1 /*
2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "gc/shared/barrierSetAssembler.hpp"
28 #include "interpreter/interp_masm.hpp"
29 #include "interpreter/interpreter.hpp"
30 #include "interpreter/interpreterRuntime.hpp"
31 #include "interpreter/templateTable.hpp"
32 #include "memory/universe.hpp"
33 #include "oops/cpCache.hpp"
34 #include "oops/methodData.hpp"
35 #include "oops/objArrayKlass.hpp"
36 #include "oops/oop.inline.hpp"
37 #include "prims/methodHandles.hpp"
38 #include "runtime/frame.inline.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/stubRoutines.hpp"
41 #include "runtime/synchronizer.hpp"
42 
43 #define __ _masm->
44 
45 //----------------------------------------------------------------------------------------------------
46 // Platform-dependent initialization
47 
pd_initialize()48 void TemplateTable::pd_initialize() {
49   // No arm specific initialization
50 }
51 
52 //----------------------------------------------------------------------------------------------------
53 // Address computation
54 
55 // local variables
iaddress(int n)56 static inline Address iaddress(int n)            {
57   return Address(Rlocals, Interpreter::local_offset_in_bytes(n));
58 }
59 
laddress(int n)60 static inline Address laddress(int n)            { return iaddress(n + 1); }
61 #ifndef AARCH64
haddress(int n)62 static inline Address haddress(int n)            { return iaddress(n + 0); }
63 #endif // !AARCH64
64 
faddress(int n)65 static inline Address faddress(int n)            { return iaddress(n); }
daddress(int n)66 static inline Address daddress(int n)            { return laddress(n); }
aaddress(int n)67 static inline Address aaddress(int n)            { return iaddress(n); }
68 
69 
get_local_base_addr(Register r,Register index)70 void TemplateTable::get_local_base_addr(Register r, Register index) {
71   __ sub(r, Rlocals, AsmOperand(index, lsl, Interpreter::logStackElementSize));
72 }
73 
load_iaddress(Register index,Register scratch)74 Address TemplateTable::load_iaddress(Register index, Register scratch) {
75 #ifdef AARCH64
76   get_local_base_addr(scratch, index);
77   return Address(scratch);
78 #else
79   return Address(Rlocals, index, lsl, Interpreter::logStackElementSize, basic_offset, sub_offset);
80 #endif // AARCH64
81 }
82 
load_aaddress(Register index,Register scratch)83 Address TemplateTable::load_aaddress(Register index, Register scratch) {
84   return load_iaddress(index, scratch);
85 }
86 
load_faddress(Register index,Register scratch)87 Address TemplateTable::load_faddress(Register index, Register scratch) {
88 #ifdef __SOFTFP__
89   return load_iaddress(index, scratch);
90 #else
91   get_local_base_addr(scratch, index);
92   return Address(scratch);
93 #endif // __SOFTFP__
94 }
95 
load_daddress(Register index,Register scratch)96 Address TemplateTable::load_daddress(Register index, Register scratch) {
97   get_local_base_addr(scratch, index);
98   return Address(scratch, Interpreter::local_offset_in_bytes(1));
99 }
100 
101 // At top of Java expression stack which may be different than SP.
102 // It isn't for category 1 objects.
at_tos()103 static inline Address at_tos() {
104   return Address(Rstack_top, Interpreter::expr_offset_in_bytes(0));
105 }
106 
at_tos_p1()107 static inline Address at_tos_p1() {
108   return Address(Rstack_top, Interpreter::expr_offset_in_bytes(1));
109 }
110 
at_tos_p2()111 static inline Address at_tos_p2() {
112   return Address(Rstack_top, Interpreter::expr_offset_in_bytes(2));
113 }
114 
115 
116 // 32-bit ARM:
117 // Loads double/long local into R0_tos_lo/R1_tos_hi with two
118 // separate ldr instructions (supports nonadjacent values).
119 // Used for longs in all modes, and for doubles in SOFTFP mode.
120 //
121 // AArch64: loads long local into R0_tos.
122 //
load_category2_local(Register Rlocal_index,Register tmp)123 void TemplateTable::load_category2_local(Register Rlocal_index, Register tmp) {
124   const Register Rlocal_base = tmp;
125   assert_different_registers(Rlocal_index, tmp);
126 
127   get_local_base_addr(Rlocal_base, Rlocal_index);
128 #ifdef AARCH64
129   __ ldr(R0_tos, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
130 #else
131   __ ldr(R0_tos_lo, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
132   __ ldr(R1_tos_hi, Address(Rlocal_base, Interpreter::local_offset_in_bytes(0)));
133 #endif // AARCH64
134 }
135 
136 
137 // 32-bit ARM:
138 // Stores R0_tos_lo/R1_tos_hi to double/long local with two
139 // separate str instructions (supports nonadjacent values).
140 // Used for longs in all modes, and for doubles in SOFTFP mode
141 //
142 // AArch64: stores R0_tos to long local.
143 //
store_category2_local(Register Rlocal_index,Register tmp)144 void TemplateTable::store_category2_local(Register Rlocal_index, Register tmp) {
145   const Register Rlocal_base = tmp;
146   assert_different_registers(Rlocal_index, tmp);
147 
148   get_local_base_addr(Rlocal_base, Rlocal_index);
149 #ifdef AARCH64
150   __ str(R0_tos, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
151 #else
152   __ str(R0_tos_lo, Address(Rlocal_base, Interpreter::local_offset_in_bytes(1)));
153   __ str(R1_tos_hi, Address(Rlocal_base, Interpreter::local_offset_in_bytes(0)));
154 #endif // AARCH64
155 }
156 
157 // Returns address of Java array element using temp register as address base.
get_array_elem_addr(BasicType elemType,Register array,Register index,Register temp)158 Address TemplateTable::get_array_elem_addr(BasicType elemType, Register array, Register index, Register temp) {
159   int logElemSize = exact_log2(type2aelembytes(elemType));
160   __ add_ptr_scaled_int32(temp, array, index, logElemSize);
161   return Address(temp, arrayOopDesc::base_offset_in_bytes(elemType));
162 }
163 
164 //----------------------------------------------------------------------------------------------------
165 // Condition conversion
convNegCond(TemplateTable::Condition cc)166 AsmCondition convNegCond(TemplateTable::Condition cc) {
167   switch (cc) {
168     case TemplateTable::equal        : return ne;
169     case TemplateTable::not_equal    : return eq;
170     case TemplateTable::less         : return ge;
171     case TemplateTable::less_equal   : return gt;
172     case TemplateTable::greater      : return le;
173     case TemplateTable::greater_equal: return lt;
174   }
175   ShouldNotReachHere();
176   return nv;
177 }
178 
179 //----------------------------------------------------------------------------------------------------
180 // Miscelaneous helper routines
181 
182 // Store an oop (or NULL) at the address described by obj.
183 // Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
184 // Also destroys new_val and obj.base().
do_oop_store(InterpreterMacroAssembler * _masm,Address obj,Register new_val,Register tmp1,Register tmp2,Register tmp3,bool is_null,DecoratorSet decorators=0)185 static void do_oop_store(InterpreterMacroAssembler* _masm,
186                          Address obj,
187                          Register new_val,
188                          Register tmp1,
189                          Register tmp2,
190                          Register tmp3,
191                          bool is_null,
192                          DecoratorSet decorators = 0) {
193 
194   assert_different_registers(obj.base(), new_val, tmp1, tmp2, tmp3, noreg);
195   if (is_null) {
196     __ store_heap_oop_null(obj, new_val, tmp1, tmp2, tmp3, decorators);
197   } else {
198     __ store_heap_oop(obj, new_val, tmp1, tmp2, tmp3, decorators);
199   }
200 }
201 
do_oop_load(InterpreterMacroAssembler * _masm,Register dst,Address obj,DecoratorSet decorators=0)202 static void do_oop_load(InterpreterMacroAssembler* _masm,
203                         Register dst,
204                         Address obj,
205                         DecoratorSet decorators = 0) {
206   __ load_heap_oop(dst, obj, noreg, noreg, noreg, decorators);
207 }
208 
at_bcp(int offset)209 Address TemplateTable::at_bcp(int offset) {
210   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
211   return Address(Rbcp, offset);
212 }
213 
214 
215 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR.
patch_bytecode(Bytecodes::Code bc,Register bc_reg,Register temp_reg,bool load_bc_into_bc_reg,int byte_no)216 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
217                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
218                                    int byte_no) {
219   assert_different_registers(bc_reg, temp_reg);
220   if (!RewriteBytecodes)  return;
221   Label L_patch_done;
222 
223   switch (bc) {
224   case Bytecodes::_fast_aputfield:
225   case Bytecodes::_fast_bputfield:
226   case Bytecodes::_fast_zputfield:
227   case Bytecodes::_fast_cputfield:
228   case Bytecodes::_fast_dputfield:
229   case Bytecodes::_fast_fputfield:
230   case Bytecodes::_fast_iputfield:
231   case Bytecodes::_fast_lputfield:
232   case Bytecodes::_fast_sputfield:
233     {
234       // We skip bytecode quickening for putfield instructions when
235       // the put_code written to the constant pool cache is zero.
236       // This is required so that every execution of this instruction
237       // calls out to InterpreterRuntime::resolve_get_put to do
238       // additional, required work.
239       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
240       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
241       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1, sizeof(u2));
242       __ mov(bc_reg, bc);
243       __ cbz(temp_reg, L_patch_done);  // test if bytecode is zero
244     }
245     break;
246   default:
247     assert(byte_no == -1, "sanity");
248     // the pair bytecodes have already done the load.
249     if (load_bc_into_bc_reg) {
250       __ mov(bc_reg, bc);
251     }
252   }
253 
254   if (__ can_post_breakpoint()) {
255     Label L_fast_patch;
256     // if a breakpoint is present we can't rewrite the stream directly
257     __ ldrb(temp_reg, at_bcp(0));
258     __ cmp(temp_reg, Bytecodes::_breakpoint);
259     __ b(L_fast_patch, ne);
260     if (bc_reg != R3) {
261       __ mov(R3, bc_reg);
262     }
263     __ mov(R1, Rmethod);
264     __ mov(R2, Rbcp);
265     // Let breakpoint table handling rewrite to quicker bytecode
266     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R1, R2, R3);
267     __ b(L_patch_done);
268     __ bind(L_fast_patch);
269   }
270 
271 #ifdef ASSERT
272   Label L_okay;
273   __ ldrb(temp_reg, at_bcp(0));
274   __ cmp(temp_reg, (int)Bytecodes::java_code(bc));
275   __ b(L_okay, eq);
276   __ cmp(temp_reg, bc_reg);
277   __ b(L_okay, eq);
278   __ stop("patching the wrong bytecode");
279   __ bind(L_okay);
280 #endif
281 
282   // patch bytecode
283   __ strb(bc_reg, at_bcp(0));
284   __ bind(L_patch_done);
285 }
286 
287 //----------------------------------------------------------------------------------------------------
288 // Individual instructions
289 
nop()290 void TemplateTable::nop() {
291   transition(vtos, vtos);
292   // nothing to do
293 }
294 
shouldnotreachhere()295 void TemplateTable::shouldnotreachhere() {
296   transition(vtos, vtos);
297   __ stop("shouldnotreachhere bytecode");
298 }
299 
300 
301 
aconst_null()302 void TemplateTable::aconst_null() {
303   transition(vtos, atos);
304   __ mov(R0_tos, 0);
305 }
306 
307 
iconst(int value)308 void TemplateTable::iconst(int value) {
309   transition(vtos, itos);
310   __ mov_slow(R0_tos, value);
311 }
312 
313 
lconst(int value)314 void TemplateTable::lconst(int value) {
315   transition(vtos, ltos);
316   assert((value == 0) || (value == 1), "unexpected long constant");
317   __ mov(R0_tos, value);
318 #ifndef AARCH64
319   __ mov(R1_tos_hi, 0);
320 #endif // !AARCH64
321 }
322 
323 
fconst(int value)324 void TemplateTable::fconst(int value) {
325   transition(vtos, ftos);
326 #ifdef AARCH64
327   switch(value) {
328   case 0:   __ fmov_sw(S0_tos, ZR);    break;
329   case 1:   __ fmov_s (S0_tos, 0x70);  break;
330   case 2:   __ fmov_s (S0_tos, 0x00);  break;
331   default:  ShouldNotReachHere();      break;
332   }
333 #else
334   const int zero = 0;         // 0.0f
335   const int one = 0x3f800000; // 1.0f
336   const int two = 0x40000000; // 2.0f
337 
338   switch(value) {
339   case 0:   __ mov(R0_tos, zero);   break;
340   case 1:   __ mov(R0_tos, one);    break;
341   case 2:   __ mov(R0_tos, two);    break;
342   default:  ShouldNotReachHere();   break;
343   }
344 
345 #ifndef __SOFTFP__
346   __ fmsr(S0_tos, R0_tos);
347 #endif // !__SOFTFP__
348 #endif // AARCH64
349 }
350 
351 
dconst(int value)352 void TemplateTable::dconst(int value) {
353   transition(vtos, dtos);
354 #ifdef AARCH64
355   switch(value) {
356   case 0:   __ fmov_dx(D0_tos, ZR);    break;
357   case 1:   __ fmov_d (D0_tos, 0x70);  break;
358   default:  ShouldNotReachHere();      break;
359   }
360 #else
361   const int one_lo = 0;            // low part of 1.0
362   const int one_hi = 0x3ff00000;   // high part of 1.0
363 
364   if (value == 0) {
365 #ifdef __SOFTFP__
366     __ mov(R0_tos_lo, 0);
367     __ mov(R1_tos_hi, 0);
368 #else
369     __ mov(R0_tmp, 0);
370     __ fmdrr(D0_tos, R0_tmp, R0_tmp);
371 #endif // __SOFTFP__
372   } else if (value == 1) {
373     __ mov(R0_tos_lo, one_lo);
374     __ mov_slow(R1_tos_hi, one_hi);
375 #ifndef __SOFTFP__
376     __ fmdrr(D0_tos, R0_tos_lo, R1_tos_hi);
377 #endif // !__SOFTFP__
378   } else {
379     ShouldNotReachHere();
380   }
381 #endif // AARCH64
382 }
383 
384 
bipush()385 void TemplateTable::bipush() {
386   transition(vtos, itos);
387   __ ldrsb(R0_tos, at_bcp(1));
388 }
389 
390 
sipush()391 void TemplateTable::sipush() {
392   transition(vtos, itos);
393   __ ldrsb(R0_tmp, at_bcp(1));
394   __ ldrb(R1_tmp, at_bcp(2));
395   __ orr(R0_tos, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
396 }
397 
398 
ldc(bool wide)399 void TemplateTable::ldc(bool wide) {
400   transition(vtos, vtos);
401   Label fastCase, Condy, Done;
402 
403   const Register Rindex = R1_tmp;
404   const Register Rcpool = R2_tmp;
405   const Register Rtags  = R3_tmp;
406   const Register RtagType = R3_tmp;
407 
408   if (wide) {
409     __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
410   } else {
411     __ ldrb(Rindex, at_bcp(1));
412   }
413   __ get_cpool_and_tags(Rcpool, Rtags);
414 
415   const int base_offset = ConstantPool::header_size() * wordSize;
416   const int tags_offset = Array<u1>::base_offset_in_bytes();
417 
418   // get const type
419   __ add(Rtemp, Rtags, tags_offset);
420 #ifdef AARCH64
421   __ add(Rtemp, Rtemp, Rindex);
422   __ ldarb(RtagType, Rtemp);  // TODO-AARCH64 figure out if barrier is needed here, or control dependency is enough
423 #else
424   __ ldrb(RtagType, Address(Rtemp, Rindex));
425   volatile_barrier(MacroAssembler::LoadLoad, Rtemp);
426 #endif // AARCH64
427 
428   // unresolved class - get the resolved class
429   __ cmp(RtagType, JVM_CONSTANT_UnresolvedClass);
430 
431   // unresolved class in error (resolution failed) - call into runtime
432   // so that the same error from first resolution attempt is thrown.
433 #ifdef AARCH64
434   __ mov(Rtemp, JVM_CONSTANT_UnresolvedClassInError); // this constant does not fit into 5-bit immediate constraint
435   __ cond_cmp(RtagType, Rtemp, ne);
436 #else
437   __ cond_cmp(RtagType, JVM_CONSTANT_UnresolvedClassInError, ne);
438 #endif // AARCH64
439 
440   // resolved class - need to call vm to get java mirror of the class
441   __ cond_cmp(RtagType, JVM_CONSTANT_Class, ne);
442 
443   __ b(fastCase, ne);
444 
445   // slow case - call runtime
446   __ mov(R1, wide);
447   call_VM(R0_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R1);
448   __ push(atos);
449   __ b(Done);
450 
451   // int, float, String
452   __ bind(fastCase);
453 
454   __ cmp(RtagType, JVM_CONSTANT_Integer);
455   __ cond_cmp(RtagType, JVM_CONSTANT_Float, ne);
456   __ b(Condy, ne);
457 
458   // itos, ftos
459   __ add(Rtemp, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
460   __ ldr_u32(R0_tos, Address(Rtemp, base_offset));
461 
462   // floats and ints are placed on stack in the same way, so
463   // we can use push(itos) to transfer float value without VFP
464   __ push(itos);
465   __ b(Done);
466 
467   __ bind(Condy);
468   condy_helper(Done);
469 
470   __ bind(Done);
471 }
472 
473 // Fast path for caching oop constants.
fast_aldc(bool wide)474 void TemplateTable::fast_aldc(bool wide) {
475   transition(vtos, atos);
476   int index_size = wide ? sizeof(u2) : sizeof(u1);
477   Label resolved;
478 
479   // We are resolved if the resolved reference cache entry contains a
480   // non-null object (CallSite, etc.)
481   assert_different_registers(R0_tos, R2_tmp);
482   __ get_index_at_bcp(R2_tmp, 1, R0_tos, index_size);
483   __ load_resolved_reference_at_index(R0_tos, R2_tmp);
484   __ cbnz(R0_tos, resolved);
485 
486   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
487 
488   // first time invocation - must resolve first
489   __ mov(R1, (int)bytecode());
490   __ call_VM(R0_tos, entry, R1);
491   __ bind(resolved);
492 
493   { // Check for the null sentinel.
494     // If we just called the VM, that already did the mapping for us,
495     // but it's harmless to retry.
496     Label notNull;
497     Register result = R0;
498     Register tmp = R1;
499     Register rarg = R2;
500 
501     // Stash null_sentinel address to get its value later
502     __ mov_slow(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
503     __ ldr(tmp, Address(rarg));
504     __ cmp(result, tmp);
505     __ b(notNull, ne);
506     __ mov(result, 0);  // NULL object reference
507     __ bind(notNull);
508   }
509 
510   if (VerifyOops) {
511     __ verify_oop(R0_tos);
512   }
513 }
514 
ldc2_w()515 void TemplateTable::ldc2_w() {
516   transition(vtos, vtos);
517   const Register Rtags  = R2_tmp;
518   const Register Rindex = R3_tmp;
519   const Register Rcpool = R4_tmp;
520   const Register Rbase  = R5_tmp;
521 
522   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
523 
524   __ get_cpool_and_tags(Rcpool, Rtags);
525   const int base_offset = ConstantPool::header_size() * wordSize;
526   const int tags_offset = Array<u1>::base_offset_in_bytes();
527 
528   __ add(Rbase, Rcpool, AsmOperand(Rindex, lsl, LogBytesPerWord));
529 
530   // get type from tags
531   __ add(Rtemp, Rtags, tags_offset);
532   __ ldrb(Rtemp, Address(Rtemp, Rindex));
533 
534   Label Condy, exit;
535 #ifdef __ABI_HARD__
536   Label NotDouble;
537   __ cmp(Rtemp, JVM_CONSTANT_Double);
538   __ b(NotDouble, ne);
539   __ ldr_double(D0_tos, Address(Rbase, base_offset));
540 
541   __ push(dtos);
542   __ b(exit);
543   __ bind(NotDouble);
544 #endif
545 
546   __ cmp(Rtemp, JVM_CONSTANT_Long);
547   __ b(Condy, ne);
548 #ifdef AARCH64
549   __ ldr(R0_tos, Address(Rbase, base_offset));
550 #else
551   __ ldr(R0_tos_lo, Address(Rbase, base_offset + 0 * wordSize));
552   __ ldr(R1_tos_hi, Address(Rbase, base_offset + 1 * wordSize));
553 #endif // AARCH64
554   __ push(ltos);
555   __ b(exit);
556 
557   __ bind(Condy);
558   condy_helper(exit);
559 
560   __ bind(exit);
561 }
562 
563 
condy_helper(Label & Done)564 void TemplateTable::condy_helper(Label& Done)
565 {
566   Register obj   = R0_tmp;
567   Register rtmp  = R1_tmp;
568   Register flags = R2_tmp;
569   Register off   = R3_tmp;
570 
571   __ mov(rtmp, (int) bytecode());
572   __ call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rtmp);
573   __ get_vm_result_2(flags, rtmp);
574 
575   // VMr = obj = base address to find primitive value to push
576   // VMr2 = flags = (tos, off) using format of CPCE::_flags
577   __ mov(off, flags);
578 
579 #ifdef AARCH64
580   __ andr(off, off, (unsigned)ConstantPoolCacheEntry::field_index_mask);
581 #else
582   __ logical_shift_left( off, off, 32 - ConstantPoolCacheEntry::field_index_bits);
583   __ logical_shift_right(off, off, 32 - ConstantPoolCacheEntry::field_index_bits);
584 #endif
585 
586   const Address field(obj, off);
587 
588   __ logical_shift_right(flags, flags, ConstantPoolCacheEntry::tos_state_shift);
589   // Make sure we don't need to mask flags after the above shift
590   ConstantPoolCacheEntry::verify_tos_state_shift();
591 
592   switch (bytecode()) {
593     case Bytecodes::_ldc:
594     case Bytecodes::_ldc_w:
595       {
596         // tos in (itos, ftos, stos, btos, ctos, ztos)
597         Label notIntFloat, notShort, notByte, notChar, notBool;
598         __ cmp(flags, itos);
599         __ cond_cmp(flags, ftos, ne);
600         __ b(notIntFloat, ne);
601         __ ldr(R0_tos, field);
602         __ push(itos);
603         __ b(Done);
604 
605         __ bind(notIntFloat);
606         __ cmp(flags, stos);
607         __ b(notShort, ne);
608         __ ldrsh(R0_tos, field);
609         __ push(stos);
610         __ b(Done);
611 
612         __ bind(notShort);
613         __ cmp(flags, btos);
614         __ b(notByte, ne);
615         __ ldrsb(R0_tos, field);
616         __ push(btos);
617         __ b(Done);
618 
619         __ bind(notByte);
620         __ cmp(flags, ctos);
621         __ b(notChar, ne);
622         __ ldrh(R0_tos, field);
623         __ push(ctos);
624         __ b(Done);
625 
626         __ bind(notChar);
627         __ cmp(flags, ztos);
628         __ b(notBool, ne);
629         __ ldrsb(R0_tos, field);
630         __ push(ztos);
631         __ b(Done);
632 
633         __ bind(notBool);
634         break;
635       }
636 
637     case Bytecodes::_ldc2_w:
638       {
639         Label notLongDouble;
640         __ cmp(flags, ltos);
641         __ cond_cmp(flags, dtos, ne);
642         __ b(notLongDouble, ne);
643 
644 #ifdef AARCH64
645         __ ldr(R0_tos, field);
646 #else
647         __ add(rtmp, obj, wordSize);
648         __ ldr(R0_tos_lo, Address(obj, off));
649         __ ldr(R1_tos_hi, Address(rtmp, off));
650 #endif
651         __ push(ltos);
652         __ b(Done);
653 
654         __ bind(notLongDouble);
655 
656         break;
657       }
658 
659     default:
660       ShouldNotReachHere();
661     }
662 
663     __ stop("bad ldc/condy");
664 }
665 
666 
locals_index(Register reg,int offset)667 void TemplateTable::locals_index(Register reg, int offset) {
668   __ ldrb(reg, at_bcp(offset));
669 }
670 
iload()671 void TemplateTable::iload() {
672   iload_internal();
673 }
674 
nofast_iload()675 void TemplateTable::nofast_iload() {
676   iload_internal(may_not_rewrite);
677 }
678 
iload_internal(RewriteControl rc)679 void TemplateTable::iload_internal(RewriteControl rc) {
680   transition(vtos, itos);
681 
682   if ((rc == may_rewrite) && __ rewrite_frequent_pairs()) {
683     Label rewrite, done;
684     const Register next_bytecode = R1_tmp;
685     const Register target_bytecode = R2_tmp;
686 
687     // get next byte
688     __ ldrb(next_bytecode, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
689     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
690     // last two iloads in a pair.  Comparing against fast_iload means that
691     // the next bytecode is neither an iload or a caload, and therefore
692     // an iload pair.
693     __ cmp(next_bytecode, Bytecodes::_iload);
694     __ b(done, eq);
695 
696     __ cmp(next_bytecode, Bytecodes::_fast_iload);
697     __ mov(target_bytecode, Bytecodes::_fast_iload2);
698     __ b(rewrite, eq);
699 
700     // if _caload, rewrite to fast_icaload
701     __ cmp(next_bytecode, Bytecodes::_caload);
702     __ mov(target_bytecode, Bytecodes::_fast_icaload);
703     __ b(rewrite, eq);
704 
705     // rewrite so iload doesn't check again.
706     __ mov(target_bytecode, Bytecodes::_fast_iload);
707 
708     // rewrite
709     // R2: fast bytecode
710     __ bind(rewrite);
711     patch_bytecode(Bytecodes::_iload, target_bytecode, Rtemp, false);
712     __ bind(done);
713   }
714 
715   // Get the local value into tos
716   const Register Rlocal_index = R1_tmp;
717   locals_index(Rlocal_index);
718   Address local = load_iaddress(Rlocal_index, Rtemp);
719   __ ldr_s32(R0_tos, local);
720 }
721 
722 
fast_iload2()723 void TemplateTable::fast_iload2() {
724   transition(vtos, itos);
725   const Register Rlocal_index = R1_tmp;
726 
727   locals_index(Rlocal_index);
728   Address local = load_iaddress(Rlocal_index, Rtemp);
729   __ ldr_s32(R0_tos, local);
730   __ push(itos);
731 
732   locals_index(Rlocal_index, 3);
733   local = load_iaddress(Rlocal_index, Rtemp);
734   __ ldr_s32(R0_tos, local);
735 }
736 
fast_iload()737 void TemplateTable::fast_iload() {
738   transition(vtos, itos);
739   const Register Rlocal_index = R1_tmp;
740 
741   locals_index(Rlocal_index);
742   Address local = load_iaddress(Rlocal_index, Rtemp);
743   __ ldr_s32(R0_tos, local);
744 }
745 
746 
lload()747 void TemplateTable::lload() {
748   transition(vtos, ltos);
749   const Register Rlocal_index = R2_tmp;
750 
751   locals_index(Rlocal_index);
752   load_category2_local(Rlocal_index, R3_tmp);
753 }
754 
755 
fload()756 void TemplateTable::fload() {
757   transition(vtos, ftos);
758   const Register Rlocal_index = R2_tmp;
759 
760   // Get the local value into tos
761   locals_index(Rlocal_index);
762   Address local = load_faddress(Rlocal_index, Rtemp);
763 #ifdef __SOFTFP__
764   __ ldr(R0_tos, local);
765 #else
766   __ ldr_float(S0_tos, local);
767 #endif // __SOFTFP__
768 }
769 
770 
dload()771 void TemplateTable::dload() {
772   transition(vtos, dtos);
773   const Register Rlocal_index = R2_tmp;
774 
775   locals_index(Rlocal_index);
776 
777 #ifdef __SOFTFP__
778   load_category2_local(Rlocal_index, R3_tmp);
779 #else
780   __ ldr_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
781 #endif // __SOFTFP__
782 }
783 
784 
aload()785 void TemplateTable::aload() {
786   transition(vtos, atos);
787   const Register Rlocal_index = R1_tmp;
788 
789   locals_index(Rlocal_index);
790   Address local = load_aaddress(Rlocal_index, Rtemp);
791   __ ldr(R0_tos, local);
792 }
793 
794 
locals_index_wide(Register reg)795 void TemplateTable::locals_index_wide(Register reg) {
796   assert_different_registers(reg, Rtemp);
797   __ ldrb(Rtemp, at_bcp(2));
798   __ ldrb(reg, at_bcp(3));
799   __ orr(reg, reg, AsmOperand(Rtemp, lsl, 8));
800 }
801 
802 
wide_iload()803 void TemplateTable::wide_iload() {
804   transition(vtos, itos);
805   const Register Rlocal_index = R2_tmp;
806 
807   locals_index_wide(Rlocal_index);
808   Address local = load_iaddress(Rlocal_index, Rtemp);
809   __ ldr_s32(R0_tos, local);
810 }
811 
812 
wide_lload()813 void TemplateTable::wide_lload() {
814   transition(vtos, ltos);
815   const Register Rlocal_index = R2_tmp;
816   const Register Rlocal_base = R3_tmp;
817 
818   locals_index_wide(Rlocal_index);
819   load_category2_local(Rlocal_index, R3_tmp);
820 }
821 
822 
wide_fload()823 void TemplateTable::wide_fload() {
824   transition(vtos, ftos);
825   const Register Rlocal_index = R2_tmp;
826 
827   locals_index_wide(Rlocal_index);
828   Address local = load_faddress(Rlocal_index, Rtemp);
829 #ifdef __SOFTFP__
830   __ ldr(R0_tos, local);
831 #else
832   __ ldr_float(S0_tos, local);
833 #endif // __SOFTFP__
834 }
835 
836 
wide_dload()837 void TemplateTable::wide_dload() {
838   transition(vtos, dtos);
839   const Register Rlocal_index = R2_tmp;
840 
841   locals_index_wide(Rlocal_index);
842 #ifdef __SOFTFP__
843   load_category2_local(Rlocal_index, R3_tmp);
844 #else
845   __ ldr_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
846 #endif // __SOFTFP__
847 }
848 
849 
wide_aload()850 void TemplateTable::wide_aload() {
851   transition(vtos, atos);
852   const Register Rlocal_index = R2_tmp;
853 
854   locals_index_wide(Rlocal_index);
855   Address local = load_aaddress(Rlocal_index, Rtemp);
856   __ ldr(R0_tos, local);
857 }
858 
index_check(Register array,Register index)859 void TemplateTable::index_check(Register array, Register index) {
860   // Pop ptr into array
861   __ pop_ptr(array);
862   index_check_without_pop(array, index);
863 }
864 
index_check_without_pop(Register array,Register index)865 void TemplateTable::index_check_without_pop(Register array, Register index) {
866   assert_different_registers(array, index, Rtemp);
867   // check array
868   __ null_check(array, Rtemp, arrayOopDesc::length_offset_in_bytes());
869   // check index
870   __ ldr_s32(Rtemp, Address(array, arrayOopDesc::length_offset_in_bytes()));
871   __ cmp_32(index, Rtemp);
872   if (index != R4_ArrayIndexOutOfBounds_index) {
873     // convention with generate_ArrayIndexOutOfBounds_handler()
874     __ mov(R4_ArrayIndexOutOfBounds_index, index, hs);
875   }
876   __ mov(R1, array, hs);
877   __ b(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, hs);
878 }
879 
880 
iaload()881 void TemplateTable::iaload() {
882   transition(itos, itos);
883   const Register Rarray = R1_tmp;
884   const Register Rindex = R0_tos;
885 
886   index_check(Rarray, Rindex);
887   __ ldr_s32(R0_tos, get_array_elem_addr(T_INT, Rarray, Rindex, Rtemp));
888 }
889 
890 
laload()891 void TemplateTable::laload() {
892   transition(itos, ltos);
893   const Register Rarray = R1_tmp;
894   const Register Rindex = R0_tos;
895 
896   index_check(Rarray, Rindex);
897 
898 #ifdef AARCH64
899   __ ldr(R0_tos, get_array_elem_addr(T_LONG, Rarray, Rindex, Rtemp));
900 #else
901   __ add(Rtemp, Rarray, AsmOperand(Rindex, lsl, LogBytesPerLong));
902   __ add(Rtemp, Rtemp, arrayOopDesc::base_offset_in_bytes(T_LONG));
903   __ ldmia(Rtemp, RegisterSet(R0_tos_lo, R1_tos_hi));
904 #endif // AARCH64
905 }
906 
907 
faload()908 void TemplateTable::faload() {
909   transition(itos, ftos);
910   const Register Rarray = R1_tmp;
911   const Register Rindex = R0_tos;
912 
913   index_check(Rarray, Rindex);
914 
915   Address addr = get_array_elem_addr(T_FLOAT, Rarray, Rindex, Rtemp);
916 #ifdef __SOFTFP__
917   __ ldr(R0_tos, addr);
918 #else
919   __ ldr_float(S0_tos, addr);
920 #endif // __SOFTFP__
921 }
922 
923 
daload()924 void TemplateTable::daload() {
925   transition(itos, dtos);
926   const Register Rarray = R1_tmp;
927   const Register Rindex = R0_tos;
928 
929   index_check(Rarray, Rindex);
930 
931 #ifdef __SOFTFP__
932   __ add(Rtemp, Rarray, AsmOperand(Rindex, lsl, LogBytesPerLong));
933   __ add(Rtemp, Rtemp, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
934   __ ldmia(Rtemp, RegisterSet(R0_tos_lo, R1_tos_hi));
935 #else
936   __ ldr_double(D0_tos, get_array_elem_addr(T_DOUBLE, Rarray, Rindex, Rtemp));
937 #endif // __SOFTFP__
938 }
939 
940 
aaload()941 void TemplateTable::aaload() {
942   transition(itos, atos);
943   const Register Rarray = R1_tmp;
944   const Register Rindex = R0_tos;
945 
946   index_check(Rarray, Rindex);
947   do_oop_load(_masm, R0_tos, get_array_elem_addr(T_OBJECT, Rarray, Rindex, Rtemp), IS_ARRAY);
948 }
949 
950 
baload()951 void TemplateTable::baload() {
952   transition(itos, itos);
953   const Register Rarray = R1_tmp;
954   const Register Rindex = R0_tos;
955 
956   index_check(Rarray, Rindex);
957   __ ldrsb(R0_tos, get_array_elem_addr(T_BYTE, Rarray, Rindex, Rtemp));
958 }
959 
960 
caload()961 void TemplateTable::caload() {
962   transition(itos, itos);
963   const Register Rarray = R1_tmp;
964   const Register Rindex = R0_tos;
965 
966   index_check(Rarray, Rindex);
967   __ ldrh(R0_tos, get_array_elem_addr(T_CHAR, Rarray, Rindex, Rtemp));
968 }
969 
970 
971 // iload followed by caload frequent pair
fast_icaload()972 void TemplateTable::fast_icaload() {
973   transition(vtos, itos);
974   const Register Rlocal_index = R1_tmp;
975   const Register Rarray = R1_tmp;
976   const Register Rindex = R4_tmp; // index_check prefers index on R4
977   assert_different_registers(Rlocal_index, Rindex);
978   assert_different_registers(Rarray, Rindex);
979 
980   // load index out of locals
981   locals_index(Rlocal_index);
982   Address local = load_iaddress(Rlocal_index, Rtemp);
983   __ ldr_s32(Rindex, local);
984 
985   // get array element
986   index_check(Rarray, Rindex);
987   __ ldrh(R0_tos, get_array_elem_addr(T_CHAR, Rarray, Rindex, Rtemp));
988 }
989 
990 
saload()991 void TemplateTable::saload() {
992   transition(itos, itos);
993   const Register Rarray = R1_tmp;
994   const Register Rindex = R0_tos;
995 
996   index_check(Rarray, Rindex);
997   __ ldrsh(R0_tos, get_array_elem_addr(T_SHORT, Rarray, Rindex, Rtemp));
998 }
999 
1000 
iload(int n)1001 void TemplateTable::iload(int n) {
1002   transition(vtos, itos);
1003   __ ldr_s32(R0_tos, iaddress(n));
1004 }
1005 
1006 
lload(int n)1007 void TemplateTable::lload(int n) {
1008   transition(vtos, ltos);
1009 #ifdef AARCH64
1010   __ ldr(R0_tos, laddress(n));
1011 #else
1012   __ ldr(R0_tos_lo, laddress(n));
1013   __ ldr(R1_tos_hi, haddress(n));
1014 #endif // AARCH64
1015 }
1016 
1017 
fload(int n)1018 void TemplateTable::fload(int n) {
1019   transition(vtos, ftos);
1020 #ifdef __SOFTFP__
1021   __ ldr(R0_tos, faddress(n));
1022 #else
1023   __ ldr_float(S0_tos, faddress(n));
1024 #endif // __SOFTFP__
1025 }
1026 
1027 
dload(int n)1028 void TemplateTable::dload(int n) {
1029   transition(vtos, dtos);
1030 #ifdef __SOFTFP__
1031   __ ldr(R0_tos_lo, laddress(n));
1032   __ ldr(R1_tos_hi, haddress(n));
1033 #else
1034   __ ldr_double(D0_tos, daddress(n));
1035 #endif // __SOFTFP__
1036 }
1037 
1038 
aload(int n)1039 void TemplateTable::aload(int n) {
1040   transition(vtos, atos);
1041   __ ldr(R0_tos, aaddress(n));
1042 }
1043 
aload_0()1044 void TemplateTable::aload_0() {
1045   aload_0_internal();
1046 }
1047 
nofast_aload_0()1048 void TemplateTable::nofast_aload_0() {
1049   aload_0_internal(may_not_rewrite);
1050 }
1051 
aload_0_internal(RewriteControl rc)1052 void TemplateTable::aload_0_internal(RewriteControl rc) {
1053   transition(vtos, atos);
1054   // According to bytecode histograms, the pairs:
1055   //
1056   // _aload_0, _fast_igetfield
1057   // _aload_0, _fast_agetfield
1058   // _aload_0, _fast_fgetfield
1059   //
1060   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
1061   // bytecode checks if the next bytecode is either _fast_igetfield,
1062   // _fast_agetfield or _fast_fgetfield and then rewrites the
1063   // current bytecode into a pair bytecode; otherwise it rewrites the current
1064   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
1065   //
1066   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
1067   //       otherwise we may miss an opportunity for a pair.
1068   //
1069   // Also rewrite frequent pairs
1070   //   aload_0, aload_1
1071   //   aload_0, iload_1
1072   // These bytecodes with a small amount of code are most profitable to rewrite
1073   if ((rc == may_rewrite) && __ rewrite_frequent_pairs()) {
1074     Label rewrite, done;
1075     const Register next_bytecode = R1_tmp;
1076     const Register target_bytecode = R2_tmp;
1077 
1078     // get next byte
1079     __ ldrb(next_bytecode, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
1080 
1081     // if _getfield then wait with rewrite
1082     __ cmp(next_bytecode, Bytecodes::_getfield);
1083     __ b(done, eq);
1084 
1085     // if _igetfield then rewrite to _fast_iaccess_0
1086     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1087     __ cmp(next_bytecode, Bytecodes::_fast_igetfield);
1088     __ mov(target_bytecode, Bytecodes::_fast_iaccess_0);
1089     __ b(rewrite, eq);
1090 
1091     // if _agetfield then rewrite to _fast_aaccess_0
1092     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1093     __ cmp(next_bytecode, Bytecodes::_fast_agetfield);
1094     __ mov(target_bytecode, Bytecodes::_fast_aaccess_0);
1095     __ b(rewrite, eq);
1096 
1097     // if _fgetfield then rewrite to _fast_faccess_0, else rewrite to _fast_aload0
1098     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
1099     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
1100 
1101     __ cmp(next_bytecode, Bytecodes::_fast_fgetfield);
1102 #ifdef AARCH64
1103     __ mov(Rtemp, Bytecodes::_fast_faccess_0);
1104     __ mov(target_bytecode, Bytecodes::_fast_aload_0);
1105     __ mov(target_bytecode, Rtemp, eq);
1106 #else
1107     __ mov(target_bytecode, Bytecodes::_fast_faccess_0, eq);
1108     __ mov(target_bytecode, Bytecodes::_fast_aload_0, ne);
1109 #endif // AARCH64
1110 
1111     // rewrite
1112     __ bind(rewrite);
1113     patch_bytecode(Bytecodes::_aload_0, target_bytecode, Rtemp, false);
1114 
1115     __ bind(done);
1116   }
1117 
1118   aload(0);
1119 }
1120 
istore()1121 void TemplateTable::istore() {
1122   transition(itos, vtos);
1123   const Register Rlocal_index = R2_tmp;
1124 
1125   locals_index(Rlocal_index);
1126   Address local = load_iaddress(Rlocal_index, Rtemp);
1127   __ str_32(R0_tos, local);
1128 }
1129 
1130 
lstore()1131 void TemplateTable::lstore() {
1132   transition(ltos, vtos);
1133   const Register Rlocal_index = R2_tmp;
1134 
1135   locals_index(Rlocal_index);
1136   store_category2_local(Rlocal_index, R3_tmp);
1137 }
1138 
1139 
fstore()1140 void TemplateTable::fstore() {
1141   transition(ftos, vtos);
1142   const Register Rlocal_index = R2_tmp;
1143 
1144   locals_index(Rlocal_index);
1145   Address local = load_faddress(Rlocal_index, Rtemp);
1146 #ifdef __SOFTFP__
1147   __ str(R0_tos, local);
1148 #else
1149   __ str_float(S0_tos, local);
1150 #endif // __SOFTFP__
1151 }
1152 
1153 
dstore()1154 void TemplateTable::dstore() {
1155   transition(dtos, vtos);
1156   const Register Rlocal_index = R2_tmp;
1157 
1158   locals_index(Rlocal_index);
1159 
1160 #ifdef __SOFTFP__
1161   store_category2_local(Rlocal_index, R3_tmp);
1162 #else
1163   __ str_double(D0_tos, load_daddress(Rlocal_index, Rtemp));
1164 #endif // __SOFTFP__
1165 }
1166 
1167 
astore()1168 void TemplateTable::astore() {
1169   transition(vtos, vtos);
1170   const Register Rlocal_index = R1_tmp;
1171 
1172   __ pop_ptr(R0_tos);
1173   locals_index(Rlocal_index);
1174   Address local = load_aaddress(Rlocal_index, Rtemp);
1175   __ str(R0_tos, local);
1176 }
1177 
1178 
wide_istore()1179 void TemplateTable::wide_istore() {
1180   transition(vtos, vtos);
1181   const Register Rlocal_index = R2_tmp;
1182 
1183   __ pop_i(R0_tos);
1184   locals_index_wide(Rlocal_index);
1185   Address local = load_iaddress(Rlocal_index, Rtemp);
1186   __ str_32(R0_tos, local);
1187 }
1188 
1189 
wide_lstore()1190 void TemplateTable::wide_lstore() {
1191   transition(vtos, vtos);
1192   const Register Rlocal_index = R2_tmp;
1193   const Register Rlocal_base = R3_tmp;
1194 
1195 #ifdef AARCH64
1196   __ pop_l(R0_tos);
1197 #else
1198   __ pop_l(R0_tos_lo, R1_tos_hi);
1199 #endif // AARCH64
1200 
1201   locals_index_wide(Rlocal_index);
1202   store_category2_local(Rlocal_index, R3_tmp);
1203 }
1204 
1205 
wide_fstore()1206 void TemplateTable::wide_fstore() {
1207   wide_istore();
1208 }
1209 
1210 
wide_dstore()1211 void TemplateTable::wide_dstore() {
1212   wide_lstore();
1213 }
1214 
1215 
wide_astore()1216 void TemplateTable::wide_astore() {
1217   transition(vtos, vtos);
1218   const Register Rlocal_index = R2_tmp;
1219 
1220   __ pop_ptr(R0_tos);
1221   locals_index_wide(Rlocal_index);
1222   Address local = load_aaddress(Rlocal_index, Rtemp);
1223   __ str(R0_tos, local);
1224 }
1225 
1226 
iastore()1227 void TemplateTable::iastore() {
1228   transition(itos, vtos);
1229   const Register Rindex = R4_tmp; // index_check prefers index in R4
1230   const Register Rarray = R3_tmp;
1231   // R0_tos: value
1232 
1233   __ pop_i(Rindex);
1234   index_check(Rarray, Rindex);
1235   __ str_32(R0_tos, get_array_elem_addr(T_INT, Rarray, Rindex, Rtemp));
1236 }
1237 
1238 
lastore()1239 void TemplateTable::lastore() {
1240   transition(ltos, vtos);
1241   const Register Rindex = R4_tmp; // index_check prefers index in R4
1242   const Register Rarray = R3_tmp;
1243   // R0_tos_lo:R1_tos_hi: value
1244 
1245   __ pop_i(Rindex);
1246   index_check(Rarray, Rindex);
1247 
1248 #ifdef AARCH64
1249   __ str(R0_tos, get_array_elem_addr(T_LONG, Rarray, Rindex, Rtemp));
1250 #else
1251   __ add(Rtemp, Rarray, AsmOperand(Rindex, lsl, LogBytesPerLong));
1252   __ add(Rtemp, Rtemp, arrayOopDesc::base_offset_in_bytes(T_LONG));
1253   __ stmia(Rtemp, RegisterSet(R0_tos_lo, R1_tos_hi));
1254 #endif // AARCH64
1255 }
1256 
1257 
fastore()1258 void TemplateTable::fastore() {
1259   transition(ftos, vtos);
1260   const Register Rindex = R4_tmp; // index_check prefers index in R4
1261   const Register Rarray = R3_tmp;
1262   // S0_tos/R0_tos: value
1263 
1264   __ pop_i(Rindex);
1265   index_check(Rarray, Rindex);
1266   Address addr = get_array_elem_addr(T_FLOAT, Rarray, Rindex, Rtemp);
1267 
1268 #ifdef __SOFTFP__
1269   __ str(R0_tos, addr);
1270 #else
1271   __ str_float(S0_tos, addr);
1272 #endif // __SOFTFP__
1273 }
1274 
1275 
dastore()1276 void TemplateTable::dastore() {
1277   transition(dtos, vtos);
1278   const Register Rindex = R4_tmp; // index_check prefers index in R4
1279   const Register Rarray = R3_tmp;
1280   // D0_tos / R0_tos_lo:R1_to_hi: value
1281 
1282   __ pop_i(Rindex);
1283   index_check(Rarray, Rindex);
1284 
1285 #ifdef __SOFTFP__
1286   __ add(Rtemp, Rarray, AsmOperand(Rindex, lsl, LogBytesPerLong));
1287   __ add(Rtemp, Rtemp, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
1288   __ stmia(Rtemp, RegisterSet(R0_tos_lo, R1_tos_hi));
1289 #else
1290   __ str_double(D0_tos, get_array_elem_addr(T_DOUBLE, Rarray, Rindex, Rtemp));
1291 #endif // __SOFTFP__
1292 }
1293 
1294 
aastore()1295 void TemplateTable::aastore() {
1296   transition(vtos, vtos);
1297   Label is_null, throw_array_store, done;
1298 
1299   const Register Raddr_1   = R1_tmp;
1300   const Register Rvalue_2  = R2_tmp;
1301   const Register Rarray_3  = R3_tmp;
1302   const Register Rindex_4  = R4_tmp;   // preferred by index_check_without_pop()
1303   const Register Rsub_5    = R5_tmp;
1304   const Register Rsuper_LR = LR_tmp;
1305 
1306   // stack: ..., array, index, value
1307   __ ldr(Rvalue_2, at_tos());     // Value
1308   __ ldr_s32(Rindex_4, at_tos_p1());  // Index
1309   __ ldr(Rarray_3, at_tos_p2());  // Array
1310 
1311   index_check_without_pop(Rarray_3, Rindex_4);
1312 
1313   // Compute the array base
1314   __ add(Raddr_1, Rarray_3, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1315 
1316   // do array store check - check for NULL value first
1317   __ cbz(Rvalue_2, is_null);
1318 
1319   // Load subklass
1320   __ load_klass(Rsub_5, Rvalue_2);
1321   // Load superklass
1322   __ load_klass(Rtemp, Rarray_3);
1323   __ ldr(Rsuper_LR, Address(Rtemp, ObjArrayKlass::element_klass_offset()));
1324 
1325   __ gen_subtype_check(Rsub_5, Rsuper_LR, throw_array_store, R0_tmp, R3_tmp);
1326   // Come here on success
1327 
1328   // Store value
1329   __ add(Raddr_1, Raddr_1, AsmOperand(Rindex_4, lsl, LogBytesPerHeapOop));
1330 
1331   // Now store using the appropriate barrier
1332   do_oop_store(_masm, Raddr_1, Rvalue_2, Rtemp, R0_tmp, R3_tmp, false, IS_ARRAY);
1333   __ b(done);
1334 
1335   __ bind(throw_array_store);
1336 
1337   // Come here on failure of subtype check
1338   __ profile_typecheck_failed(R0_tmp);
1339 
1340   // object is at TOS
1341   __ b(Interpreter::_throw_ArrayStoreException_entry);
1342 
1343   // Have a NULL in Rvalue_2, store NULL at array[index].
1344   __ bind(is_null);
1345   __ profile_null_seen(R0_tmp);
1346 
1347   // Store a NULL
1348   do_oop_store(_masm, Address::indexed_oop(Raddr_1, Rindex_4), Rvalue_2, Rtemp, R0_tmp, R3_tmp, true, IS_ARRAY);
1349 
1350   // Pop stack arguments
1351   __ bind(done);
1352   __ add(Rstack_top, Rstack_top, 3 * Interpreter::stackElementSize);
1353 }
1354 
1355 
bastore()1356 void TemplateTable::bastore() {
1357   transition(itos, vtos);
1358   const Register Rindex = R4_tmp; // index_check prefers index in R4
1359   const Register Rarray = R3_tmp;
1360   // R0_tos: value
1361 
1362   __ pop_i(Rindex);
1363   index_check(Rarray, Rindex);
1364 
1365   // Need to check whether array is boolean or byte
1366   // since both types share the bastore bytecode.
1367   __ load_klass(Rtemp, Rarray);
1368   __ ldr_u32(Rtemp, Address(Rtemp, Klass::layout_helper_offset()));
1369   Label L_skip;
1370   __ tst(Rtemp, Klass::layout_helper_boolean_diffbit());
1371   __ b(L_skip, eq);
1372   __ and_32(R0_tos, R0_tos, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1373   __ bind(L_skip);
1374   __ strb(R0_tos, get_array_elem_addr(T_BYTE, Rarray, Rindex, Rtemp));
1375 }
1376 
1377 
castore()1378 void TemplateTable::castore() {
1379   transition(itos, vtos);
1380   const Register Rindex = R4_tmp; // index_check prefers index in R4
1381   const Register Rarray = R3_tmp;
1382   // R0_tos: value
1383 
1384   __ pop_i(Rindex);
1385   index_check(Rarray, Rindex);
1386 
1387   __ strh(R0_tos, get_array_elem_addr(T_CHAR, Rarray, Rindex, Rtemp));
1388 }
1389 
1390 
sastore()1391 void TemplateTable::sastore() {
1392   assert(arrayOopDesc::base_offset_in_bytes(T_CHAR) ==
1393            arrayOopDesc::base_offset_in_bytes(T_SHORT),
1394          "base offsets for char and short should be equal");
1395   castore();
1396 }
1397 
1398 
istore(int n)1399 void TemplateTable::istore(int n) {
1400   transition(itos, vtos);
1401   __ str_32(R0_tos, iaddress(n));
1402 }
1403 
1404 
lstore(int n)1405 void TemplateTable::lstore(int n) {
1406   transition(ltos, vtos);
1407 #ifdef AARCH64
1408   __ str(R0_tos, laddress(n));
1409 #else
1410   __ str(R0_tos_lo, laddress(n));
1411   __ str(R1_tos_hi, haddress(n));
1412 #endif // AARCH64
1413 }
1414 
1415 
fstore(int n)1416 void TemplateTable::fstore(int n) {
1417   transition(ftos, vtos);
1418 #ifdef __SOFTFP__
1419   __ str(R0_tos, faddress(n));
1420 #else
1421   __ str_float(S0_tos, faddress(n));
1422 #endif // __SOFTFP__
1423 }
1424 
1425 
dstore(int n)1426 void TemplateTable::dstore(int n) {
1427   transition(dtos, vtos);
1428 #ifdef __SOFTFP__
1429   __ str(R0_tos_lo, laddress(n));
1430   __ str(R1_tos_hi, haddress(n));
1431 #else
1432   __ str_double(D0_tos, daddress(n));
1433 #endif // __SOFTFP__
1434 }
1435 
1436 
astore(int n)1437 void TemplateTable::astore(int n) {
1438   transition(vtos, vtos);
1439   __ pop_ptr(R0_tos);
1440   __ str(R0_tos, aaddress(n));
1441 }
1442 
1443 
pop()1444 void TemplateTable::pop() {
1445   transition(vtos, vtos);
1446   __ add(Rstack_top, Rstack_top, Interpreter::stackElementSize);
1447 }
1448 
1449 
pop2()1450 void TemplateTable::pop2() {
1451   transition(vtos, vtos);
1452   __ add(Rstack_top, Rstack_top, 2*Interpreter::stackElementSize);
1453 }
1454 
1455 
dup()1456 void TemplateTable::dup() {
1457   transition(vtos, vtos);
1458   // stack: ..., a
1459   __ load_ptr(0, R0_tmp);
1460   __ push_ptr(R0_tmp);
1461   // stack: ..., a, a
1462 }
1463 
1464 
dup_x1()1465 void TemplateTable::dup_x1() {
1466   transition(vtos, vtos);
1467   // stack: ..., a, b
1468   __ load_ptr(0, R0_tmp);  // load b
1469   __ load_ptr(1, R2_tmp);  // load a
1470   __ store_ptr(1, R0_tmp); // store b
1471   __ store_ptr(0, R2_tmp); // store a
1472   __ push_ptr(R0_tmp);     // push b
1473   // stack: ..., b, a, b
1474 }
1475 
1476 
dup_x2()1477 void TemplateTable::dup_x2() {
1478   transition(vtos, vtos);
1479   // stack: ..., a, b, c
1480   __ load_ptr(0, R0_tmp);   // load c
1481   __ load_ptr(1, R2_tmp);   // load b
1482   __ load_ptr(2, R4_tmp);   // load a
1483 
1484   __ push_ptr(R0_tmp);      // push c
1485 
1486   // stack: ..., a, b, c, c
1487   __ store_ptr(1, R2_tmp);  // store b
1488   __ store_ptr(2, R4_tmp);  // store a
1489   __ store_ptr(3, R0_tmp);  // store c
1490   // stack: ..., c, a, b, c
1491 }
1492 
1493 
dup2()1494 void TemplateTable::dup2() {
1495   transition(vtos, vtos);
1496   // stack: ..., a, b
1497   __ load_ptr(1, R0_tmp);  // load a
1498   __ push_ptr(R0_tmp);     // push a
1499   __ load_ptr(1, R0_tmp);  // load b
1500   __ push_ptr(R0_tmp);     // push b
1501   // stack: ..., a, b, a, b
1502 }
1503 
1504 
dup2_x1()1505 void TemplateTable::dup2_x1() {
1506   transition(vtos, vtos);
1507 
1508   // stack: ..., a, b, c
1509   __ load_ptr(0, R4_tmp);  // load c
1510   __ load_ptr(1, R2_tmp);  // load b
1511   __ load_ptr(2, R0_tmp);  // load a
1512 
1513   __ push_ptr(R2_tmp);     // push b
1514   __ push_ptr(R4_tmp);     // push c
1515 
1516   // stack: ..., a, b, c, b, c
1517 
1518   __ store_ptr(2, R0_tmp);  // store a
1519   __ store_ptr(3, R4_tmp);  // store c
1520   __ store_ptr(4, R2_tmp);  // store b
1521 
1522   // stack: ..., b, c, a, b, c
1523 }
1524 
1525 
dup2_x2()1526 void TemplateTable::dup2_x2() {
1527   transition(vtos, vtos);
1528   // stack: ..., a, b, c, d
1529   __ load_ptr(0, R0_tmp);  // load d
1530   __ load_ptr(1, R2_tmp);  // load c
1531   __ push_ptr(R2_tmp);     // push c
1532   __ push_ptr(R0_tmp);     // push d
1533   // stack: ..., a, b, c, d, c, d
1534   __ load_ptr(4, R4_tmp);  // load b
1535   __ store_ptr(4, R0_tmp); // store d in b
1536   __ store_ptr(2, R4_tmp); // store b in d
1537   // stack: ..., a, d, c, b, c, d
1538   __ load_ptr(5, R4_tmp);  // load a
1539   __ store_ptr(5, R2_tmp); // store c in a
1540   __ store_ptr(3, R4_tmp); // store a in c
1541   // stack: ..., c, d, a, b, c, d
1542 }
1543 
1544 
swap()1545 void TemplateTable::swap() {
1546   transition(vtos, vtos);
1547   // stack: ..., a, b
1548   __ load_ptr(1, R0_tmp);  // load a
1549   __ load_ptr(0, R2_tmp);  // load b
1550   __ store_ptr(0, R0_tmp); // store a in b
1551   __ store_ptr(1, R2_tmp); // store b in a
1552   // stack: ..., b, a
1553 }
1554 
1555 
iop2(Operation op)1556 void TemplateTable::iop2(Operation op) {
1557   transition(itos, itos);
1558   const Register arg1 = R1_tmp;
1559   const Register arg2 = R0_tos;
1560 
1561   __ pop_i(arg1);
1562   switch (op) {
1563     case add  : __ add_32 (R0_tos, arg1, arg2); break;
1564     case sub  : __ sub_32 (R0_tos, arg1, arg2); break;
1565     case mul  : __ mul_32 (R0_tos, arg1, arg2); break;
1566     case _and : __ and_32 (R0_tos, arg1, arg2); break;
1567     case _or  : __ orr_32 (R0_tos, arg1, arg2); break;
1568     case _xor : __ eor_32 (R0_tos, arg1, arg2); break;
1569 #ifdef AARCH64
1570     case shl  : __ lslv_w (R0_tos, arg1, arg2); break;
1571     case shr  : __ asrv_w (R0_tos, arg1, arg2); break;
1572     case ushr : __ lsrv_w (R0_tos, arg1, arg2); break;
1573 #else
1574     case shl  : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, lsl, arg2)); break;
1575     case shr  : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, asr, arg2)); break;
1576     case ushr : __ andr(arg2, arg2, 0x1f); __ mov (R0_tos, AsmOperand(arg1, lsr, arg2)); break;
1577 #endif // AARCH64
1578     default   : ShouldNotReachHere();
1579   }
1580 }
1581 
1582 
lop2(Operation op)1583 void TemplateTable::lop2(Operation op) {
1584   transition(ltos, ltos);
1585 #ifdef AARCH64
1586   const Register arg1 = R1_tmp;
1587   const Register arg2 = R0_tos;
1588 
1589   __ pop_l(arg1);
1590   switch (op) {
1591     case add  : __ add (R0_tos, arg1, arg2); break;
1592     case sub  : __ sub (R0_tos, arg1, arg2); break;
1593     case _and : __ andr(R0_tos, arg1, arg2); break;
1594     case _or  : __ orr (R0_tos, arg1, arg2); break;
1595     case _xor : __ eor (R0_tos, arg1, arg2); break;
1596     default   : ShouldNotReachHere();
1597   }
1598 #else
1599   const Register arg1_lo = R2_tmp;
1600   const Register arg1_hi = R3_tmp;
1601   const Register arg2_lo = R0_tos_lo;
1602   const Register arg2_hi = R1_tos_hi;
1603 
1604   __ pop_l(arg1_lo, arg1_hi);
1605   switch (op) {
1606     case add : __ adds(R0_tos_lo, arg1_lo, arg2_lo); __ adc (R1_tos_hi, arg1_hi, arg2_hi); break;
1607     case sub : __ subs(R0_tos_lo, arg1_lo, arg2_lo); __ sbc (R1_tos_hi, arg1_hi, arg2_hi); break;
1608     case _and: __ andr(R0_tos_lo, arg1_lo, arg2_lo); __ andr(R1_tos_hi, arg1_hi, arg2_hi); break;
1609     case _or : __ orr (R0_tos_lo, arg1_lo, arg2_lo); __ orr (R1_tos_hi, arg1_hi, arg2_hi); break;
1610     case _xor: __ eor (R0_tos_lo, arg1_lo, arg2_lo); __ eor (R1_tos_hi, arg1_hi, arg2_hi); break;
1611     default : ShouldNotReachHere();
1612   }
1613 #endif // AARCH64
1614 }
1615 
1616 
idiv()1617 void TemplateTable::idiv() {
1618   transition(itos, itos);
1619 #ifdef AARCH64
1620   const Register divisor = R0_tos;
1621   const Register dividend = R1_tmp;
1622 
1623   __ cbz_w(divisor, Interpreter::_throw_ArithmeticException_entry);
1624   __ pop_i(dividend);
1625   __ sdiv_w(R0_tos, dividend, divisor);
1626 #else
1627   __ mov(R2, R0_tos);
1628   __ pop_i(R0);
1629   // R0 - dividend
1630   // R2 - divisor
1631   __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::none);
1632   // R1 - result
1633   __ mov(R0_tos, R1);
1634 #endif // AARCH64
1635 }
1636 
1637 
irem()1638 void TemplateTable::irem() {
1639   transition(itos, itos);
1640 #ifdef AARCH64
1641   const Register divisor = R0_tos;
1642   const Register dividend = R1_tmp;
1643   const Register quotient = R2_tmp;
1644 
1645   __ cbz_w(divisor, Interpreter::_throw_ArithmeticException_entry);
1646   __ pop_i(dividend);
1647   __ sdiv_w(quotient, dividend, divisor);
1648   __ msub_w(R0_tos, divisor, quotient, dividend);
1649 #else
1650   __ mov(R2, R0_tos);
1651   __ pop_i(R0);
1652   // R0 - dividend
1653   // R2 - divisor
1654   __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::none);
1655   // R0 - remainder
1656 #endif // AARCH64
1657 }
1658 
1659 
lmul()1660 void TemplateTable::lmul() {
1661   transition(ltos, ltos);
1662 #ifdef AARCH64
1663   const Register arg1 = R0_tos;
1664   const Register arg2 = R1_tmp;
1665 
1666   __ pop_l(arg2);
1667   __ mul(R0_tos, arg1, arg2);
1668 #else
1669   const Register arg1_lo = R0_tos_lo;
1670   const Register arg1_hi = R1_tos_hi;
1671   const Register arg2_lo = R2_tmp;
1672   const Register arg2_hi = R3_tmp;
1673 
1674   __ pop_l(arg2_lo, arg2_hi);
1675 
1676   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lmul), arg1_lo, arg1_hi, arg2_lo, arg2_hi);
1677 #endif // AARCH64
1678 }
1679 
1680 
ldiv()1681 void TemplateTable::ldiv() {
1682   transition(ltos, ltos);
1683 #ifdef AARCH64
1684   const Register divisor = R0_tos;
1685   const Register dividend = R1_tmp;
1686 
1687   __ cbz(divisor, Interpreter::_throw_ArithmeticException_entry);
1688   __ pop_l(dividend);
1689   __ sdiv(R0_tos, dividend, divisor);
1690 #else
1691   const Register x_lo = R2_tmp;
1692   const Register x_hi = R3_tmp;
1693   const Register y_lo = R0_tos_lo;
1694   const Register y_hi = R1_tos_hi;
1695 
1696   __ pop_l(x_lo, x_hi);
1697 
1698   // check if y = 0
1699   __ orrs(Rtemp, y_lo, y_hi);
1700   __ call(Interpreter::_throw_ArithmeticException_entry, relocInfo::none, eq);
1701   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv), y_lo, y_hi, x_lo, x_hi);
1702 #endif // AARCH64
1703 }
1704 
1705 
lrem()1706 void TemplateTable::lrem() {
1707   transition(ltos, ltos);
1708 #ifdef AARCH64
1709   const Register divisor = R0_tos;
1710   const Register dividend = R1_tmp;
1711   const Register quotient = R2_tmp;
1712 
1713   __ cbz(divisor, Interpreter::_throw_ArithmeticException_entry);
1714   __ pop_l(dividend);
1715   __ sdiv(quotient, dividend, divisor);
1716   __ msub(R0_tos, divisor, quotient, dividend);
1717 #else
1718   const Register x_lo = R2_tmp;
1719   const Register x_hi = R3_tmp;
1720   const Register y_lo = R0_tos_lo;
1721   const Register y_hi = R1_tos_hi;
1722 
1723   __ pop_l(x_lo, x_hi);
1724 
1725   // check if y = 0
1726   __ orrs(Rtemp, y_lo, y_hi);
1727   __ call(Interpreter::_throw_ArithmeticException_entry, relocInfo::none, eq);
1728   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem), y_lo, y_hi, x_lo, x_hi);
1729 #endif // AARCH64
1730 }
1731 
1732 
lshl()1733 void TemplateTable::lshl() {
1734   transition(itos, ltos);
1735 #ifdef AARCH64
1736   const Register val = R1_tmp;
1737   const Register shift_cnt = R0_tos;
1738   __ pop_l(val);
1739   __ lslv(R0_tos, val, shift_cnt);
1740 #else
1741   const Register shift_cnt = R4_tmp;
1742   const Register val_lo = R2_tmp;
1743   const Register val_hi = R3_tmp;
1744 
1745   __ pop_l(val_lo, val_hi);
1746   __ andr(shift_cnt, R0_tos, 63);
1747   __ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, lsl, shift_cnt);
1748 #endif // AARCH64
1749 }
1750 
1751 
lshr()1752 void TemplateTable::lshr() {
1753   transition(itos, ltos);
1754 #ifdef AARCH64
1755   const Register val = R1_tmp;
1756   const Register shift_cnt = R0_tos;
1757   __ pop_l(val);
1758   __ asrv(R0_tos, val, shift_cnt);
1759 #else
1760   const Register shift_cnt = R4_tmp;
1761   const Register val_lo = R2_tmp;
1762   const Register val_hi = R3_tmp;
1763 
1764   __ pop_l(val_lo, val_hi);
1765   __ andr(shift_cnt, R0_tos, 63);
1766   __ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, asr, shift_cnt);
1767 #endif // AARCH64
1768 }
1769 
1770 
lushr()1771 void TemplateTable::lushr() {
1772   transition(itos, ltos);
1773 #ifdef AARCH64
1774   const Register val = R1_tmp;
1775   const Register shift_cnt = R0_tos;
1776   __ pop_l(val);
1777   __ lsrv(R0_tos, val, shift_cnt);
1778 #else
1779   const Register shift_cnt = R4_tmp;
1780   const Register val_lo = R2_tmp;
1781   const Register val_hi = R3_tmp;
1782 
1783   __ pop_l(val_lo, val_hi);
1784   __ andr(shift_cnt, R0_tos, 63);
1785   __ long_shift(R0_tos_lo, R1_tos_hi, val_lo, val_hi, lsr, shift_cnt);
1786 #endif // AARCH64
1787 }
1788 
1789 
fop2(Operation op)1790 void TemplateTable::fop2(Operation op) {
1791   transition(ftos, ftos);
1792 #ifdef __SOFTFP__
1793   __ mov(R1, R0_tos);
1794   __ pop_i(R0);
1795   switch (op) {
1796     case add: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fadd_glibc), R0, R1); break;
1797     case sub: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fsub_glibc), R0, R1); break;
1798     case mul: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fmul), R0, R1); break;
1799     case div: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_fdiv), R0, R1); break;
1800     case rem: __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), R0, R1); break;
1801     default : ShouldNotReachHere();
1802   }
1803 #else
1804   const FloatRegister arg1 = S1_tmp;
1805   const FloatRegister arg2 = S0_tos;
1806 
1807   switch (op) {
1808     case add: __ pop_f(arg1); __ add_float(S0_tos, arg1, arg2); break;
1809     case sub: __ pop_f(arg1); __ sub_float(S0_tos, arg1, arg2); break;
1810     case mul: __ pop_f(arg1); __ mul_float(S0_tos, arg1, arg2); break;
1811     case div: __ pop_f(arg1); __ div_float(S0_tos, arg1, arg2); break;
1812     case rem:
1813 #ifndef __ABI_HARD__
1814       __ pop_f(arg1);
1815       __ fmrs(R0, arg1);
1816       __ fmrs(R1, arg2);
1817       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), R0, R1);
1818       __ fmsr(S0_tos, R0);
1819 #else
1820       __ mov_float(S1_reg, arg2);
1821       __ pop_f(S0);
1822       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1823 #endif // !__ABI_HARD__
1824       break;
1825     default : ShouldNotReachHere();
1826   }
1827 #endif // __SOFTFP__
1828 }
1829 
1830 
dop2(Operation op)1831 void TemplateTable::dop2(Operation op) {
1832   transition(dtos, dtos);
1833 #ifdef __SOFTFP__
1834   __ mov(R2, R0_tos_lo);
1835   __ mov(R3, R1_tos_hi);
1836   __ pop_l(R0, R1);
1837   switch (op) {
1838     // __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
1839     case add: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dadd_glibc), R0, R1, R2, R3); break;
1840     case sub: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dsub_glibc), R0, R1, R2, R3); break;
1841     case mul: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_dmul), R0, R1, R2, R3); break;
1842     case div: __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_ddiv), R0, R1, R2, R3); break;
1843     case rem: __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), R0, R1, R2, R3); break;
1844     default : ShouldNotReachHere();
1845   }
1846 #else
1847   const FloatRegister arg1 = D1_tmp;
1848   const FloatRegister arg2 = D0_tos;
1849 
1850   switch (op) {
1851     case add: __ pop_d(arg1); __ add_double(D0_tos, arg1, arg2); break;
1852     case sub: __ pop_d(arg1); __ sub_double(D0_tos, arg1, arg2); break;
1853     case mul: __ pop_d(arg1); __ mul_double(D0_tos, arg1, arg2); break;
1854     case div: __ pop_d(arg1); __ div_double(D0_tos, arg1, arg2); break;
1855     case rem:
1856 #ifndef __ABI_HARD__
1857       __ pop_d(arg1);
1858       __ fmrrd(R0, R1, arg1);
1859       __ fmrrd(R2, R3, arg2);
1860       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), R0, R1, R2, R3);
1861       __ fmdrr(D0_tos, R0, R1);
1862 #else
1863       __ mov_double(D1, arg2);
1864       __ pop_d(D0);
1865       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1866 #endif // !__ABI_HARD__
1867       break;
1868     default : ShouldNotReachHere();
1869   }
1870 #endif // __SOFTFP__
1871 }
1872 
1873 
ineg()1874 void TemplateTable::ineg() {
1875   transition(itos, itos);
1876   __ neg_32(R0_tos, R0_tos);
1877 }
1878 
1879 
lneg()1880 void TemplateTable::lneg() {
1881   transition(ltos, ltos);
1882 #ifdef AARCH64
1883   __ neg(R0_tos, R0_tos);
1884 #else
1885   __ rsbs(R0_tos_lo, R0_tos_lo, 0);
1886   __ rsc (R1_tos_hi, R1_tos_hi, 0);
1887 #endif // AARCH64
1888 }
1889 
1890 
fneg()1891 void TemplateTable::fneg() {
1892   transition(ftos, ftos);
1893 #ifdef __SOFTFP__
1894   // Invert sign bit
1895   const int sign_mask = 0x80000000;
1896   __ eor(R0_tos, R0_tos, sign_mask);
1897 #else
1898   __ neg_float(S0_tos, S0_tos);
1899 #endif // __SOFTFP__
1900 }
1901 
1902 
dneg()1903 void TemplateTable::dneg() {
1904   transition(dtos, dtos);
1905 #ifdef __SOFTFP__
1906   // Invert sign bit in the high part of the double
1907   const int sign_mask_hi = 0x80000000;
1908   __ eor(R1_tos_hi, R1_tos_hi, sign_mask_hi);
1909 #else
1910   __ neg_double(D0_tos, D0_tos);
1911 #endif // __SOFTFP__
1912 }
1913 
1914 
iinc()1915 void TemplateTable::iinc() {
1916   transition(vtos, vtos);
1917   const Register Rconst = R2_tmp;
1918   const Register Rlocal_index = R1_tmp;
1919   const Register Rval = R0_tmp;
1920 
1921   __ ldrsb(Rconst, at_bcp(2));
1922   locals_index(Rlocal_index);
1923   Address local = load_iaddress(Rlocal_index, Rtemp);
1924   __ ldr_s32(Rval, local);
1925   __ add(Rval, Rval, Rconst);
1926   __ str_32(Rval, local);
1927 }
1928 
1929 
wide_iinc()1930 void TemplateTable::wide_iinc() {
1931   transition(vtos, vtos);
1932   const Register Rconst = R2_tmp;
1933   const Register Rlocal_index = R1_tmp;
1934   const Register Rval = R0_tmp;
1935 
1936   // get constant in Rconst
1937   __ ldrsb(R2_tmp, at_bcp(4));
1938   __ ldrb(R3_tmp, at_bcp(5));
1939   __ orr(Rconst, R3_tmp, AsmOperand(R2_tmp, lsl, 8));
1940 
1941   locals_index_wide(Rlocal_index);
1942   Address local = load_iaddress(Rlocal_index, Rtemp);
1943   __ ldr_s32(Rval, local);
1944   __ add(Rval, Rval, Rconst);
1945   __ str_32(Rval, local);
1946 }
1947 
1948 
convert()1949 void TemplateTable::convert() {
1950   // Checking
1951 #ifdef ASSERT
1952   { TosState tos_in  = ilgl;
1953     TosState tos_out = ilgl;
1954     switch (bytecode()) {
1955       case Bytecodes::_i2l: // fall through
1956       case Bytecodes::_i2f: // fall through
1957       case Bytecodes::_i2d: // fall through
1958       case Bytecodes::_i2b: // fall through
1959       case Bytecodes::_i2c: // fall through
1960       case Bytecodes::_i2s: tos_in = itos; break;
1961       case Bytecodes::_l2i: // fall through
1962       case Bytecodes::_l2f: // fall through
1963       case Bytecodes::_l2d: tos_in = ltos; break;
1964       case Bytecodes::_f2i: // fall through
1965       case Bytecodes::_f2l: // fall through
1966       case Bytecodes::_f2d: tos_in = ftos; break;
1967       case Bytecodes::_d2i: // fall through
1968       case Bytecodes::_d2l: // fall through
1969       case Bytecodes::_d2f: tos_in = dtos; break;
1970       default             : ShouldNotReachHere();
1971     }
1972     switch (bytecode()) {
1973       case Bytecodes::_l2i: // fall through
1974       case Bytecodes::_f2i: // fall through
1975       case Bytecodes::_d2i: // fall through
1976       case Bytecodes::_i2b: // fall through
1977       case Bytecodes::_i2c: // fall through
1978       case Bytecodes::_i2s: tos_out = itos; break;
1979       case Bytecodes::_i2l: // fall through
1980       case Bytecodes::_f2l: // fall through
1981       case Bytecodes::_d2l: tos_out = ltos; break;
1982       case Bytecodes::_i2f: // fall through
1983       case Bytecodes::_l2f: // fall through
1984       case Bytecodes::_d2f: tos_out = ftos; break;
1985       case Bytecodes::_i2d: // fall through
1986       case Bytecodes::_l2d: // fall through
1987       case Bytecodes::_f2d: tos_out = dtos; break;
1988       default             : ShouldNotReachHere();
1989     }
1990     transition(tos_in, tos_out);
1991   }
1992 #endif // ASSERT
1993 
1994   // Conversion
1995   switch (bytecode()) {
1996     case Bytecodes::_i2l:
1997 #ifdef AARCH64
1998       __ sign_extend(R0_tos, R0_tos, 32);
1999 #else
2000       __ mov(R1_tos_hi, AsmOperand(R0_tos, asr, BitsPerWord-1));
2001 #endif // AARCH64
2002       break;
2003 
2004     case Bytecodes::_i2f:
2005 #ifdef AARCH64
2006       __ scvtf_sw(S0_tos, R0_tos);
2007 #else
2008 #ifdef __SOFTFP__
2009       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_i2f), R0_tos);
2010 #else
2011       __ fmsr(S0_tmp, R0_tos);
2012       __ fsitos(S0_tos, S0_tmp);
2013 #endif // __SOFTFP__
2014 #endif // AARCH64
2015       break;
2016 
2017     case Bytecodes::_i2d:
2018 #ifdef AARCH64
2019       __ scvtf_dw(D0_tos, R0_tos);
2020 #else
2021 #ifdef __SOFTFP__
2022       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_i2d), R0_tos);
2023 #else
2024       __ fmsr(S0_tmp, R0_tos);
2025       __ fsitod(D0_tos, S0_tmp);
2026 #endif // __SOFTFP__
2027 #endif // AARCH64
2028       break;
2029 
2030     case Bytecodes::_i2b:
2031       __ sign_extend(R0_tos, R0_tos, 8);
2032       break;
2033 
2034     case Bytecodes::_i2c:
2035       __ zero_extend(R0_tos, R0_tos, 16);
2036       break;
2037 
2038     case Bytecodes::_i2s:
2039       __ sign_extend(R0_tos, R0_tos, 16);
2040       break;
2041 
2042     case Bytecodes::_l2i:
2043       /* nothing to do */
2044       break;
2045 
2046     case Bytecodes::_l2f:
2047 #ifdef AARCH64
2048       __ scvtf_sx(S0_tos, R0_tos);
2049 #else
2050       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f), R0_tos_lo, R1_tos_hi);
2051 #if !defined(__SOFTFP__) && !defined(__ABI_HARD__)
2052       __ fmsr(S0_tos, R0);
2053 #endif // !__SOFTFP__ && !__ABI_HARD__
2054 #endif // AARCH64
2055       break;
2056 
2057     case Bytecodes::_l2d:
2058 #ifdef AARCH64
2059       __ scvtf_dx(D0_tos, R0_tos);
2060 #else
2061       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2d), R0_tos_lo, R1_tos_hi);
2062 #if !defined(__SOFTFP__) && !defined(__ABI_HARD__)
2063       __ fmdrr(D0_tos, R0, R1);
2064 #endif // !__SOFTFP__ && !__ABI_HARD__
2065 #endif // AARCH64
2066       break;
2067 
2068     case Bytecodes::_f2i:
2069 #ifdef AARCH64
2070       __ fcvtzs_ws(R0_tos, S0_tos);
2071 #else
2072 #ifndef __SOFTFP__
2073       __ ftosizs(S0_tos, S0_tos);
2074       __ fmrs(R0_tos, S0_tos);
2075 #else
2076       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), R0_tos);
2077 #endif // !__SOFTFP__
2078 #endif // AARCH64
2079       break;
2080 
2081     case Bytecodes::_f2l:
2082 #ifdef AARCH64
2083       __ fcvtzs_xs(R0_tos, S0_tos);
2084 #else
2085 #ifndef __SOFTFP__
2086       __ fmrs(R0_tos, S0_tos);
2087 #endif // !__SOFTFP__
2088       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), R0_tos);
2089 #endif // AARCH64
2090       break;
2091 
2092     case Bytecodes::_f2d:
2093 #ifdef __SOFTFP__
2094       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_f2d), R0_tos);
2095 #else
2096       __ convert_f2d(D0_tos, S0_tos);
2097 #endif // __SOFTFP__
2098       break;
2099 
2100     case Bytecodes::_d2i:
2101 #ifdef AARCH64
2102       __ fcvtzs_wd(R0_tos, D0_tos);
2103 #else
2104 #ifndef __SOFTFP__
2105       __ ftosizd(Stemp, D0);
2106       __ fmrs(R0, Stemp);
2107 #else
2108       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), R0_tos_lo, R1_tos_hi);
2109 #endif // !__SOFTFP__
2110 #endif // AARCH64
2111       break;
2112 
2113     case Bytecodes::_d2l:
2114 #ifdef AARCH64
2115       __ fcvtzs_xd(R0_tos, D0_tos);
2116 #else
2117 #ifndef __SOFTFP__
2118       __ fmrrd(R0_tos_lo, R1_tos_hi, D0_tos);
2119 #endif // !__SOFTFP__
2120       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), R0_tos_lo, R1_tos_hi);
2121 #endif // AARCH64
2122       break;
2123 
2124     case Bytecodes::_d2f:
2125 #ifdef __SOFTFP__
2126       __ call_VM_leaf(CAST_FROM_FN_PTR(address, __aeabi_d2f), R0_tos_lo, R1_tos_hi);
2127 #else
2128       __ convert_d2f(S0_tos, D0_tos);
2129 #endif // __SOFTFP__
2130       break;
2131 
2132     default:
2133       ShouldNotReachHere();
2134   }
2135 }
2136 
2137 
lcmp()2138 void TemplateTable::lcmp() {
2139   transition(ltos, itos);
2140 #ifdef AARCH64
2141   const Register arg1 = R1_tmp;
2142   const Register arg2 = R0_tos;
2143 
2144   __ pop_l(arg1);
2145 
2146   __ cmp(arg1, arg2);
2147   __ cset(R0_tos, gt);               // 1 if '>', else 0
2148   __ csinv(R0_tos, R0_tos, ZR, ge);  // previous value if '>=', else -1
2149 #else
2150   const Register arg1_lo = R2_tmp;
2151   const Register arg1_hi = R3_tmp;
2152   const Register arg2_lo = R0_tos_lo;
2153   const Register arg2_hi = R1_tos_hi;
2154   const Register res = R4_tmp;
2155 
2156   __ pop_l(arg1_lo, arg1_hi);
2157 
2158   // long compare arg1 with arg2
2159   // result is -1/0/+1 if '<'/'='/'>'
2160   Label done;
2161 
2162   __ mov (res, 0);
2163   __ cmp (arg1_hi, arg2_hi);
2164   __ mvn (res, 0, lt);
2165   __ mov (res, 1, gt);
2166   __ b(done, ne);
2167   __ cmp (arg1_lo, arg2_lo);
2168   __ mvn (res, 0, lo);
2169   __ mov (res, 1, hi);
2170   __ bind(done);
2171   __ mov (R0_tos, res);
2172 #endif // AARCH64
2173 }
2174 
2175 
float_cmp(bool is_float,int unordered_result)2176 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2177   assert((unordered_result == 1) || (unordered_result == -1), "invalid unordered result");
2178 
2179 #ifdef AARCH64
2180   if (is_float) {
2181     transition(ftos, itos);
2182     __ pop_f(S1_tmp);
2183     __ fcmp_s(S1_tmp, S0_tos);
2184   } else {
2185     transition(dtos, itos);
2186     __ pop_d(D1_tmp);
2187     __ fcmp_d(D1_tmp, D0_tos);
2188   }
2189 
2190   if (unordered_result < 0) {
2191     __ cset(R0_tos, gt);               // 1 if '>', else 0
2192     __ csinv(R0_tos, R0_tos, ZR, ge);  // previous value if '>=', else -1
2193   } else {
2194     __ cset(R0_tos, hi);               // 1 if '>' or unordered, else 0
2195     __ csinv(R0_tos, R0_tos, ZR, pl);  // previous value if '>=' or unordered, else -1
2196   }
2197 
2198 #else
2199 
2200 #ifdef __SOFTFP__
2201 
2202   if (is_float) {
2203     transition(ftos, itos);
2204     const Register Rx = R0;
2205     const Register Ry = R1;
2206 
2207     __ mov(Ry, R0_tos);
2208     __ pop_i(Rx);
2209 
2210     if (unordered_result == 1) {
2211       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fcmpg), Rx, Ry);
2212     } else {
2213       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fcmpl), Rx, Ry);
2214     }
2215 
2216   } else {
2217 
2218     transition(dtos, itos);
2219     const Register Rx_lo = R0;
2220     const Register Rx_hi = R1;
2221     const Register Ry_lo = R2;
2222     const Register Ry_hi = R3;
2223 
2224     __ mov(Ry_lo, R0_tos_lo);
2225     __ mov(Ry_hi, R1_tos_hi);
2226     __ pop_l(Rx_lo, Rx_hi);
2227 
2228     if (unordered_result == 1) {
2229       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcmpg), Rx_lo, Rx_hi, Ry_lo, Ry_hi);
2230     } else {
2231       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcmpl), Rx_lo, Rx_hi, Ry_lo, Ry_hi);
2232     }
2233   }
2234 
2235 #else
2236 
2237   if (is_float) {
2238     transition(ftos, itos);
2239     __ pop_f(S1_tmp);
2240     __ fcmps(S1_tmp, S0_tos);
2241   } else {
2242     transition(dtos, itos);
2243     __ pop_d(D1_tmp);
2244     __ fcmpd(D1_tmp, D0_tos);
2245   }
2246 
2247   __ fmstat();
2248 
2249   // comparison result | flag N | flag Z | flag C | flag V
2250   // "<"               |   1    |   0    |   0    |   0
2251   // "=="              |   0    |   1    |   1    |   0
2252   // ">"               |   0    |   0    |   1    |   0
2253   // unordered         |   0    |   0    |   1    |   1
2254 
2255   if (unordered_result < 0) {
2256     __ mov(R0_tos, 1);           // result ==  1 if greater
2257     __ mvn(R0_tos, 0, lt);       // result == -1 if less or unordered (N!=V)
2258   } else {
2259     __ mov(R0_tos, 1);           // result ==  1 if greater or unordered
2260     __ mvn(R0_tos, 0, mi);       // result == -1 if less (N=1)
2261   }
2262   __ mov(R0_tos, 0, eq);         // result ==  0 if equ (Z=1)
2263 #endif // __SOFTFP__
2264 #endif // AARCH64
2265 }
2266 
2267 
branch(bool is_jsr,bool is_wide)2268 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2269 
2270   const Register Rdisp = R0_tmp;
2271   const Register Rbumped_taken_count = R5_tmp;
2272 
2273   __ profile_taken_branch(R0_tmp, Rbumped_taken_count); // R0 holds updated MDP, Rbumped_taken_count holds bumped taken count
2274 
2275   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2276                              InvocationCounter::counter_offset();
2277   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2278                               InvocationCounter::counter_offset();
2279   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
2280 
2281   // Load up R0 with the branch displacement
2282   if (is_wide) {
2283     __ ldrsb(R0_tmp, at_bcp(1));
2284     __ ldrb(R1_tmp, at_bcp(2));
2285     __ ldrb(R2_tmp, at_bcp(3));
2286     __ ldrb(R3_tmp, at_bcp(4));
2287     __ orr(R0_tmp, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2288     __ orr(R0_tmp, R2_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2289     __ orr(Rdisp, R3_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2290   } else {
2291     __ ldrsb(R0_tmp, at_bcp(1));
2292     __ ldrb(R1_tmp, at_bcp(2));
2293     __ orr(Rdisp, R1_tmp, AsmOperand(R0_tmp, lsl, BitsPerByte));
2294   }
2295 
2296   // Handle all the JSR stuff here, then exit.
2297   // It's much shorter and cleaner than intermingling with the
2298   // non-JSR normal-branch stuff occuring below.
2299   if (is_jsr) {
2300     // compute return address as bci in R1
2301     const Register Rret_addr = R1_tmp;
2302     assert_different_registers(Rdisp, Rret_addr, Rtemp);
2303 
2304     __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
2305     __ sub(Rret_addr, Rbcp, - (is_wide ? 5 : 3) + in_bytes(ConstMethod::codes_offset()));
2306     __ sub(Rret_addr, Rret_addr, Rtemp);
2307 
2308     // Load the next target bytecode into R3_bytecode and advance Rbcp
2309 #ifdef AARCH64
2310     __ add(Rbcp, Rbcp, Rdisp);
2311     __ ldrb(R3_bytecode, Address(Rbcp));
2312 #else
2313     __ ldrb(R3_bytecode, Address(Rbcp, Rdisp, lsl, 0, pre_indexed));
2314 #endif // AARCH64
2315 
2316     // Push return address
2317     __ push_i(Rret_addr);
2318     // jsr returns vtos
2319     __ dispatch_only_noverify(vtos);
2320     return;
2321   }
2322 
2323   // Normal (non-jsr) branch handling
2324 
2325   // Adjust the bcp by the displacement in Rdisp and load next bytecode.
2326 #ifdef AARCH64
2327   __ add(Rbcp, Rbcp, Rdisp);
2328   __ ldrb(R3_bytecode, Address(Rbcp));
2329 #else
2330   __ ldrb(R3_bytecode, Address(Rbcp, Rdisp, lsl, 0, pre_indexed));
2331 #endif // AARCH64
2332 
2333   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
2334   Label backedge_counter_overflow;
2335   Label profile_method;
2336   Label dispatch;
2337 
2338   if (UseLoopCounter) {
2339     // increment backedge counter for backward branches
2340     // Rdisp (R0): target offset
2341 
2342     const Register Rcnt = R2_tmp;
2343     const Register Rcounters = R1_tmp;
2344 
2345     // count only if backward branch
2346 #ifdef AARCH64
2347     __ tbz(Rdisp, (BitsPerWord - 1), dispatch); // TODO-AARCH64: check performance of this variant on 32-bit ARM
2348 #else
2349     __ tst(Rdisp, Rdisp);
2350     __ b(dispatch, pl);
2351 #endif // AARCH64
2352 
2353     if (TieredCompilation) {
2354       Label no_mdo;
2355       int increment = InvocationCounter::count_increment;
2356       if (ProfileInterpreter) {
2357         // Are we profiling?
2358         __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
2359         __ cbz(Rtemp, no_mdo);
2360         // Increment the MDO backedge counter
2361         const Address mdo_backedge_counter(Rtemp, in_bytes(MethodData::backedge_counter_offset()) +
2362                                                   in_bytes(InvocationCounter::counter_offset()));
2363         const Address mask(Rtemp, in_bytes(MethodData::backedge_mask_offset()));
2364         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2365                                    Rcnt, R4_tmp, eq, &backedge_counter_overflow);
2366         __ b(dispatch);
2367       }
2368       __ bind(no_mdo);
2369       // Increment backedge counter in MethodCounters*
2370       // Note Rbumped_taken_count is a callee saved registers for ARM32, but caller saved for ARM64
2371       __ get_method_counters(Rmethod, Rcounters, dispatch, true /*saveRegs*/,
2372                              Rdisp, R3_bytecode,
2373                              AARCH64_ONLY(Rbumped_taken_count) NOT_AARCH64(noreg));
2374       const Address mask(Rcounters, in_bytes(MethodCounters::backedge_mask_offset()));
2375       __ increment_mask_and_jump(Address(Rcounters, be_offset), increment, mask,
2376                                  Rcnt, R4_tmp, eq, &backedge_counter_overflow);
2377     } else { // not TieredCompilation
2378       // Increment backedge counter in MethodCounters*
2379       __ get_method_counters(Rmethod, Rcounters, dispatch, true /*saveRegs*/,
2380                              Rdisp, R3_bytecode,
2381                              AARCH64_ONLY(Rbumped_taken_count) NOT_AARCH64(noreg));
2382       __ ldr_u32(Rtemp, Address(Rcounters, be_offset));           // load backedge counter
2383       __ add(Rtemp, Rtemp, InvocationCounter::count_increment);   // increment counter
2384       __ str_32(Rtemp, Address(Rcounters, be_offset));            // store counter
2385 
2386       __ ldr_u32(Rcnt, Address(Rcounters, inv_offset));           // load invocation counter
2387 #ifdef AARCH64
2388       __ andr(Rcnt, Rcnt, (unsigned int)InvocationCounter::count_mask_value);  // and the status bits
2389 #else
2390       __ bic(Rcnt, Rcnt, ~InvocationCounter::count_mask_value);  // and the status bits
2391 #endif // AARCH64
2392       __ add(Rcnt, Rcnt, Rtemp);                                 // add both counters
2393 
2394       if (ProfileInterpreter) {
2395         // Test to see if we should create a method data oop
2396         const Address profile_limit(Rcounters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
2397         __ ldr_s32(Rtemp, profile_limit);
2398         __ cmp_32(Rcnt, Rtemp);
2399         __ b(dispatch, lt);
2400 
2401         // if no method data exists, go to profile method
2402         __ test_method_data_pointer(R4_tmp, profile_method);
2403 
2404         if (UseOnStackReplacement) {
2405           // check for overflow against Rbumped_taken_count, which is the MDO taken count
2406           const Address backward_branch_limit(Rcounters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2407           __ ldr_s32(Rtemp, backward_branch_limit);
2408           __ cmp(Rbumped_taken_count, Rtemp);
2409           __ b(dispatch, lo);
2410 
2411           // When ProfileInterpreter is on, the backedge_count comes from the
2412           // MethodData*, which value does not get reset on the call to
2413           // frequency_counter_overflow().  To avoid excessive calls to the overflow
2414           // routine while the method is being compiled, add a second test to make
2415           // sure the overflow function is called only once every overflow_frequency.
2416           const int overflow_frequency = 1024;
2417 
2418 #ifdef AARCH64
2419           __ tst(Rbumped_taken_count, (unsigned)(overflow_frequency-1));
2420 #else
2421           // was '__ andrs(...,overflow_frequency-1)', testing if lowest 10 bits are 0
2422           assert(overflow_frequency == (1 << 10),"shift by 22 not correct for expected frequency");
2423           __ movs(Rbumped_taken_count, AsmOperand(Rbumped_taken_count, lsl, 22));
2424 #endif // AARCH64
2425 
2426           __ b(backedge_counter_overflow, eq);
2427         }
2428       } else {
2429         if (UseOnStackReplacement) {
2430           // check for overflow against Rcnt, which is the sum of the counters
2431           const Address backward_branch_limit(Rcounters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2432           __ ldr_s32(Rtemp, backward_branch_limit);
2433           __ cmp_32(Rcnt, Rtemp);
2434           __ b(backedge_counter_overflow, hs);
2435 
2436         }
2437       }
2438     }
2439     __ bind(dispatch);
2440   }
2441 
2442   if (!UseOnStackReplacement) {
2443     __ bind(backedge_counter_overflow);
2444   }
2445 
2446   // continue with the bytecode @ target
2447   __ dispatch_only(vtos);
2448 
2449   if (UseLoopCounter) {
2450     if (ProfileInterpreter && !TieredCompilation) {
2451       // Out-of-line code to allocate method data oop.
2452       __ bind(profile_method);
2453 
2454       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2455       __ set_method_data_pointer_for_bcp();
2456       // reload next bytecode
2457       __ ldrb(R3_bytecode, Address(Rbcp));
2458       __ b(dispatch);
2459     }
2460 
2461     if (UseOnStackReplacement) {
2462       // invocation counter overflow
2463       __ bind(backedge_counter_overflow);
2464 
2465       __ sub(R1, Rbcp, Rdisp);                   // branch bcp
2466       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1);
2467 
2468       // R0: osr nmethod (osr ok) or NULL (osr not possible)
2469       const Register Rnmethod = R0;
2470 
2471       __ ldrb(R3_bytecode, Address(Rbcp));       // reload next bytecode
2472 
2473       __ cbz(Rnmethod, dispatch);                // test result, no osr if null
2474 
2475       // nmethod may have been invalidated (VM may block upon call_VM return)
2476       __ ldrb(R1_tmp, Address(Rnmethod, nmethod::state_offset()));
2477       __ cmp(R1_tmp, nmethod::in_use);
2478       __ b(dispatch, ne);
2479 
2480       // We have the address of an on stack replacement routine in Rnmethod,
2481       // We need to prepare to execute the OSR method. First we must
2482       // migrate the locals and monitors off of the stack.
2483 
2484       __ mov(Rtmp_save0, Rnmethod);                      // save the nmethod
2485 
2486       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2487 
2488       // R0 is OSR buffer
2489 
2490       __ ldr(R1_tmp, Address(Rtmp_save0, nmethod::osr_entry_point_offset()));
2491       __ ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
2492 
2493 #ifdef AARCH64
2494       __ ldp(FP, LR, Address(FP));
2495       __ mov(SP, Rtemp);
2496 #else
2497       __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
2498       __ bic(SP, Rtemp, StackAlignmentInBytes - 1);     // Remove frame and align stack
2499 #endif // AARCH64
2500 
2501       __ jump(R1_tmp);
2502     }
2503   }
2504 }
2505 
2506 
if_0cmp(Condition cc)2507 void TemplateTable::if_0cmp(Condition cc) {
2508   transition(itos, vtos);
2509   // assume branch is more often taken than not (loops use backward branches)
2510   Label not_taken;
2511 #ifdef AARCH64
2512   if (cc == equal) {
2513     __ cbnz_w(R0_tos, not_taken);
2514   } else if (cc == not_equal) {
2515     __ cbz_w(R0_tos, not_taken);
2516   } else {
2517     __ cmp_32(R0_tos, 0);
2518     __ b(not_taken, convNegCond(cc));
2519   }
2520 #else
2521   __ cmp_32(R0_tos, 0);
2522   __ b(not_taken, convNegCond(cc));
2523 #endif // AARCH64
2524   branch(false, false);
2525   __ bind(not_taken);
2526   __ profile_not_taken_branch(R0_tmp);
2527 }
2528 
2529 
if_icmp(Condition cc)2530 void TemplateTable::if_icmp(Condition cc) {
2531   transition(itos, vtos);
2532   // assume branch is more often taken than not (loops use backward branches)
2533   Label not_taken;
2534   __ pop_i(R1_tmp);
2535   __ cmp_32(R1_tmp, R0_tos);
2536   __ b(not_taken, convNegCond(cc));
2537   branch(false, false);
2538   __ bind(not_taken);
2539   __ profile_not_taken_branch(R0_tmp);
2540 }
2541 
2542 
if_nullcmp(Condition cc)2543 void TemplateTable::if_nullcmp(Condition cc) {
2544   transition(atos, vtos);
2545   assert(cc == equal || cc == not_equal, "invalid condition");
2546 
2547   // assume branch is more often taken than not (loops use backward branches)
2548   Label not_taken;
2549   if (cc == equal) {
2550     __ cbnz(R0_tos, not_taken);
2551   } else {
2552     __ cbz(R0_tos, not_taken);
2553   }
2554   branch(false, false);
2555   __ bind(not_taken);
2556   __ profile_not_taken_branch(R0_tmp);
2557 }
2558 
2559 
if_acmp(Condition cc)2560 void TemplateTable::if_acmp(Condition cc) {
2561   transition(atos, vtos);
2562   // assume branch is more often taken than not (loops use backward branches)
2563   Label not_taken;
2564   __ pop_ptr(R1_tmp);
2565   __ cmp(R1_tmp, R0_tos);
2566   __ b(not_taken, convNegCond(cc));
2567   branch(false, false);
2568   __ bind(not_taken);
2569   __ profile_not_taken_branch(R0_tmp);
2570 }
2571 
2572 
ret()2573 void TemplateTable::ret() {
2574   transition(vtos, vtos);
2575   const Register Rlocal_index = R1_tmp;
2576   const Register Rret_bci = Rtmp_save0; // R4/R19
2577 
2578   locals_index(Rlocal_index);
2579   Address local = load_iaddress(Rlocal_index, Rtemp);
2580   __ ldr_s32(Rret_bci, local);          // get return bci, compute return bcp
2581   __ profile_ret(Rtmp_save1, Rret_bci);
2582   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
2583   __ add(Rtemp, Rtemp, in_bytes(ConstMethod::codes_offset()));
2584   __ add(Rbcp, Rtemp, Rret_bci);
2585   __ dispatch_next(vtos);
2586 }
2587 
2588 
wide_ret()2589 void TemplateTable::wide_ret() {
2590   transition(vtos, vtos);
2591   const Register Rlocal_index = R1_tmp;
2592   const Register Rret_bci = Rtmp_save0; // R4/R19
2593 
2594   locals_index_wide(Rlocal_index);
2595   Address local = load_iaddress(Rlocal_index, Rtemp);
2596   __ ldr_s32(Rret_bci, local);               // get return bci, compute return bcp
2597   __ profile_ret(Rtmp_save1, Rret_bci);
2598   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
2599   __ add(Rtemp, Rtemp, in_bytes(ConstMethod::codes_offset()));
2600   __ add(Rbcp, Rtemp, Rret_bci);
2601   __ dispatch_next(vtos);
2602 }
2603 
2604 
tableswitch()2605 void TemplateTable::tableswitch() {
2606   transition(itos, vtos);
2607 
2608   const Register Rindex  = R0_tos;
2609 #ifndef AARCH64
2610   const Register Rtemp2  = R1_tmp;
2611 #endif // !AARCH64
2612   const Register Rabcp   = R2_tmp;  // aligned bcp
2613   const Register Rlow    = R3_tmp;
2614   const Register Rhigh   = R4_tmp;
2615   const Register Roffset = R5_tmp;
2616 
2617   // align bcp
2618   __ add(Rtemp, Rbcp, 1 + (2*BytesPerInt-1));
2619   __ align_reg(Rabcp, Rtemp, BytesPerInt);
2620 
2621   // load lo & hi
2622 #ifdef AARCH64
2623   __ ldp_w(Rlow, Rhigh, Address(Rabcp, 2*BytesPerInt, post_indexed));
2624 #else
2625   __ ldmia(Rabcp, RegisterSet(Rlow) | RegisterSet(Rhigh), writeback);
2626 #endif // AARCH64
2627   __ byteswap_u32(Rlow, Rtemp, Rtemp2);
2628   __ byteswap_u32(Rhigh, Rtemp, Rtemp2);
2629 
2630   // compare index with high bound
2631   __ cmp_32(Rhigh, Rindex);
2632 
2633 #ifdef AARCH64
2634   Label default_case, do_dispatch;
2635   __ ccmp_w(Rindex, Rlow, Assembler::flags_for_condition(lt), ge);
2636   __ b(default_case, lt);
2637 
2638   __ sub_w(Rindex, Rindex, Rlow);
2639   __ ldr_s32(Roffset, Address(Rabcp, Rindex, ex_sxtw, LogBytesPerInt));
2640   if(ProfileInterpreter) {
2641     __ sxtw(Rindex, Rindex);
2642     __ profile_switch_case(Rabcp, Rindex, Rtemp2, R0_tmp);
2643   }
2644   __ b(do_dispatch);
2645 
2646   __ bind(default_case);
2647   __ ldr_s32(Roffset, Address(Rabcp, -3 * BytesPerInt));
2648   if(ProfileInterpreter) {
2649     __ profile_switch_default(R0_tmp);
2650   }
2651 
2652   __ bind(do_dispatch);
2653 #else
2654 
2655   // if Rindex <= Rhigh then calculate index in table (Rindex - Rlow)
2656   __ subs(Rindex, Rindex, Rlow, ge);
2657 
2658   // if Rindex <= Rhigh and (Rindex - Rlow) >= 0
2659   // ("ge" status accumulated from cmp and subs instructions) then load
2660   // offset from table, otherwise load offset for default case
2661 
2662   if(ProfileInterpreter) {
2663     Label default_case, continue_execution;
2664 
2665     __ b(default_case, lt);
2666     __ ldr(Roffset, Address(Rabcp, Rindex, lsl, LogBytesPerInt));
2667     __ profile_switch_case(Rabcp, Rindex, Rtemp2, R0_tmp);
2668     __ b(continue_execution);
2669 
2670     __ bind(default_case);
2671     __ profile_switch_default(R0_tmp);
2672     __ ldr(Roffset, Address(Rabcp, -3 * BytesPerInt));
2673 
2674     __ bind(continue_execution);
2675   } else {
2676     __ ldr(Roffset, Address(Rabcp, -3 * BytesPerInt), lt);
2677     __ ldr(Roffset, Address(Rabcp, Rindex, lsl, LogBytesPerInt), ge);
2678   }
2679 #endif // AARCH64
2680 
2681   __ byteswap_u32(Roffset, Rtemp, Rtemp2);
2682 
2683   // load the next bytecode to R3_bytecode and advance Rbcp
2684 #ifdef AARCH64
2685   __ add(Rbcp, Rbcp, Roffset, ex_sxtw);
2686   __ ldrb(R3_bytecode, Address(Rbcp));
2687 #else
2688   __ ldrb(R3_bytecode, Address(Rbcp, Roffset, lsl, 0, pre_indexed));
2689 #endif // AARCH64
2690   __ dispatch_only(vtos);
2691 
2692 }
2693 
2694 
lookupswitch()2695 void TemplateTable::lookupswitch() {
2696   transition(itos, itos);
2697   __ stop("lookupswitch bytecode should have been rewritten");
2698 }
2699 
2700 
fast_linearswitch()2701 void TemplateTable::fast_linearswitch() {
2702   transition(itos, vtos);
2703   Label loop, found, default_case, continue_execution;
2704 
2705   const Register Rkey     = R0_tos;
2706   const Register Rabcp    = R2_tmp;  // aligned bcp
2707   const Register Rdefault = R3_tmp;
2708   const Register Rcount   = R4_tmp;
2709   const Register Roffset  = R5_tmp;
2710 
2711   // bswap Rkey, so we can avoid bswapping the table entries
2712   __ byteswap_u32(Rkey, R1_tmp, Rtemp);
2713 
2714   // align bcp
2715   __ add(Rtemp, Rbcp, 1 + (BytesPerInt-1));
2716   __ align_reg(Rabcp, Rtemp, BytesPerInt);
2717 
2718   // load default & counter
2719 #ifdef AARCH64
2720   __ ldp_w(Rdefault, Rcount, Address(Rabcp, 2*BytesPerInt, post_indexed));
2721 #else
2722   __ ldmia(Rabcp, RegisterSet(Rdefault) | RegisterSet(Rcount), writeback);
2723 #endif // AARCH64
2724   __ byteswap_u32(Rcount, R1_tmp, Rtemp);
2725 
2726 #ifdef AARCH64
2727   __ cbz_w(Rcount, default_case);
2728 #else
2729   __ cmp_32(Rcount, 0);
2730   __ ldr(Rtemp, Address(Rabcp, 2*BytesPerInt, post_indexed), ne);
2731   __ b(default_case, eq);
2732 #endif // AARCH64
2733 
2734   // table search
2735   __ bind(loop);
2736 #ifdef AARCH64
2737   __ ldr_s32(Rtemp, Address(Rabcp, 2*BytesPerInt, post_indexed));
2738 #endif // AARCH64
2739   __ cmp_32(Rtemp, Rkey);
2740   __ b(found, eq);
2741   __ subs(Rcount, Rcount, 1);
2742 #ifndef AARCH64
2743   __ ldr(Rtemp, Address(Rabcp, 2*BytesPerInt, post_indexed), ne);
2744 #endif // !AARCH64
2745   __ b(loop, ne);
2746 
2747   // default case
2748   __ bind(default_case);
2749   __ profile_switch_default(R0_tmp);
2750   __ mov(Roffset, Rdefault);
2751   __ b(continue_execution);
2752 
2753   // entry found -> get offset
2754   __ bind(found);
2755   // Rabcp is already incremented and points to the next entry
2756   __ ldr_s32(Roffset, Address(Rabcp, -BytesPerInt));
2757   if (ProfileInterpreter) {
2758     // Calculate index of the selected case.
2759     assert_different_registers(Roffset, Rcount, Rtemp, R0_tmp, R1_tmp, R2_tmp);
2760 
2761     // align bcp
2762     __ add(Rtemp, Rbcp, 1 + (BytesPerInt-1));
2763     __ align_reg(R2_tmp, Rtemp, BytesPerInt);
2764 
2765     // load number of cases
2766     __ ldr_u32(R2_tmp, Address(R2_tmp, BytesPerInt));
2767     __ byteswap_u32(R2_tmp, R1_tmp, Rtemp);
2768 
2769     // Selected index = <number of cases> - <current loop count>
2770     __ sub(R1_tmp, R2_tmp, Rcount);
2771     __ profile_switch_case(R0_tmp, R1_tmp, Rtemp, R1_tmp);
2772   }
2773 
2774   // continue execution
2775   __ bind(continue_execution);
2776   __ byteswap_u32(Roffset, R1_tmp, Rtemp);
2777 
2778   // load the next bytecode to R3_bytecode and advance Rbcp
2779 #ifdef AARCH64
2780   __ add(Rbcp, Rbcp, Roffset, ex_sxtw);
2781   __ ldrb(R3_bytecode, Address(Rbcp));
2782 #else
2783   __ ldrb(R3_bytecode, Address(Rbcp, Roffset, lsl, 0, pre_indexed));
2784 #endif // AARCH64
2785   __ dispatch_only(vtos);
2786 }
2787 
2788 
fast_binaryswitch()2789 void TemplateTable::fast_binaryswitch() {
2790   transition(itos, vtos);
2791   // Implementation using the following core algorithm:
2792   //
2793   // int binary_search(int key, LookupswitchPair* array, int n) {
2794   //   // Binary search according to "Methodik des Programmierens" by
2795   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2796   //   int i = 0;
2797   //   int j = n;
2798   //   while (i+1 < j) {
2799   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2800   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2801   //     // where a stands for the array and assuming that the (inexisting)
2802   //     // element a[n] is infinitely big.
2803   //     int h = (i + j) >> 1;
2804   //     // i < h < j
2805   //     if (key < array[h].fast_match()) {
2806   //       j = h;
2807   //     } else {
2808   //       i = h;
2809   //     }
2810   //   }
2811   //   // R: a[i] <= key < a[i+1] or Q
2812   //   // (i.e., if key is within array, i is the correct index)
2813   //   return i;
2814   // }
2815 
2816   // register allocation
2817   const Register key    = R0_tos;                // already set (tosca)
2818   const Register array  = R1_tmp;
2819   const Register i      = R2_tmp;
2820   const Register j      = R3_tmp;
2821   const Register h      = R4_tmp;
2822   const Register val    = R5_tmp;
2823   const Register temp1  = Rtemp;
2824   const Register temp2  = LR_tmp;
2825   const Register offset = R3_tmp;
2826 
2827   // set 'array' = aligned bcp + 2 ints
2828   __ add(temp1, Rbcp, 1 + (BytesPerInt-1) + 2*BytesPerInt);
2829   __ align_reg(array, temp1, BytesPerInt);
2830 
2831   // initialize i & j
2832   __ mov(i, 0);                                  // i = 0;
2833   __ ldr_s32(j, Address(array, -BytesPerInt));   // j = length(array);
2834   // Convert j into native byteordering
2835   __ byteswap_u32(j, temp1, temp2);
2836 
2837   // and start
2838   Label entry;
2839   __ b(entry);
2840 
2841   // binary search loop
2842   { Label loop;
2843     __ bind(loop);
2844     // int h = (i + j) >> 1;
2845     __ add(h, i, j);                             // h = i + j;
2846     __ logical_shift_right(h, h, 1);             // h = (i + j) >> 1;
2847     // if (key < array[h].fast_match()) {
2848     //   j = h;
2849     // } else {
2850     //   i = h;
2851     // }
2852 #ifdef AARCH64
2853     __ add(temp1, array, AsmOperand(h, lsl, 1+LogBytesPerInt));
2854     __ ldr_s32(val, Address(temp1));
2855 #else
2856     __ ldr_s32(val, Address(array, h, lsl, 1+LogBytesPerInt));
2857 #endif // AARCH64
2858     // Convert array[h].match to native byte-ordering before compare
2859     __ byteswap_u32(val, temp1, temp2);
2860     __ cmp_32(key, val);
2861     __ mov(j, h, lt);   // j = h if (key <  array[h].fast_match())
2862     __ mov(i, h, ge);   // i = h if (key >= array[h].fast_match())
2863     // while (i+1 < j)
2864     __ bind(entry);
2865     __ add(temp1, i, 1);                             // i+1
2866     __ cmp(temp1, j);                                // i+1 < j
2867     __ b(loop, lt);
2868   }
2869 
2870   // end of binary search, result index is i (must check again!)
2871   Label default_case;
2872   // Convert array[i].match to native byte-ordering before compare
2873 #ifdef AARCH64
2874   __ add(temp1, array, AsmOperand(i, lsl, 1+LogBytesPerInt));
2875   __ ldr_s32(val, Address(temp1));
2876 #else
2877   __ ldr_s32(val, Address(array, i, lsl, 1+LogBytesPerInt));
2878 #endif // AARCH64
2879   __ byteswap_u32(val, temp1, temp2);
2880   __ cmp_32(key, val);
2881   __ b(default_case, ne);
2882 
2883   // entry found
2884   __ add(temp1, array, AsmOperand(i, lsl, 1+LogBytesPerInt));
2885   __ ldr_s32(offset, Address(temp1, 1*BytesPerInt));
2886   __ profile_switch_case(R0, i, R1, i);
2887   __ byteswap_u32(offset, temp1, temp2);
2888 #ifdef AARCH64
2889   __ add(Rbcp, Rbcp, offset, ex_sxtw);
2890   __ ldrb(R3_bytecode, Address(Rbcp));
2891 #else
2892   __ ldrb(R3_bytecode, Address(Rbcp, offset, lsl, 0, pre_indexed));
2893 #endif // AARCH64
2894   __ dispatch_only(vtos);
2895 
2896   // default case
2897   __ bind(default_case);
2898   __ profile_switch_default(R0);
2899   __ ldr_s32(offset, Address(array, -2*BytesPerInt));
2900   __ byteswap_u32(offset, temp1, temp2);
2901 #ifdef AARCH64
2902   __ add(Rbcp, Rbcp, offset, ex_sxtw);
2903   __ ldrb(R3_bytecode, Address(Rbcp));
2904 #else
2905   __ ldrb(R3_bytecode, Address(Rbcp, offset, lsl, 0, pre_indexed));
2906 #endif // AARCH64
2907   __ dispatch_only(vtos);
2908 }
2909 
2910 
_return(TosState state)2911 void TemplateTable::_return(TosState state) {
2912   transition(state, state);
2913   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
2914 
2915   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2916     Label skip_register_finalizer;
2917     assert(state == vtos, "only valid state");
2918     __ ldr(R1, aaddress(0));
2919     __ load_klass(Rtemp, R1);
2920     __ ldr_u32(Rtemp, Address(Rtemp, Klass::access_flags_offset()));
2921     __ tbz(Rtemp, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer);
2922 
2923     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R1);
2924 
2925     __ bind(skip_register_finalizer);
2926   }
2927 
2928   // Narrow result if state is itos but result type is smaller.
2929   // Need to narrow in the return bytecode rather than in generate_return_entry
2930   // since compiled code callers expect the result to already be narrowed.
2931   if (state == itos) {
2932     __ narrow(R0_tos);
2933   }
2934   __ remove_activation(state, LR);
2935 
2936   __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
2937 
2938 #ifndef AARCH64
2939   // According to interpreter calling conventions, result is returned in R0/R1,
2940   // so ftos (S0) and dtos (D0) are moved to R0/R1.
2941   // This conversion should be done after remove_activation, as it uses
2942   // push(state) & pop(state) to preserve return value.
2943   __ convert_tos_to_retval(state);
2944 #endif // !AARCH64
2945 
2946   __ ret();
2947 
2948   __ nop(); // to avoid filling CPU pipeline with invalid instructions
2949   __ nop();
2950 }
2951 
2952 
2953 // ----------------------------------------------------------------------------
2954 // Volatile variables demand their effects be made known to all CPU's in
2955 // order.  Store buffers on most chips allow reads & writes to reorder; the
2956 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2957 // memory barrier (i.e., it's not sufficient that the interpreter does not
2958 // reorder volatile references, the hardware also must not reorder them).
2959 //
2960 // According to the new Java Memory Model (JMM):
2961 // (1) All volatiles are serialized wrt to each other.
2962 // ALSO reads & writes act as aquire & release, so:
2963 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2964 // the read float up to before the read.  It's OK for non-volatile memory refs
2965 // that happen before the volatile read to float down below it.
2966 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2967 // that happen BEFORE the write float down to after the write.  It's OK for
2968 // non-volatile memory refs that happen after the volatile write to float up
2969 // before it.
2970 //
2971 // We only put in barriers around volatile refs (they are expensive), not
2972 // _between_ memory refs (that would require us to track the flavor of the
2973 // previous memory refs).  Requirements (2) and (3) require some barriers
2974 // before volatile stores and after volatile loads.  These nearly cover
2975 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2976 // case is placed after volatile-stores although it could just as well go
2977 // before volatile-loads.
2978 // TODO-AARCH64: consider removing extra unused parameters
volatile_barrier(MacroAssembler::Membar_mask_bits order_constraint,Register tmp,bool preserve_flags,Register load_tgt)2979 void TemplateTable::volatile_barrier(MacroAssembler::Membar_mask_bits order_constraint,
2980                                      Register tmp,
2981                                      bool preserve_flags,
2982                                      Register load_tgt) {
2983 #ifdef AARCH64
2984   __ membar(order_constraint);
2985 #else
2986   __ membar(order_constraint, tmp, preserve_flags, load_tgt);
2987 #endif
2988 }
2989 
2990 // Blows all volatile registers: R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR.
resolve_cache_and_index(int byte_no,Register Rcache,Register Rindex,size_t index_size)2991 void TemplateTable::resolve_cache_and_index(int byte_no,
2992                                             Register Rcache,
2993                                             Register Rindex,
2994                                             size_t index_size) {
2995   assert_different_registers(Rcache, Rindex, Rtemp);
2996 
2997   Label resolved;
2998   Bytecodes::Code code = bytecode();
2999   switch (code) {
3000   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
3001   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
3002   }
3003 
3004   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
3005   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, Rindex, Rtemp, byte_no, 1, index_size);
3006   __ cmp(Rtemp, code);  // have we resolved this bytecode?
3007   __ b(resolved, eq);
3008 
3009   // resolve first time through
3010   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
3011   __ mov(R1, code);
3012   __ call_VM(noreg, entry, R1);
3013   // Update registers with resolved info
3014   __ get_cache_and_index_at_bcp(Rcache, Rindex, 1, index_size);
3015   __ bind(resolved);
3016 }
3017 
3018 
3019 // The Rcache and Rindex registers must be set before call
load_field_cp_cache_entry(Register Rcache,Register Rindex,Register Roffset,Register Rflags,Register Robj,bool is_static=false)3020 void TemplateTable::load_field_cp_cache_entry(Register Rcache,
3021                                               Register Rindex,
3022                                               Register Roffset,
3023                                               Register Rflags,
3024                                               Register Robj,
3025                                               bool is_static = false) {
3026 
3027   assert_different_registers(Rcache, Rindex, Rtemp);
3028   assert_different_registers(Roffset, Rflags, Robj, Rtemp);
3029 
3030   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3031 
3032   __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3033 
3034   // Field offset
3035   __ ldr(Roffset, Address(Rtemp,
3036            cp_base_offset + ConstantPoolCacheEntry::f2_offset()));
3037 
3038   // Flags
3039   __ ldr_u32(Rflags, Address(Rtemp,
3040            cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
3041 
3042   if (is_static) {
3043     __ ldr(Robj, Address(Rtemp,
3044              cp_base_offset + ConstantPoolCacheEntry::f1_offset()));
3045     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3046     __ ldr(Robj, Address(Robj, mirror_offset));
3047     __ resolve_oop_handle(Robj);
3048   }
3049 }
3050 
3051 
3052 // Blows all volatile registers: R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR.
load_invoke_cp_cache_entry(int byte_no,Register method,Register itable_index,Register flags,bool is_invokevirtual,bool is_invokevfinal,bool is_invokedynamic)3053 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
3054                                                Register method,
3055                                                Register itable_index,
3056                                                Register flags,
3057                                                bool is_invokevirtual,
3058                                                bool is_invokevfinal/*unused*/,
3059                                                bool is_invokedynamic) {
3060   // setup registers
3061   const Register cache = R2_tmp;
3062   const Register index = R3_tmp;
3063   const Register temp_reg = Rtemp;
3064   assert_different_registers(cache, index, temp_reg);
3065   assert_different_registers(method, itable_index, temp_reg);
3066 
3067   // determine constant pool cache field offsets
3068   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
3069   const int method_offset = in_bytes(
3070     ConstantPoolCache::base_offset() +
3071       ((byte_no == f2_byte)
3072        ? ConstantPoolCacheEntry::f2_offset()
3073        : ConstantPoolCacheEntry::f1_offset()
3074       )
3075     );
3076   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
3077                                     ConstantPoolCacheEntry::flags_offset());
3078   // access constant pool cache fields
3079   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
3080                                     ConstantPoolCacheEntry::f2_offset());
3081 
3082   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
3083   resolve_cache_and_index(byte_no, cache, index, index_size);
3084     __ add(temp_reg, cache, AsmOperand(index, lsl, LogBytesPerWord));
3085     __ ldr(method, Address(temp_reg, method_offset));
3086 
3087   if (itable_index != noreg) {
3088     __ ldr(itable_index, Address(temp_reg, index_offset));
3089   }
3090   __ ldr_u32(flags, Address(temp_reg, flags_offset));
3091 }
3092 
3093 
3094 // The registers cache and index expected to be set before call, and should not be Rtemp.
3095 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR,
3096 // except cache and index registers which are preserved.
jvmti_post_field_access(Register Rcache,Register Rindex,bool is_static,bool has_tos)3097 void TemplateTable::jvmti_post_field_access(Register Rcache,
3098                                             Register Rindex,
3099                                             bool is_static,
3100                                             bool has_tos) {
3101   assert_different_registers(Rcache, Rindex, Rtemp);
3102 
3103   if (__ can_post_field_access()) {
3104     // Check to see if a field access watch has been set before we take
3105     // the time to call into the VM.
3106 
3107     Label Lcontinue;
3108 
3109     __ ldr_global_s32(Rtemp, (address)JvmtiExport::get_field_access_count_addr());
3110     __ cbz(Rtemp, Lcontinue);
3111 
3112     // cache entry pointer
3113     __ add(R2, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3114     __ add(R2, R2, in_bytes(ConstantPoolCache::base_offset()));
3115     if (is_static) {
3116       __ mov(R1, 0);        // NULL object reference
3117     } else {
3118       __ pop(atos);         // Get the object
3119       __ mov(R1, R0_tos);
3120       __ verify_oop(R1);
3121       __ push(atos);        // Restore stack state
3122     }
3123     // R1: object pointer or NULL
3124     // R2: cache entry pointer
3125     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
3126                R1, R2);
3127     __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3128 
3129     __ bind(Lcontinue);
3130   }
3131 }
3132 
3133 
pop_and_check_object(Register r)3134 void TemplateTable::pop_and_check_object(Register r) {
3135   __ pop_ptr(r);
3136   __ null_check(r, Rtemp);  // for field access must check obj.
3137   __ verify_oop(r);
3138 }
3139 
3140 
getfield_or_static(int byte_no,bool is_static,RewriteControl rc)3141 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3142   transition(vtos, vtos);
3143 
3144   const Register Roffset  = R2_tmp;
3145   const Register Robj     = R3_tmp;
3146   const Register Rcache   = R4_tmp;
3147   const Register Rflagsav = Rtmp_save0;  // R4/R19
3148   const Register Rindex   = R5_tmp;
3149   const Register Rflags   = R5_tmp;
3150 
3151   const bool gen_volatile_check = os::is_MP();
3152 
3153   resolve_cache_and_index(byte_no, Rcache, Rindex, sizeof(u2));
3154   jvmti_post_field_access(Rcache, Rindex, is_static, false);
3155   load_field_cp_cache_entry(Rcache, Rindex, Roffset, Rflags, Robj, is_static);
3156 
3157   if (gen_volatile_check) {
3158     __ mov(Rflagsav, Rflags);
3159   }
3160 
3161   if (!is_static) pop_and_check_object(Robj);
3162 
3163   Label Done, Lint, Ltable, shouldNotReachHere;
3164   Label Lbtos, Lztos, Lctos, Lstos, Litos, Lltos, Lftos, Ldtos, Latos;
3165 
3166   // compute type
3167   __ logical_shift_right(Rflags, Rflags, ConstantPoolCacheEntry::tos_state_shift);
3168   // Make sure we don't need to mask flags after the above shift
3169   ConstantPoolCacheEntry::verify_tos_state_shift();
3170 
3171   // There are actually two versions of implementation of getfield/getstatic:
3172   //
3173   // 32-bit ARM:
3174   // 1) Table switch using add(PC,...) instruction (fast_version)
3175   // 2) Table switch using ldr(PC,...) instruction
3176   //
3177   // AArch64:
3178   // 1) Table switch using adr/add/br instructions (fast_version)
3179   // 2) Table switch using adr/ldr/br instructions
3180   //
3181   // First version requires fixed size of code block for each case and
3182   // can not be used in RewriteBytecodes and VerifyOops
3183   // modes.
3184 
3185   // Size of fixed size code block for fast_version
3186   const int log_max_block_size = 2;
3187   const int max_block_size = 1 << log_max_block_size;
3188 
3189   // Decide if fast version is enabled
3190   bool fast_version = (is_static || !RewriteBytecodes) && !VerifyOops && !VerifyInterpreterStackTop;
3191 
3192   // On 32-bit ARM atos and itos cases can be merged only for fast version, because
3193   // atos requires additional processing in slow version.
3194   // On AArch64 atos and itos cannot be merged.
3195   bool atos_merged_with_itos = AARCH64_ONLY(false) NOT_AARCH64(fast_version);
3196 
3197   assert(number_of_states == 10, "number of tos states should be equal to 9");
3198 
3199   __ cmp(Rflags, itos);
3200 #ifdef AARCH64
3201   __ b(Lint, eq);
3202 
3203   if(fast_version) {
3204     __ adr(Rtemp, Lbtos);
3205     __ add(Rtemp, Rtemp, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize));
3206     __ br(Rtemp);
3207   } else {
3208     __ adr(Rtemp, Ltable);
3209     __ ldr(Rtemp, Address::indexed_ptr(Rtemp, Rflags));
3210     __ br(Rtemp);
3211   }
3212 #else
3213   if(atos_merged_with_itos) {
3214     __ cmp(Rflags, atos, ne);
3215   }
3216 
3217   // table switch by type
3218   if(fast_version) {
3219     __ add(PC, PC, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize), ne);
3220   } else {
3221     __ ldr(PC, Address(PC, Rflags, lsl, LogBytesPerWord), ne);
3222   }
3223 
3224   // jump to itos/atos case
3225   __ b(Lint);
3226 #endif // AARCH64
3227 
3228   // table with addresses for slow version
3229   if (fast_version) {
3230     // nothing to do
3231   } else  {
3232     AARCH64_ONLY(__ align(wordSize));
3233     __ bind(Ltable);
3234     __ emit_address(Lbtos);
3235     __ emit_address(Lztos);
3236     __ emit_address(Lctos);
3237     __ emit_address(Lstos);
3238     __ emit_address(Litos);
3239     __ emit_address(Lltos);
3240     __ emit_address(Lftos);
3241     __ emit_address(Ldtos);
3242     __ emit_address(Latos);
3243   }
3244 
3245 #ifdef ASSERT
3246   int seq = 0;
3247 #endif
3248   // btos
3249   {
3250     assert(btos == seq++, "btos has unexpected value");
3251     FixedSizeCodeBlock btos_block(_masm, max_block_size, fast_version);
3252     __ bind(Lbtos);
3253     __ ldrsb(R0_tos, Address(Robj, Roffset));
3254     __ push(btos);
3255     // Rewrite bytecode to be faster
3256     if (!is_static && rc == may_rewrite) {
3257       patch_bytecode(Bytecodes::_fast_bgetfield, R0_tmp, Rtemp);
3258     }
3259     __ b(Done);
3260   }
3261 
3262   // ztos (same as btos for getfield)
3263   {
3264     assert(ztos == seq++, "btos has unexpected value");
3265     FixedSizeCodeBlock ztos_block(_masm, max_block_size, fast_version);
3266     __ bind(Lztos);
3267     __ ldrsb(R0_tos, Address(Robj, Roffset));
3268     __ push(ztos);
3269     // Rewrite bytecode to be faster (use btos fast getfield)
3270     if (!is_static && rc == may_rewrite) {
3271       patch_bytecode(Bytecodes::_fast_bgetfield, R0_tmp, Rtemp);
3272     }
3273     __ b(Done);
3274   }
3275 
3276   // ctos
3277   {
3278     assert(ctos == seq++, "ctos has unexpected value");
3279     FixedSizeCodeBlock ctos_block(_masm, max_block_size, fast_version);
3280     __ bind(Lctos);
3281     __ ldrh(R0_tos, Address(Robj, Roffset));
3282     __ push(ctos);
3283     if (!is_static && rc == may_rewrite) {
3284       patch_bytecode(Bytecodes::_fast_cgetfield, R0_tmp, Rtemp);
3285     }
3286     __ b(Done);
3287   }
3288 
3289   // stos
3290   {
3291     assert(stos == seq++, "stos has unexpected value");
3292     FixedSizeCodeBlock stos_block(_masm, max_block_size, fast_version);
3293     __ bind(Lstos);
3294     __ ldrsh(R0_tos, Address(Robj, Roffset));
3295     __ push(stos);
3296     if (!is_static && rc == may_rewrite) {
3297       patch_bytecode(Bytecodes::_fast_sgetfield, R0_tmp, Rtemp);
3298     }
3299     __ b(Done);
3300   }
3301 
3302   // itos
3303   {
3304     assert(itos == seq++, "itos has unexpected value");
3305     FixedSizeCodeBlock itos_block(_masm, max_block_size, fast_version);
3306     __ bind(Litos);
3307     __ b(shouldNotReachHere);
3308   }
3309 
3310   // ltos
3311   {
3312     assert(ltos == seq++, "ltos has unexpected value");
3313     FixedSizeCodeBlock ltos_block(_masm, max_block_size, fast_version);
3314     __ bind(Lltos);
3315 #ifdef AARCH64
3316     __ ldr(R0_tos, Address(Robj, Roffset));
3317 #else
3318     __ add(Roffset, Robj, Roffset);
3319     __ ldmia(Roffset, RegisterSet(R0_tos_lo, R1_tos_hi));
3320 #endif // AARCH64
3321     __ push(ltos);
3322     if (!is_static && rc == may_rewrite) {
3323       patch_bytecode(Bytecodes::_fast_lgetfield, R0_tmp, Rtemp);
3324     }
3325     __ b(Done);
3326   }
3327 
3328   // ftos
3329   {
3330     assert(ftos == seq++, "ftos has unexpected value");
3331     FixedSizeCodeBlock ftos_block(_masm, max_block_size, fast_version);
3332     __ bind(Lftos);
3333     // floats and ints are placed on stack in same way, so
3334     // we can use push(itos) to transfer value without using VFP
3335     __ ldr_u32(R0_tos, Address(Robj, Roffset));
3336     __ push(itos);
3337     if (!is_static && rc == may_rewrite) {
3338       patch_bytecode(Bytecodes::_fast_fgetfield, R0_tmp, Rtemp);
3339     }
3340     __ b(Done);
3341   }
3342 
3343   // dtos
3344   {
3345     assert(dtos == seq++, "dtos has unexpected value");
3346     FixedSizeCodeBlock dtos_block(_masm, max_block_size, fast_version);
3347     __ bind(Ldtos);
3348     // doubles and longs are placed on stack in the same way, so
3349     // we can use push(ltos) to transfer value without using VFP
3350 #ifdef AARCH64
3351     __ ldr(R0_tos, Address(Robj, Roffset));
3352 #else
3353     __ add(Rtemp, Robj, Roffset);
3354     __ ldmia(Rtemp, RegisterSet(R0_tos_lo, R1_tos_hi));
3355 #endif // AARCH64
3356     __ push(ltos);
3357     if (!is_static && rc == may_rewrite) {
3358       patch_bytecode(Bytecodes::_fast_dgetfield, R0_tmp, Rtemp);
3359     }
3360     __ b(Done);
3361   }
3362 
3363   // atos
3364   {
3365     assert(atos == seq++, "atos has unexpected value");
3366 
3367     // atos case for AArch64 and slow version on 32-bit ARM
3368     if(!atos_merged_with_itos) {
3369       __ bind(Latos);
3370       do_oop_load(_masm, R0_tos, Address(Robj, Roffset));
3371       __ push(atos);
3372       // Rewrite bytecode to be faster
3373       if (!is_static && rc == may_rewrite) {
3374         patch_bytecode(Bytecodes::_fast_agetfield, R0_tmp, Rtemp);
3375       }
3376       __ b(Done);
3377     }
3378   }
3379 
3380   assert(vtos == seq++, "vtos has unexpected value");
3381 
3382   __ bind(shouldNotReachHere);
3383   __ should_not_reach_here();
3384 
3385   // itos and atos cases are frequent so it makes sense to move them out of table switch
3386   // atos case can be merged with itos case (and thus moved out of table switch) on 32-bit ARM, fast version only
3387 
3388   __ bind(Lint);
3389   __ ldr_s32(R0_tos, Address(Robj, Roffset));
3390   __ push(itos);
3391   // Rewrite bytecode to be faster
3392   if (!is_static && rc == may_rewrite) {
3393     patch_bytecode(Bytecodes::_fast_igetfield, R0_tmp, Rtemp);
3394   }
3395 
3396   __ bind(Done);
3397 
3398   if (gen_volatile_check) {
3399     // Check for volatile field
3400     Label notVolatile;
3401     __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3402 
3403     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
3404 
3405     __ bind(notVolatile);
3406   }
3407 
3408 }
3409 
getfield(int byte_no)3410 void TemplateTable::getfield(int byte_no) {
3411   getfield_or_static(byte_no, false);
3412 }
3413 
nofast_getfield(int byte_no)3414 void TemplateTable::nofast_getfield(int byte_no) {
3415   getfield_or_static(byte_no, false, may_not_rewrite);
3416 }
3417 
getstatic(int byte_no)3418 void TemplateTable::getstatic(int byte_no) {
3419   getfield_or_static(byte_no, true);
3420 }
3421 
3422 
3423 // The registers cache and index expected to be set before call, and should not be R1 or Rtemp.
3424 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR,
3425 // except cache and index registers which are preserved.
jvmti_post_field_mod(Register Rcache,Register Rindex,bool is_static)3426 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rindex, bool is_static) {
3427   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3428   assert_different_registers(Rcache, Rindex, R1, Rtemp);
3429 
3430   if (__ can_post_field_modification()) {
3431     // Check to see if a field modification watch has been set before we take
3432     // the time to call into the VM.
3433     Label Lcontinue;
3434 
3435     __ ldr_global_s32(Rtemp, (address)JvmtiExport::get_field_modification_count_addr());
3436     __ cbz(Rtemp, Lcontinue);
3437 
3438     if (is_static) {
3439       // Life is simple.  Null out the object pointer.
3440       __ mov(R1, 0);
3441     } else {
3442       // Life is harder. The stack holds the value on top, followed by the object.
3443       // We don't know the size of the value, though; it could be one or two words
3444       // depending on its type. As a result, we must find the type to determine where
3445       // the object is.
3446 
3447       __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3448       __ ldr_u32(Rtemp, Address(Rtemp, cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
3449 
3450       __ logical_shift_right(Rtemp, Rtemp, ConstantPoolCacheEntry::tos_state_shift);
3451       // Make sure we don't need to mask Rtemp after the above shift
3452       ConstantPoolCacheEntry::verify_tos_state_shift();
3453 
3454       __ cmp(Rtemp, ltos);
3455       __ cond_cmp(Rtemp, dtos, ne);
3456 #ifdef AARCH64
3457       __ mov(Rtemp, Interpreter::expr_offset_in_bytes(2));
3458       __ mov(R1, Interpreter::expr_offset_in_bytes(1));
3459       __ mov(R1, Rtemp, eq);
3460       __ ldr(R1, Address(Rstack_top, R1));
3461 #else
3462       // two word value (ltos/dtos)
3463       __ ldr(R1, Address(SP, Interpreter::expr_offset_in_bytes(2)), eq);
3464 
3465       // one word value (not ltos, dtos)
3466       __ ldr(R1, Address(SP, Interpreter::expr_offset_in_bytes(1)), ne);
3467 #endif // AARCH64
3468     }
3469 
3470     // cache entry pointer
3471     __ add(R2, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3472     __ add(R2, R2, in_bytes(cp_base_offset));
3473 
3474     // object (tos)
3475     __ mov(R3, Rstack_top);
3476 
3477     // R1: object pointer set up above (NULL if static)
3478     // R2: cache entry pointer
3479     // R3: value object on the stack
3480     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
3481                R1, R2, R3);
3482     __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3483 
3484     __ bind(Lcontinue);
3485   }
3486 }
3487 
3488 
putfield_or_static(int byte_no,bool is_static,RewriteControl rc)3489 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3490   transition(vtos, vtos);
3491 
3492   const Register Roffset  = R2_tmp;
3493   const Register Robj     = R3_tmp;
3494   const Register Rcache   = R4_tmp;
3495   const Register Rflagsav = Rtmp_save0;  // R4/R19
3496   const Register Rindex   = R5_tmp;
3497   const Register Rflags   = R5_tmp;
3498 
3499   const bool gen_volatile_check = os::is_MP();
3500 
3501   resolve_cache_and_index(byte_no, Rcache, Rindex, sizeof(u2));
3502   jvmti_post_field_mod(Rcache, Rindex, is_static);
3503   load_field_cp_cache_entry(Rcache, Rindex, Roffset, Rflags, Robj, is_static);
3504 
3505   if (gen_volatile_check) {
3506     // Check for volatile field
3507     Label notVolatile;
3508     __ mov(Rflagsav, Rflags);
3509     __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3510 
3511     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
3512 
3513     __ bind(notVolatile);
3514   }
3515 
3516   Label Done, Lint, shouldNotReachHere;
3517   Label Ltable, Lbtos, Lztos, Lctos, Lstos, Litos, Lltos, Lftos, Ldtos, Latos;
3518 
3519   // compute type
3520   __ logical_shift_right(Rflags, Rflags, ConstantPoolCacheEntry::tos_state_shift);
3521   // Make sure we don't need to mask flags after the above shift
3522   ConstantPoolCacheEntry::verify_tos_state_shift();
3523 
3524   // There are actually two versions of implementation of putfield/putstatic:
3525   //
3526   // 32-bit ARM:
3527   // 1) Table switch using add(PC,...) instruction (fast_version)
3528   // 2) Table switch using ldr(PC,...) instruction
3529   //
3530   // AArch64:
3531   // 1) Table switch using adr/add/br instructions (fast_version)
3532   // 2) Table switch using adr/ldr/br instructions
3533   //
3534   // First version requires fixed size of code block for each case and
3535   // can not be used in RewriteBytecodes and VerifyOops
3536   // modes.
3537 
3538   // Size of fixed size code block for fast_version (in instructions)
3539   const int log_max_block_size = AARCH64_ONLY(is_static ? 2 : 3) NOT_AARCH64(3);
3540   const int max_block_size = 1 << log_max_block_size;
3541 
3542   // Decide if fast version is enabled
3543   bool fast_version = (is_static || !RewriteBytecodes) && !VerifyOops && !ZapHighNonSignificantBits;
3544 
3545   assert(number_of_states == 10, "number of tos states should be equal to 9");
3546 
3547   // itos case is frequent and is moved outside table switch
3548   __ cmp(Rflags, itos);
3549 
3550 #ifdef AARCH64
3551   __ b(Lint, eq);
3552 
3553   if (fast_version) {
3554     __ adr(Rtemp, Lbtos);
3555     __ add(Rtemp, Rtemp, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize));
3556     __ br(Rtemp);
3557   } else {
3558     __ adr(Rtemp, Ltable);
3559     __ ldr(Rtemp, Address::indexed_ptr(Rtemp, Rflags));
3560     __ br(Rtemp);
3561   }
3562 #else
3563   // table switch by type
3564   if (fast_version) {
3565     __ add(PC, PC, AsmOperand(Rflags, lsl, log_max_block_size + Assembler::LogInstructionSize), ne);
3566   } else  {
3567     __ ldr(PC, Address(PC, Rflags, lsl, LogBytesPerWord), ne);
3568   }
3569 
3570   // jump to itos case
3571   __ b(Lint);
3572 #endif // AARCH64
3573 
3574   // table with addresses for slow version
3575   if (fast_version) {
3576     // nothing to do
3577   } else  {
3578     AARCH64_ONLY(__ align(wordSize));
3579     __ bind(Ltable);
3580     __ emit_address(Lbtos);
3581     __ emit_address(Lztos);
3582     __ emit_address(Lctos);
3583     __ emit_address(Lstos);
3584     __ emit_address(Litos);
3585     __ emit_address(Lltos);
3586     __ emit_address(Lftos);
3587     __ emit_address(Ldtos);
3588     __ emit_address(Latos);
3589   }
3590 
3591 #ifdef ASSERT
3592   int seq = 0;
3593 #endif
3594   // btos
3595   {
3596     assert(btos == seq++, "btos has unexpected value");
3597     FixedSizeCodeBlock btos_block(_masm, max_block_size, fast_version);
3598     __ bind(Lbtos);
3599     __ pop(btos);
3600     if (!is_static) pop_and_check_object(Robj);
3601     __ strb(R0_tos, Address(Robj, Roffset));
3602     if (!is_static && rc == may_rewrite) {
3603       patch_bytecode(Bytecodes::_fast_bputfield, R0_tmp, Rtemp, true, byte_no);
3604     }
3605     __ b(Done);
3606   }
3607 
3608   // ztos
3609   {
3610     assert(ztos == seq++, "ztos has unexpected value");
3611     FixedSizeCodeBlock ztos_block(_masm, max_block_size, fast_version);
3612     __ bind(Lztos);
3613     __ pop(ztos);
3614     if (!is_static) pop_and_check_object(Robj);
3615     __ and_32(R0_tos, R0_tos, 1);
3616     __ strb(R0_tos, Address(Robj, Roffset));
3617     if (!is_static && rc == may_rewrite) {
3618       patch_bytecode(Bytecodes::_fast_zputfield, R0_tmp, Rtemp, true, byte_no);
3619     }
3620     __ b(Done);
3621   }
3622 
3623   // ctos
3624   {
3625     assert(ctos == seq++, "ctos has unexpected value");
3626     FixedSizeCodeBlock ctos_block(_masm, max_block_size, fast_version);
3627     __ bind(Lctos);
3628     __ pop(ctos);
3629     if (!is_static) pop_and_check_object(Robj);
3630     __ strh(R0_tos, Address(Robj, Roffset));
3631     if (!is_static && rc == may_rewrite) {
3632       patch_bytecode(Bytecodes::_fast_cputfield, R0_tmp, Rtemp, true, byte_no);
3633     }
3634     __ b(Done);
3635   }
3636 
3637   // stos
3638   {
3639     assert(stos == seq++, "stos has unexpected value");
3640     FixedSizeCodeBlock stos_block(_masm, max_block_size, fast_version);
3641     __ bind(Lstos);
3642     __ pop(stos);
3643     if (!is_static) pop_and_check_object(Robj);
3644     __ strh(R0_tos, Address(Robj, Roffset));
3645     if (!is_static && rc == may_rewrite) {
3646       patch_bytecode(Bytecodes::_fast_sputfield, R0_tmp, Rtemp, true, byte_no);
3647     }
3648     __ b(Done);
3649   }
3650 
3651   // itos
3652   {
3653     assert(itos == seq++, "itos has unexpected value");
3654     FixedSizeCodeBlock itos_block(_masm, max_block_size, fast_version);
3655     __ bind(Litos);
3656     __ b(shouldNotReachHere);
3657   }
3658 
3659   // ltos
3660   {
3661     assert(ltos == seq++, "ltos has unexpected value");
3662     FixedSizeCodeBlock ltos_block(_masm, max_block_size, fast_version);
3663     __ bind(Lltos);
3664     __ pop(ltos);
3665     if (!is_static) pop_and_check_object(Robj);
3666 #ifdef AARCH64
3667     __ str(R0_tos, Address(Robj, Roffset));
3668 #else
3669     __ add(Roffset, Robj, Roffset);
3670     __ stmia(Roffset, RegisterSet(R0_tos_lo, R1_tos_hi));
3671 #endif // AARCH64
3672     if (!is_static && rc == may_rewrite) {
3673       patch_bytecode(Bytecodes::_fast_lputfield, R0_tmp, Rtemp, true, byte_no);
3674     }
3675     __ b(Done);
3676   }
3677 
3678   // ftos
3679   {
3680     assert(ftos == seq++, "ftos has unexpected value");
3681     FixedSizeCodeBlock ftos_block(_masm, max_block_size, fast_version);
3682     __ bind(Lftos);
3683     // floats and ints are placed on stack in the same way, so
3684     // we can use pop(itos) to transfer value without using VFP
3685     __ pop(itos);
3686     if (!is_static) pop_and_check_object(Robj);
3687     __ str_32(R0_tos, Address(Robj, Roffset));
3688     if (!is_static && rc == may_rewrite) {
3689       patch_bytecode(Bytecodes::_fast_fputfield, R0_tmp, Rtemp, true, byte_no);
3690     }
3691     __ b(Done);
3692   }
3693 
3694   // dtos
3695   {
3696     assert(dtos == seq++, "dtos has unexpected value");
3697     FixedSizeCodeBlock dtos_block(_masm, max_block_size, fast_version);
3698     __ bind(Ldtos);
3699     // doubles and longs are placed on stack in the same way, so
3700     // we can use pop(ltos) to transfer value without using VFP
3701     __ pop(ltos);
3702     if (!is_static) pop_and_check_object(Robj);
3703 #ifdef AARCH64
3704     __ str(R0_tos, Address(Robj, Roffset));
3705 #else
3706     __ add(Rtemp, Robj, Roffset);
3707     __ stmia(Rtemp, RegisterSet(R0_tos_lo, R1_tos_hi));
3708 #endif // AARCH64
3709     if (!is_static && rc == may_rewrite) {
3710       patch_bytecode(Bytecodes::_fast_dputfield, R0_tmp, Rtemp, true, byte_no);
3711     }
3712     __ b(Done);
3713   }
3714 
3715   // atos
3716   {
3717     assert(atos == seq++, "dtos has unexpected value");
3718     __ bind(Latos);
3719     __ pop(atos);
3720     if (!is_static) pop_and_check_object(Robj);
3721     // Store into the field
3722     do_oop_store(_masm, Address(Robj, Roffset), R0_tos, Rtemp, R1_tmp, R5_tmp, false);
3723     if (!is_static && rc == may_rewrite) {
3724       patch_bytecode(Bytecodes::_fast_aputfield, R0_tmp, Rtemp, true, byte_no);
3725     }
3726     __ b(Done);
3727   }
3728 
3729   __ bind(shouldNotReachHere);
3730   __ should_not_reach_here();
3731 
3732   // itos case is frequent and is moved outside table switch
3733   __ bind(Lint);
3734   __ pop(itos);
3735   if (!is_static) pop_and_check_object(Robj);
3736   __ str_32(R0_tos, Address(Robj, Roffset));
3737   if (!is_static && rc == may_rewrite) {
3738     patch_bytecode(Bytecodes::_fast_iputfield, R0_tmp, Rtemp, true, byte_no);
3739   }
3740 
3741   __ bind(Done);
3742 
3743   if (gen_volatile_check) {
3744     Label notVolatile;
3745     if (is_static) {
3746       // Just check for volatile. Memory barrier for static final field
3747       // is handled by class initialization.
3748       __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3749       volatile_barrier(MacroAssembler::StoreLoad, Rtemp);
3750       __ bind(notVolatile);
3751     } else {
3752       // Check for volatile field and final field
3753       Label skipMembar;
3754 
3755       __ tst(Rflagsav, 1 << ConstantPoolCacheEntry::is_volatile_shift |
3756                        1 << ConstantPoolCacheEntry::is_final_shift);
3757       __ b(skipMembar, eq);
3758 
3759       __ tbz(Rflagsav, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3760 
3761       // StoreLoad barrier after volatile field write
3762       volatile_barrier(MacroAssembler::StoreLoad, Rtemp);
3763       __ b(skipMembar);
3764 
3765       // StoreStore barrier after final field write
3766       __ bind(notVolatile);
3767       volatile_barrier(MacroAssembler::StoreStore, Rtemp);
3768 
3769       __ bind(skipMembar);
3770     }
3771   }
3772 
3773 }
3774 
putfield(int byte_no)3775 void TemplateTable::putfield(int byte_no) {
3776   putfield_or_static(byte_no, false);
3777 }
3778 
nofast_putfield(int byte_no)3779 void TemplateTable::nofast_putfield(int byte_no) {
3780   putfield_or_static(byte_no, false, may_not_rewrite);
3781 }
3782 
putstatic(int byte_no)3783 void TemplateTable::putstatic(int byte_no) {
3784   putfield_or_static(byte_no, true);
3785 }
3786 
3787 
jvmti_post_fast_field_mod()3788 void TemplateTable::jvmti_post_fast_field_mod() {
3789   // This version of jvmti_post_fast_field_mod() is not used on ARM
3790   Unimplemented();
3791 }
3792 
3793 // Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR,
3794 // but preserves tosca with the given state.
jvmti_post_fast_field_mod(TosState state)3795 void TemplateTable::jvmti_post_fast_field_mod(TosState state) {
3796   if (__ can_post_field_modification()) {
3797     // Check to see if a field modification watch has been set before we take
3798     // the time to call into the VM.
3799     Label done;
3800 
3801     __ ldr_global_s32(R2, (address)JvmtiExport::get_field_modification_count_addr());
3802     __ cbz(R2, done);
3803 
3804     __ pop_ptr(R3);               // copy the object pointer from tos
3805     __ verify_oop(R3);
3806     __ push_ptr(R3);              // put the object pointer back on tos
3807 
3808     __ push(state);               // save value on the stack
3809 
3810     // access constant pool cache entry
3811     __ get_cache_entry_pointer_at_bcp(R2, R1, 1);
3812 
3813     __ mov(R1, R3);
3814     assert(Interpreter::expr_offset_in_bytes(0) == 0, "adjust this code");
3815     __ mov(R3, Rstack_top); // put tos addr into R3
3816 
3817     // R1: object pointer copied above
3818     // R2: cache entry pointer
3819     // R3: jvalue object on the stack
3820     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), R1, R2, R3);
3821 
3822     __ pop(state);                // restore value
3823 
3824     __ bind(done);
3825   }
3826 }
3827 
3828 
fast_storefield(TosState state)3829 void TemplateTable::fast_storefield(TosState state) {
3830   transition(state, vtos);
3831 
3832   ByteSize base = ConstantPoolCache::base_offset();
3833 
3834   jvmti_post_fast_field_mod(state);
3835 
3836   const Register Rcache  = R2_tmp;
3837   const Register Rindex  = R3_tmp;
3838   const Register Roffset = R3_tmp;
3839   const Register Rflags  = Rtmp_save0; // R4/R19
3840   const Register Robj    = R5_tmp;
3841 
3842   const bool gen_volatile_check = os::is_MP();
3843 
3844   // access constant pool cache
3845   __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3846 
3847   __ add(Rcache, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3848 
3849   if (gen_volatile_check) {
3850     // load flags to test volatile
3851     __ ldr_u32(Rflags, Address(Rcache, base + ConstantPoolCacheEntry::flags_offset()));
3852   }
3853 
3854   // replace index with field offset from cache entry
3855   __ ldr(Roffset, Address(Rcache, base + ConstantPoolCacheEntry::f2_offset()));
3856 
3857   if (gen_volatile_check) {
3858     // Check for volatile store
3859     Label notVolatile;
3860     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3861 
3862     // TODO-AARCH64 on AArch64, store-release instructions can be used to get rid of this explict barrier
3863     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
3864 
3865     __ bind(notVolatile);
3866   }
3867 
3868   // Get object from stack
3869   pop_and_check_object(Robj);
3870 
3871   // access field
3872   switch (bytecode()) {
3873     case Bytecodes::_fast_zputfield: __ and_32(R0_tos, R0_tos, 1);
3874                                      // fall through
3875     case Bytecodes::_fast_bputfield: __ strb(R0_tos, Address(Robj, Roffset)); break;
3876     case Bytecodes::_fast_sputfield: // fall through
3877     case Bytecodes::_fast_cputfield: __ strh(R0_tos, Address(Robj, Roffset)); break;
3878     case Bytecodes::_fast_iputfield: __ str_32(R0_tos, Address(Robj, Roffset)); break;
3879 #ifdef AARCH64
3880     case Bytecodes::_fast_lputfield: __ str  (R0_tos, Address(Robj, Roffset)); break;
3881     case Bytecodes::_fast_fputfield: __ str_s(S0_tos, Address(Robj, Roffset)); break;
3882     case Bytecodes::_fast_dputfield: __ str_d(D0_tos, Address(Robj, Roffset)); break;
3883 #else
3884     case Bytecodes::_fast_lputfield: __ add(Robj, Robj, Roffset);
3885                                      __ stmia(Robj, RegisterSet(R0_tos_lo, R1_tos_hi)); break;
3886 
3887 #ifdef __SOFTFP__
3888     case Bytecodes::_fast_fputfield: __ str(R0_tos, Address(Robj, Roffset));  break;
3889     case Bytecodes::_fast_dputfield: __ add(Robj, Robj, Roffset);
3890                                      __ stmia(Robj, RegisterSet(R0_tos_lo, R1_tos_hi)); break;
3891 #else
3892     case Bytecodes::_fast_fputfield: __ add(Robj, Robj, Roffset);
3893                                      __ fsts(S0_tos, Address(Robj));          break;
3894     case Bytecodes::_fast_dputfield: __ add(Robj, Robj, Roffset);
3895                                      __ fstd(D0_tos, Address(Robj));          break;
3896 #endif // __SOFTFP__
3897 #endif // AARCH64
3898 
3899     case Bytecodes::_fast_aputfield:
3900       do_oop_store(_masm, Address(Robj, Roffset), R0_tos, Rtemp, R1_tmp, R2_tmp, false);
3901       break;
3902 
3903     default:
3904       ShouldNotReachHere();
3905   }
3906 
3907   if (gen_volatile_check) {
3908     Label notVolatile;
3909     Label skipMembar;
3910     __ tst(Rflags, 1 << ConstantPoolCacheEntry::is_volatile_shift |
3911                    1 << ConstantPoolCacheEntry::is_final_shift);
3912     __ b(skipMembar, eq);
3913 
3914     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3915 
3916     // StoreLoad barrier after volatile field write
3917     volatile_barrier(MacroAssembler::StoreLoad, Rtemp);
3918     __ b(skipMembar);
3919 
3920     // StoreStore barrier after final field write
3921     __ bind(notVolatile);
3922     volatile_barrier(MacroAssembler::StoreStore, Rtemp);
3923 
3924     __ bind(skipMembar);
3925   }
3926 }
3927 
3928 
fast_accessfield(TosState state)3929 void TemplateTable::fast_accessfield(TosState state) {
3930   transition(atos, state);
3931 
3932   // do the JVMTI work here to avoid disturbing the register state below
3933   if (__ can_post_field_access()) {
3934     // Check to see if a field access watch has been set before we take
3935     // the time to call into the VM.
3936     Label done;
3937     __ ldr_global_s32(R2, (address) JvmtiExport::get_field_access_count_addr());
3938     __ cbz(R2, done);
3939     // access constant pool cache entry
3940     __ get_cache_entry_pointer_at_bcp(R2, R1, 1);
3941     __ push_ptr(R0_tos);  // save object pointer before call_VM() clobbers it
3942     __ verify_oop(R0_tos);
3943     __ mov(R1, R0_tos);
3944     // R1: object pointer copied above
3945     // R2: cache entry pointer
3946     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R1, R2);
3947     __ pop_ptr(R0_tos);   // restore object pointer
3948 
3949     __ bind(done);
3950   }
3951 
3952   const Register Robj    = R0_tos;
3953   const Register Rcache  = R2_tmp;
3954   const Register Rflags  = R2_tmp;
3955   const Register Rindex  = R3_tmp;
3956   const Register Roffset = R3_tmp;
3957 
3958   const bool gen_volatile_check = os::is_MP();
3959 
3960   // access constant pool cache
3961   __ get_cache_and_index_at_bcp(Rcache, Rindex, 1);
3962   // replace index with field offset from cache entry
3963   __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
3964   __ ldr(Roffset, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3965 
3966   if (gen_volatile_check) {
3967     // load flags to test volatile
3968     __ ldr_u32(Rflags, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
3969   }
3970 
3971   __ verify_oop(Robj);
3972   __ null_check(Robj, Rtemp);
3973 
3974   // access field
3975   switch (bytecode()) {
3976     case Bytecodes::_fast_bgetfield: __ ldrsb(R0_tos, Address(Robj, Roffset)); break;
3977     case Bytecodes::_fast_sgetfield: __ ldrsh(R0_tos, Address(Robj, Roffset)); break;
3978     case Bytecodes::_fast_cgetfield: __ ldrh (R0_tos, Address(Robj, Roffset)); break;
3979     case Bytecodes::_fast_igetfield: __ ldr_s32(R0_tos, Address(Robj, Roffset)); break;
3980 #ifdef AARCH64
3981     case Bytecodes::_fast_lgetfield: __ ldr  (R0_tos, Address(Robj, Roffset)); break;
3982     case Bytecodes::_fast_fgetfield: __ ldr_s(S0_tos, Address(Robj, Roffset)); break;
3983     case Bytecodes::_fast_dgetfield: __ ldr_d(D0_tos, Address(Robj, Roffset)); break;
3984 #else
3985     case Bytecodes::_fast_lgetfield: __ add(Roffset, Robj, Roffset);
3986                                      __ ldmia(Roffset, RegisterSet(R0_tos_lo, R1_tos_hi)); break;
3987 #ifdef __SOFTFP__
3988     case Bytecodes::_fast_fgetfield: __ ldr  (R0_tos, Address(Robj, Roffset)); break;
3989     case Bytecodes::_fast_dgetfield: __ add(Roffset, Robj, Roffset);
3990                                      __ ldmia(Roffset, RegisterSet(R0_tos_lo, R1_tos_hi)); break;
3991 #else
3992     case Bytecodes::_fast_fgetfield: __ add(Roffset, Robj, Roffset); __ flds(S0_tos, Address(Roffset)); break;
3993     case Bytecodes::_fast_dgetfield: __ add(Roffset, Robj, Roffset); __ fldd(D0_tos, Address(Roffset)); break;
3994 #endif // __SOFTFP__
3995 #endif // AARCH64
3996     case Bytecodes::_fast_agetfield: do_oop_load(_masm, R0_tos, Address(Robj, Roffset)); __ verify_oop(R0_tos); break;
3997     default:
3998       ShouldNotReachHere();
3999   }
4000 
4001   if (gen_volatile_check) {
4002     // Check for volatile load
4003     Label notVolatile;
4004     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
4005 
4006     // TODO-AARCH64 on AArch64, load-acquire instructions can be used to get rid of this explict barrier
4007     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
4008 
4009     __ bind(notVolatile);
4010   }
4011 }
4012 
4013 
fast_xaccess(TosState state)4014 void TemplateTable::fast_xaccess(TosState state) {
4015   transition(vtos, state);
4016 
4017   const Register Robj = R1_tmp;
4018   const Register Rcache = R2_tmp;
4019   const Register Rindex = R3_tmp;
4020   const Register Roffset = R3_tmp;
4021   const Register Rflags = R4_tmp;
4022   Label done;
4023 
4024   // get receiver
4025   __ ldr(Robj, aaddress(0));
4026 
4027   // access constant pool cache
4028   __ get_cache_and_index_at_bcp(Rcache, Rindex, 2);
4029   __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
4030   __ ldr(Roffset, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
4031 
4032   const bool gen_volatile_check = os::is_MP();
4033 
4034   if (gen_volatile_check) {
4035     // load flags to test volatile
4036     __ ldr_u32(Rflags, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
4037   }
4038 
4039   // make sure exception is reported in correct bcp range (getfield is next instruction)
4040   __ add(Rbcp, Rbcp, 1);
4041   __ null_check(Robj, Rtemp);
4042   __ sub(Rbcp, Rbcp, 1);
4043 
4044 #ifdef AARCH64
4045   if (gen_volatile_check) {
4046     Label notVolatile;
4047     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
4048 
4049     __ add(Rtemp, Robj, Roffset);
4050 
4051     if (state == itos) {
4052       __ ldar_w(R0_tos, Rtemp);
4053     } else if (state == atos) {
4054       if (UseCompressedOops) {
4055         __ ldar_w(R0_tos, Rtemp);
4056         __ decode_heap_oop(R0_tos);
4057       } else {
4058         __ ldar(R0_tos, Rtemp);
4059       }
4060       __ verify_oop(R0_tos);
4061     } else if (state == ftos) {
4062       __ ldar_w(R0_tos, Rtemp);
4063       __ fmov_sw(S0_tos, R0_tos);
4064     } else {
4065       ShouldNotReachHere();
4066     }
4067     __ b(done);
4068 
4069     __ bind(notVolatile);
4070   }
4071 #endif // AARCH64
4072 
4073   if (state == itos) {
4074     __ ldr_s32(R0_tos, Address(Robj, Roffset));
4075   } else if (state == atos) {
4076     do_oop_load(_masm, R0_tos, Address(Robj, Roffset));
4077     __ verify_oop(R0_tos);
4078   } else if (state == ftos) {
4079 #ifdef AARCH64
4080     __ ldr_s(S0_tos, Address(Robj, Roffset));
4081 #else
4082 #ifdef __SOFTFP__
4083     __ ldr(R0_tos, Address(Robj, Roffset));
4084 #else
4085     __ add(Roffset, Robj, Roffset);
4086     __ flds(S0_tos, Address(Roffset));
4087 #endif // __SOFTFP__
4088 #endif // AARCH64
4089   } else {
4090     ShouldNotReachHere();
4091   }
4092 
4093 #ifndef AARCH64
4094   if (gen_volatile_check) {
4095     // Check for volatile load
4096     Label notVolatile;
4097     __ tbz(Rflags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
4098 
4099     volatile_barrier(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
4100 
4101     __ bind(notVolatile);
4102   }
4103 #endif // !AARCH64
4104 
4105   __ bind(done);
4106 }
4107 
4108 
4109 
4110 //----------------------------------------------------------------------------------------------------
4111 // Calls
4112 
count_calls(Register method,Register temp)4113 void TemplateTable::count_calls(Register method, Register temp) {
4114   // implemented elsewhere
4115   ShouldNotReachHere();
4116 }
4117 
4118 
prepare_invoke(int byte_no,Register method,Register index,Register recv,Register flags)4119 void TemplateTable::prepare_invoke(int byte_no,
4120                                    Register method,  // linked method (or i-klass)
4121                                    Register index,   // itable index, MethodType, etc.
4122                                    Register recv,    // if caller wants to see it
4123                                    Register flags    // if caller wants to test it
4124                                    ) {
4125   // determine flags
4126   const Bytecodes::Code code = bytecode();
4127   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
4128   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
4129   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
4130   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
4131   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
4132   const bool load_receiver       = (recv != noreg);
4133   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
4134   assert(recv  == noreg || recv  == R2, "");
4135   assert(flags == noreg || flags == R3, "");
4136 
4137   // setup registers & access constant pool cache
4138   if (recv  == noreg)  recv  = R2;
4139   if (flags == noreg)  flags = R3;
4140   const Register temp = Rtemp;
4141   const Register ret_type = R1_tmp;
4142   assert_different_registers(method, index, flags, recv, LR, ret_type, temp);
4143 
4144   // save 'interpreter return address'
4145   __ save_bcp();
4146 
4147   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
4148 
4149   // maybe push extra argument
4150   if (is_invokedynamic || is_invokehandle) {
4151     Label L_no_push;
4152     __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push);
4153     __ mov(temp, index);
4154     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
4155     __ load_resolved_reference_at_index(index, temp);
4156     __ verify_oop(index);
4157     __ push_ptr(index);  // push appendix (MethodType, CallSite, etc.)
4158     __ bind(L_no_push);
4159   }
4160 
4161   // load receiver if needed (after extra argument is pushed so parameter size is correct)
4162   if (load_receiver) {
4163     __ andr(temp, flags, (uintx)ConstantPoolCacheEntry::parameter_size_mask);  // get parameter size
4164     Address recv_addr = __ receiver_argument_address(Rstack_top, temp, recv);
4165     __ ldr(recv, recv_addr);
4166     __ verify_oop(recv);
4167   }
4168 
4169   // compute return type
4170   __ logical_shift_right(ret_type, flags, ConstantPoolCacheEntry::tos_state_shift);
4171   // Make sure we don't need to mask flags after the above shift
4172   ConstantPoolCacheEntry::verify_tos_state_shift();
4173   // load return address
4174   { const address table = (address) Interpreter::invoke_return_entry_table_for(code);
4175     __ mov_slow(temp, table);
4176     __ ldr(LR, Address::indexed_ptr(temp, ret_type));
4177   }
4178 }
4179 
4180 
invokevirtual_helper(Register index,Register recv,Register flags)4181 void TemplateTable::invokevirtual_helper(Register index,
4182                                          Register recv,
4183                                          Register flags) {
4184 
4185   const Register recv_klass = R2_tmp;
4186 
4187   assert_different_registers(index, recv, flags, Rtemp);
4188   assert_different_registers(index, recv_klass, R0_tmp, Rtemp);
4189 
4190   // Test for an invoke of a final method
4191   Label notFinal;
4192   __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal);
4193 
4194   assert(index == Rmethod, "Method* must be Rmethod, for interpreter calling convention");
4195 
4196   // do the call - the index is actually the method to call
4197 
4198   // It's final, need a null check here!
4199   __ null_check(recv, Rtemp);
4200 
4201   // profile this call
4202   __ profile_final_call(R0_tmp);
4203 
4204   __ jump_from_interpreted(Rmethod);
4205 
4206   __ bind(notFinal);
4207 
4208   // get receiver klass
4209   __ null_check(recv, Rtemp, oopDesc::klass_offset_in_bytes());
4210   __ load_klass(recv_klass, recv);
4211 
4212   // profile this call
4213   __ profile_virtual_call(R0_tmp, recv_klass);
4214 
4215   // get target Method* & entry point
4216   const int base = in_bytes(Klass::vtable_start_offset());
4217   assert(vtableEntry::size() == 1, "adjust the scaling in the code below");
4218   __ add(Rtemp, recv_klass, AsmOperand(index, lsl, LogHeapWordSize));
4219   __ ldr(Rmethod, Address(Rtemp, base + vtableEntry::method_offset_in_bytes()));
4220   __ jump_from_interpreted(Rmethod);
4221 }
4222 
invokevirtual(int byte_no)4223 void TemplateTable::invokevirtual(int byte_no) {
4224   transition(vtos, vtos);
4225   assert(byte_no == f2_byte, "use this argument");
4226 
4227   const Register Rrecv  = R2_tmp;
4228   const Register Rflags = R3_tmp;
4229 
4230   prepare_invoke(byte_no, Rmethod, noreg, Rrecv, Rflags);
4231 
4232   // Rmethod: index
4233   // Rrecv:   receiver
4234   // Rflags:  flags
4235   // LR:      return address
4236 
4237   invokevirtual_helper(Rmethod, Rrecv, Rflags);
4238 }
4239 
4240 
invokespecial(int byte_no)4241 void TemplateTable::invokespecial(int byte_no) {
4242   transition(vtos, vtos);
4243   assert(byte_no == f1_byte, "use this argument");
4244   const Register Rrecv  = R2_tmp;
4245   prepare_invoke(byte_no, Rmethod, noreg, Rrecv);
4246   __ verify_oop(Rrecv);
4247   __ null_check(Rrecv, Rtemp);
4248   // do the call
4249   __ profile_call(Rrecv);
4250   __ jump_from_interpreted(Rmethod);
4251 }
4252 
4253 
invokestatic(int byte_no)4254 void TemplateTable::invokestatic(int byte_no) {
4255   transition(vtos, vtos);
4256   assert(byte_no == f1_byte, "use this argument");
4257   prepare_invoke(byte_no, Rmethod);
4258   // do the call
4259   __ profile_call(R2_tmp);
4260   __ jump_from_interpreted(Rmethod);
4261 }
4262 
4263 
fast_invokevfinal(int byte_no)4264 void TemplateTable::fast_invokevfinal(int byte_no) {
4265   transition(vtos, vtos);
4266   assert(byte_no == f2_byte, "use this argument");
4267   __ stop("fast_invokevfinal is not used on ARM");
4268 }
4269 
4270 
invokeinterface(int byte_no)4271 void TemplateTable::invokeinterface(int byte_no) {
4272   transition(vtos, vtos);
4273   assert(byte_no == f1_byte, "use this argument");
4274 
4275   const Register Ritable = R1_tmp;
4276   const Register Rrecv   = R2_tmp;
4277   const Register Rinterf = R5_tmp;
4278   const Register Rindex  = R4_tmp;
4279   const Register Rflags  = R3_tmp;
4280   const Register Rklass  = R2_tmp; // Note! Same register with Rrecv
4281 
4282   prepare_invoke(byte_no, Rinterf, Rmethod, Rrecv, Rflags);
4283 
4284   // First check for Object case, then private interface method,
4285   // then regular interface method.
4286 
4287   // Special case of invokeinterface called for virtual method of
4288   // java.lang.Object.  See cpCache.cpp for details.
4289   Label notObjectMethod;
4290   __ tbz(Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift, notObjectMethod);
4291   invokevirtual_helper(Rmethod, Rrecv, Rflags);
4292   __ bind(notObjectMethod);
4293 
4294   // Get receiver klass into Rklass - also a null check
4295   __ load_klass(Rklass, Rrecv);
4296 
4297   // Check for private method invocation - indicated by vfinal
4298   Label no_such_interface;
4299 
4300   Label notVFinal;
4301   __ tbz(Rflags, ConstantPoolCacheEntry::is_vfinal_shift, notVFinal);
4302 
4303   Label subtype;
4304   __ check_klass_subtype(Rklass, Rinterf, R1_tmp, R3_tmp, noreg, subtype);
4305   // If we get here the typecheck failed
4306   __ b(no_such_interface);
4307   __ bind(subtype);
4308 
4309   // do the call
4310   __ profile_final_call(R0_tmp);
4311   __ jump_from_interpreted(Rmethod);
4312 
4313   __ bind(notVFinal);
4314 
4315   // Receiver subtype check against REFC.
4316   __ lookup_interface_method(// inputs: rec. class, interface
4317                              Rklass, Rinterf, noreg,
4318                              // outputs:  scan temp. reg1, scan temp. reg2
4319                              noreg, Ritable, Rtemp,
4320                              no_such_interface);
4321 
4322   // profile this call
4323   __ profile_virtual_call(R0_tmp, Rklass);
4324 
4325   // Get declaring interface class from method
4326   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
4327   __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset()));
4328   __ ldr(Rinterf, Address(Rtemp, ConstantPool::pool_holder_offset_in_bytes()));
4329 
4330   // Get itable index from method
4331   __ ldr_s32(Rtemp, Address(Rmethod, Method::itable_index_offset()));
4332   __ add(Rtemp, Rtemp, (-Method::itable_index_max)); // small negative constant is too large for an immediate on arm32
4333   __ neg(Rindex, Rtemp);
4334 
4335   __ lookup_interface_method(// inputs: rec. class, interface
4336                              Rklass, Rinterf, Rindex,
4337                              // outputs:  scan temp. reg1, scan temp. reg2
4338                              Rmethod, Ritable, Rtemp,
4339                              no_such_interface);
4340 
4341   // Rmethod: Method* to call
4342 
4343   // Check for abstract method error
4344   // Note: This should be done more efficiently via a throw_abstract_method_error
4345   //       interpreter entry point and a conditional jump to it in case of a null
4346   //       method.
4347   { Label L;
4348     __ cbnz(Rmethod, L);
4349     // throw exception
4350     // note: must restore interpreter registers to canonical
4351     //       state for exception handling to work correctly!
4352     __ restore_method();
4353     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
4354     // the call_VM checks for exception, so we should never return here.
4355     __ should_not_reach_here();
4356     __ bind(L);
4357   }
4358 
4359   // do the call
4360   __ jump_from_interpreted(Rmethod);
4361 
4362   // throw exception
4363   __ bind(no_such_interface);
4364   __ restore_method();
4365   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
4366   // the call_VM checks for exception, so we should never return here.
4367   __ should_not_reach_here();
4368 }
4369 
invokehandle(int byte_no)4370 void TemplateTable::invokehandle(int byte_no) {
4371   transition(vtos, vtos);
4372 
4373   // TODO-AARCH64 review register usage
4374   const Register Rrecv  = R2_tmp;
4375   const Register Rmtype = R4_tmp;
4376   const Register R5_method = R5_tmp;  // can't reuse Rmethod!
4377 
4378   prepare_invoke(byte_no, R5_method, Rmtype, Rrecv);
4379   __ null_check(Rrecv, Rtemp);
4380 
4381   // Rmtype:  MethodType object (from cpool->resolved_references[f1], if necessary)
4382   // Rmethod: MH.invokeExact_MT method (from f2)
4383 
4384   // Note:  Rmtype is already pushed (if necessary) by prepare_invoke
4385 
4386   // do the call
4387   __ profile_final_call(R3_tmp);  // FIXME: profile the LambdaForm also
4388   __ mov(Rmethod, R5_method);
4389   __ jump_from_interpreted(Rmethod);
4390 }
4391 
invokedynamic(int byte_no)4392 void TemplateTable::invokedynamic(int byte_no) {
4393   transition(vtos, vtos);
4394 
4395   // TODO-AARCH64 review register usage
4396   const Register Rcallsite = R4_tmp;
4397   const Register R5_method = R5_tmp;  // can't reuse Rmethod!
4398 
4399   prepare_invoke(byte_no, R5_method, Rcallsite);
4400 
4401   // Rcallsite: CallSite object (from cpool->resolved_references[f1])
4402   // Rmethod:   MH.linkToCallSite method (from f2)
4403 
4404   // Note:  Rcallsite is already pushed by prepare_invoke
4405 
4406   if (ProfileInterpreter) {
4407     __ profile_call(R2_tmp);
4408   }
4409 
4410   // do the call
4411   __ mov(Rmethod, R5_method);
4412   __ jump_from_interpreted(Rmethod);
4413 }
4414 
4415 //----------------------------------------------------------------------------------------------------
4416 // Allocation
4417 
_new()4418 void TemplateTable::_new() {
4419   transition(vtos, atos);
4420 
4421   const Register Robj   = R0_tos;
4422   const Register Rcpool = R1_tmp;
4423   const Register Rindex = R2_tmp;
4424   const Register Rtags  = R3_tmp;
4425   const Register Rsize  = R3_tmp;
4426 
4427   Register Rklass = R4_tmp;
4428   assert_different_registers(Rcpool, Rindex, Rtags, Rklass, Rtemp);
4429   assert_different_registers(Rcpool, Rindex, Rklass, Rsize);
4430 
4431   Label slow_case;
4432   Label done;
4433   Label initialize_header;
4434   Label initialize_object;  // including clearing the fields
4435 
4436   const bool allow_shared_alloc =
4437     Universe::heap()->supports_inline_contig_alloc();
4438 
4439   // Literals
4440   InlinedAddress Lheap_top_addr(allow_shared_alloc ? (address)Universe::heap()->top_addr() : NULL);
4441 
4442   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4443   __ get_cpool_and_tags(Rcpool, Rtags);
4444 
4445   // Make sure the class we're about to instantiate has been resolved.
4446   // This is done before loading InstanceKlass to be consistent with the order
4447   // how Constant Pool is updated (see ConstantPool::klass_at_put)
4448   const int tags_offset = Array<u1>::base_offset_in_bytes();
4449   __ add(Rtemp, Rtags, Rindex);
4450 
4451 #ifdef AARCH64
4452   __ add(Rtemp, Rtemp, tags_offset);
4453   __ ldarb(Rtemp, Rtemp);
4454 #else
4455   __ ldrb(Rtemp, Address(Rtemp, tags_offset));
4456 
4457   // use Rklass as a scratch
4458   volatile_barrier(MacroAssembler::LoadLoad, Rklass);
4459 #endif // AARCH64
4460 
4461   // get InstanceKlass
4462   __ cmp(Rtemp, JVM_CONSTANT_Class);
4463   __ b(slow_case, ne);
4464   __ load_resolved_klass_at_offset(Rcpool, Rindex, Rklass);
4465 
4466   // make sure klass is initialized & doesn't have finalizer
4467   // make sure klass is fully initialized
4468   __ ldrb(Rtemp, Address(Rklass, InstanceKlass::init_state_offset()));
4469   __ cmp(Rtemp, InstanceKlass::fully_initialized);
4470   __ b(slow_case, ne);
4471 
4472   // get instance_size in InstanceKlass (scaled to a count of bytes)
4473   __ ldr_u32(Rsize, Address(Rklass, Klass::layout_helper_offset()));
4474 
4475   // test to see if it has a finalizer or is malformed in some way
4476   // Klass::_lh_instance_slow_path_bit is really a bit mask, not bit number
4477   __ tbnz(Rsize, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
4478 
4479   // Allocate the instance:
4480   //  If TLAB is enabled:
4481   //    Try to allocate in the TLAB.
4482   //    If fails, go to the slow path.
4483   //  Else If inline contiguous allocations are enabled:
4484   //    Try to allocate in eden.
4485   //    If fails due to heap end, go to slow path.
4486   //
4487   //  If TLAB is enabled OR inline contiguous is enabled:
4488   //    Initialize the allocation.
4489   //    Exit.
4490   //
4491   //  Go to slow path.
4492   if (UseTLAB) {
4493     const Register Rtlab_top = R1_tmp;
4494     const Register Rtlab_end = R2_tmp;
4495     assert_different_registers(Robj, Rsize, Rklass, Rtlab_top, Rtlab_end);
4496 
4497     __ ldr(Robj, Address(Rthread, JavaThread::tlab_top_offset()));
4498     __ ldr(Rtlab_end, Address(Rthread, in_bytes(JavaThread::tlab_end_offset())));
4499     __ add(Rtlab_top, Robj, Rsize);
4500     __ cmp(Rtlab_top, Rtlab_end);
4501     __ b(slow_case, hi);
4502     __ str(Rtlab_top, Address(Rthread, JavaThread::tlab_top_offset()));
4503     if (ZeroTLAB) {
4504       // the fields have been already cleared
4505       __ b(initialize_header);
4506     } else {
4507       // initialize both the header and fields
4508       __ b(initialize_object);
4509     }
4510   } else {
4511     // Allocation in the shared Eden, if allowed.
4512     if (allow_shared_alloc) {
4513       const Register Rheap_top_addr = R2_tmp;
4514       const Register Rheap_top = R5_tmp;
4515       const Register Rheap_end = Rtemp;
4516       assert_different_registers(Robj, Rklass, Rsize, Rheap_top_addr, Rheap_top, Rheap_end, LR);
4517 
4518       // heap_end now (re)loaded in the loop since also used as a scratch register in the CAS
4519       __ ldr_literal(Rheap_top_addr, Lheap_top_addr);
4520 
4521       Label retry;
4522       __ bind(retry);
4523 
4524 #ifdef AARCH64
4525       __ ldxr(Robj, Rheap_top_addr);
4526 #else
4527       __ ldr(Robj, Address(Rheap_top_addr));
4528 #endif // AARCH64
4529 
4530       __ ldr(Rheap_end, Address(Rheap_top_addr, (intptr_t)Universe::heap()->end_addr()-(intptr_t)Universe::heap()->top_addr()));
4531       __ add(Rheap_top, Robj, Rsize);
4532       __ cmp(Rheap_top, Rheap_end);
4533       __ b(slow_case, hi);
4534 
4535       // Update heap top atomically.
4536       // If someone beats us on the allocation, try again, otherwise continue.
4537 #ifdef AARCH64
4538       __ stxr(Rtemp2, Rheap_top, Rheap_top_addr);
4539       __ cbnz_w(Rtemp2, retry);
4540 #else
4541       __ atomic_cas_bool(Robj, Rheap_top, Rheap_top_addr, 0, Rheap_end/*scratched*/);
4542       __ b(retry, ne);
4543 #endif // AARCH64
4544 
4545       __ incr_allocated_bytes(Rsize, Rtemp);
4546     }
4547   }
4548 
4549   if (UseTLAB || allow_shared_alloc) {
4550     const Register Rzero0 = R1_tmp;
4551     const Register Rzero1 = R2_tmp;
4552     const Register Rzero_end = R5_tmp;
4553     const Register Rzero_cur = Rtemp;
4554     assert_different_registers(Robj, Rsize, Rklass, Rzero0, Rzero1, Rzero_cur, Rzero_end);
4555 
4556     // The object is initialized before the header.  If the object size is
4557     // zero, go directly to the header initialization.
4558     __ bind(initialize_object);
4559     __ subs(Rsize, Rsize, sizeof(oopDesc));
4560     __ add(Rzero_cur, Robj, sizeof(oopDesc));
4561     __ b(initialize_header, eq);
4562 
4563 #ifdef ASSERT
4564     // make sure Rsize is a multiple of 8
4565     Label L;
4566     __ tst(Rsize, 0x07);
4567     __ b(L, eq);
4568     __ stop("object size is not multiple of 8 - adjust this code");
4569     __ bind(L);
4570 #endif
4571 
4572 #ifdef AARCH64
4573     {
4574       Label loop;
4575       // Step back by 1 word if object size is not a multiple of 2*wordSize.
4576       assert(wordSize <= sizeof(oopDesc), "oop header should contain at least one word");
4577       __ andr(Rtemp2, Rsize, (uintx)wordSize);
4578       __ sub(Rzero_cur, Rzero_cur, Rtemp2);
4579 
4580       // Zero by 2 words per iteration.
4581       __ bind(loop);
4582       __ subs(Rsize, Rsize, 2*wordSize);
4583       __ stp(ZR, ZR, Address(Rzero_cur, 2*wordSize, post_indexed));
4584       __ b(loop, gt);
4585     }
4586 #else
4587     __ mov(Rzero0, 0);
4588     __ mov(Rzero1, 0);
4589     __ add(Rzero_end, Rzero_cur, Rsize);
4590 
4591     // initialize remaining object fields: Rsize was a multiple of 8
4592     { Label loop;
4593       // loop is unrolled 2 times
4594       __ bind(loop);
4595       // #1
4596       __ stmia(Rzero_cur, RegisterSet(Rzero0) | RegisterSet(Rzero1), writeback);
4597       __ cmp(Rzero_cur, Rzero_end);
4598       // #2
4599       __ stmia(Rzero_cur, RegisterSet(Rzero0) | RegisterSet(Rzero1), writeback, ne);
4600       __ cmp(Rzero_cur, Rzero_end, ne);
4601       __ b(loop, ne);
4602     }
4603 #endif // AARCH64
4604 
4605     // initialize object header only.
4606     __ bind(initialize_header);
4607     if (UseBiasedLocking) {
4608       __ ldr(Rtemp, Address(Rklass, Klass::prototype_header_offset()));
4609     } else {
4610       __ mov_slow(Rtemp, (intptr_t)markOopDesc::prototype());
4611     }
4612     // mark
4613     __ str(Rtemp, Address(Robj, oopDesc::mark_offset_in_bytes()));
4614 
4615     // klass
4616 #ifdef AARCH64
4617     __ store_klass_gap(Robj);
4618 #endif // AARCH64
4619     __ store_klass(Rklass, Robj); // blows Rklass:
4620     Rklass = noreg;
4621 
4622     // Note: Disable DTrace runtime check for now to eliminate overhead on each allocation
4623     if (DTraceAllocProbes) {
4624       // Trigger dtrace event for fastpath
4625       Label Lcontinue;
4626 
4627       __ ldrb_global(Rtemp, (address)&DTraceAllocProbes);
4628       __ cbz(Rtemp, Lcontinue);
4629 
4630       __ push(atos);
4631       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), Robj);
4632       __ pop(atos);
4633 
4634       __ bind(Lcontinue);
4635     }
4636 
4637     __ b(done);
4638   } else {
4639     // jump over literals
4640     __ b(slow_case);
4641   }
4642 
4643   if (allow_shared_alloc) {
4644     __ bind_literal(Lheap_top_addr);
4645   }
4646 
4647   // slow case
4648   __ bind(slow_case);
4649   __ get_constant_pool(Rcpool);
4650   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4651   __ call_VM(Robj, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
4652 
4653   // continue
4654   __ bind(done);
4655 
4656   // StoreStore barrier required after complete initialization
4657   // (headers + content zeroing), before the object may escape.
4658   __ membar(MacroAssembler::StoreStore, R1_tmp);
4659 }
4660 
4661 
newarray()4662 void TemplateTable::newarray() {
4663   transition(itos, atos);
4664   __ ldrb(R1, at_bcp(1));
4665   __ mov(R2, R0_tos);
4666   call_VM(R0_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R1, R2);
4667   // MacroAssembler::StoreStore useless (included in the runtime exit path)
4668 }
4669 
4670 
anewarray()4671 void TemplateTable::anewarray() {
4672   transition(itos, atos);
4673   __ get_unsigned_2_byte_index_at_bcp(R2, 1);
4674   __ get_constant_pool(R1);
4675   __ mov(R3, R0_tos);
4676   call_VM(R0_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R1, R2, R3);
4677   // MacroAssembler::StoreStore useless (included in the runtime exit path)
4678 }
4679 
4680 
arraylength()4681 void TemplateTable::arraylength() {
4682   transition(atos, itos);
4683   __ null_check(R0_tos, Rtemp, arrayOopDesc::length_offset_in_bytes());
4684   __ ldr_s32(R0_tos, Address(R0_tos, arrayOopDesc::length_offset_in_bytes()));
4685 }
4686 
4687 
checkcast()4688 void TemplateTable::checkcast() {
4689   transition(atos, atos);
4690   Label done, is_null, quicked, resolved, throw_exception;
4691 
4692   const Register Robj = R0_tos;
4693   const Register Rcpool = R2_tmp;
4694   const Register Rtags = R3_tmp;
4695   const Register Rindex = R4_tmp;
4696   const Register Rsuper = R3_tmp;
4697   const Register Rsub   = R4_tmp;
4698   const Register Rsubtype_check_tmp1 = R1_tmp;
4699   const Register Rsubtype_check_tmp2 = LR_tmp;
4700 
4701   __ cbz(Robj, is_null);
4702 
4703   // Get cpool & tags index
4704   __ get_cpool_and_tags(Rcpool, Rtags);
4705   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4706 
4707   // See if bytecode has already been quicked
4708   __ add(Rtemp, Rtags, Rindex);
4709 #ifdef AARCH64
4710   // TODO-AARCH64: investigate if LoadLoad barrier is needed here or control dependency is enough
4711   __ add(Rtemp, Rtemp, Array<u1>::base_offset_in_bytes());
4712   __ ldarb(Rtemp, Rtemp); // acts as LoadLoad memory barrier
4713 #else
4714   __ ldrb(Rtemp, Address(Rtemp, Array<u1>::base_offset_in_bytes()));
4715 #endif // AARCH64
4716 
4717   __ cmp(Rtemp, JVM_CONSTANT_Class);
4718 
4719 #ifndef AARCH64
4720   volatile_barrier(MacroAssembler::LoadLoad, Rtemp, true);
4721 #endif // !AARCH64
4722 
4723   __ b(quicked, eq);
4724 
4725   __ push(atos);
4726   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4727   // vm_result_2 has metadata result
4728   __ get_vm_result_2(Rsuper, Robj);
4729   __ pop_ptr(Robj);
4730   __ b(resolved);
4731 
4732   __ bind(throw_exception);
4733   // Come here on failure of subtype check
4734   __ profile_typecheck_failed(R1_tmp);
4735   __ mov(R2_ClassCastException_obj, Robj);             // convention with generate_ClassCastException_handler()
4736   __ b(Interpreter::_throw_ClassCastException_entry);
4737 
4738   // Get superklass in Rsuper and subklass in Rsub
4739   __ bind(quicked);
4740   __ load_resolved_klass_at_offset(Rcpool, Rindex, Rsuper);
4741 
4742   __ bind(resolved);
4743   __ load_klass(Rsub, Robj);
4744 
4745   // Generate subtype check. Blows both tmps and Rtemp.
4746   assert_different_registers(Robj, Rsub, Rsuper, Rsubtype_check_tmp1, Rsubtype_check_tmp2, Rtemp);
4747   __ gen_subtype_check(Rsub, Rsuper, throw_exception, Rsubtype_check_tmp1, Rsubtype_check_tmp2);
4748 
4749   // Come here on success
4750 
4751   // Collect counts on whether this check-cast sees NULLs a lot or not.
4752   if (ProfileInterpreter) {
4753     __ b(done);
4754     __ bind(is_null);
4755     __ profile_null_seen(R1_tmp);
4756   } else {
4757     __ bind(is_null);   // same as 'done'
4758   }
4759   __ bind(done);
4760 }
4761 
4762 
instanceof()4763 void TemplateTable::instanceof() {
4764   // result = 0: obj == NULL or  obj is not an instanceof the specified klass
4765   // result = 1: obj != NULL and obj is     an instanceof the specified klass
4766 
4767   transition(atos, itos);
4768   Label done, is_null, not_subtype, quicked, resolved;
4769 
4770   const Register Robj = R0_tos;
4771   const Register Rcpool = R2_tmp;
4772   const Register Rtags = R3_tmp;
4773   const Register Rindex = R4_tmp;
4774   const Register Rsuper = R3_tmp;
4775   const Register Rsub   = R4_tmp;
4776   const Register Rsubtype_check_tmp1 = R0_tmp;
4777   const Register Rsubtype_check_tmp2 = R1_tmp;
4778 
4779   __ cbz(Robj, is_null);
4780 
4781   __ load_klass(Rsub, Robj);
4782 
4783   // Get cpool & tags index
4784   __ get_cpool_and_tags(Rcpool, Rtags);
4785   __ get_unsigned_2_byte_index_at_bcp(Rindex, 1);
4786 
4787   // See if bytecode has already been quicked
4788   __ add(Rtemp, Rtags, Rindex);
4789 #ifdef AARCH64
4790   // TODO-AARCH64: investigate if LoadLoad barrier is needed here or control dependency is enough
4791   __ add(Rtemp, Rtemp, Array<u1>::base_offset_in_bytes());
4792   __ ldarb(Rtemp, Rtemp); // acts as LoadLoad memory barrier
4793 #else
4794   __ ldrb(Rtemp, Address(Rtemp, Array<u1>::base_offset_in_bytes()));
4795 #endif // AARCH64
4796   __ cmp(Rtemp, JVM_CONSTANT_Class);
4797 
4798 #ifndef AARCH64
4799   volatile_barrier(MacroAssembler::LoadLoad, Rtemp, true);
4800 #endif // !AARCH64
4801 
4802   __ b(quicked, eq);
4803 
4804   __ push(atos);
4805   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4806   // vm_result_2 has metadata result
4807   __ get_vm_result_2(Rsuper, Robj);
4808   __ pop_ptr(Robj);
4809   __ b(resolved);
4810 
4811   // Get superklass in Rsuper and subklass in Rsub
4812   __ bind(quicked);
4813   __ load_resolved_klass_at_offset(Rcpool, Rindex, Rsuper);
4814 
4815   __ bind(resolved);
4816   __ load_klass(Rsub, Robj);
4817 
4818   // Generate subtype check. Blows both tmps and Rtemp.
4819   __ gen_subtype_check(Rsub, Rsuper, not_subtype, Rsubtype_check_tmp1, Rsubtype_check_tmp2);
4820 
4821   // Come here on success
4822   __ mov(R0_tos, 1);
4823   __ b(done);
4824 
4825   __ bind(not_subtype);
4826   // Come here on failure
4827   __ profile_typecheck_failed(R1_tmp);
4828   __ mov(R0_tos, 0);
4829 
4830   // Collect counts on whether this test sees NULLs a lot or not.
4831   if (ProfileInterpreter) {
4832     __ b(done);
4833     __ bind(is_null);
4834     __ profile_null_seen(R1_tmp);
4835   } else {
4836     __ bind(is_null);   // same as 'done'
4837   }
4838   __ bind(done);
4839 }
4840 
4841 
4842 //----------------------------------------------------------------------------------------------------
4843 // Breakpoints
_breakpoint()4844 void TemplateTable::_breakpoint() {
4845 
4846   // Note: We get here even if we are single stepping..
4847   // jbug inists on setting breakpoints at every bytecode
4848   // even if we are in single step mode.
4849 
4850   transition(vtos, vtos);
4851 
4852   // get the unpatched byte code
4853   __ mov(R1, Rmethod);
4854   __ mov(R2, Rbcp);
4855   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R1, R2);
4856 #ifdef AARCH64
4857   __ sxtw(Rtmp_save0, R0);
4858 #else
4859   __ mov(Rtmp_save0, R0);
4860 #endif // AARCH64
4861 
4862   // post the breakpoint event
4863   __ mov(R1, Rmethod);
4864   __ mov(R2, Rbcp);
4865   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R1, R2);
4866 
4867   // complete the execution of original bytecode
4868   __ mov(R3_bytecode, Rtmp_save0);
4869   __ dispatch_only_normal(vtos);
4870 }
4871 
4872 
4873 //----------------------------------------------------------------------------------------------------
4874 // Exceptions
4875 
athrow()4876 void TemplateTable::athrow() {
4877   transition(atos, vtos);
4878   __ mov(Rexception_obj, R0_tos);
4879   __ null_check(Rexception_obj, Rtemp);
4880   __ b(Interpreter::throw_exception_entry());
4881 }
4882 
4883 
4884 //----------------------------------------------------------------------------------------------------
4885 // Synchronization
4886 //
4887 // Note: monitorenter & exit are symmetric routines; which is reflected
4888 //       in the assembly code structure as well
4889 //
4890 // Stack layout:
4891 //
4892 // [expressions  ] <--- Rstack_top        = expression stack top
4893 // ..
4894 // [expressions  ]
4895 // [monitor entry] <--- monitor block top = expression stack bot
4896 // ..
4897 // [monitor entry]
4898 // [frame data   ] <--- monitor block bot
4899 // ...
4900 // [saved FP     ] <--- FP
4901 
4902 
monitorenter()4903 void TemplateTable::monitorenter() {
4904   transition(atos, vtos);
4905 
4906   const Register Robj = R0_tos;
4907   const Register Rentry = R1_tmp;
4908 
4909   // check for NULL object
4910   __ null_check(Robj, Rtemp);
4911 
4912   const int entry_size = (frame::interpreter_frame_monitor_size() * wordSize);
4913   assert (entry_size % StackAlignmentInBytes == 0, "keep stack alignment");
4914   Label allocate_monitor, allocated;
4915 
4916   // initialize entry pointer
4917   __ mov(Rentry, 0);                             // points to free slot or NULL
4918 
4919   // find a free slot in the monitor block (result in Rentry)
4920   { Label loop, exit;
4921     const Register Rcur = R2_tmp;
4922     const Register Rcur_obj = Rtemp;
4923     const Register Rbottom = R3_tmp;
4924     assert_different_registers(Robj, Rentry, Rcur, Rbottom, Rcur_obj);
4925 
4926     __ ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
4927                                  // points to current entry, starting with top-most entry
4928     __ sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
4929                                  // points to word before bottom of monitor block
4930 
4931     __ cmp(Rcur, Rbottom);                       // check if there are no monitors
4932 #ifndef AARCH64
4933     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
4934                                                  // prefetch monitor's object for the first iteration
4935 #endif // !AARCH64
4936     __ b(allocate_monitor, eq);                  // there are no monitors, skip searching
4937 
4938     __ bind(loop);
4939 #ifdef AARCH64
4940     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
4941 #endif // AARCH64
4942     __ cmp(Rcur_obj, 0);                         // check if current entry is used
4943     __ mov(Rentry, Rcur, eq);                    // if not used then remember entry
4944 
4945     __ cmp(Rcur_obj, Robj);                      // check if current entry is for same object
4946     __ b(exit, eq);                              // if same object then stop searching
4947 
4948     __ add(Rcur, Rcur, entry_size);              // otherwise advance to next entry
4949 
4950     __ cmp(Rcur, Rbottom);                       // check if bottom reached
4951 #ifndef AARCH64
4952     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
4953                                                  // prefetch monitor's object for the next iteration
4954 #endif // !AARCH64
4955     __ b(loop, ne);                              // if not at bottom then check this entry
4956     __ bind(exit);
4957   }
4958 
4959   __ cbnz(Rentry, allocated);                    // check if a slot has been found; if found, continue with that one
4960 
4961   __ bind(allocate_monitor);
4962 
4963   // allocate one if there's no free slot
4964   { Label loop;
4965     assert_different_registers(Robj, Rentry, R2_tmp, Rtemp);
4966 
4967     // 1. compute new pointers
4968 
4969 #ifdef AARCH64
4970     __ check_extended_sp(Rtemp);
4971     __ sub(SP, SP, entry_size);                  // adjust extended SP
4972     __ mov(Rtemp, SP);
4973     __ str(Rtemp, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize));
4974 #endif // AARCH64
4975 
4976     __ ldr(Rentry, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
4977                                                  // old monitor block top / expression stack bottom
4978 
4979     __ sub(Rstack_top, Rstack_top, entry_size);  // move expression stack top
4980     __ check_stack_top_on_expansion();
4981 
4982     __ sub(Rentry, Rentry, entry_size);          // move expression stack bottom
4983 
4984     __ mov(R2_tmp, Rstack_top);                  // set start value for copy loop
4985 
4986     __ str(Rentry, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
4987                                                  // set new monitor block top
4988 
4989     // 2. move expression stack contents
4990 
4991     __ cmp(R2_tmp, Rentry);                                 // check if expression stack is empty
4992 #ifndef AARCH64
4993     __ ldr(Rtemp, Address(R2_tmp, entry_size), ne);         // load expression stack word from old location
4994 #endif // !AARCH64
4995     __ b(allocated, eq);
4996 
4997     __ bind(loop);
4998 #ifdef AARCH64
4999     __ ldr(Rtemp, Address(R2_tmp, entry_size));             // load expression stack word from old location
5000 #endif // AARCH64
5001     __ str(Rtemp, Address(R2_tmp, wordSize, post_indexed)); // store expression stack word at new location
5002                                                             // and advance to next word
5003     __ cmp(R2_tmp, Rentry);                                 // check if bottom reached
5004 #ifndef AARCH64
5005     __ ldr(Rtemp, Address(R2, entry_size), ne);             // load expression stack word from old location
5006 #endif // !AARCH64
5007     __ b(loop, ne);                                         // if not at bottom then copy next word
5008   }
5009 
5010   // call run-time routine
5011 
5012   // Rentry: points to monitor entry
5013   __ bind(allocated);
5014 
5015   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
5016   // The object has already been poped from the stack, so the expression stack looks correct.
5017   __ add(Rbcp, Rbcp, 1);
5018 
5019   __ str(Robj, Address(Rentry, BasicObjectLock::obj_offset_in_bytes()));     // store object
5020   __ lock_object(Rentry);
5021 
5022   // check to make sure this monitor doesn't cause stack overflow after locking
5023   __ save_bcp();  // in case of exception
5024   __ arm_stack_overflow_check(0, Rtemp);
5025 
5026   // The bcp has already been incremented. Just need to dispatch to next instruction.
5027   __ dispatch_next(vtos);
5028 }
5029 
5030 
monitorexit()5031 void TemplateTable::monitorexit() {
5032   transition(atos, vtos);
5033 
5034   const Register Robj = R0_tos;
5035   const Register Rcur = R1_tmp;
5036   const Register Rbottom = R2_tmp;
5037   const Register Rcur_obj = Rtemp;
5038 
5039   // check for NULL object
5040   __ null_check(Robj, Rtemp);
5041 
5042   const int entry_size = (frame::interpreter_frame_monitor_size() * wordSize);
5043   Label found, throw_exception;
5044 
5045   // find matching slot
5046   { Label loop;
5047     assert_different_registers(Robj, Rcur, Rbottom, Rcur_obj);
5048 
5049     __ ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
5050                                  // points to current entry, starting with top-most entry
5051     __ sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
5052                                  // points to word before bottom of monitor block
5053 
5054     __ cmp(Rcur, Rbottom);                       // check if bottom reached
5055 #ifndef AARCH64
5056     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
5057                                                  // prefetch monitor's object for the first iteration
5058 #endif // !AARCH64
5059     __ b(throw_exception, eq);                   // throw exception if there are now monitors
5060 
5061     __ bind(loop);
5062 #ifdef AARCH64
5063     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
5064 #endif // AARCH64
5065     // check if current entry is for same object
5066     __ cmp(Rcur_obj, Robj);
5067     __ b(found, eq);                             // if same object then stop searching
5068     __ add(Rcur, Rcur, entry_size);              // otherwise advance to next entry
5069     __ cmp(Rcur, Rbottom);                       // check if bottom reached
5070 #ifndef AARCH64
5071     __ ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
5072 #endif // !AARCH64
5073     __ b (loop, ne);                             // if not at bottom then check this entry
5074   }
5075 
5076   // error handling. Unlocking was not block-structured
5077   __ bind(throw_exception);
5078   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
5079   __ should_not_reach_here();
5080 
5081   // call run-time routine
5082   // Rcur: points to monitor entry
5083   __ bind(found);
5084   __ push_ptr(Robj);                             // make sure object is on stack (contract with oopMaps)
5085   __ unlock_object(Rcur);
5086   __ pop_ptr(Robj);                              // discard object
5087 }
5088 
5089 
5090 //----------------------------------------------------------------------------------------------------
5091 // Wide instructions
5092 
wide()5093 void TemplateTable::wide() {
5094   transition(vtos, vtos);
5095   __ ldrb(R3_bytecode, at_bcp(1));
5096 
5097   InlinedAddress Ltable((address)Interpreter::_wentry_point);
5098   __ ldr_literal(Rtemp, Ltable);
5099   __ indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
5100 
5101   __ nop(); // to avoid filling CPU pipeline with invalid instructions
5102   __ nop();
5103   __ bind_literal(Ltable);
5104 }
5105 
5106 
5107 //----------------------------------------------------------------------------------------------------
5108 // Multi arrays
5109 
multianewarray()5110 void TemplateTable::multianewarray() {
5111   transition(vtos, atos);
5112   __ ldrb(Rtmp_save0, at_bcp(3));   // get number of dimensions
5113 
5114   // last dim is on top of stack; we want address of first one:
5115   // first_addr = last_addr + ndims * stackElementSize - 1*wordsize
5116   // the latter wordSize to point to the beginning of the array.
5117   __ add(Rtemp, Rstack_top, AsmOperand(Rtmp_save0, lsl, Interpreter::logStackElementSize));
5118   __ sub(R1, Rtemp, wordSize);
5119 
5120   call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R1);
5121   __ add(Rstack_top, Rstack_top, AsmOperand(Rtmp_save0, lsl, Interpreter::logStackElementSize));
5122   // MacroAssembler::StoreStore useless (included in the runtime exit path)
5123 }
5124