |   lbz CARG3, CCSTATE->nfpr
2852  |  neg TMP1, TMP1
2853  |    stw TMP0, 4(sp)
2854  |   cmpwi cr1, CARG3, 0
2855  |  mr TMP2, sp
2856  |   addic. CARG2, CARG2, -1
2857  |  stwux sp, sp, TMP1
2858  |   crnot 4*cr1+eq, 4*cr1+eq		// For vararg calls.
2859  |  stw r14, -4(TMP2)
2860  |  stw CCSTATE, -8(TMP2)
2861  |  mr r14, TMP2
2862  |  la TMP1, CCSTATE->stack
2863  |   slwi CARG2, CARG2, 2
2864  |   blty >2
2865  |  la TMP2, 8(sp)
2866  |1:
2867  |  lwzx TMP0, TMP1, CARG2
2868  |  stwx TMP0, TMP2, CARG2
2869  |   addic. CARG2, CARG2, -4
2870  |  bge <1
2871  |2:
2872  |  bney cr1, >3
2873  |  lfd f1, CCSTATE->fpr[0]
2874  |  lfd f2, CCSTATE->fpr[1]
2875  |  lfd f3, CCSTATE->fpr[2]
2876  |  lfd f4, CCSTATE->fpr[3]
2877  |  lfd f5, CCSTATE->fpr[4]
2878  |  lfd f6, CCSTATE->fpr[5]
2879  |  lfd f7, CCSTATE->fpr[6]
2880  |  lfd f8, CCSTATE->fpr[7]
2881  |3:
2882  |   lp TMP0, CCSTATE->func
2883  |  lwz CARG2, CCSTATE->gpr[1]
2884  |  lwz CARG3, CCSTATE->gpr[2]
2885  |  lwz CARG4, CCSTATE->gpr[3]
2886  |  lwz CARG5, CCSTATE->gpr[4]
2887  |   mtctr TMP0
2888  |  lwz r8, CCSTATE->gpr[5]
2889  |  lwz r9, CCSTATE->gpr[6]
2890  |  lwz r10, CCSTATE->gpr[7]
2891  |  lwz CARG1, CCSTATE->gpr[0]		// Do this last, since CCSTATE is CARG1.
2892  |   bctrl
2893  |  lwz CCSTATE:TMP1, -8(r14)
2894  |  lwz TMP2, -4(r14)
2895  |   lwz TMP0, 4(r14)
2896  |  stw CARG1, CCSTATE:TMP1->gpr[0]
2897  |  stfd FARG1, CCSTATE:TMP1->fpr[0]
2898  |  stw CARG2, CCSTATE:TMP1->gpr[1]
2899  |   mtlr TMP0
2900  |  stw CARG3, CCSTATE:TMP1->gpr[2]
2901  |   mr sp, r14
2902  |  stw CARG4, CCSTATE:TMP1->gpr[3]
2903  |   mr r14, TMP2
2904  |  blr
2905  |.endif
2906  |// Note: vm_ffi_call must be the last function in this object file!
2907  |
2908  |//-----------------------------------------------------------------------
2909}
2910
2911/* Generate the code for a single instruction. */
2912static void build_ins(BuildCtx *ctx, BCOp op, int defop)
2913{
2914  int vk = 0;
2915  |=>defop:
2916
2917  switch (op) {
2918
2919  /* -- Comparison ops ---------------------------------------------------- */
2920
2921  /* Remember: all ops branch for a true comparison, fall through otherwise. */
2922
2923  case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT:
2924    |  // RA = src1*8, RD = src2*8, JMP with RD = target
2925    |.if DUALNUM
2926    |  lwzux TMP0, RA, BASE
2927    |    addi PC, PC, 4
2928    |   lwz CARG2, 4(RA)
2929    |  lwzux TMP1, RD, BASE
2930    |    lwz TMP2, -4(PC)
2931    |  checknum cr0, TMP0
2932    |   lwz CARG3, 4(RD)
2933    |    decode_RD4 TMP2, TMP2
2934    |  checknum cr1, TMP1
2935    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
2936    |  bne cr0, >7
2937    |  bne cr1, >8
2938    |   cmpw CARG2, CARG3
2939    if (op == BC_ISLT) {
2940      |  bge >2
2941    } else if (op == BC_ISGE) {
2942      |  blt >2
2943    } else if (op == BC_ISLE) {
2944      |  bgt >2
2945    } else {
2946      |  ble >2
2947    }
2948    |1:
2949    |  add PC, PC, TMP2
2950    |2:
2951    |  ins_next
2952    |
2953    |7:  // RA is not an integer.
2954    |  bgt cr0, ->vmeta_comp
2955    |  // RA is a number.
2956    |   lfd f0, 0(RA)
2957    |  bgt cr1, ->vmeta_comp
2958    |  blt cr1, >4
2959    |  // RA is a number, RD is an integer.
2960    |  tonum_i f1, CARG3
2961    |  b >5
2962    |
2963    |8: // RA is an integer, RD is not an integer.
2964    |  bgt cr1, ->vmeta_comp
2965    |  // RA is an integer, RD is a number.
2966    |  tonum_i f0, CARG2
2967    |4:
2968    |  lfd f1, 0(RD)
2969    |5:
2970    |  fcmpu cr0, f0, f1
2971    if (op == BC_ISLT) {
2972      |  bge <2
2973    } else if (op == BC_ISGE) {
2974      |  blt <2
2975    } else if (op == BC_ISLE) {
2976      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2977      |  bge <2
2978    } else {
2979      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
2980      |  blt <2
2981    }
2982    |  b <1
2983    |.else
2984    |  lwzx TMP0, BASE, RA
2985    |    addi PC, PC, 4
2986    |   lfdx f0, BASE, RA
2987    |  lwzx TMP1, BASE, RD
2988    |  checknum cr0, TMP0
2989    |    lwz TMP2, -4(PC)
2990    |   lfdx f1, BASE, RD
2991    |  checknum cr1, TMP1
2992    |    decode_RD4 TMP2, TMP2
2993    |  bge cr0, ->vmeta_comp
2994    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
2995    |  bge cr1, ->vmeta_comp
2996    |  fcmpu cr0, f0, f1
2997    if (op == BC_ISLT) {
2998      |  bge >1
2999    } else if (op == BC_ISGE) {
3000      |  blt >1
3001    } else if (op == BC_ISLE) {
3002      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
3003      |  bge >1
3004    } else {
3005      |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq
3006      |  blt >1
3007    }
3008    |  add PC, PC, TMP2
3009    |1:
3010    |  ins_next
3011    |.endif
3012    break;
3013
3014  case BC_ISEQV: case BC_ISNEV:
3015    vk = op == BC_ISEQV;
3016    |  // RA = src1*8, RD = src2*8, JMP with RD = target
3017    |.if DUALNUM
3018    |  lwzux TMP0, RA, BASE
3019    |    addi PC, PC, 4
3020    |   lwz CARG2, 4(RA)
3021    |  lwzux TMP1, RD, BASE
3022    |  checknum cr0, TMP0
3023    |    lwz TMP2, -4(PC)
3024    |  checknum cr1, TMP1
3025    |    decode_RD4 TMP2, TMP2
3026    |   lwz CARG3, 4(RD)
3027    |  cror 4*cr7+gt, 4*cr0+gt, 4*cr1+gt
3028    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3029    if (vk) {
3030      |  ble cr7, ->BC_ISEQN_Z
3031    } else {
3032      |  ble cr7, ->BC_ISNEN_Z
3033    }
3034    |.else
3035    |  lwzux TMP0, RA, BASE
3036    |   lwz TMP2, 0(PC)
3037    |    lfd f0, 0(RA)
3038    |   addi PC, PC, 4
3039    |  lwzux TMP1, RD, BASE
3040    |  checknum cr0, TMP0
3041    |   decode_RD4 TMP2, TMP2
3042    |    lfd f1, 0(RD)
3043    |  checknum cr1, TMP1
3044    |   addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3045    |  bge cr0, >5
3046    |  bge cr1, >5
3047    |  fcmpu cr0, f0, f1
3048    if (vk) {
3049      |  bne >1
3050      |  add PC, PC, TMP2
3051    } else {
3052      |  beq >1
3053      |  add PC, PC, TMP2
3054    }
3055    |1:
3056    |  ins_next
3057    |.endif
3058    |5:  // Either or both types are not numbers.
3059    |.if not DUALNUM
3060    |    lwz CARG2, 4(RA)
3061    |    lwz CARG3, 4(RD)
3062    |.endif
3063    |.if FFI
3064    |  cmpwi cr7, TMP0, LJ_TCDATA
3065    |  cmpwi cr5, TMP1, LJ_TCDATA
3066    |.endif
3067    |   not TMP3, TMP0
3068    |  cmplw TMP0, TMP1
3069    |   cmplwi cr1, TMP3, ~LJ_TISPRI		// Primitive?
3070    |.if FFI
3071    |  cror 4*cr7+eq, 4*cr7+eq, 4*cr5+eq
3072    |.endif
3073    |   cmplwi cr6, TMP3, ~LJ_TISTABUD		// Table or userdata?
3074    |.if FFI
3075    |  beq cr7, ->vmeta_equal_cd
3076    |.endif
3077    |    cmplw cr5, CARG2, CARG3
3078    |  crandc 4*cr0+gt, 4*cr0+eq, 4*cr1+gt	// 2: Same type and primitive.
3079    |  crorc 4*cr0+lt, 4*cr5+eq, 4*cr0+eq	// 1: Same tv or different type.
3080    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr5+eq	// 0: Same type and same tv.
3081    |   mr SAVE0, PC
3082    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr0+gt	// 0 or 2.
3083    |  cror 4*cr0+lt, 4*cr0+lt, 4*cr0+gt	// 1 or 2.
3084    if (vk) {
3085      |  bne cr0, >6
3086      |  add PC, PC, TMP2
3087      |6:
3088    } else {
3089      |  beq cr0, >6
3090      |  add PC, PC, TMP2
3091      |6:
3092    }
3093    |.if DUALNUM
3094    |  bge cr0, >2			// Done if 1 or 2.
3095    |1:
3096    |  ins_next
3097    |2:
3098    |.else
3099    |  blt cr0, <1			// Done if 1 or 2.
3100    |.endif
3101    |  blt cr6, <1			// Done if not tab/ud.
3102    |
3103    |  // Different tables or userdatas. Need to check __eq metamethod.
3104    |  // Field metatable must be at same offset for GCtab and GCudata!
3105    |  lwz TAB:TMP2, TAB:CARG2->metatable
3106    |   li CARG4, 1-vk			// ne = 0 or 1.
3107    |  cmplwi TAB:TMP2, 0
3108    |  beq <1				// No metatable?
3109    |  lbz TMP2, TAB:TMP2->nomm
3110    |  andix. TMP2, TMP2, 1<<MM_eq
3111    |  bne <1				// Or 'no __eq' flag set?
3112    |  mr PC, SAVE0			// Restore old PC.
3113    |  b ->vmeta_equal			// Handle __eq metamethod.
3114    break;
3115
3116  case BC_ISEQS: case BC_ISNES:
3117    vk = op == BC_ISEQS;
3118    |  // RA = src*8, RD = str_const*8 (~), JMP with RD = target
3119    |  lwzux TMP0, RA, BASE
3120    |   srwi RD, RD, 1
3121    |  lwz STR:TMP3, 4(RA)
3122    |    lwz TMP2, 0(PC)
3123    |   subfic RD, RD, -4
3124    |    addi PC, PC, 4
3125    |.if FFI
3126    |  cmpwi TMP0, LJ_TCDATA
3127    |.endif
3128    |   lwzx STR:TMP1, KBASE, RD	// KBASE-4-str_const*4
3129    |  .gpr64 extsw TMP0, TMP0
3130    |  subfic TMP0, TMP0, LJ_TSTR
3131    |.if FFI
3132    |  beq ->vmeta_equal_cd
3133    |.endif
3134    |  sub TMP1, STR:TMP1, STR:TMP3
3135    |  or TMP0, TMP0, TMP1
3136    |    decode_RD4 TMP2, TMP2
3137    |  subfic TMP0, TMP0, 0
3138    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3139    |  subfe TMP1, TMP1, TMP1
3140    if (vk) {
3141      |  andc TMP2, TMP2, TMP1
3142    } else {
3143      |  and TMP2, TMP2, TMP1
3144    }
3145    |  add PC, PC, TMP2
3146    |  ins_next
3147    break;
3148
3149  case BC_ISEQN: case BC_ISNEN:
3150    vk = op == BC_ISEQN;
3151    |  // RA = src*8, RD = num_const*8, JMP with RD = target
3152    |.if DUALNUM
3153    |  lwzux TMP0, RA, BASE
3154    |    addi PC, PC, 4
3155    |   lwz CARG2, 4(RA)
3156    |  lwzux TMP1, RD, KBASE
3157    |  checknum cr0, TMP0
3158    |    lwz TMP2, -4(PC)
3159    |  checknum cr1, TMP1
3160    |    decode_RD4 TMP2, TMP2
3161    |   lwz CARG3, 4(RD)
3162    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3163    if (vk) {
3164      |->BC_ISEQN_Z:
3165    } else {
3166      |->BC_ISNEN_Z:
3167    }
3168    |  bne cr0, >7
3169    |  bne cr1, >8
3170    |   cmpw CARG2, CARG3
3171    |4:
3172    |.else
3173    if (vk) {
3174      |->BC_ISEQN_Z:  // Dummy label.
3175    } else {
3176      |->BC_ISNEN_Z:  // Dummy label.
3177    }
3178    |  lwzx TMP0, BASE, RA
3179    |    addi PC, PC, 4
3180    |   lfdx f0, BASE, RA
3181    |    lwz TMP2, -4(PC)
3182    |  lfdx f1, KBASE, RD
3183    |    decode_RD4 TMP2, TMP2
3184    |  checknum TMP0
3185    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3186    |  bge >3
3187    |  fcmpu cr0, f0, f1
3188    |.endif
3189    if (vk) {
3190      |  bne >1
3191      |  add PC, PC, TMP2
3192      |1:
3193      |.if not FFI
3194      |3:
3195      |.endif
3196    } else {
3197      |  beq >2
3198      |1:
3199      |.if not FFI
3200      |3:
3201      |.endif
3202      |  add PC, PC, TMP2
3203      |2:
3204    }
3205    |  ins_next
3206    |.if FFI
3207    |3:
3208    |  cmpwi TMP0, LJ_TCDATA
3209    |  beq ->vmeta_equal_cd
3210    |  b <1
3211    |.endif
3212    |.if DUALNUM
3213    |7:  // RA is not an integer.
3214    |  bge cr0, <3
3215    |  // RA is a number.
3216    |   lfd f0, 0(RA)
3217    |  blt cr1, >1
3218    |  // RA is a number, RD is an integer.
3219    |  tonum_i f1, CARG3
3220    |  b >2
3221    |
3222    |8: // RA is an integer, RD is a number.
3223    |  tonum_i f0, CARG2
3224    |1:
3225    |  lfd f1, 0(RD)
3226    |2:
3227    |  fcmpu cr0, f0, f1
3228    |  b <4
3229    |.endif
3230    break;
3231
3232  case BC_ISEQP: case BC_ISNEP:
3233    vk = op == BC_ISEQP;
3234    |  // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target
3235    |  lwzx TMP0, BASE, RA
3236    |   srwi TMP1, RD, 3
3237    |    lwz TMP2, 0(PC)
3238    |   not TMP1, TMP1
3239    |    addi PC, PC, 4
3240    |.if FFI
3241    |  cmpwi TMP0, LJ_TCDATA
3242    |.endif
3243    |  sub TMP0, TMP0, TMP1
3244    |.if FFI
3245    |  beq ->vmeta_equal_cd
3246    |.endif
3247    |    decode_RD4 TMP2, TMP2
3248    |  .gpr64 extsw TMP0, TMP0
3249    |  addic TMP0, TMP0, -1
3250    |    addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3251    |  subfe TMP1, TMP1, TMP1
3252    if (vk) {
3253      |  and TMP2, TMP2, TMP1
3254    } else {
3255      |  andc TMP2, TMP2, TMP1
3256    }
3257    |  add PC, PC, TMP2
3258    |  ins_next
3259    break;
3260
3261  /* -- Unary test and copy ops ------------------------------------------- */
3262
3263  case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF:
3264    |  // RA = dst*8 or unused, RD = src*8, JMP with RD = target
3265    |  lwzx TMP0, BASE, RD
3266    |   lwz INS, 0(PC)
3267    |   addi PC, PC, 4
3268    if (op == BC_IST || op == BC_ISF) {
3269      |  .gpr64 extsw TMP0, TMP0
3270      |  subfic TMP0, TMP0, LJ_TTRUE
3271      |   decode_RD4 TMP2, INS
3272      |  subfe TMP1, TMP1, TMP1
3273      |   addis TMP2, TMP2, -(BCBIAS_J*4 >> 16)
3274      if (op == BC_IST) {
3275	|  andc TMP2, TMP2, TMP1
3276      } else {
3277	|  and TMP2, TMP2, TMP1
3278      }
3279      |  add PC, PC, TMP2
3280    } else {
3281      |  li TMP1, LJ_TFALSE
3282      |   lfdx f0, BASE, RD
3283      |  cmplw TMP0, TMP1
3284      if (op == BC_ISTC) {
3285	|  bge >1
3286      } else {
3287	|  blt >1
3288      }
3289      |  addis PC, PC, -(BCBIAS_J*4 >> 16)
3290      |  decode_RD4 TMP2, INS
3291      |   stfdx f0, BASE, RA
3292      |  add PC, PC, TMP2
3293      |1:
3294    }
3295    |  ins_next
3296    break;
3297
3298  case BC_ISTYPE:
3299    |  // RA = src*8, RD = -type*8
3300    |  lwzx TMP0, BASE, RA
3301    |  srwi TMP1, RD, 3
3302    |  ins_next1
3303    |.if not PPE and not GPR64
3304    |  add. TMP0, TMP0, TMP1
3305    |.else
3306    |  neg TMP1, TMP1
3307    |  cmpw TMP0, TMP1
3308    |.endif
3309    |  bne ->vmeta_istype
3310    |  ins_next2
3311    break;
3312  case BC_ISNUM:
3313    |  // RA = src*8, RD = -(TISNUM-1)*8
3314    |  lwzx TMP0, BASE, RA
3315    |  ins_next1
3316    |  checknum TMP0
3317    |  bge ->vmeta_istype
3318    |  ins_next2
3319    break;
3320
3321  /* -- Unary ops --------------------------------------------------------- */
3322
3323  case BC_MOV:
3324    |  // RA = dst*8, RD = src*8
3325    |  ins_next1
3326    |  lfdx f0, BASE, RD
3327    |  stfdx f0, BASE, RA
3328    |  ins_next2
3329    break;
3330  case BC_NOT:
3331    |  // RA = dst*8, RD = src*8
3332    |  ins_next1
3333    |  lwzx TMP0, BASE, RD
3334    |  .gpr64 extsw TMP0, TMP0
3335    |  subfic TMP1, TMP0, LJ_TTRUE
3336    |  adde TMP0, TMP0, TMP1
3337    |  stwx TMP0, BASE, RA
3338    |  ins_next2
3339    break;
3340  case BC_UNM:
3341    |  // RA = dst*8, RD = src*8
3342    |  lwzux TMP1, RD, BASE
3343    |   lwz TMP0, 4(RD)
3344    |  checknum TMP1
3345    |.if DUALNUM
3346    |  bne >5
3347    |.if GPR64
3348    |  lus TMP2, 0x8000
3349    |  neg TMP0, TMP0
3350    |  cmplw TMP0, TMP2
3351    |  beq >4
3352    |.else
3353    |  nego. TMP0, TMP0
3354    |  bso >4
3355    |1:
3356    |.endif
3357    |  ins_next1
3358    |  stwux TISNUM, RA, BASE
3359    |   stw TMP0, 4(RA)
3360    |3:
3361    |  ins_next2
3362    |4:
3363    |.if not GPR64
3364    |  // Potential overflow.
3365    |  checkov TMP1, <1			// Ignore unrelated overflow.
3366    |.endif
3367    |  lus TMP1, 0x41e0			// 2^31.
3368    |  li TMP0, 0
3369    |  b >7
3370    |.endif
3371    |5:
3372    |  bge ->vmeta_unm
3373    |  xoris TMP1, TMP1, 0x8000
3374    |7:
3375    |  ins_next1
3376    |  stwux TMP1, RA, BASE
3377    |   stw TMP0, 4(RA)
3378    |.if DUALNUM
3379    |  b <3
3380    |.else
3381    |  ins_next2
3382    |.endif
3383    break;
3384  case BC_LEN:
3385    |  // RA = dst*8, RD = src*8
3386    |  lwzux TMP0, RD, BASE
3387    |   lwz CARG1, 4(RD)
3388    |  checkstr TMP0; bne >2
3389    |  lwz CRET1, STR:CARG1->len
3390    |1:
3391    |.if DUALNUM
3392    |  ins_next1
3393    |  stwux TISNUM, RA, BASE
3394    |   stw CRET1, 4(RA)
3395    |.else
3396    |  tonum_u f0, CRET1		// Result is a non-negative integer.
3397    |  ins_next1
3398    |  stfdx f0, BASE, RA
3399    |.endif
3400    |  ins_next2
3401    |2:
3402    |  checktab TMP0; bne ->vmeta_len
3403#if LJ_52
3404    |  lwz TAB:TMP2, TAB:CARG1->metatable
3405    |  cmplwi TAB:TMP2, 0
3406    |  bne >9
3407    |3:
3408#endif
3409    |->BC_LEN_Z:
3410    |  bl extern lj_tab_len		// (GCtab *t)
3411    |  // Returns uint32_t (but less than 2^31).
3412    |  b <1
3413#if LJ_52
3414    |9:
3415    |  lbz TMP0, TAB:TMP2->nomm
3416    |  andix. TMP0, TMP0, 1<<MM_len
3417    |  bne <3				// 'no __len' flag set: done.
3418    |  b ->vmeta_len
3419#endif
3420    break;
3421
3422  /* -- Binary ops -------------------------------------------------------- */
3423
3424    |.macro ins_arithpre
3425    |  // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
3426    ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
3427    ||switch (vk) {
3428    ||case 0:
3429    |   lwzx TMP1, BASE, RB
3430    |   .if DUALNUM
3431    |     lwzx TMP2, KBASE, RC
3432    |   .endif
3433    |    lfdx f14, BASE, RB
3434    |    lfdx f15, KBASE, RC
3435    |   .if DUALNUM
3436    |     checknum cr0, TMP1
3437    |     checknum cr1, TMP2
3438    |     crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3439    |     bge ->vmeta_arith_vn
3440    |   .else
3441    |     checknum TMP1; bge ->vmeta_arith_vn
3442    |   .endif
3443    ||  break;
3444    ||case 1:
3445    |   lwzx TMP1, BASE, RB
3446    |   .if DUALNUM
3447    |     lwzx TMP2, KBASE, RC
3448    |   .endif
3449    |    lfdx f15, BASE, RB
3450    |    lfdx f14, KBASE, RC
3451    |   .if DUALNUM
3452    |     checknum cr0, TMP1
3453    |     checknum cr1, TMP2
3454    |     crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3455    |     bge ->vmeta_arith_nv
3456    |   .else
3457    |     checknum TMP1; bge ->vmeta_arith_nv
3458    |   .endif
3459    ||  break;
3460    ||default:
3461    |   lwzx TMP1, BASE, RB
3462    |   lwzx TMP2, BASE, RC
3463    |    lfdx f14, BASE, RB
3464    |    lfdx f15, BASE, RC
3465    |   checknum cr0, TMP1
3466    |   checknum cr1, TMP2
3467    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3468    |   bge ->vmeta_arith_vv
3469    ||  break;
3470    ||}
3471    |.endmacro
3472    |
3473    |.macro ins_arithfallback, ins
3474    ||switch (vk) {
3475    ||case 0:
3476    |   ins ->vmeta_arith_vn2
3477    ||  break;
3478    ||case 1:
3479    |   ins ->vmeta_arith_nv2
3480    ||  break;
3481    ||default:
3482    |   ins ->vmeta_arith_vv2
3483    ||  break;
3484    ||}
3485    |.endmacro
3486    |
3487    |.macro intmod, a, b, c
3488    |  bl ->vm_modi
3489    |.endmacro
3490    |
3491    |.macro fpmod, a, b, c
3492    |->BC_MODVN_Z:
3493    |  fdiv FARG1, b, c
3494    |  // NYI: Use internal implementation of floor.
3495    |  blex floor			// floor(b/c)
3496    |  fmul a, FARG1, c
3497    |  fsub a, b, a			// b - floor(b/c)*c
3498    |.endmacro
3499    |
3500    |.macro ins_arithfp, fpins
3501    |  ins_arithpre
3502    |.if "fpins" == "fpmod_"
3503    |  b ->BC_MODVN_Z			// Avoid 3 copies. It's slow anyway.
3504    |.else
3505    |  fpins f0, f14, f15
3506    |  ins_next1
3507    |  stfdx f0, BASE, RA
3508    |  ins_next2
3509    |.endif
3510    |.endmacro
3511    |
3512    |.macro ins_arithdn, intins, fpins
3513    |  // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8
3514    ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN);
3515    ||switch (vk) {
3516    ||case 0:
3517    |   lwzux TMP1, RB, BASE
3518    |   lwzux TMP2, RC, KBASE
3519    |    lwz CARG1, 4(RB)
3520    |   checknum cr0, TMP1
3521    |    lwz CARG2, 4(RC)
3522    ||  break;
3523    ||case 1:
3524    |   lwzux TMP1, RB, BASE
3525    |   lwzux TMP2, RC, KBASE
3526    |    lwz CARG2, 4(RB)
3527    |   checknum cr0, TMP1
3528    |    lwz CARG1, 4(RC)
3529    ||  break;
3530    ||default:
3531    |   lwzux TMP1, RB, BASE
3532    |   lwzux TMP2, RC, BASE
3533    |    lwz CARG1, 4(RB)
3534    |   checknum cr0, TMP1
3535    |    lwz CARG2, 4(RC)
3536    ||  break;
3537    ||}
3538    |  checknum cr1, TMP2
3539    |  bne >5
3540    |  bne cr1, >5
3541    |  intins CARG1, CARG1, CARG2
3542    |  bso >4
3543    |1:
3544    |  ins_next1
3545    |  stwux TISNUM, RA, BASE
3546    |  stw CARG1, 4(RA)
3547    |2:
3548    |  ins_next2
3549    |4:  // Overflow.
3550    |  checkov TMP0, <1			// Ignore unrelated overflow.
3551    |  ins_arithfallback b
3552    |5:  // FP variant.
3553    ||if (vk == 1) {
3554    |  lfd f15, 0(RB)
3555    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3556    |  lfd f14, 0(RC)
3557    ||} else {
3558    |  lfd f14, 0(RB)
3559    |   crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3560    |  lfd f15, 0(RC)
3561    ||}
3562    |   ins_arithfallback bge
3563    |.if "fpins" == "fpmod_"
3564    |  b ->BC_MODVN_Z			// Avoid 3 copies. It's slow anyway.
3565    |.else
3566    |  fpins f0, f14, f15
3567    |  ins_next1
3568    |  stfdx f0, BASE, RA
3569    |  b <2
3570    |.endif
3571    |.endmacro
3572    |
3573    |.macro ins_arith, intins, fpins
3574    |.if DUALNUM
3575    |  ins_arithdn intins, fpins
3576    |.else
3577    |  ins_arithfp fpins
3578    |.endif
3579    |.endmacro
3580
3581  case BC_ADDVN: case BC_ADDNV: case BC_ADDVV:
3582    |.if GPR64
3583    |.macro addo32., y, a, b
3584    |  // Need to check overflow for (a<<32) + (b<<32).
3585    |  rldicr TMP0, a, 32, 31
3586    |  rldicr TMP3, b, 32, 31
3587    |  addo. TMP0, TMP0, TMP3
3588    |  add y, a, b
3589    |.endmacro
3590    |  ins_arith addo32., fadd
3591    |.else
3592    |  ins_arith addo., fadd
3593    |.endif
3594    break;
3595  case BC_SUBVN: case BC_SUBNV: case BC_SUBVV:
3596    |.if GPR64
3597    |.macro subo32., y, a, b
3598    |  // Need to check overflow for (a<<32) - (b<<32).
3599    |  rldicr TMP0, a, 32, 31
3600    |  rldicr TMP3, b, 32, 31
3601    |  subo. TMP0, TMP0, TMP3
3602    |  sub y, a, b
3603    |.endmacro
3604    |  ins_arith subo32., fsub
3605    |.else
3606    |  ins_arith subo., fsub
3607    |.endif
3608    break;
3609  case BC_MULVN: case BC_MULNV: case BC_MULVV:
3610    |  ins_arith mullwo., fmul
3611    break;
3612  case BC_DIVVN: case BC_DIVNV: case BC_DIVVV:
3613    |  ins_arithfp fdiv
3614    break;
3615  case BC_MODVN:
3616    |  ins_arith intmod, fpmod
3617    break;
3618  case BC_MODNV: case BC_MODVV:
3619    |  ins_arith intmod, fpmod_
3620    break;
3621  case BC_POW:
3622    |  // NYI: (partial) integer arithmetic.
3623    |  lwzx TMP1, BASE, RB
3624    |   lfdx FARG1, BASE, RB
3625    |  lwzx TMP2, BASE, RC
3626    |   lfdx FARG2, BASE, RC
3627    |  checknum cr0, TMP1
3628    |  checknum cr1, TMP2
3629    |  crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
3630    |  bge ->vmeta_arith_vv
3631    |  blex pow
3632    |  ins_next1
3633    |  stfdx FARG1, BASE, RA
3634    |  ins_next2
3635    break;
3636
3637  case BC_CAT:
3638    |  // RA = dst*8, RB = src_start*8, RC = src_end*8
3639    |  sub CARG3, RC, RB
3640    |   stp BASE, L->base
3641    |  add CARG2, BASE, RC
3642    |  mr SAVE0, RB
3643    |->BC_CAT_Z:
3644    |   stw PC, SAVE_PC
3645    |  mr CARG1, L
3646    |  srwi CARG3, CARG3, 3
3647    |  bl extern lj_meta_cat		// (lua_State *L, TValue *top, int left)
3648    |  // Returns NULL (finished) or TValue * (metamethod).
3649    |  cmplwi CRET1, 0
3650    |   lp BASE, L->base
3651    |  bne ->vmeta_binop
3652    |  ins_next1
3653    |  lfdx f0, BASE, SAVE0		// Copy result from RB to RA.
3654    |  stfdx f0, BASE, RA
3655    |  ins_next2
3656    break;
3657
3658  /* -- Constant ops ------------------------------------------------------ */
3659
3660  case BC_KSTR:
3661    |  // RA = dst*8, RD = str_const*8 (~)
3662    |  srwi TMP1, RD, 1
3663    |  subfic TMP1, TMP1, -4
3664    |  ins_next1
3665    |  lwzx TMP0, KBASE, TMP1		// KBASE-4-str_const*4
3666    |  li TMP2, LJ_TSTR
3667    |  stwux TMP2, RA, BASE
3668    |  stw TMP0, 4(RA)
3669    |  ins_next2
3670    break;
3671  case BC_KCDATA:
3672    |.if FFI
3673    |  // RA = dst*8, RD = cdata_const*8 (~)
3674    |  srwi TMP1, RD, 1
3675    |  subfic TMP1, TMP1, -4
3676    |  ins_next1
3677    |  lwzx TMP0, KBASE, TMP1		// KBASE-4-cdata_const*4
3678    |  li TMP2, LJ_TCDATA
3679    |  stwux TMP2, RA, BASE
3680    |  stw TMP0, 4(RA)
3681    |  ins_next2
3682    |.endif
3683    break;
3684  case BC_KSHORT:
3685    |  // RA = dst*8, RD = int16_literal*8
3686    |.if DUALNUM
3687    |  slwi RD, RD, 13
3688    |  srawi RD, RD, 16
3689    |  ins_next1
3690    |   stwux TISNUM, RA, BASE
3691    |   stw RD, 4(RA)
3692    |  ins_next2
3693    |.else
3694    |  // The soft-float approach is faster.
3695    |  slwi RD, RD, 13
3696    |  srawi TMP1, RD, 31
3697    |  xor TMP2, TMP1, RD
3698    |  sub TMP2, TMP2, TMP1		// TMP2 = abs(x)
3699    |  cntlzw TMP3, TMP2
3700    |  subfic TMP1, TMP3, 0x40d		// TMP1 = exponent-1
3701    |   slw TMP2, TMP2, TMP3		// TMP2 = left aligned mantissa
3702    |    subfic TMP3, RD, 0
3703    |  slwi TMP1, TMP1, 20
3704    |   rlwimi RD, TMP2, 21, 1, 31	// hi = sign(x) | (mantissa>>11)
3705    |    subfe TMP0, TMP0, TMP0
3706    |   add RD, RD, TMP1		// hi = hi + exponent-1
3707    |    and RD, RD, TMP0		// hi = x == 0 ? 0 : hi
3708    |  ins_next1
3709    |    stwux RD, RA, BASE
3710    |    stw ZERO, 4(RA)
3711    |  ins_next2
3712    |.endif
3713    break;
3714  case BC_KNUM:
3715    |  // RA = dst*8, RD = num_const*8
3716    |  ins_next1
3717    |  lfdx f0, KBASE, RD
3718    |  stfdx f0, BASE, RA
3719    |  ins_next2
3720    break;
3721  case BC_KPRI:
3722    |  // RA = dst*8, RD = primitive_type*8 (~)
3723    |  srwi TMP1, RD, 3
3724    |  not TMP0, TMP1
3725    |  ins_next1
3726    |  stwx TMP0, BASE, RA
3727    |  ins_next2
3728    break;
3729  case BC_KNIL:
3730    |  // RA = base*8, RD = end*8
3731    |  stwx TISNIL, BASE, RA
3732    |   addi RA, RA, 8
3733    |1:
3734    |  stwx TISNIL, BASE, RA
3735    |  cmpw RA, RD
3736    |   addi RA, RA, 8
3737    |  blt <1
3738    |  ins_next_
3739    break;
3740
3741  /* -- Upvalue and function ops ------------------------------------------ */
3742
3743  case BC_UGET:
3744    |  // RA = dst*8, RD = uvnum*8
3745    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3746    |   srwi RD, RD, 1
3747    |   addi RD, RD, offsetof(GCfuncL, uvptr)
3748    |  lwzx UPVAL:RB, LFUNC:RB, RD
3749    |  ins_next1
3750    |  lwz TMP1, UPVAL:RB->v
3751    |  lfd f0, 0(TMP1)
3752    |  stfdx f0, BASE, RA
3753    |  ins_next2
3754    break;
3755  case BC_USETV:
3756    |  // RA = uvnum*8, RD = src*8
3757    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3758    |    srwi RA, RA, 1
3759    |    addi RA, RA, offsetof(GCfuncL, uvptr)
3760    |   lfdux f0, RD, BASE
3761    |  lwzx UPVAL:RB, LFUNC:RB, RA
3762    |  lbz TMP3, UPVAL:RB->marked
3763    |   lwz CARG2, UPVAL:RB->v
3764    |  andix. TMP3, TMP3, LJ_GC_BLACK	// isblack(uv)
3765    |    lbz TMP0, UPVAL:RB->closed
3766    |   lwz TMP2, 0(RD)
3767    |   stfd f0, 0(CARG2)
3768    |    cmplwi cr1, TMP0, 0
3769    |   lwz TMP1, 4(RD)
3770    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
3771    |   subi TMP2, TMP2, (LJ_TNUMX+1)
3772    |  bne >2				// Upvalue is closed and black?
3773    |1:
3774    |  ins_next
3775    |
3776    |2:  // Check if new value is collectable.
3777    |  cmplwi TMP2, LJ_TISGCV - (LJ_TNUMX+1)
3778    |  bge <1				// tvisgcv(v)
3779    |  lbz TMP3, GCOBJ:TMP1->gch.marked
3780    |  andix. TMP3, TMP3, LJ_GC_WHITES	// iswhite(v)
3781    |   la CARG1, GG_DISP2G(DISPATCH)
3782    |  // Crossed a write barrier. Move the barrier forward.
3783    |  beq <1
3784    |  bl extern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3785    |  b <1
3786    break;
3787  case BC_USETS:
3788    |  // RA = uvnum*8, RD = str_const*8 (~)
3789    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3790    |   srwi TMP1, RD, 1
3791    |    srwi RA, RA, 1
3792    |   subfic TMP1, TMP1, -4
3793    |    addi RA, RA, offsetof(GCfuncL, uvptr)
3794    |   lwzx STR:TMP1, KBASE, TMP1	// KBASE-4-str_const*4
3795    |  lwzx UPVAL:RB, LFUNC:RB, RA
3796    |  lbz TMP3, UPVAL:RB->marked
3797    |   lwz CARG2, UPVAL:RB->v
3798    |  andix. TMP3, TMP3, LJ_GC_BLACK	// isblack(uv)
3799    |   lbz TMP3, STR:TMP1->marked
3800    |   lbz TMP2, UPVAL:RB->closed
3801    |   li TMP0, LJ_TSTR
3802    |   stw STR:TMP1, 4(CARG2)
3803    |   stw TMP0, 0(CARG2)
3804    |  bne >2
3805    |1:
3806    |  ins_next
3807    |
3808    |2:  // Check if string is white and ensure upvalue is closed.
3809    |  andix. TMP3, TMP3, LJ_GC_WHITES	// iswhite(str)
3810    |   cmplwi cr1, TMP2, 0
3811    |  cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
3812    |   la CARG1, GG_DISP2G(DISPATCH)
3813    |  // Crossed a write barrier. Move the barrier forward.
3814    |  beq <1
3815    |  bl extern lj_gc_barrieruv	// (global_State *g, TValue *tv)
3816    |  b <1
3817    break;
3818  case BC_USETN:
3819    |  // RA = uvnum*8, RD = num_const*8
3820    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3821    |   srwi RA, RA, 1
3822    |   addi RA, RA, offsetof(GCfuncL, uvptr)
3823    |    lfdx f0, KBASE, RD
3824    |  lwzx UPVAL:RB, LFUNC:RB, RA
3825    |  ins_next1
3826    |  lwz TMP1, UPVAL:RB->v
3827    |  stfd f0, 0(TMP1)
3828    |  ins_next2
3829    break;
3830  case BC_USETP:
3831    |  // RA = uvnum*8, RD = primitive_type*8 (~)
3832    |  lwz LFUNC:RB, FRAME_FUNC(BASE)
3833    |   srwi RA, RA, 1
3834    |    srwi TMP0, RD, 3
3835    |   addi RA, RA, offsetof(GCfuncL, uvptr)
3836    |    not TMP0, TMP0
3837    |  lwzx UPVAL:RB, LFUNC:RB, RA
3838    |  ins_next1
3839    |  lwz TMP1, UPVAL:RB->v
3840    |  stw TMP0, 0(TMP1)
3841    |  ins_next2
3842    break;
3843
3844  case BC_UCLO:
3845    |  // RA = level*8, RD = target
3846    |  lwz TMP1, L->openupval
3847    |  branch_RD			// Do this first since RD is not saved.
3848    |   stp BASE, L->base
3849    |  cmplwi TMP1, 0
3850    |   mr CARG1, L
3851    |  beq >1
3852    |   add CARG2, BASE, RA
3853    |  bl extern lj_func_closeuv	// (lua_State *L, TValue *level)
3854    |  lp BASE, L->base
3855    |1:
3856    |  ins_next
3857    break;
3858
3859  case BC_FNEW:
3860    |  // RA = dst*8, RD = proto_const*8 (~) (holding function prototype)
3861    |  srwi TMP1, RD, 1
3862    |   stp BASE, L->base
3863    |  subfic TMP1, TMP1, -4
3864    |   stw PC, SAVE_PC
3865    |  lwzx CARG2, KBASE, TMP1		// KBASE-4-tab_const*4
3866    |   mr CARG1, L
3867    |  lwz CARG3, FRAME_FUNC(BASE)
3868    |  // (lua_State *L, GCproto *pt, GCfuncL *parent)
3869    |  bl extern lj_func_newL_gc
3870    |  // Returns GCfuncL *.
3871    |  lp BASE, L->base
3872    |   li TMP0, LJ_TFUNC
3873    |  stwux TMP0, RA, BASE
3874    |  stw LFUNC:CRET1, 4(RA)
3875    |  ins_next
3876    break;
3877
3878  /* -- Table ops --------------------------------------------------------- */
3879
3880  case BC_TNEW:
3881  case BC_TDUP:
3882    |  // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~)
3883    |  lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH)
3884    |   mr CARG1, L
3885    |  lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH)
3886    |   stp BASE, L->base
3887    |  cmplw TMP0, TMP1
3888    |   stw PC, SAVE_PC
3889    |  bge >5
3890    |1:
3891    if (op == BC_TNEW) {
3892      |  rlwinm CARG2, RD, 29, 21, 31
3893      |  rlwinm CARG3, RD, 18, 27, 31
3894      |  cmpwi CARG2, 0x7ff; beq >3
3895      |2:
3896      |  bl extern lj_tab_new  // (lua_State *L, int32_t asize, uint32_t hbits)
3897      |  // Returns Table *.
3898    } else {
3899      |  srwi TMP1, RD, 1
3900      |  subfic TMP1, TMP1, -4
3901      |  lwzx CARG2, KBASE, TMP1		// KBASE-4-tab_const*4
3902      |  bl extern lj_tab_dup  // (lua_State *L, Table *kt)
3903      |  // Returns Table *.
3904    }
3905    |  lp BASE, L->base
3906    |   li TMP0, LJ_TTAB
3907    |  stwux TMP0, RA, BASE
3908    |  stw TAB:CRET1, 4(RA)
3909    |  ins_next
3910    if (op == BC_TNEW) {
3911      |3:
3912      |  li CARG2, 0x801
3913      |  b <2
3914    }
3915    |5:
3916    |  mr SAVE0, RD
3917    |  bl extern lj_gc_step_fixtop  // (lua_State *L)
3918    |  mr RD, SAVE0
3919    |  mr CARG1, L
3920    |  b <1
3921    break;
3922
3923  case BC_GGET:
3924    |  // RA = dst*8, RD = str_const*8 (~)
3925  case BC_GSET:
3926    |  // RA = src*8, RD = str_const*8 (~)
3927    |  lwz LFUNC:TMP2, FRAME_FUNC(BASE)
3928    |   srwi TMP1, RD, 1
3929    |  lwz TAB:RB, LFUNC:TMP2->env
3930    |   subfic TMP1, TMP1, -4
3931    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
3932    if (op == BC_GGET) {
3933      |  b ->BC_TGETS_Z
3934    } else {
3935      |  b ->BC_TSETS_Z
3936    }
3937    break;
3938
3939  case BC_TGETV:
3940    |  // RA = dst*8, RB = table*8, RC = key*8
3941    |  lwzux CARG1, RB, BASE
3942    |  lwzux CARG2, RC, BASE
3943    |   lwz TAB:RB, 4(RB)
3944    |.if DUALNUM
3945    |   lwz RC, 4(RC)
3946    |.else
3947    |   lfd f0, 0(RC)
3948    |.endif
3949    |  checktab CARG1
3950    |   checknum cr1, CARG2
3951    |  bne ->vmeta_tgetv
3952    |.if DUALNUM
3953    |  lwz TMP0, TAB:RB->asize
3954    |   bne cr1, >5
3955    |   lwz TMP1, TAB:RB->array
3956    |  cmplw TMP0, RC
3957    |   slwi TMP2, RC, 3
3958    |.else
3959    |   bge cr1, >5
3960    |  // Convert number key to integer, check for integerness and range.
3961    |  fctiwz f1, f0
3962    |    fadd f2, f0, TOBIT
3963    |  stfd f1, TMPD
3964    |   lwz TMP0, TAB:RB->asize
3965    |    fsub f2, f2, TOBIT
3966    |  lwz TMP2, TMPD_LO
3967    |   lwz TMP1, TAB:RB->array
3968    |    fcmpu cr1, f0, f2
3969    |  cmplw cr0, TMP0, TMP2
3970    |  crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
3971    |   slwi TMP2, TMP2, 3
3972    |.endif
3973    |  ble ->vmeta_tgetv		// Integer key and in array part?
3974    |  lwzx TMP0, TMP1, TMP2
3975    |   lfdx f14, TMP1, TMP2
3976    |  checknil TMP0; beq >2
3977    |1:
3978    |  ins_next1
3979    |   stfdx f14, BASE, RA
3980    |  ins_next2
3981    |
3982    |2:  // Check for __index if table value is nil.
3983    |  lwz TAB:TMP2, TAB:RB->metatable
3984    |  cmplwi TAB:TMP2, 0
3985    |  beq <1				// No metatable: done.
3986    |  lbz TMP0, TAB:TMP2->nomm
3987    |  andix. TMP0, TMP0, 1<<MM_index
3988    |  bne <1				// 'no __index' flag set: done.
3989    |  b ->vmeta_tgetv
3990    |
3991    |5:
3992    |  checkstr CARG2; bne ->vmeta_tgetv
3993    |.if not DUALNUM
3994    |  lwz STR:RC, 4(RC)
3995    |.endif
3996    |  b ->BC_TGETS_Z			// String key?
3997    break;
3998  case BC_TGETS:
3999    |  // RA = dst*8, RB = table*8, RC = str_const*8 (~)
4000    |  lwzux CARG1, RB, BASE
4001    |   srwi TMP1, RC, 1
4002    |    lwz TAB:RB, 4(RB)
4003    |   subfic TMP1, TMP1, -4
4004    |  checktab CARG1
4005    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
4006    |  bne ->vmeta_tgets1
4007    |->BC_TGETS_Z:
4008    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8
4009    |  lwz TMP0, TAB:RB->hmask
4010    |  lwz TMP1, STR:RC->hash
4011    |  lwz NODE:TMP2, TAB:RB->node
4012    |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
4013    |  slwi TMP0, TMP1, 5
4014    |  slwi TMP1, TMP1, 3
4015    |  sub TMP1, TMP0, TMP1
4016    |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
4017    |1:
4018    |  lwz CARG1, NODE:TMP2->key
4019    |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
4020    |    lwz CARG2, NODE:TMP2->val
4021    |     lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2)
4022    |  checkstr CARG1; bne >4
4023    |   cmpw TMP0, STR:RC; bne >4
4024    |    checknil CARG2; beq >5		// Key found, but nil value?
4025    |3:
4026    |    stwux CARG2, RA, BASE
4027    |     stw TMP1, 4(RA)
4028    |  ins_next
4029    |
4030    |4:  // Follow hash chain.
4031    |  lwz NODE:TMP2, NODE:TMP2->next
4032    |  cmplwi NODE:TMP2, 0
4033    |  bne <1
4034    |  // End of hash chain: key not found, nil result.
4035    |   li CARG2, LJ_TNIL
4036    |
4037    |5:  // Check for __index if table value is nil.
4038    |  lwz TAB:TMP2, TAB:RB->metatable
4039    |  cmplwi TAB:TMP2, 0
4040    |  beq <3				// No metatable: done.
4041    |  lbz TMP0, TAB:TMP2->nomm
4042    |  andix. TMP0, TMP0, 1<<MM_index
4043    |  bne <3				// 'no __index' flag set: done.
4044    |  b ->vmeta_tgets
4045    break;
4046  case BC_TGETB:
4047    |  // RA = dst*8, RB = table*8, RC = index*8
4048    |  lwzux CARG1, RB, BASE
4049    |   srwi TMP0, RC, 3
4050    |   lwz TAB:RB, 4(RB)
4051    |  checktab CARG1; bne ->vmeta_tgetb
4052    |  lwz TMP1, TAB:RB->asize
4053    |   lwz TMP2, TAB:RB->array
4054    |  cmplw TMP0, TMP1; bge ->vmeta_tgetb
4055    |  lwzx TMP1, TMP2, RC
4056    |   lfdx f0, TMP2, RC
4057    |  checknil TMP1; beq >5
4058    |1:
4059    |  ins_next1
4060    |   stfdx f0, BASE, RA
4061    |  ins_next2
4062    |
4063    |5:  // Check for __index if table value is nil.
4064    |  lwz TAB:TMP2, TAB:RB->metatable
4065    |  cmplwi TAB:TMP2, 0
4066    |  beq <1				// No metatable: done.
4067    |  lbz TMP2, TAB:TMP2->nomm
4068    |  andix. TMP2, TMP2, 1<<MM_index
4069    |  bne <1				// 'no __index' flag set: done.
4070    |  b ->vmeta_tgetb			// Caveat: preserve TMP0!
4071    break;
4072  case BC_TGETR:
4073    |  // RA = dst*8, RB = table*8, RC = key*8
4074    |  add RB, BASE, RB
4075    |  lwz TAB:CARG1, 4(RB)
4076    |.if DUALNUM
4077    |  add RC, BASE, RC
4078    |  lwz TMP0, TAB:CARG1->asize
4079    |  lwz CARG2, 4(RC)
4080    |   lwz TMP1, TAB:CARG1->array
4081    |.else
4082    |  lfdx f0, BASE, RC
4083    |  lwz TMP0, TAB:CARG1->asize
4084    |  toint CARG2, f0
4085    |   lwz TMP1, TAB:CARG1->array
4086    |.endif
4087    |  cmplw TMP0, CARG2
4088    |   slwi TMP2, CARG2, 3
4089    |  ble ->vmeta_tgetr		// In array part?
4090    |   lfdx f14, TMP1, TMP2
4091    |->BC_TGETR_Z:
4092    |  ins_next1
4093    |   stfdx f14, BASE, RA
4094    |  ins_next2
4095    break;
4096
4097  case BC_TSETV:
4098    |  // RA = src*8, RB = table*8, RC = key*8
4099    |  lwzux CARG1, RB, BASE
4100    |  lwzux CARG2, RC, BASE
4101    |   lwz TAB:RB, 4(RB)
4102    |.if DUALNUM
4103    |   lwz RC, 4(RC)
4104    |.else
4105    |   lfd f0, 0(RC)
4106    |.endif
4107    |  checktab CARG1
4108    |   checknum cr1, CARG2
4109    |  bne ->vmeta_tsetv
4110    |.if DUALNUM
4111    |  lwz TMP0, TAB:RB->asize
4112    |   bne cr1, >5
4113    |   lwz TMP1, TAB:RB->array
4114    |  cmplw TMP0, RC
4115    |   slwi TMP0, RC, 3
4116    |.else
4117    |   bge cr1, >5
4118    |  // Convert number key to integer, check for integerness and range.
4119    |  fctiwz f1, f0
4120    |    fadd f2, f0, TOBIT
4121    |  stfd f1, TMPD
4122    |   lwz TMP0, TAB:RB->asize
4123    |    fsub f2, f2, TOBIT
4124    |  lwz TMP2, TMPD_LO
4125    |   lwz TMP1, TAB:RB->array
4126    |    fcmpu cr1, f0, f2
4127    |  cmplw cr0, TMP0, TMP2
4128    |  crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq
4129    |   slwi TMP0, TMP2, 3
4130    |.endif
4131    |  ble ->vmeta_tsetv		// Integer key and in array part?
4132    |   lwzx TMP2, TMP1, TMP0
4133    |  lbz TMP3, TAB:RB->marked
4134    |    lfdx f14, BASE, RA
4135    |   checknil TMP2; beq >3
4136    |1:
4137    |  andix. TMP2, TMP3, LJ_GC_BLACK	// isblack(table)
4138    |    stfdx f14, TMP1, TMP0
4139    |  bne >7
4140    |2:
4141    |  ins_next
4142    |
4143    |3:  // Check for __newindex if previous value is nil.
4144    |  lwz TAB:TMP2, TAB:RB->metatable
4145    |  cmplwi TAB:TMP2, 0
4146    |  beq <1				// No metatable: done.
4147    |  lbz TMP2, TAB:TMP2->nomm
4148    |  andix. TMP2, TMP2, 1<<MM_newindex
4149    |  bne <1				// 'no __newindex' flag set: done.
4150    |  b ->vmeta_tsetv
4151    |
4152    |5:
4153    |  checkstr CARG2; bne ->vmeta_tsetv
4154    |.if not DUALNUM
4155    |  lwz STR:RC, 4(RC)
4156    |.endif
4157    |  b ->BC_TSETS_Z			// String key?
4158    |
4159    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4160    |  barrierback TAB:RB, TMP3, TMP0
4161    |  b <2
4162    break;
4163  case BC_TSETS:
4164    |  // RA = src*8, RB = table*8, RC = str_const*8 (~)
4165    |  lwzux CARG1, RB, BASE
4166    |   srwi TMP1, RC, 1
4167    |    lwz TAB:RB, 4(RB)
4168    |   subfic TMP1, TMP1, -4
4169    |  checktab CARG1
4170    |   lwzx STR:RC, KBASE, TMP1	// KBASE-4-str_const*4
4171    |  bne ->vmeta_tsets1
4172    |->BC_TSETS_Z:
4173    |  // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8
4174    |  lwz TMP0, TAB:RB->hmask
4175    |  lwz TMP1, STR:RC->hash
4176    |  lwz NODE:TMP2, TAB:RB->node
4177    |    stb ZERO, TAB:RB->nomm		// Clear metamethod cache.
4178    |  and TMP1, TMP1, TMP0		// idx = str->hash & tab->hmask
4179    |    lfdx f14, BASE, RA
4180    |  slwi TMP0, TMP1, 5
4181    |  slwi TMP1, TMP1, 3
4182    |  sub TMP1, TMP0, TMP1
4183    |    lbz TMP3, TAB:RB->marked
4184    |  add NODE:TMP2, NODE:TMP2, TMP1	// node = tab->node + (idx*32-idx*8)
4185    |1:
4186    |  lwz CARG1, NODE:TMP2->key
4187    |   lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2)
4188    |    lwz CARG2, NODE:TMP2->val
4189    |     lwz NODE:TMP1, NODE:TMP2->next
4190    |  checkstr CARG1; bne >5
4191    |   cmpw TMP0, STR:RC; bne >5
4192    |    checknil CARG2; beq >4		// Key found, but nil value?
4193    |2:
4194    |  andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4195    |    stfd f14, NODE:TMP2->val
4196    |  bne >7
4197    |3:
4198    |  ins_next
4199    |
4200    |4:  // Check for __newindex if previous value is nil.
4201    |  lwz TAB:TMP1, TAB:RB->metatable
4202    |  cmplwi TAB:TMP1, 0
4203    |  beq <2				// No metatable: done.
4204    |  lbz TMP0, TAB:TMP1->nomm
4205    |  andix. TMP0, TMP0, 1<<MM_newindex
4206    |  bne <2				// 'no __newindex' flag set: done.
4207    |  b ->vmeta_tsets
4208    |
4209    |5:  // Follow hash chain.
4210    |  cmplwi NODE:TMP1, 0
4211    |   mr NODE:TMP2, NODE:TMP1
4212    |  bne <1
4213    |  // End of hash chain: key not found, add a new one.
4214    |
4215    |  // But check for __newindex first.
4216    |  lwz TAB:TMP1, TAB:RB->metatable
4217    |   la CARG3, DISPATCH_GL(tmptv)(DISPATCH)
4218    |   stw PC, SAVE_PC
4219    |   mr CARG1, L
4220    |  cmplwi TAB:TMP1, 0
4221    |   stp BASE, L->base
4222    |  beq >6				// No metatable: continue.
4223    |  lbz TMP0, TAB:TMP1->nomm
4224    |  andix. TMP0, TMP0, 1<<MM_newindex
4225    |  beq ->vmeta_tsets		// 'no __newindex' flag NOT set: check.
4226    |6:
4227    |  li TMP0, LJ_TSTR
4228    |   stw STR:RC, 4(CARG3)
4229    |   mr CARG2, TAB:RB
4230    |  stw TMP0, 0(CARG3)
4231    |  bl extern lj_tab_newkey		// (lua_State *L, GCtab *t, TValue *k)
4232    |  // Returns TValue *.
4233    |  lp BASE, L->base
4234    |  stfd f14, 0(CRET1)
4235    |  b <3				// No 2nd write barrier needed.
4236    |
4237    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4238    |  barrierback TAB:RB, TMP3, TMP0
4239    |  b <3
4240    break;
4241  case BC_TSETB:
4242    |  // RA = src*8, RB = table*8, RC = index*8
4243    |  lwzux CARG1, RB, BASE
4244    |   srwi TMP0, RC, 3
4245    |   lwz TAB:RB, 4(RB)
4246    |  checktab CARG1; bne ->vmeta_tsetb
4247    |  lwz TMP1, TAB:RB->asize
4248    |   lwz TMP2, TAB:RB->array
4249    |    lbz TMP3, TAB:RB->marked
4250    |  cmplw TMP0, TMP1
4251    |   lfdx f14, BASE, RA
4252    |  bge ->vmeta_tsetb
4253    |  lwzx TMP1, TMP2, RC
4254    |  checknil TMP1; beq >5
4255    |1:
4256    |  andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4257    |   stfdx f14, TMP2, RC
4258    |  bne >7
4259    |2:
4260    |  ins_next
4261    |
4262    |5:  // Check for __newindex if previous value is nil.
4263    |  lwz TAB:TMP1, TAB:RB->metatable
4264    |  cmplwi TAB:TMP1, 0
4265    |  beq <1				// No metatable: done.
4266    |  lbz TMP1, TAB:TMP1->nomm
4267    |  andix. TMP1, TMP1, 1<<MM_newindex
4268    |  bne <1				// 'no __newindex' flag set: done.
4269    |  b ->vmeta_tsetb			// Caveat: preserve TMP0!
4270    |
4271    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4272    |  barrierback TAB:RB, TMP3, TMP0
4273    |  b <2
4274    break;
4275  case BC_TSETR:
4276    |  // RA = dst*8, RB = table*8, RC = key*8
4277    |  add RB, BASE, RB
4278    |  lwz TAB:CARG2, 4(RB)
4279    |.if DUALNUM
4280    |  add RC, BASE, RC
4281    |    lbz TMP3, TAB:CARG2->marked
4282    |  lwz TMP0, TAB:CARG2->asize
4283    |  lwz CARG3, 4(RC)
4284    |   lwz TMP1, TAB:CARG2->array
4285    |.else
4286    |  lfdx f0, BASE, RC
4287    |    lbz TMP3, TAB:CARG2->marked
4288    |  lwz TMP0, TAB:CARG2->asize
4289    |  toint CARG3, f0
4290    |   lwz TMP1, TAB:CARG2->array
4291    |.endif
4292    |  andix. TMP2, TMP3, LJ_GC_BLACK	// isblack(table)
4293    |  bne >7
4294    |2:
4295    |  cmplw TMP0, CARG3
4296    |   slwi TMP2, CARG3, 3
4297    |   lfdx f14, BASE, RA
4298    |  ble ->vmeta_tsetr		// In array part?
4299    |  ins_next1
4300    |   stfdx f14, TMP1, TMP2
4301    |  ins_next2
4302    |
4303    |7:  // Possible table write barrier for the value. Skip valiswhite check.
4304    |  barrierback TAB:CARG2, TMP3, TMP2
4305    |  b <2
4306    break;
4307
4308
4309  case BC_TSETM:
4310    |  // RA = base*8 (table at base-1), RD = num_const*8 (start index)
4311    |  add RA, BASE, RA
4312    |1:
4313    |   add TMP3, KBASE, RD
4314    |  lwz TAB:CARG2, -4(RA)		// Guaranteed to be a table.
4315    |    addic. TMP0, MULTRES, -8
4316    |   lwz TMP3, 4(TMP3)		// Integer constant is in lo-word.
4317    |    srwi CARG3, TMP0, 3
4318    |    beq >4				// Nothing to copy?
4319    |  add CARG3, CARG3, TMP3
4320    |  lwz TMP2, TAB:CARG2->asize
4321    |   slwi TMP1, TMP3, 3
4322    |    lbz TMP3, TAB:CARG2->marked
4323    |  cmplw CARG3, TMP2
4324    |   add TMP2, RA, TMP0
4325    |   lwz TMP0, TAB:CARG2->array
4326    |  bgt >5
4327    |   add TMP1, TMP1, TMP0
4328    |    andix. TMP0, TMP3, LJ_GC_BLACK	// isblack(table)
4329    |3:  // Copy result slots to table.
4330    |   lfd f0, 0(RA)
4331    |  addi RA, RA, 8
4332    |  cmpw cr1, RA, TMP2
4333    |   stfd f0, 0(TMP1)
4334    |    addi TMP1, TMP1, 8
4335    |  blt cr1, <3
4336    |  bne >7
4337    |4:
4338    |  ins_next
4339    |
4340    |5:  // Need to resize array part.
4341    |   stp BASE, L->base
4342    |  mr CARG1, L
4343    |   stw PC, SAVE_PC
4344    |  mr SAVE0, RD
4345    |  bl extern lj_tab_reasize		// (lua_State *L, GCtab *t, int nasize)
4346    |  // Must not reallocate the stack.
4347    |  mr RD, SAVE0
4348    |  b <1
4349    |
4350    |7:  // Possible table write barrier for any value. Skip valiswhite check.
4351    |  barrierback TAB:CARG2, TMP3, TMP0
4352    |  b <4
4353    break;
4354
4355  /* -- Calls and vararg handling ----------------------------------------- */
4356
4357  case BC_CALLM:
4358    |  // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8
4359    |  add NARGS8:RC, NARGS8:RC, MULTRES
4360    |  // Fall through. Assumes BC_CALL follows.
4361    break;
4362  case BC_CALL:
4363    |  // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8
4364    |  mr TMP2, BASE
4365    |  lwzux TMP0, BASE, RA
4366    |   lwz LFUNC:RB, 4(BASE)
4367    |    subi NARGS8:RC, NARGS8:RC, 8
4368    |   addi BASE, BASE, 8
4369    |  checkfunc TMP0; bne ->vmeta_call
4370    |  ins_call
4371    break;
4372
4373  case BC_CALLMT:
4374    |  // RA = base*8, (RB = 0,) RC = extra_nargs*8
4375    |  add NARGS8:RC, NARGS8:RC, MULTRES
4376    |  // Fall through. Assumes BC_CALLT follows.
4377    break;
4378  case BC_CALLT:
4379    |  // RA = base*8, (RB = 0,) RC = (nargs+1)*8
4380    |  lwzux TMP0, RA, BASE
4381    |   lwz LFUNC:RB, 4(RA)
4382    |    subi NARGS8:RC, NARGS8:RC, 8
4383    |    lwz TMP1, FRAME_PC(BASE)
4384    |  checkfunc TMP0
4385    |   addi RA, RA, 8
4386    |  bne ->vmeta_callt
4387    |->BC_CALLT_Z:
4388    |  andix. TMP0, TMP1, FRAME_TYPE	// Caveat: preserve cr0 until the crand.
4389    |   lbz TMP3, LFUNC:RB->ffid
4390    |    xori TMP2, TMP1, FRAME_VARG
4391    |    cmplwi cr1, NARGS8:RC, 0
4392    |  bne >7
4393    |1:
4394    |  stw LFUNC:RB, FRAME_FUNC(BASE)	// Copy function down, but keep PC.
4395    |  li TMP2, 0
4396    |   cmplwi cr7, TMP3, 1		// (> FF_C) Calling a fast function?
4397    |    beq cr1, >3
4398    |2:
4399    |  addi TMP3, TMP2, 8
4400    |   lfdx f0, RA, TMP2
4401    |  cmplw cr1, TMP3, NARGS8:RC
4402    |   stfdx f0, BASE, TMP2
4403    |  mr TMP2, TMP3
4404    |  bne cr1, <2
4405    |3:
4406    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt
4407    |  beq >5
4408    |4:
4409    |  ins_callt
4410    |
4411    |5:  // Tailcall to a fast function with a Lua frame below.
4412    |  lwz INS, -4(TMP1)
4413    |  decode_RA8 RA, INS
4414    |  sub TMP1, BASE, RA
4415    |  lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1)
4416    |  lwz TMP1, LFUNC:TMP1->pc
4417    |  lwz KBASE, PC2PROTO(k)(TMP1)	// Need to prepare KBASE.
4418    |  b <4
4419    |
4420    |7:  // Tailcall from a vararg function.
4421    |  andix. TMP0, TMP2, FRAME_TYPEP
4422    |  bne <1				// Vararg frame below?
4423    |  sub BASE, BASE, TMP2		// Relocate BASE down.
4424    |  lwz TMP1, FRAME_PC(BASE)
4425    |  andix. TMP0, TMP1, FRAME_TYPE
4426    |  b <1
4427    break;
4428
4429  case BC_ITERC:
4430    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8))
4431    |  mr TMP2, BASE
4432    |  add BASE, BASE, RA
4433    |  lwz TMP1, -24(BASE)
4434    |   lwz LFUNC:RB, -20(BASE)
4435    |    lfd f1, -8(BASE)
4436    |    lfd f0, -16(BASE)
4437    |  stw TMP1, 0(BASE)		// Copy callable.
4438    |   stw LFUNC:RB, 4(BASE)
4439    |  checkfunc TMP1
4440    |    stfd f1, 16(BASE)		// Copy control var.
4441    |     li NARGS8:RC, 16		// Iterators get 2 arguments.
4442    |    stfdu f0, 8(BASE)		// Copy state.
4443    |  bne ->vmeta_call
4444    |  ins_call
4445    break;
4446
4447  case BC_ITERN:
4448    |  // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8)
4449    |.if JIT
4450    |  // NYI: add hotloop, record BC_ITERN.
4451    |.endif
4452    |  add RA, BASE, RA
4453    |  lwz TAB:RB, -12(RA)
4454    |  lwz RC, -4(RA)			// Get index from control var.
4455    |  lwz TMP0, TAB:RB->asize
4456    |  lwz TMP1, TAB:RB->array
4457    |   addi PC, PC, 4
4458    |1:  // Traverse array part.
4459    |  cmplw RC, TMP0
4460    |   slwi TMP3, RC, 3
4461    |  bge >5				// Index points after array part?
4462    |  lwzx TMP2, TMP1, TMP3
4463    |   lfdx f0, TMP1, TMP3
4464    |  checknil TMP2
4465    |     lwz INS, -4(PC)
4466    |  beq >4
4467    |.if DUALNUM
4468    |   stw RC, 4(RA)
4469    |   stw TISNUM, 0(RA)
4470    |.else
4471    |   tonum_u f1, RC
4472    |.endif
4473    |    addi RC, RC, 1
4474    |     addis TMP3, PC, -(BCBIAS_J*4 >> 16)
4475    |  stfd f0, 8(RA)
4476    |     decode_RD4 TMP1, INS
4477    |    stw RC, -4(RA)			// Update control var.
4478    |     add PC, TMP1, TMP3
4479    |.if not DUALNUM
4480    |   stfd f1, 0(RA)
4481    |.endif
4482    |3:
4483    |  ins_next
4484    |
4485    |4:  // Skip holes in array part.
4486    |  addi RC, RC, 1
4487    |  b <1
4488    |
4489    |5:  // Traverse hash part.
4490    |  lwz TMP1, TAB:RB->hmask
4491    |  sub RC, RC, TMP0
4492    |   lwz TMP2, TAB:RB->node
4493    |6:
4494    |  cmplw RC, TMP1			// End of iteration? Branch to ITERL+1.
4495    |   slwi TMP3, RC, 5
4496    |  bgty <3
4497    |   slwi RB, RC, 3
4498    |   sub TMP3, TMP3, RB
4499    |  lwzx RB, TMP2, TMP3
4500    |  lfdx f0, TMP2, TMP3
4501    |   add NODE:TMP3, TMP2, TMP3
4502    |  checknil RB
4503    |     lwz INS, -4(PC)
4504    |  beq >7
4505    |   lfd f1, NODE:TMP3->key
4506    |     addis TMP2, PC, -(BCBIAS_J*4 >> 16)
4507    |  stfd f0, 8(RA)
4508    |    add RC, RC, TMP0
4509    |     decode_RD4 TMP1, INS
4510    |   stfd f1, 0(RA)
4511    |    addi RC, RC, 1
4512    |     add PC, TMP1, TMP2
4513    |    stw RC, -4(RA)			// Update control var.
4514    |  b <3
4515    |
4516    |7:  // Skip holes in hash part.
4517    |  addi RC, RC, 1
4518    |  b <6
4519    break;
4520
4521  case BC_ISNEXT:
4522    |  // RA = base*8, RD = target (points to ITERN)
4523    |  add RA, BASE, RA
4524    |  lwz TMP0, -24(RA)
4525    |  lwz CFUNC:TMP1, -20(RA)
4526    |   lwz TMP2, -16(RA)
4527    |    lwz TMP3, -8(RA)
4528    |   cmpwi cr0, TMP2, LJ_TTAB
4529    |  cmpwi cr1, TMP0, LJ_TFUNC
4530    |    cmpwi cr6, TMP3, LJ_TNIL
4531    |  bne cr1, >5
4532    |  lbz TMP1, CFUNC:TMP1->ffid
4533    |   crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq
4534    |  cmpwi cr7, TMP1, FF_next_N
4535    |    srwi TMP0, RD, 1
4536    |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
4537    |    add TMP3, PC, TMP0
4538    |  bne cr0, >5
4539    |  lus TMP1, 0xfffe
4540    |  ori TMP1, TMP1, 0x7fff
4541    |  stw ZERO, -4(RA)			// Initialize control var.
4542    |  stw TMP1, -8(RA)
4543    |    addis PC, TMP3, -(BCBIAS_J*4 >> 16)
4544    |1:
4545    |  ins_next
4546    |5:  // Despecialize bytecode if any of the checks fail.
4547    |  li TMP0, BC_JMP
4548    |   li TMP1, BC_ITERC
4549    |  stb TMP0, -1(PC)
4550    |    addis PC, TMP3, -(BCBIAS_J*4 >> 16)
4551    |   stb TMP1, 3(PC)
4552    |  b <1
4553    break;
4554
4555  case BC_VARG:
4556    |  // RA = base*8, RB = (nresults+1)*8, RC = numparams*8
4557    |  lwz TMP0, FRAME_PC(BASE)
4558    |  add RC, BASE, RC
4559    |   add RA, BASE, RA
4560    |  addi RC, RC, FRAME_VARG
4561    |   add TMP2, RA, RB
4562    |  subi TMP3, BASE, 8		// TMP3 = vtop
4563    |  sub RC, RC, TMP0			// RC = vbase
4564    |  // Note: RC may now be even _above_ BASE if nargs was < numparams.
4565    |  cmplwi cr1, RB, 0
4566    |.if PPE
4567    |   sub TMP1, TMP3, RC
4568    |   cmpwi TMP1, 0
4569    |.else
4570    |   sub. TMP1, TMP3, RC
4571    |.endif
4572    |  beq cr1, >5			// Copy all varargs?
4573    |   subi TMP2, TMP2, 16
4574    |   ble >2				// No vararg slots?
4575    |1:  // Copy vararg slots to destination slots.
4576    |  lfd f0, 0(RC)
4577    |   addi RC, RC, 8
4578    |  stfd f0, 0(RA)
4579    |  cmplw RA, TMP2
4580    |   cmplw cr1, RC, TMP3
4581    |  bge >3				// All destination slots filled?
4582    |    addi RA, RA, 8
4583    |   blt cr1, <1			// More vararg slots?
4584    |2:  // Fill up remainder with nil.
4585    |  stw TISNIL, 0(RA)
4586    |  cmplw RA, TMP2
4587    |   addi RA, RA, 8
4588    |  blt <2
4589    |3:
4590    |  ins_next
4591    |
4592    |5:  // Copy all varargs.
4593    |  lwz TMP0, L->maxstack
4594    |   li MULTRES, 8			// MULTRES = (0+1)*8
4595    |  bley <3				// No vararg slots?
4596    |  add TMP2, RA, TMP1
4597    |  cmplw TMP2, TMP0
4598    |   addi MULTRES, TMP1, 8
4599    |  bgt >7
4600    |6:
4601    |  lfd f0, 0(RC)
4602    |   addi RC, RC, 8
4603    |  stfd f0, 0(RA)
4604    |  cmplw RC, TMP3
4605    |   addi RA, RA, 8
4606    |  blt <6				// More vararg slots?
4607    |  b <3
4608    |
4609    |7:  // Grow stack for varargs.
4610    |  mr CARG1, L
4611    |   stp RA, L->top
4612    |  sub SAVE0, RC, BASE		// Need delta, because BASE may change.
4613    |   stp BASE, L->base
4614    |  sub RA, RA, BASE
4615    |   stw PC, SAVE_PC
4616    |  srwi CARG2, TMP1, 3
4617    |  bl extern lj_state_growstack	// (lua_State *L, int n)
4618    |  lp BASE, L->base
4619    |  add RA, BASE, RA
4620    |  add RC, BASE, SAVE0
4621    |  subi TMP3, BASE, 8
4622    |  b <6
4623    break;
4624
4625  /* -- Returns ----------------------------------------------------------- */
4626
4627  case BC_RETM:
4628    |  // RA = results*8, RD = extra_nresults*8
4629    |  add RD, RD, MULTRES		// MULTRES >= 8, so RD >= 8.
4630    |  // Fall through. Assumes BC_RET follows.
4631    break;
4632
4633  case BC_RET:
4634    |  // RA = results*8, RD = (nresults+1)*8
4635    |  lwz PC, FRAME_PC(BASE)
4636    |   add RA, BASE, RA
4637    |    mr MULTRES, RD
4638    |1:
4639    |  andix. TMP0, PC, FRAME_TYPE
4640    |   xori TMP1, PC, FRAME_VARG
4641    |  bne ->BC_RETV_Z
4642    |
4643    |->BC_RET_Z:
4644    |  // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return
4645    |   lwz INS, -4(PC)
4646    |  cmpwi RD, 8
4647    |   subi TMP2, BASE, 8
4648    |   subi RC, RD, 8
4649    |   decode_RB8 RB, INS
4650    |  beq >3
4651    |   li TMP1, 0
4652    |2:
4653    |  addi TMP3, TMP1, 8
4654    |   lfdx f0, RA, TMP1
4655    |  cmpw TMP3, RC
4656    |   stfdx f0, TMP2, TMP1
4657    |  beq >3
4658    |  addi TMP1, TMP3, 8
4659    |   lfdx f1, RA, TMP3
4660    |  cmpw TMP1, RC
4661    |   stfdx f1, TMP2, TMP3
4662    |  bne <2
4663    |3:
4664    |5:
4665    |  cmplw RB, RD
4666    |   decode_RA8 RA, INS
4667    |  bgt >6
4668    |   sub BASE, TMP2, RA
4669    |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
4670    |  ins_next1
4671    |  lwz TMP1, LFUNC:TMP1->pc
4672    |  lwz KBASE, PC2PROTO(k)(TMP1)
4673    |  ins_next2
4674    |
4675    |6:  // Fill up results with nil.
4676    |  subi TMP1, RD, 8
4677    |   addi RD, RD, 8
4678    |  stwx TISNIL, TMP2, TMP1
4679    |  b <5
4680    |
4681    |->BC_RETV_Z:  // Non-standard return case.
4682    |  andix. TMP2, TMP1, FRAME_TYPEP
4683    |  bne ->vm_return
4684    |  // Return from vararg function: relocate BASE down.
4685    |  sub BASE, BASE, TMP1
4686    |  lwz PC, FRAME_PC(BASE)
4687    |  b <1
4688    break;
4689
4690  case BC_RET0: case BC_RET1:
4691    |  // RA = results*8, RD = (nresults+1)*8
4692    |  lwz PC, FRAME_PC(BASE)
4693    |   add RA, BASE, RA
4694    |    mr MULTRES, RD
4695    |  andix. TMP0, PC, FRAME_TYPE
4696    |   xori TMP1, PC, FRAME_VARG
4697    |  bney ->BC_RETV_Z
4698    |
4699    |  lwz INS, -4(PC)
4700    |   subi TMP2, BASE, 8
4701    |  decode_RB8 RB, INS
4702    if (op == BC_RET1) {
4703      |  lfd f0, 0(RA)
4704      |  stfd f0, 0(TMP2)
4705    }
4706    |5:
4707    |  cmplw RB, RD
4708    |   decode_RA8 RA, INS
4709    |  bgt >6
4710    |   sub BASE, TMP2, RA
4711    |  lwz LFUNC:TMP1, FRAME_FUNC(BASE)
4712    |  ins_next1
4713    |  lwz TMP1, LFUNC:TMP1->pc
4714    |  lwz KBASE, PC2PROTO(k)(TMP1)
4715    |  ins_next2
4716    |
4717    |6:  // Fill up results with nil.
4718    |  subi TMP1, RD, 8
4719    |   addi RD, RD, 8
4720    |  stwx TISNIL, TMP2, TMP1
4721    |  b <5
4722    break;
4723
4724  /* -- Loops and branches ------------------------------------------------ */
4725
4726  case BC_FORL:
4727    |.if JIT
4728    |  hotloop
4729    |.endif
4730    |  // Fall through. Assumes BC_IFORL follows.
4731    break;
4732
4733  case BC_JFORI:
4734  case BC_JFORL:
4735#if !LJ_HASJIT
4736    break;
4737#endif
4738  case BC_FORI:
4739  case BC_IFORL:
4740    |  // RA = base*8, RD = target (after end of loop or start of loop)
4741    vk = (op == BC_IFORL || op == BC_JFORL);
4742    |.if DUALNUM
4743    |  // Integer loop.
4744    |  lwzux TMP1, RA, BASE
4745    |   lwz CARG1, FORL_IDX*8+4(RA)
4746    |  cmplw cr0, TMP1, TISNUM
4747    if (vk) {
4748      |   lwz CARG3, FORL_STEP*8+4(RA)
4749      |  bne >9
4750      |.if GPR64
4751      |  // Need to check overflow for (a<<32) + (b<<32).
4752      |  rldicr TMP0, CARG1, 32, 31
4753      |  rldicr TMP2, CARG3, 32, 31
4754      |  add CARG1, CARG1, CARG3
4755      |  addo. TMP0, TMP0, TMP2
4756      |.else
4757      |  addo. CARG1, CARG1, CARG3
4758      |.endif
4759      |    cmpwi cr6, CARG3, 0
4760      |   lwz CARG2, FORL_STOP*8+4(RA)
4761      |  bso >6
4762      |4:
4763      |  stw CARG1, FORL_IDX*8+4(RA)
4764    } else {
4765      |  lwz TMP3, FORL_STEP*8(RA)
4766      |   lwz CARG3, FORL_STEP*8+4(RA)
4767      |  lwz TMP2, FORL_STOP*8(RA)
4768      |   lwz CARG2, FORL_STOP*8+4(RA)
4769      |  cmplw cr7, TMP3, TISNUM
4770      |  cmplw cr1, TMP2, TISNUM
4771      |  crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq
4772      |  crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq
4773      |    cmpwi cr6, CARG3, 0
4774      |  bne >9
4775    }
4776    |    blt cr6, >5
4777    |  cmpw CARG1, CARG2
4778    |1:
4779    |   stw TISNUM, FORL_EXT*8(RA)
4780    if (op != BC_JFORL) {
4781      |  srwi RD, RD, 1
4782    }
4783    |   stw CARG1, FORL_EXT*8+4(RA)
4784    if (op != BC_JFORL) {
4785      |  add RD, PC, RD
4786    }
4787    if (op == BC_FORI) {
4788      |  bgt >3  // See FP loop below.
4789    } else if (op == BC_JFORI) {
4790      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4791      |  bley >7
4792    } else if (op == BC_IFORL) {
4793      |  bgt >2
4794      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4795    } else {
4796      |  bley =>BC_JLOOP
4797    }
4798    |2:
4799    |  ins_next
4800    |5:  // Invert check for negative step.
4801    |  cmpw CARG2, CARG1
4802    |  b <1
4803    if (vk) {
4804      |6:  // Potential overflow.
4805      |  checkov TMP0, <4		// Ignore unrelated overflow.
4806      |  b <2
4807    }
4808    |.endif
4809    if (vk) {
4810      |.if DUALNUM
4811      |9:  // FP loop.
4812      |  lfd f1, FORL_IDX*8(RA)
4813      |.else
4814      |  lfdux f1, RA, BASE
4815      |.endif
4816      |  lfd f3, FORL_STEP*8(RA)
4817      |  lfd f2, FORL_STOP*8(RA)
4818      |   lwz TMP3, FORL_STEP*8(RA)
4819      |  fadd f1, f1, f3
4820      |  stfd f1, FORL_IDX*8(RA)
4821    } else {
4822      |.if DUALNUM
4823      |9:  // FP loop.
4824      |.else
4825      |  lwzux TMP1, RA, BASE
4826      |  lwz TMP3, FORL_STEP*8(RA)
4827      |  lwz TMP2, FORL_STOP*8(RA)
4828      |  cmplw cr0, TMP1, TISNUM
4829      |  cmplw cr7, TMP3, TISNUM
4830      |  cmplw cr1, TMP2, TISNUM
4831      |.endif
4832      |   lfd f1, FORL_IDX*8(RA)
4833      |  crand 4*cr0+lt, 4*cr0+lt, 4*cr7+lt
4834      |  crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt
4835      |   lfd f2, FORL_STOP*8(RA)
4836      |  bge ->vmeta_for
4837    }
4838    |  cmpwi cr6, TMP3, 0
4839    if (op != BC_JFORL) {
4840      |  srwi RD, RD, 1
4841    }
4842    |   stfd f1, FORL_EXT*8(RA)
4843    if (op != BC_JFORL) {
4844      |  add RD, PC, RD
4845    }
4846    |  fcmpu cr0, f1, f2
4847    if (op == BC_JFORI) {
4848      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4849    }
4850    |  blt cr6, >5
4851    if (op == BC_FORI) {
4852      |  bgt >3
4853    } else if (op == BC_IFORL) {
4854      |.if DUALNUM
4855      |  bgty <2
4856      |.else
4857      |  bgt >2
4858      |.endif
4859      |1:
4860      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4861    } else if (op == BC_JFORI) {
4862      |  bley >7
4863    } else {
4864      |  bley =>BC_JLOOP
4865    }
4866    |.if DUALNUM
4867    |  b <2
4868    |.else
4869    |2:
4870    |  ins_next
4871    |.endif
4872    |5:  // Negative step.
4873    if (op == BC_FORI) {
4874      |  bge <2
4875      |3:  // Used by integer loop, too.
4876      |  addis PC, RD, -(BCBIAS_J*4 >> 16)
4877    } else if (op == BC_IFORL) {
4878      |  bgey <1
4879    } else if (op == BC_JFORI) {
4880      |  bgey >7
4881    } else {
4882      |  bgey =>BC_JLOOP
4883    }
4884    |  b <2
4885    if (op == BC_JFORI) {
4886      |7:
4887      |  lwz INS, -4(PC)
4888      |  decode_RD8 RD, INS
4889      |  b =>BC_JLOOP
4890    }
4891    break;
4892
4893  case BC_ITERL:
4894    |.if JIT
4895    |  hotloop
4896    |.endif
4897    |  // Fall through. Assumes BC_IITERL follows.
4898    break;
4899
4900  case BC_JITERL:
4901#if !LJ_HASJIT
4902    break;
4903#endif
4904  case BC_IITERL:
4905    |  // RA = base*8, RD = target
4906    |  lwzux TMP1, RA, BASE
4907    |   lwz TMP2, 4(RA)
4908    |  checknil TMP1; beq >1		// Stop if iterator returned nil.
4909    if (op == BC_JITERL) {
4910      |  stw TMP1, -8(RA)
4911      |   stw TMP2, -4(RA)
4912      |  b =>BC_JLOOP
4913    } else {
4914      |  branch_RD			// Otherwise save control var + branch.
4915      |  stw TMP1, -8(RA)
4916      |   stw TMP2, -4(RA)
4917    }
4918    |1:
4919    |  ins_next
4920    break;
4921
4922  case BC_LOOP:
4923    |  // RA = base*8, RD = target (loop extent)
4924    |  // Note: RA/RD is only used by trace recorder to determine scope/extent
4925    |  // This opcode does NOT jump, it's only purpose is to detect a hot loop.
4926    |.if JIT
4927    |  hotloop
4928    |.endif
4929    |  // Fall through. Assumes BC_ILOOP follows.
4930    break;
4931
4932  case BC_ILOOP:
4933    |  // RA = base*8, RD = target (loop extent)
4934    |  ins_next
4935    break;
4936
4937  case BC_JLOOP:
4938    |.if JIT
4939    |  // RA = base*8 (ignored), RD = traceno*8
4940    |  lwz TMP1, DISPATCH_J(trace)(DISPATCH)
4941    |  srwi RD, RD, 1
4942    |  // Traces on PPC don't store the trace number, so use 0.
4943    |   stw ZERO, DISPATCH_GL(vmstate)(DISPATCH)
4944    |  lwzx TRACE:TMP2, TMP1, RD
4945    |  clrso TMP1
4946    |  lp TMP2, TRACE:TMP2->mcode
4947    |   stw BASE, DISPATCH_GL(jit_base)(DISPATCH)
4948    |  mtctr TMP2
4949    |   addi JGL, DISPATCH, GG_DISP2G+32768
4950    |   stw L, DISPATCH_GL(tmpbuf.L)(DISPATCH)
4951    |  bctr
4952    |.endif
4953    break;
4954
4955  case BC_JMP:
4956    |  // RA = base*8 (only used by trace recorder), RD = target
4957    |  branch_RD
4958    |  ins_next
4959    break;
4960
4961  /* -- Function headers -------------------------------------------------- */
4962
4963  case BC_FUNCF:
4964    |.if JIT
4965    |  hotcall
4966    |.endif
4967  case BC_FUNCV:  /* NYI: compiled vararg functions. */
4968    |  // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow.
4969    break;
4970
4971  case BC_JFUNCF:
4972#if !LJ_HASJIT
4973    break;
4974#endif
4975  case BC_IFUNCF:
4976    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
4977    |  lwz TMP2, L->maxstack
4978    |   lbz TMP1, -4+PC2PROTO(numparams)(PC)
4979    |    lwz KBASE, -4+PC2PROTO(k)(PC)
4980    |  cmplw RA, TMP2
4981    |   slwi TMP1, TMP1, 3
4982    |  bgt ->vm_growstack_l
4983    if (op != BC_JFUNCF) {
4984      |  ins_next1
4985    }
4986    |2:
4987    |  cmplw NARGS8:RC, TMP1		// Check for missing parameters.
4988    |  blt >3
4989    if (op == BC_JFUNCF) {
4990      |  decode_RD8 RD, INS
4991      |  b =>BC_JLOOP
4992    } else {
4993      |  ins_next2
4994    }
4995    |
4996    |3:  // Clear missing parameters.
4997    |  stwx TISNIL, BASE, NARGS8:RC
4998    |  addi NARGS8:RC, NARGS8:RC, 8
4999    |  b <2
5000    break;
5001
5002  case BC_JFUNCV:
5003#if !LJ_HASJIT
5004    break;
5005#endif
5006    |  NYI  // NYI: compiled vararg functions
5007    break;  /* NYI: compiled vararg functions. */
5008
5009  case BC_IFUNCV:
5010    |  // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8
5011    |  lwz TMP2, L->maxstack
5012    |   add TMP1, BASE, RC
5013    |  add TMP0, RA, RC
5014    |   stw LFUNC:RB, 4(TMP1)		// Store copy of LFUNC.
5015    |   addi TMP3, RC, 8+FRAME_VARG
5016    |    lwz KBASE, -4+PC2PROTO(k)(PC)
5017    |  cmplw TMP0, TMP2
5018    |   stw TMP3, 0(TMP1)		// Store delta + FRAME_VARG.
5019    |  bge ->vm_growstack_l
5020    |  lbz TMP2, -4+PC2PROTO(numparams)(PC)
5021    |   mr RA, BASE
5022    |   mr RC, TMP1
5023    |  ins_next1
5024    |  cmpwi TMP2, 0
5025    |   addi BASE, TMP1, 8
5026    |  beq >3
5027    |1:
5028    |  cmplw RA, RC			// Less args than parameters?
5029    |   lwz TMP0, 0(RA)
5030    |   lwz TMP3, 4(RA)
5031    |  bge >4
5032    |    stw TISNIL, 0(RA)		// Clear old fixarg slot (help the GC).
5033    |    addi RA, RA, 8
5034    |2:
5035    |  addic. TMP2, TMP2, -1
5036    |   stw TMP0, 8(TMP1)
5037    |   stw TMP3, 12(TMP1)
5038    |    addi TMP1, TMP1, 8
5039    |  bne <1
5040    |3:
5041    |  ins_next2
5042    |
5043    |4:  // Clear missing parameters.
5044    |  li TMP0, LJ_TNIL
5045    |  b <2
5046    break;
5047
5048  case BC_FUNCC:
5049  case BC_FUNCCW:
5050    |  // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8
5051    if (op == BC_FUNCC) {
5052      |  lp RD, CFUNC:RB->f
5053    } else {
5054      |  lp RD, DISPATCH_GL(wrapf)(DISPATCH)
5055    }
5056    |   add TMP1, RA, NARGS8:RC
5057    |   lwz TMP2, L->maxstack
5058    |  .toc lp TMP3, 0(RD)
5059    |    add RC, BASE, NARGS8:RC
5060    |   stp BASE, L->base
5061    |   cmplw TMP1, TMP2
5062    |    stp RC, L->top
5063    |     li_vmstate C
5064    |.if TOC
5065    |  mtctr TMP3
5066    |.else
5067    |  mtctr RD
5068    |.endif
5069    if (op == BC_FUNCCW) {
5070      |  lp CARG2, CFUNC:RB->f
5071    }
5072    |  mr CARG1, L
5073    |   bgt ->vm_growstack_c		// Need to grow stack.
5074    |  .toc lp TOCREG, TOC_OFS(RD)
5075    |  .tocenv lp ENVREG, ENV_OFS(RD)
5076    |     st_vmstate
5077    |  bctrl				// (lua_State *L [, lua_CFunction f])
5078    |  // Returns nresults.
5079    |  lp BASE, L->base
5080    |  .toc ld TOCREG, SAVE_TOC
5081    |   slwi RD, CRET1, 3
5082    |  lp TMP1, L->top
5083    |    li_vmstate INTERP
5084    |  lwz PC, FRAME_PC(BASE)		// Fetch PC of caller.
5085    |    stw L, DISPATCH_GL(cur_L)(DISPATCH)
5086    |   sub RA, TMP1, RD		// RA = L->top - nresults*8
5087    |    st_vmstate
5088    |  b ->vm_returnc
5089    break;
5090
5091  /* ---------------------------------------------------------------------- */
5092
5093  default:
5094    fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]);
5095    exit(2);
5096    break;
5097  }
5098}
5099
5100static int build_backend(BuildCtx *ctx)
5101{
5102  int op;
5103
5104  dasm_growpc(Dst, BC__MAX);
5105
5106  build_subroutines(ctx);
5107
5108  |.code_op
5109  for (op = 0; op < BC__MAX; op++)
5110    build_ins(ctx, (BCOp)op, op);
5111
5112  return BC__MAX;
5113}
5114
5115/* Emit pseudo frame-info for all assembler functions. */
5116static void emit_asm_debug(BuildCtx *ctx)
5117{
5118  int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code);
5119  int i;
5120  switch (ctx->mode) {
5121  case BUILD_elfasm:
5122    fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n");
5123    fprintf(ctx->fp,
5124	".Lframe0:\n"
5125	"\t.long .LECIE0-.LSCIE0\n"
5126	".LSCIE0:\n"
5127	"\t.long 0xffffffff\n"
5128	"\t.byte 0x1\n"
5129	"\t.string \"\"\n"
5130	"\t.uleb128 0x1\n"
5131	"\t.sleb128 -4\n"
5132	"\t.byte 65\n"
5133	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5134	"\t.align 2\n"
5135	".LECIE0:\n\n");
5136    fprintf(ctx->fp,
5137	".LSFDE0:\n"
5138	"\t.long .LEFDE0-.LASFDE0\n"
5139	".LASFDE0:\n"
5140	"\t.long .Lframe0\n"
5141	"\t.long .Lbegin\n"
5142	"\t.long %d\n"
5143	"\t.byte 0xe\n\t.uleb128 %d\n"
5144	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5145	"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
5146	fcofs, CFRAME_SIZE);
5147    for (i = 14; i <= 31; i++)
5148      fprintf(ctx->fp,
5149	"\t.byte %d\n\t.uleb128 %d\n"
5150	"\t.byte %d\n\t.uleb128 %d\n",
5151	0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
5152    fprintf(ctx->fp,
5153	"\t.align 2\n"
5154	".LEFDE0:\n\n");
5155#if LJ_HASFFI
5156    fprintf(ctx->fp,
5157	".LSFDE1:\n"
5158	"\t.long .LEFDE1-.LASFDE1\n"
5159	".LASFDE1:\n"
5160	"\t.long .Lframe0\n"
5161#if LJ_TARGET_PS3
5162	"\t.long .lj_vm_ffi_call\n"
5163#else
5164	"\t.long lj_vm_ffi_call\n"
5165#endif
5166	"\t.long %d\n"
5167	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5168	"\t.byte 0x8e\n\t.uleb128 2\n"
5169	"\t.byte 0xd\n\t.uleb128 0xe\n"
5170	"\t.align 2\n"
5171	".LEFDE1:\n\n", (int)ctx->codesz - fcofs);
5172#endif
5173#if !LJ_NO_UNWIND
5174    fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n");
5175    fprintf(ctx->fp,
5176	".Lframe1:\n"
5177	"\t.long .LECIE1-.LSCIE1\n"
5178	".LSCIE1:\n"
5179	"\t.long 0\n"
5180	"\t.byte 0x1\n"
5181	"\t.string \"zPR\"\n"
5182	"\t.uleb128 0x1\n"
5183	"\t.sleb128 -4\n"
5184	"\t.byte 65\n"
5185	"\t.uleb128 6\n"			/* augmentation length */
5186	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5187	"\t.long lj_err_unwind_dwarf-.\n"
5188	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5189	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5190	"\t.align 2\n"
5191	".LECIE1:\n\n");
5192    fprintf(ctx->fp,
5193	".LSFDE2:\n"
5194	"\t.long .LEFDE2-.LASFDE2\n"
5195	".LASFDE2:\n"
5196	"\t.long .LASFDE2-.Lframe1\n"
5197	"\t.long .Lbegin-.\n"
5198	"\t.long %d\n"
5199	"\t.uleb128 0\n"			/* augmentation length */
5200	"\t.byte 0xe\n\t.uleb128 %d\n"
5201	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5202	"\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n",
5203	fcofs, CFRAME_SIZE);
5204    for (i = 14; i <= 31; i++)
5205      fprintf(ctx->fp,
5206	"\t.byte %d\n\t.uleb128 %d\n"
5207	"\t.byte %d\n\t.uleb128 %d\n",
5208	0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i));
5209    fprintf(ctx->fp,
5210	"\t.align 2\n"
5211	".LEFDE2:\n\n");
5212#if LJ_HASFFI
5213    fprintf(ctx->fp,
5214	".Lframe2:\n"
5215	"\t.long .LECIE2-.LSCIE2\n"
5216	".LSCIE2:\n"
5217	"\t.long 0\n"
5218	"\t.byte 0x1\n"
5219	"\t.string \"zR\"\n"
5220	"\t.uleb128 0x1\n"
5221	"\t.sleb128 -4\n"
5222	"\t.byte 65\n"
5223	"\t.uleb128 1\n"			/* augmentation length */
5224	"\t.byte 0x1b\n"			/* pcrel|sdata4 */
5225	"\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n"
5226	"\t.align 2\n"
5227	".LECIE2:\n\n");
5228    fprintf(ctx->fp,
5229	".LSFDE3:\n"
5230	"\t.long .LEFDE3-.LASFDE3\n"
5231	".LASFDE3:\n"
5232	"\t.long .LASFDE3-.Lframe2\n"
5233	"\t.long lj_vm_ffi_call-.\n"
5234	"\t.long %d\n"
5235	"\t.uleb128 0\n"			/* augmentation length */
5236	"\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n"
5237	"\t.byte 0x8e\n\t.uleb128 2\n"
5238	"\t.byte 0xd\n\t.uleb128 0xe\n"
5239	"\t.align 2\n"
5240	".LEFDE3:\n\n", (int)ctx->codesz - fcofs);
5241#endif
5242#endif
5243    break;
5244  default:
5245    break;
5246  }
5247}
5248
5249