1 /*
2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 // no precompiled headers
26 #include "jvm.h"
27 #include "asm/macroAssembler.hpp"
28 #include "classfile/classLoader.hpp"
29 #include "classfile/systemDictionary.hpp"
30 #include "classfile/vmSymbols.hpp"
31 #include "code/codeCache.hpp"
32 #include "code/icBuffer.hpp"
33 #include "code/vtableStubs.hpp"
34 #include "interpreter/interpreter.hpp"
35 #include "logging/log.hpp"
36 #include "memory/allocation.inline.hpp"
37 #include "os_share_solaris.hpp"
38 #include "prims/jniFastGetField.hpp"
39 #include "prims/jvm_misc.hpp"
40 #include "runtime/arguments.hpp"
41 #include "runtime/atomic.hpp"
42 #include "runtime/extendedPC.hpp"
43 #include "runtime/frame.inline.hpp"
44 #include "runtime/interfaceSupport.inline.hpp"
45 #include "runtime/java.hpp"
46 #include "runtime/javaCalls.hpp"
47 #include "runtime/mutexLocker.hpp"
48 #include "runtime/osThread.hpp"
49 #include "runtime/sharedRuntime.hpp"
50 #include "runtime/stubRoutines.hpp"
51 #include "runtime/thread.inline.hpp"
52 #include "runtime/timer.hpp"
53 #include "utilities/align.hpp"
54 #include "utilities/events.hpp"
55 #include "utilities/vmError.hpp"
56 
57 // put OS-includes here
58 # include <sys/types.h>
59 # include <sys/mman.h>
60 # include <pthread.h>
61 # include <signal.h>
62 # include <setjmp.h>
63 # include <errno.h>
64 # include <dlfcn.h>
65 # include <stdio.h>
66 # include <unistd.h>
67 # include <sys/resource.h>
68 # include <thread.h>
69 # include <sys/stat.h>
70 # include <sys/time.h>
71 # include <sys/filio.h>
72 # include <sys/utsname.h>
73 # include <sys/systeminfo.h>
74 # include <sys/socket.h>
75 # include <sys/trap.h>
76 # include <sys/lwp.h>
77 # include <poll.h>
78 # include <sys/lwp.h>
79 # include <procfs.h>     //  see comment in <sys/procfs.h>
80 
81 #ifndef AMD64
82 // QQQ seems useless at this point
83 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
84 #endif // AMD64
85 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
86 
87 
88 #define MAX_PATH (2 * K)
89 
90 // Minimum usable stack sizes required to get to user code. Space for
91 // HotSpot guard pages is added later.
92 #ifdef _LP64
93 // The adlc generated method 'State::MachNodeGenerator(int)' used by the C2 compiler
94 // threads requires a large stack with the Solaris Studio C++ compiler version 5.13
95 // and product VM builds (debug builds require significantly less stack space).
96 size_t os::Posix::_compiler_thread_min_stack_allowed = 325 * K;
97 size_t os::Posix::_java_thread_min_stack_allowed = 48 * K;
98 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K;
99 #else
100 size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K;
101 size_t os::Posix::_java_thread_min_stack_allowed = 32 * K;
102 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
103 #endif // _LP64
104 
105 #ifdef AMD64
106 #define REG_SP REG_RSP
107 #define REG_PC REG_RIP
108 #define REG_FP REG_RBP
109 #else
110 #define REG_SP UESP
111 #define REG_PC EIP
112 #define REG_FP EBP
113 // 4900493 counter to prevent runaway LDTR refresh attempt
114 
115 static volatile int ldtr_refresh = 0;
116 // the libthread instruction that faults because of the stale LDTR
117 
118 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
119                        };
120 #endif // AMD64
121 
non_memory_address_word()122 char* os::non_memory_address_word() {
123   // Must never look like an address returned by reserve_memory,
124   // even in its subfields (as defined by the CPU immediate fields,
125   // if the CPU splits constants across multiple instructions).
126   return (char*) -1;
127 }
128 
129 //
130 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
131 // There are issues with libthread giving out uc_links for different threads
132 // on the same uc_link chain and bad or circular links.
133 //
valid_ucontext(Thread * thread,const ucontext_t * valid,const ucontext_t * suspect)134 bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
135   if (valid >= suspect ||
136       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
137       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
138       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
139     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
140     return false;
141   }
142 
143   if (thread->is_Java_thread()) {
144     if (!valid_stack_address(thread, (address)suspect)) {
145       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
146       return false;
147     }
148     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
149       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
150       return false;
151     }
152   }
153   return true;
154 }
155 
156 // We will only follow one level of uc_link since there are libthread
157 // issues with ucontext linking and it is better to be safe and just
158 // let caller retry later.
get_valid_uc_in_signal_handler(Thread * thread,const ucontext_t * uc)159 const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
160   const ucontext_t *uc) {
161 
162   const ucontext_t *retuc = NULL;
163 
164   if (uc != NULL) {
165     if (uc->uc_link == NULL) {
166       // cannot validate without uc_link so accept current ucontext
167       retuc = uc;
168     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
169       // first ucontext is valid so try the next one
170       uc = uc->uc_link;
171       if (uc->uc_link == NULL) {
172         // cannot validate without uc_link so accept current ucontext
173         retuc = uc;
174       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
175         // the ucontext one level down is also valid so return it
176         retuc = uc;
177       }
178     }
179   }
180   return retuc;
181 }
182 
183 // Assumes ucontext is valid
ucontext_get_ExtendedPC(const ucontext_t * uc)184 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
185   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
186 }
187 
ucontext_set_pc(ucontext_t * uc,address pc)188 void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
189   uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
190 }
191 
192 // Assumes ucontext is valid
ucontext_get_sp(const ucontext_t * uc)193 intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
194   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
195 }
196 
197 // Assumes ucontext is valid
ucontext_get_fp(const ucontext_t * uc)198 intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
199   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
200 }
201 
ucontext_get_pc(const ucontext_t * uc)202 address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
203   return (address) uc->uc_mcontext.gregs[REG_PC];
204 }
205 
206 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
207 // is currently interrupted by SIGPROF.
208 //
209 // The difference between this and os::fetch_frame_from_context() is that
210 // here we try to skip nested signal frames.
211 // This method is also used for stack overflow signal handling.
fetch_frame_from_ucontext(Thread * thread,const ucontext_t * uc,intptr_t ** ret_sp,intptr_t ** ret_fp)212 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
213   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
214 
215   assert(thread != NULL, "just checking");
216   assert(ret_sp != NULL, "just checking");
217   assert(ret_fp != NULL, "just checking");
218 
219   const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
220   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
221 }
222 
fetch_frame_from_context(const void * ucVoid,intptr_t ** ret_sp,intptr_t ** ret_fp)223 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
224                     intptr_t** ret_sp, intptr_t** ret_fp) {
225 
226   ExtendedPC  epc;
227   const ucontext_t *uc = (const ucontext_t*)ucVoid;
228 
229   if (uc != NULL) {
230     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
231     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
232     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
233   } else {
234     // construct empty ExtendedPC for return value checking
235     epc = ExtendedPC(NULL);
236     if (ret_sp) *ret_sp = (intptr_t *)NULL;
237     if (ret_fp) *ret_fp = (intptr_t *)NULL;
238   }
239 
240   return epc;
241 }
242 
fetch_frame_from_context(const void * ucVoid)243 frame os::fetch_frame_from_context(const void* ucVoid) {
244   intptr_t* sp;
245   intptr_t* fp;
246   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
247   return frame(sp, fp, epc.pc());
248 }
249 
fetch_frame_from_ucontext(Thread * thread,void * ucVoid)250 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
251   intptr_t* sp;
252   intptr_t* fp;
253   ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
254   return frame(sp, fp, epc.pc());
255 }
256 
get_frame_at_stack_banging_point(JavaThread * thread,ucontext_t * uc,frame * fr)257 bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
258  address pc = (address) os::Solaris::ucontext_get_pc(uc);
259   if (Interpreter::contains(pc)) {
260     // interpreter performs stack banging after the fixed frame header has
261     // been generated while the compilers perform it before. To maintain
262     // semantic consistency between interpreted and compiled frames, the
263     // method returns the Java sender of the current frame.
264     *fr = os::fetch_frame_from_ucontext(thread, uc);
265     if (!fr->is_first_java_frame()) {
266       // get_frame_at_stack_banging_point() is only called when we
267       // have well defined stacks so java_sender() calls do not need
268       // to assert safe_for_sender() first.
269       *fr = fr->java_sender();
270     }
271   } else {
272     // more complex code with compiled code
273     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
274     CodeBlob* cb = CodeCache::find_blob(pc);
275     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
276       // Not sure where the pc points to, fallback to default
277       // stack overflow handling
278       return false;
279     } else {
280       // in compiled code, the stack banging is performed just after the return pc
281       // has been pushed on the stack
282       intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
283       intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
284       *fr = frame(sp + 1, fp, (address)*sp);
285       if (!fr->is_java_frame()) {
286         // See java_sender() comment above.
287         *fr = fr->java_sender();
288       }
289     }
290   }
291   assert(fr->is_java_frame(), "Safety check");
292   return true;
293 }
294 
get_sender_for_C_frame(frame * fr)295 frame os::get_sender_for_C_frame(frame* fr) {
296   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
297 }
298 
299 extern "C" intptr_t *_get_current_sp();  // in .il file
300 
current_stack_pointer()301 address os::current_stack_pointer() {
302   return (address)_get_current_sp();
303 }
304 
305 extern "C" intptr_t *_get_current_fp();  // in .il file
306 
current_frame()307 frame os::current_frame() {
308   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
309   // fp is for os::current_frame. We want the fp for our caller.
310   frame myframe((intptr_t*)os::current_stack_pointer(),
311                 (intptr_t*)fp,
312                 CAST_FROM_FN_PTR(address, os::current_frame));
313   frame caller_frame = os::get_sender_for_C_frame(&myframe);
314 
315   if (os::is_first_C_frame(&caller_frame)) {
316     // stack is not walkable
317     frame ret; // This will be a null useless frame
318     return ret;
319   } else {
320     // return frame for our caller's caller
321     return os::get_sender_for_C_frame(&caller_frame);
322   }
323 }
324 
325 #ifndef AMD64
326 
327 // Detecting SSE support by OS
328 // From solaris_i486.s
329 extern "C" bool sse_check();
330 extern "C" bool sse_unavailable();
331 
332 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
333 static int sse_status = SSE_UNKNOWN;
334 
335 
check_for_sse_support()336 static void  check_for_sse_support() {
337   if (!VM_Version::supports_sse()) {
338     sse_status = SSE_NOT_SUPPORTED;
339     return;
340   }
341   // looking for _sse_hw in libc.so, if it does not exist or
342   // the value (int) is 0, OS has no support for SSE
343   int *sse_hwp;
344   void *h;
345 
346   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
347     //open failed, presume no support for SSE
348     sse_status = SSE_NOT_SUPPORTED;
349     return;
350   }
351   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
352     sse_status = SSE_NOT_SUPPORTED;
353   } else if (*sse_hwp == 0) {
354     sse_status = SSE_NOT_SUPPORTED;
355   }
356   dlclose(h);
357 
358   if (sse_status == SSE_UNKNOWN) {
359     bool (*try_sse)() = (bool (*)())sse_check;
360     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
361   }
362 
363 }
364 
365 #endif // AMD64
366 
supports_sse()367 bool os::supports_sse() {
368 #ifdef AMD64
369   return true;
370 #else
371   if (sse_status == SSE_UNKNOWN)
372     check_for_sse_support();
373   return sse_status == SSE_SUPPORTED;
374 #endif // AMD64
375 }
376 
cpu_microcode_revision()377 juint os::cpu_microcode_revision() {
378   // Stubbed out for now to get the Solaris x86 build working.
379   return 0;
380 }
381 
is_allocatable(size_t bytes)382 bool os::is_allocatable(size_t bytes) {
383 #ifdef AMD64
384   return true;
385 #else
386 
387   if (bytes < 2 * G) {
388     return true;
389   }
390 
391   char* addr = reserve_memory(bytes, NULL);
392 
393   if (addr != NULL) {
394     release_memory(addr, bytes);
395   }
396 
397   return addr != NULL;
398 #endif // AMD64
399 
400 }
401 
402 extern "C" JNIEXPORT int
JVM_handle_solaris_signal(int sig,siginfo_t * info,void * ucVoid,int abort_if_unrecognized)403 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
404                           int abort_if_unrecognized) {
405   ucontext_t* uc = (ucontext_t*) ucVoid;
406 
407 #ifndef AMD64
408   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
409     // the SSE instruction faulted. supports_sse() need return false.
410     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
411     return true;
412   }
413 #endif // !AMD64
414 
415   Thread* t = Thread::current_or_null_safe();
416 
417   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
418   // (no destructors can be run)
419   os::ThreadCrashProtection::check_crash_protection(sig, t);
420 
421   SignalHandlerMark shm(t);
422 
423   if(sig == SIGPIPE || sig == SIGXFSZ) {
424     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
425       return true;
426     } else {
427       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
428       return true;
429     }
430   }
431 
432   JavaThread* thread = NULL;
433   VMThread* vmthread = NULL;
434 
435   if (os::Solaris::signal_handlers_are_installed) {
436     if (t != NULL ){
437       if(t->is_Java_thread()) {
438         thread = (JavaThread*)t;
439       }
440       else if(t->is_VM_thread()){
441         vmthread = (VMThread *)t;
442       }
443     }
444   }
445 
446   if (sig == ASYNC_SIGNAL) {
447     if(thread || vmthread){
448       OSThread::SR_handler(t, uc);
449       return true;
450     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
451       return true;
452     } else {
453       // If ASYNC_SIGNAL not chained, and this is a non-vm and
454       // non-java thread
455       return true;
456     }
457   }
458 
459   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
460     // can't decode this kind of signal
461     info = NULL;
462   } else {
463     assert(sig == info->si_signo, "bad siginfo");
464   }
465 
466   // Handle SafeFetch faults:
467   if (uc != NULL) {
468     address const pc = (address) uc->uc_mcontext.gregs[REG_PC];
469     if (pc && StubRoutines::is_safefetch_fault(pc)) {
470       os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
471       return 1;
472     }
473   }
474 
475   // decide if this trap can be handled by a stub
476   address stub = NULL;
477 
478   address pc          = NULL;
479 
480   //%note os_trap_1
481   if (info != NULL && uc != NULL && thread != NULL) {
482     // factor me: getPCfromContext
483     pc = (address) uc->uc_mcontext.gregs[REG_PC];
484 
485     // Handle ALL stack overflow variations here
486     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
487       address addr = (address) info->si_addr;
488       if (thread->in_stack_yellow_reserved_zone(addr)) {
489         if (thread->thread_state() == _thread_in_Java) {
490           if (thread->in_stack_reserved_zone(addr)) {
491             frame fr;
492             if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
493               assert(fr.is_java_frame(), "Must be Java frame");
494               frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
495               if (activation.sp() != NULL) {
496                 thread->disable_stack_reserved_zone();
497                 if (activation.is_interpreted_frame()) {
498                   thread->set_reserved_stack_activation((address)(
499                     activation.fp() + frame::interpreter_frame_initial_sp_offset));
500                 } else {
501                   thread->set_reserved_stack_activation((address)activation.unextended_sp());
502                 }
503                 return true;
504               }
505             }
506           }
507           // Throw a stack overflow exception.  Guard pages will be reenabled
508           // while unwinding the stack.
509           thread->disable_stack_yellow_reserved_zone();
510           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
511         } else {
512           // Thread was in the vm or native code.  Return and try to finish.
513           thread->disable_stack_yellow_reserved_zone();
514           return true;
515         }
516       } else if (thread->in_stack_red_zone(addr)) {
517         // Fatal red zone violation.  Disable the guard pages and fall through
518         // to handle_unexpected_exception way down below.
519         thread->disable_stack_red_zone();
520         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
521       }
522     }
523 
524     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
525       // Verify that OS save/restore AVX registers.
526       stub = VM_Version::cpuinfo_cont_addr();
527     }
528 
529     if (thread->thread_state() == _thread_in_vm) {
530       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
531         address next_pc = Assembler::locate_next_instruction(pc);
532         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
533       }
534     }
535 
536     if (thread->thread_state() == _thread_in_Java) {
537       // Support Safepoint Polling
538       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
539         stub = SharedRuntime::get_poll_stub(pc);
540       }
541       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
542         // BugId 4454115: A read from a MappedByteBuffer can fault
543         // here if the underlying file has been truncated.
544         // Do not crash the VM in such a case.
545         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
546         if (cb != NULL) {
547           CompiledMethod* nm = cb->as_compiled_method_or_null();
548           if (nm != NULL && nm->has_unsafe_access()) {
549             address next_pc = Assembler::locate_next_instruction(pc);
550             stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
551           }
552         }
553       }
554       else
555       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
556         // integer divide by zero
557         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
558       }
559 #ifndef AMD64
560       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
561         // floating-point divide by zero
562         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
563       }
564       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
565         // The encoding of D2I in i486.ad can cause an exception prior
566         // to the fist instruction if there was an invalid operation
567         // pending. We want to dismiss that exception. From the win_32
568         // side it also seems that if it really was the fist causing
569         // the exception that we do the d2i by hand with different
570         // rounding. Seems kind of weird. QQQ TODO
571         // Note that we take the exception at the NEXT floating point instruction.
572         if (pc[0] == 0xDB) {
573             assert(pc[0] == 0xDB, "not a FIST opcode");
574             assert(pc[1] == 0x14, "not a FIST opcode");
575             assert(pc[2] == 0x24, "not a FIST opcode");
576             return true;
577         } else {
578             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
579             assert(pc[-2] == 0x14, "not an flt invalid opcode");
580             assert(pc[-1] == 0x24, "not an flt invalid opcode");
581         }
582       }
583       else if (sig == SIGFPE ) {
584         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
585       }
586 #endif // !AMD64
587 
588         // QQQ It doesn't seem that we need to do this on x86 because we should be able
589         // to return properly from the handler without this extra stuff on the back side.
590 
591       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
592         // Determination of interpreter/vtable stub/compiled code null exception
593         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
594       }
595     }
596 
597     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
598     // and the heap gets shrunk before the field access.
599     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
600       address addr = JNI_FastGetField::find_slowcase_pc(pc);
601       if (addr != (address)-1) {
602         stub = addr;
603       }
604     }
605 
606     // Check to see if we caught the safepoint code in the
607     // process of write protecting the memory serialization page.
608     // It write enables the page immediately after protecting it
609     // so we can just return to retry the write.
610     if ((sig == SIGSEGV) &&
611         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
612       // Block current thread until the memory serialize page permission restored.
613       os::block_on_serialize_page_trap();
614       return true;
615     }
616   }
617 
618   // Execution protection violation
619   //
620   // Preventative code for future versions of Solaris which may
621   // enable execution protection when running the 32-bit VM on AMD64.
622   //
623   // This should be kept as the last step in the triage.  We don't
624   // have a dedicated trap number for a no-execute fault, so be
625   // conservative and allow other handlers the first shot.
626   //
627   // Note: We don't test that info->si_code == SEGV_ACCERR here.
628   // this si_code is so generic that it is almost meaningless; and
629   // the si_code for this condition may change in the future.
630   // Furthermore, a false-positive should be harmless.
631   if (UnguardOnExecutionViolation > 0 &&
632       (sig == SIGSEGV || sig == SIGBUS) &&
633       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
634     int page_size = os::vm_page_size();
635     address addr = (address) info->si_addr;
636     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
637     // Make sure the pc and the faulting address are sane.
638     //
639     // If an instruction spans a page boundary, and the page containing
640     // the beginning of the instruction is executable but the following
641     // page is not, the pc and the faulting address might be slightly
642     // different - we still want to unguard the 2nd page in this case.
643     //
644     // 15 bytes seems to be a (very) safe value for max instruction size.
645     bool pc_is_near_addr =
646       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
647     bool instr_spans_page_boundary =
648       (align_down((intptr_t) pc ^ (intptr_t) addr,
649                        (intptr_t) page_size) > 0);
650 
651     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
652       static volatile address last_addr =
653         (address) os::non_memory_address_word();
654 
655       // In conservative mode, don't unguard unless the address is in the VM
656       if (addr != last_addr &&
657           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
658 
659         // Make memory rwx and retry
660         address page_start = align_down(addr, page_size);
661         bool res = os::protect_memory((char*) page_start, page_size,
662                                       os::MEM_PROT_RWX);
663 
664         log_debug(os)("Execution protection violation "
665                       "at " INTPTR_FORMAT
666                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
667                       p2i(page_start), (res ? "success" : "failed"), errno);
668         stub = pc;
669 
670         // Set last_addr so if we fault again at the same address, we don't end
671         // up in an endless loop.
672         //
673         // There are two potential complications here.  Two threads trapping at
674         // the same address at the same time could cause one of the threads to
675         // think it already unguarded, and abort the VM.  Likely very rare.
676         //
677         // The other race involves two threads alternately trapping at
678         // different addresses and failing to unguard the page, resulting in
679         // an endless loop.  This condition is probably even more unlikely than
680         // the first.
681         //
682         // Although both cases could be avoided by using locks or thread local
683         // last_addr, these solutions are unnecessary complication: this
684         // handler is a best-effort safety net, not a complete solution.  It is
685         // disabled by default and should only be used as a workaround in case
686         // we missed any no-execute-unsafe VM code.
687 
688         last_addr = addr;
689       }
690     }
691   }
692 
693   if (stub != NULL) {
694     // save all thread context in case we need to restore it
695 
696     if (thread != NULL) thread->set_saved_exception_pc(pc);
697     // 12/02/99: On Sparc it appears that the full context is also saved
698     // but as yet, no one looks at or restores that saved context
699     os::Solaris::ucontext_set_pc(uc, stub);
700     return true;
701   }
702 
703   // signal-chaining
704   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
705     return true;
706   }
707 
708 #ifndef AMD64
709   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
710   // Handle an undefined selector caused by an attempt to assign
711   // fs in libthread getipriptr(). With the current libthread design every 512
712   // thread creations the LDT for a private thread data structure is extended
713   // and thre is a hazard that and another thread attempting a thread creation
714   // will use a stale LDTR that doesn't reflect the structure's growth,
715   // causing a GP fault.
716   // Enforce the probable limit of passes through here to guard against an
717   // infinite loop if some other move to fs caused the GP fault. Note that
718   // this loop counter is ultimately a heuristic as it is possible for
719   // more than one thread to generate this fault at a time in an MP system.
720   // In the case of the loop count being exceeded or if the poll fails
721   // just fall through to a fatal error.
722   // If there is some other source of T_GPFLT traps and the text at EIP is
723   // unreadable this code will loop infinitely until the stack is exausted.
724   // The key to diagnosis in this case is to look for the bottom signal handler
725   // frame.
726 
727   if(! IgnoreLibthreadGPFault) {
728     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
729       const unsigned char *p =
730                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
731 
732       // Expected instruction?
733 
734       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
735 
736         Atomic::inc(&ldtr_refresh);
737 
738         // Infinite loop?
739 
740         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
741 
742           // No, force scheduling to get a fresh view of the LDTR
743 
744           if(poll(NULL, 0, 10) == 0) {
745 
746             // Retry the move
747 
748             return false;
749           }
750         }
751       }
752     }
753   }
754 #endif // !AMD64
755 
756   if (!abort_if_unrecognized) {
757     // caller wants another chance, so give it to him
758     return false;
759   }
760 
761   if (!os::Solaris::libjsig_is_loaded) {
762     struct sigaction oldAct;
763     sigaction(sig, (struct sigaction *)0, &oldAct);
764     if (oldAct.sa_sigaction != signalHandler) {
765       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
766                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
767       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
768     }
769   }
770 
771   if (pc == NULL && uc != NULL) {
772     pc = (address) uc->uc_mcontext.gregs[REG_PC];
773   }
774 
775   // unmask current signal
776   sigset_t newset;
777   sigemptyset(&newset);
778   sigaddset(&newset, sig);
779   sigprocmask(SIG_UNBLOCK, &newset, NULL);
780 
781   // Determine which sort of error to throw.  Out of swap may signal
782   // on the thread stack, which could get a mapping error when touched.
783   address addr = (address) info->si_addr;
784   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
785     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
786   }
787 
788   VMError::report_and_die(t, sig, pc, info, ucVoid);
789 
790   ShouldNotReachHere();
791   return false;
792 }
793 
print_context(outputStream * st,const void * context)794 void os::print_context(outputStream *st, const void *context) {
795   if (context == NULL) return;
796 
797   const ucontext_t *uc = (const ucontext_t*)context;
798   st->print_cr("Registers:");
799 #ifdef AMD64
800   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
801   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
802   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
803   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
804   st->cr();
805   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
806   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
807   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
808   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
809   st->cr();
810   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
811   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
812   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
813   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
814   st->cr();
815   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
816   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
817   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
818   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
819   st->cr();
820   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
821   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
822 #else
823   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
824   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
825   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
826   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
827   st->cr();
828   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
829   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
830   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
831   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
832   st->cr();
833   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
834   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
835 #endif // AMD64
836   st->cr();
837   st->cr();
838 
839   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
840   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
841   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
842   st->cr();
843 
844   // Note: it may be unsafe to inspect memory near pc. For example, pc may
845   // point to garbage if entry point in an nmethod is corrupted. Leave
846   // this at the end, and hope for the best.
847   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
848   address pc = epc.pc();
849   print_instructions(st, pc, sizeof(char));
850   st->cr();
851 }
852 
print_register_info(outputStream * st,const void * context)853 void os::print_register_info(outputStream *st, const void *context) {
854   if (context == NULL) return;
855 
856   const ucontext_t *uc = (const ucontext_t*)context;
857 
858   st->print_cr("Register to memory mapping:");
859   st->cr();
860 
861   // this is horrendously verbose but the layout of the registers in the
862   // context does not match how we defined our abstract Register set, so
863   // we can't just iterate through the gregs area
864 
865   // this is only for the "general purpose" registers
866 
867 #ifdef AMD64
868   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
869   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
870   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
871   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
872   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
873   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
874   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
875   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
876   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
877   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
878   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
879   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
880   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
881   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
882   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
883   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
884 #else
885   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
886   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
887   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
888   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
889   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
890   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
891   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
892   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
893 #endif
894 
895   st->cr();
896 }
897 
898 
899 #ifdef AMD64
init_thread_fpu_state(void)900 void os::Solaris::init_thread_fpu_state(void) {
901   // Nothing to do
902 }
903 #else
904 // From solaris_i486.s
905 extern "C" void fixcw();
906 
init_thread_fpu_state(void)907 void os::Solaris::init_thread_fpu_state(void) {
908   // Set fpu to 53 bit precision. This happens too early to use a stub.
909   fixcw();
910 }
911 
912 // These routines are the initial value of atomic_xchg_entry(),
913 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
914 // until initialization is complete.
915 // TODO - replace with .il implementation when compiler supports it.
916 
917 typedef int32_t  xchg_func_t        (int32_t,  volatile int32_t*);
918 typedef int32_t  cmpxchg_func_t     (int32_t,  volatile int32_t*,  int32_t);
919 typedef int64_t  cmpxchg_long_func_t(int64_t,  volatile int64_t*,  int64_t);
920 typedef int32_t  add_func_t         (int32_t,  volatile int32_t*);
921 
atomic_xchg_bootstrap(int32_t exchange_value,volatile int32_t * dest)922 int32_t os::atomic_xchg_bootstrap(int32_t exchange_value, volatile int32_t* dest) {
923   // try to use the stub:
924   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
925 
926   if (func != NULL) {
927     os::atomic_xchg_func = func;
928     return (*func)(exchange_value, dest);
929   }
930   assert(Threads::number_of_threads() == 0, "for bootstrap only");
931 
932   int32_t old_value = *dest;
933   *dest = exchange_value;
934   return old_value;
935 }
936 
atomic_cmpxchg_bootstrap(int32_t exchange_value,volatile int32_t * dest,int32_t compare_value)937 int32_t os::atomic_cmpxchg_bootstrap(int32_t exchange_value, volatile int32_t* dest, int32_t compare_value) {
938   // try to use the stub:
939   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
940 
941   if (func != NULL) {
942     os::atomic_cmpxchg_func = func;
943     return (*func)(exchange_value, dest, compare_value);
944   }
945   assert(Threads::number_of_threads() == 0, "for bootstrap only");
946 
947   int32_t old_value = *dest;
948   if (old_value == compare_value)
949     *dest = exchange_value;
950   return old_value;
951 }
952 
atomic_cmpxchg_long_bootstrap(int64_t exchange_value,volatile int64_t * dest,int64_t compare_value)953 int64_t os::atomic_cmpxchg_long_bootstrap(int64_t exchange_value, volatile int64_t* dest, int64_t compare_value) {
954   // try to use the stub:
955   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
956 
957   if (func != NULL) {
958     os::atomic_cmpxchg_long_func = func;
959     return (*func)(exchange_value, dest, compare_value);
960   }
961   assert(Threads::number_of_threads() == 0, "for bootstrap only");
962 
963   int64_t old_value = *dest;
964   if (old_value == compare_value)
965     *dest = exchange_value;
966   return old_value;
967 }
968 
atomic_add_bootstrap(int32_t add_value,volatile int32_t * dest)969 int32_t os::atomic_add_bootstrap(int32_t add_value, volatile int32_t* dest) {
970   // try to use the stub:
971   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
972 
973   if (func != NULL) {
974     os::atomic_add_func = func;
975     return (*func)(add_value, dest);
976   }
977   assert(Threads::number_of_threads() == 0, "for bootstrap only");
978 
979   return (*dest) += add_value;
980 }
981 
982 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
983 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
984 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
985 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
986 
987 extern "C" void _solaris_raw_setup_fpu(address ptr);
setup_fpu()988 void os::setup_fpu() {
989   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
990   _solaris_raw_setup_fpu(fpu_cntrl);
991 }
992 #endif // AMD64
993 
994 #ifndef PRODUCT
verify_stack_alignment()995 void os::verify_stack_alignment() {
996 #ifdef AMD64
997   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
998 #endif
999 }
1000 #endif
1001 
extra_bang_size_in_bytes()1002 int os::extra_bang_size_in_bytes() {
1003   // JDK-8050147 requires the full cache line bang for x86.
1004   return VM_Version::L1_line_size();
1005 }
1006