1 /*
2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/metadataOnStackMark.hpp"
27 #include "classfile/stringTable.hpp"
28 #include "classfile/symbolTable.hpp"
29 #include "code/codeCache.hpp"
30 #include "code/icBuffer.hpp"
31 #include "gc/g1/g1Allocator.inline.hpp"
32 #include "gc/g1/g1BarrierSet.hpp"
33 #include "gc/g1/g1CollectedHeap.inline.hpp"
34 #include "gc/g1/g1CollectionSet.hpp"
35 #include "gc/g1/g1CollectorPolicy.hpp"
36 #include "gc/g1/g1CollectorState.hpp"
37 #include "gc/g1/g1ConcurrentRefine.hpp"
38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
40 #include "gc/g1/g1EvacStats.inline.hpp"
41 #include "gc/g1/g1FullCollector.hpp"
42 #include "gc/g1/g1GCPhaseTimes.hpp"
43 #include "gc/g1/g1HeapSizingPolicy.hpp"
44 #include "gc/g1/g1HeapTransition.hpp"
45 #include "gc/g1/g1HeapVerifier.hpp"
46 #include "gc/g1/g1HotCardCache.hpp"
47 #include "gc/g1/g1MemoryPool.hpp"
48 #include "gc/g1/g1OopClosures.inline.hpp"
49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
50 #include "gc/g1/g1Policy.hpp"
51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
52 #include "gc/g1/g1RemSet.hpp"
53 #include "gc/g1/g1RootClosures.hpp"
54 #include "gc/g1/g1RootProcessor.hpp"
55 #include "gc/g1/g1StringDedup.hpp"
56 #include "gc/g1/g1ThreadLocalData.hpp"
57 #include "gc/g1/g1YCTypes.hpp"
58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
59 #include "gc/g1/heapRegion.inline.hpp"
60 #include "gc/g1/heapRegionRemSet.hpp"
61 #include "gc/g1/heapRegionSet.inline.hpp"
62 #include "gc/g1/vm_operations_g1.hpp"
63 #include "gc/shared/adaptiveSizePolicy.hpp"
64 #include "gc/shared/gcHeapSummary.hpp"
65 #include "gc/shared/gcId.hpp"
66 #include "gc/shared/gcLocker.hpp"
67 #include "gc/shared/gcTimer.hpp"
68 #include "gc/shared/gcTrace.hpp"
69 #include "gc/shared/gcTraceTime.inline.hpp"
70 #include "gc/shared/generationSpec.hpp"
71 #include "gc/shared/isGCActiveMark.hpp"
72 #include "gc/shared/oopStorageParState.hpp"
73 #include "gc/shared/preservedMarks.inline.hpp"
74 #include "gc/shared/suspendibleThreadSet.hpp"
75 #include "gc/shared/referenceProcessor.inline.hpp"
76 #include "gc/shared/taskqueue.inline.hpp"
77 #include "gc/shared/weakProcessor.hpp"
78 #include "logging/log.hpp"
79 #include "memory/allocation.hpp"
80 #include "memory/iterator.hpp"
81 #include "memory/metaspaceShared.hpp"
82 #include "memory/resourceArea.hpp"
83 #include "oops/access.inline.hpp"
84 #include "oops/compressedOops.inline.hpp"
85 #include "oops/oop.inline.hpp"
86 #include "prims/resolvedMethodTable.hpp"
87 #include "runtime/atomic.hpp"
88 #include "runtime/flags/flagSetting.hpp"
89 #include "runtime/handles.inline.hpp"
90 #include "runtime/init.hpp"
91 #include "runtime/orderAccess.hpp"
92 #include "runtime/threadSMR.hpp"
93 #include "runtime/vmThread.hpp"
94 #include "utilities/align.hpp"
95 #include "utilities/globalDefinitions.hpp"
96 #include "utilities/stack.inline.hpp"
97 
98 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
99 
100 // INVARIANTS/NOTES
101 //
102 // All allocation activity covered by the G1CollectedHeap interface is
103 // serialized by acquiring the HeapLock.  This happens in mem_allocate
104 // and allocate_new_tlab, which are the "entry" points to the
105 // allocation code from the rest of the JVM.  (Note that this does not
106 // apply to TLAB allocation, which is not part of this interface: it
107 // is done by clients of this interface.)
108 
109 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
110  private:
111   size_t _num_dirtied;
112   G1CollectedHeap* _g1h;
113   G1CardTable* _g1_ct;
114 
region_for_card(jbyte * card_ptr) const115   HeapRegion* region_for_card(jbyte* card_ptr) const {
116     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
117   }
118 
will_become_free(HeapRegion * hr) const119   bool will_become_free(HeapRegion* hr) const {
120     // A region will be freed by free_collection_set if the region is in the
121     // collection set and has not had an evacuation failure.
122     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
123   }
124 
125  public:
RedirtyLoggedCardTableEntryClosure(G1CollectedHeap * g1h)126   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
127     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
128 
do_card_ptr(jbyte * card_ptr,uint worker_i)129   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
130     HeapRegion* hr = region_for_card(card_ptr);
131 
132     // Should only dirty cards in regions that won't be freed.
133     if (!will_become_free(hr)) {
134       *card_ptr = G1CardTable::dirty_card_val();
135       _num_dirtied++;
136     }
137 
138     return true;
139   }
140 
num_dirtied() const141   size_t num_dirtied()   const { return _num_dirtied; }
142 };
143 
144 
reset_from_card_cache(uint start_idx,size_t num_regions)145 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
146   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
147 }
148 
on_commit(uint start_idx,size_t num_regions,bool zero_filled)149 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
150   // The from card cache is not the memory that is actually committed. So we cannot
151   // take advantage of the zero_filled parameter.
152   reset_from_card_cache(start_idx, num_regions);
153 }
154 
155 
new_heap_region(uint hrs_index,MemRegion mr)156 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
157                                              MemRegion mr) {
158   return new HeapRegion(hrs_index, bot(), mr);
159 }
160 
161 // Private methods.
162 
new_region(size_t word_size,bool is_old,bool do_expand)163 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
164   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
165          "the only time we use this to allocate a humongous region is "
166          "when we are allocating a single humongous region");
167 
168   HeapRegion* res = _hrm.allocate_free_region(is_old);
169 
170   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
171     // Currently, only attempts to allocate GC alloc regions set
172     // do_expand to true. So, we should only reach here during a
173     // safepoint. If this assumption changes we might have to
174     // reconsider the use of _expand_heap_after_alloc_failure.
175     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
176 
177     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
178                               word_size * HeapWordSize);
179 
180     if (expand(word_size * HeapWordSize)) {
181       // Given that expand() succeeded in expanding the heap, and we
182       // always expand the heap by an amount aligned to the heap
183       // region size, the free list should in theory not be empty.
184       // In either case allocate_free_region() will check for NULL.
185       res = _hrm.allocate_free_region(is_old);
186     } else {
187       _expand_heap_after_alloc_failure = false;
188     }
189   }
190   return res;
191 }
192 
193 HeapWord*
humongous_obj_allocate_initialize_regions(uint first,uint num_regions,size_t word_size)194 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
195                                                            uint num_regions,
196                                                            size_t word_size) {
197   assert(first != G1_NO_HRM_INDEX, "pre-condition");
198   assert(is_humongous(word_size), "word_size should be humongous");
199   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
200 
201   // Index of last region in the series.
202   uint last = first + num_regions - 1;
203 
204   // We need to initialize the region(s) we just discovered. This is
205   // a bit tricky given that it can happen concurrently with
206   // refinement threads refining cards on these regions and
207   // potentially wanting to refine the BOT as they are scanning
208   // those cards (this can happen shortly after a cleanup; see CR
209   // 6991377). So we have to set up the region(s) carefully and in
210   // a specific order.
211 
212   // The word size sum of all the regions we will allocate.
213   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
214   assert(word_size <= word_size_sum, "sanity");
215 
216   // This will be the "starts humongous" region.
217   HeapRegion* first_hr = region_at(first);
218   // The header of the new object will be placed at the bottom of
219   // the first region.
220   HeapWord* new_obj = first_hr->bottom();
221   // This will be the new top of the new object.
222   HeapWord* obj_top = new_obj + word_size;
223 
224   // First, we need to zero the header of the space that we will be
225   // allocating. When we update top further down, some refinement
226   // threads might try to scan the region. By zeroing the header we
227   // ensure that any thread that will try to scan the region will
228   // come across the zero klass word and bail out.
229   //
230   // NOTE: It would not have been correct to have used
231   // CollectedHeap::fill_with_object() and make the space look like
232   // an int array. The thread that is doing the allocation will
233   // later update the object header to a potentially different array
234   // type and, for a very short period of time, the klass and length
235   // fields will be inconsistent. This could cause a refinement
236   // thread to calculate the object size incorrectly.
237   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
238 
239   // Next, pad out the unused tail of the last region with filler
240   // objects, for improved usage accounting.
241   // How many words we use for filler objects.
242   size_t word_fill_size = word_size_sum - word_size;
243 
244   // How many words memory we "waste" which cannot hold a filler object.
245   size_t words_not_fillable = 0;
246 
247   if (word_fill_size >= min_fill_size()) {
248     fill_with_objects(obj_top, word_fill_size);
249   } else if (word_fill_size > 0) {
250     // We have space to fill, but we cannot fit an object there.
251     words_not_fillable = word_fill_size;
252     word_fill_size = 0;
253   }
254 
255   // We will set up the first region as "starts humongous". This
256   // will also update the BOT covering all the regions to reflect
257   // that there is a single object that starts at the bottom of the
258   // first region.
259   first_hr->set_starts_humongous(obj_top, word_fill_size);
260   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
261   // Then, if there are any, we will set up the "continues
262   // humongous" regions.
263   HeapRegion* hr = NULL;
264   for (uint i = first + 1; i <= last; ++i) {
265     hr = region_at(i);
266     hr->set_continues_humongous(first_hr);
267     _g1_policy->remset_tracker()->update_at_allocate(hr);
268   }
269 
270   // Up to this point no concurrent thread would have been able to
271   // do any scanning on any region in this series. All the top
272   // fields still point to bottom, so the intersection between
273   // [bottom,top] and [card_start,card_end] will be empty. Before we
274   // update the top fields, we'll do a storestore to make sure that
275   // no thread sees the update to top before the zeroing of the
276   // object header and the BOT initialization.
277   OrderAccess::storestore();
278 
279   // Now, we will update the top fields of the "continues humongous"
280   // regions except the last one.
281   for (uint i = first; i < last; ++i) {
282     hr = region_at(i);
283     hr->set_top(hr->end());
284   }
285 
286   hr = region_at(last);
287   // If we cannot fit a filler object, we must set top to the end
288   // of the humongous object, otherwise we cannot iterate the heap
289   // and the BOT will not be complete.
290   hr->set_top(hr->end() - words_not_fillable);
291 
292   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
293          "obj_top should be in last region");
294 
295   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
296 
297   assert(words_not_fillable == 0 ||
298          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
299          "Miscalculation in humongous allocation");
300 
301   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
302 
303   for (uint i = first; i <= last; ++i) {
304     hr = region_at(i);
305     _humongous_set.add(hr);
306     _hr_printer.alloc(hr);
307   }
308 
309   return new_obj;
310 }
311 
humongous_obj_size_in_regions(size_t word_size)312 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
313   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
314   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
315 }
316 
317 // If could fit into free regions w/o expansion, try.
318 // Otherwise, if can expand, do so.
319 // Otherwise, if using ex regions might help, try with ex given back.
humongous_obj_allocate(size_t word_size)320 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
321   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
322 
323   _verifier->verify_region_sets_optional();
324 
325   uint first = G1_NO_HRM_INDEX;
326   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
327 
328   if (obj_regions == 1) {
329     // Only one region to allocate, try to use a fast path by directly allocating
330     // from the free lists. Do not try to expand here, we will potentially do that
331     // later.
332     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
333     if (hr != NULL) {
334       first = hr->hrm_index();
335     }
336   } else {
337     // Policy: Try only empty regions (i.e. already committed first). Maybe we
338     // are lucky enough to find some.
339     first = _hrm.find_contiguous_only_empty(obj_regions);
340     if (first != G1_NO_HRM_INDEX) {
341       _hrm.allocate_free_regions_starting_at(first, obj_regions);
342     }
343   }
344 
345   if (first == G1_NO_HRM_INDEX) {
346     // Policy: We could not find enough regions for the humongous object in the
347     // free list. Look through the heap to find a mix of free and uncommitted regions.
348     // If so, try expansion.
349     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
350     if (first != G1_NO_HRM_INDEX) {
351       // We found something. Make sure these regions are committed, i.e. expand
352       // the heap. Alternatively we could do a defragmentation GC.
353       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
354                                     word_size * HeapWordSize);
355 
356       _hrm.expand_at(first, obj_regions, workers());
357       g1_policy()->record_new_heap_size(num_regions());
358 
359 #ifdef ASSERT
360       for (uint i = first; i < first + obj_regions; ++i) {
361         HeapRegion* hr = region_at(i);
362         assert(hr->is_free(), "sanity");
363         assert(hr->is_empty(), "sanity");
364         assert(is_on_master_free_list(hr), "sanity");
365       }
366 #endif
367       _hrm.allocate_free_regions_starting_at(first, obj_regions);
368     } else {
369       // Policy: Potentially trigger a defragmentation GC.
370     }
371   }
372 
373   HeapWord* result = NULL;
374   if (first != G1_NO_HRM_INDEX) {
375     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
376     assert(result != NULL, "it should always return a valid result");
377 
378     // A successful humongous object allocation changes the used space
379     // information of the old generation so we need to recalculate the
380     // sizes and update the jstat counters here.
381     g1mm()->update_sizes();
382   }
383 
384   _verifier->verify_region_sets_optional();
385 
386   return result;
387 }
388 
allocate_new_tlab(size_t min_size,size_t requested_size,size_t * actual_size)389 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
390                                              size_t requested_size,
391                                              size_t* actual_size) {
392   assert_heap_not_locked_and_not_at_safepoint();
393   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
394 
395   return attempt_allocation(min_size, requested_size, actual_size);
396 }
397 
398 HeapWord*
mem_allocate(size_t word_size,bool * gc_overhead_limit_was_exceeded)399 G1CollectedHeap::mem_allocate(size_t word_size,
400                               bool*  gc_overhead_limit_was_exceeded) {
401   assert_heap_not_locked_and_not_at_safepoint();
402 
403   if (is_humongous(word_size)) {
404     return attempt_allocation_humongous(word_size);
405   }
406   size_t dummy = 0;
407   return attempt_allocation(word_size, word_size, &dummy);
408 }
409 
attempt_allocation_slow(size_t word_size)410 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
411   ResourceMark rm; // For retrieving the thread names in log messages.
412 
413   // Make sure you read the note in attempt_allocation_humongous().
414 
415   assert_heap_not_locked_and_not_at_safepoint();
416   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
417          "be called for humongous allocation requests");
418 
419   // We should only get here after the first-level allocation attempt
420   // (attempt_allocation()) failed to allocate.
421 
422   // We will loop until a) we manage to successfully perform the
423   // allocation or b) we successfully schedule a collection which
424   // fails to perform the allocation. b) is the only case when we'll
425   // return NULL.
426   HeapWord* result = NULL;
427   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
428     bool should_try_gc;
429     uint gc_count_before;
430 
431     {
432       MutexLockerEx x(Heap_lock);
433       result = _allocator->attempt_allocation_locked(word_size);
434       if (result != NULL) {
435         return result;
436       }
437 
438       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
439       // This is different to when only GCLocker::needs_gc() is set: try to avoid
440       // waiting because the GCLocker is active to not wait too long.
441       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
442         // No need for an ergo message here, can_expand_young_list() does this when
443         // it returns true.
444         result = _allocator->attempt_allocation_force(word_size);
445         if (result != NULL) {
446           return result;
447         }
448       }
449       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
450       // the GCLocker initiated GC has been performed and then retry. This includes
451       // the case when the GC Locker is not active but has not been performed.
452       should_try_gc = !GCLocker::needs_gc();
453       // Read the GC count while still holding the Heap_lock.
454       gc_count_before = total_collections();
455     }
456 
457     if (should_try_gc) {
458       bool succeeded;
459       result = do_collection_pause(word_size, gc_count_before, &succeeded,
460                                    GCCause::_g1_inc_collection_pause);
461       if (result != NULL) {
462         assert(succeeded, "only way to get back a non-NULL result");
463         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
464                              Thread::current()->name(), p2i(result));
465         return result;
466       }
467 
468       if (succeeded) {
469         // We successfully scheduled a collection which failed to allocate. No
470         // point in trying to allocate further. We'll just return NULL.
471         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
472                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
473         return NULL;
474       }
475       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
476                            Thread::current()->name(), word_size);
477     } else {
478       // Failed to schedule a collection.
479       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
480         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
481                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
482         return NULL;
483       }
484       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
485       // The GCLocker is either active or the GCLocker initiated
486       // GC has not yet been performed. Stall until it is and
487       // then retry the allocation.
488       GCLocker::stall_until_clear();
489       gclocker_retry_count += 1;
490     }
491 
492     // We can reach here if we were unsuccessful in scheduling a
493     // collection (because another thread beat us to it) or if we were
494     // stalled due to the GC locker. In either can we should retry the
495     // allocation attempt in case another thread successfully
496     // performed a collection and reclaimed enough space. We do the
497     // first attempt (without holding the Heap_lock) here and the
498     // follow-on attempt will be at the start of the next loop
499     // iteration (after taking the Heap_lock).
500     size_t dummy = 0;
501     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
502     if (result != NULL) {
503       return result;
504     }
505 
506     // Give a warning if we seem to be looping forever.
507     if ((QueuedAllocationWarningCount > 0) &&
508         (try_count % QueuedAllocationWarningCount == 0)) {
509       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
510                              Thread::current()->name(), try_count, word_size);
511     }
512   }
513 
514   ShouldNotReachHere();
515   return NULL;
516 }
517 
begin_archive_alloc_range(bool open)518 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
519   assert_at_safepoint_on_vm_thread();
520   if (_archive_allocator == NULL) {
521     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
522   }
523 }
524 
is_archive_alloc_too_large(size_t word_size)525 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
526   // Allocations in archive regions cannot be of a size that would be considered
527   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
528   // may be different at archive-restore time.
529   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
530 }
531 
archive_mem_allocate(size_t word_size)532 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
533   assert_at_safepoint_on_vm_thread();
534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
535   if (is_archive_alloc_too_large(word_size)) {
536     return NULL;
537   }
538   return _archive_allocator->archive_mem_allocate(word_size);
539 }
540 
end_archive_alloc_range(GrowableArray<MemRegion> * ranges,size_t end_alignment_in_bytes)541 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
542                                               size_t end_alignment_in_bytes) {
543   assert_at_safepoint_on_vm_thread();
544   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
545 
546   // Call complete_archive to do the real work, filling in the MemRegion
547   // array with the archive regions.
548   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
549   delete _archive_allocator;
550   _archive_allocator = NULL;
551 }
552 
check_archive_addresses(MemRegion * ranges,size_t count)553 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
554   assert(ranges != NULL, "MemRegion array NULL");
555   assert(count != 0, "No MemRegions provided");
556   MemRegion reserved = _hrm.reserved();
557   for (size_t i = 0; i < count; i++) {
558     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
559       return false;
560     }
561   }
562   return true;
563 }
564 
alloc_archive_regions(MemRegion * ranges,size_t count,bool open)565 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
566                                             size_t count,
567                                             bool open) {
568   assert(!is_init_completed(), "Expect to be called at JVM init time");
569   assert(ranges != NULL, "MemRegion array NULL");
570   assert(count != 0, "No MemRegions provided");
571   MutexLockerEx x(Heap_lock);
572 
573   MemRegion reserved = _hrm.reserved();
574   HeapWord* prev_last_addr = NULL;
575   HeapRegion* prev_last_region = NULL;
576 
577   // Temporarily disable pretouching of heap pages. This interface is used
578   // when mmap'ing archived heap data in, so pre-touching is wasted.
579   FlagSetting fs(AlwaysPreTouch, false);
580 
581   // Enable archive object checking used by G1MarkSweep. We have to let it know
582   // about each archive range, so that objects in those ranges aren't marked.
583   G1ArchiveAllocator::enable_archive_object_check();
584 
585   // For each specified MemRegion range, allocate the corresponding G1
586   // regions and mark them as archive regions. We expect the ranges
587   // in ascending starting address order, without overlap.
588   for (size_t i = 0; i < count; i++) {
589     MemRegion curr_range = ranges[i];
590     HeapWord* start_address = curr_range.start();
591     size_t word_size = curr_range.word_size();
592     HeapWord* last_address = curr_range.last();
593     size_t commits = 0;
594 
595     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
596               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
597               p2i(start_address), p2i(last_address));
598     guarantee(start_address > prev_last_addr,
599               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
600               p2i(start_address), p2i(prev_last_addr));
601     prev_last_addr = last_address;
602 
603     // Check for ranges that start in the same G1 region in which the previous
604     // range ended, and adjust the start address so we don't try to allocate
605     // the same region again. If the current range is entirely within that
606     // region, skip it, just adjusting the recorded top.
607     HeapRegion* start_region = _hrm.addr_to_region(start_address);
608     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
609       start_address = start_region->end();
610       if (start_address > last_address) {
611         increase_used(word_size * HeapWordSize);
612         start_region->set_top(last_address + 1);
613         continue;
614       }
615       start_region->set_top(start_address);
616       curr_range = MemRegion(start_address, last_address + 1);
617       start_region = _hrm.addr_to_region(start_address);
618     }
619 
620     // Perform the actual region allocation, exiting if it fails.
621     // Then note how much new space we have allocated.
622     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
623       return false;
624     }
625     increase_used(word_size * HeapWordSize);
626     if (commits != 0) {
627       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
628                                 HeapRegion::GrainWords * HeapWordSize * commits);
629 
630     }
631 
632     // Mark each G1 region touched by the range as archive, add it to
633     // the old set, and set top.
634     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
635     HeapRegion* last_region = _hrm.addr_to_region(last_address);
636     prev_last_region = last_region;
637 
638     while (curr_region != NULL) {
639       assert(curr_region->is_empty() && !curr_region->is_pinned(),
640              "Region already in use (index %u)", curr_region->hrm_index());
641       if (open) {
642         curr_region->set_open_archive();
643       } else {
644         curr_region->set_closed_archive();
645       }
646       _hr_printer.alloc(curr_region);
647       _old_set.add(curr_region);
648       HeapWord* top;
649       HeapRegion* next_region;
650       if (curr_region != last_region) {
651         top = curr_region->end();
652         next_region = _hrm.next_region_in_heap(curr_region);
653       } else {
654         top = last_address + 1;
655         next_region = NULL;
656       }
657       curr_region->set_top(top);
658       curr_region->set_first_dead(top);
659       curr_region->set_end_of_live(top);
660       curr_region = next_region;
661     }
662 
663     // Notify mark-sweep of the archive
664     G1ArchiveAllocator::set_range_archive(curr_range, open);
665   }
666   return true;
667 }
668 
fill_archive_regions(MemRegion * ranges,size_t count)669 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
670   assert(!is_init_completed(), "Expect to be called at JVM init time");
671   assert(ranges != NULL, "MemRegion array NULL");
672   assert(count != 0, "No MemRegions provided");
673   MemRegion reserved = _hrm.reserved();
674   HeapWord *prev_last_addr = NULL;
675   HeapRegion* prev_last_region = NULL;
676 
677   // For each MemRegion, create filler objects, if needed, in the G1 regions
678   // that contain the address range. The address range actually within the
679   // MemRegion will not be modified. That is assumed to have been initialized
680   // elsewhere, probably via an mmap of archived heap data.
681   MutexLockerEx x(Heap_lock);
682   for (size_t i = 0; i < count; i++) {
683     HeapWord* start_address = ranges[i].start();
684     HeapWord* last_address = ranges[i].last();
685 
686     assert(reserved.contains(start_address) && reserved.contains(last_address),
687            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
688            p2i(start_address), p2i(last_address));
689     assert(start_address > prev_last_addr,
690            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
691            p2i(start_address), p2i(prev_last_addr));
692 
693     HeapRegion* start_region = _hrm.addr_to_region(start_address);
694     HeapRegion* last_region = _hrm.addr_to_region(last_address);
695     HeapWord* bottom_address = start_region->bottom();
696 
697     // Check for a range beginning in the same region in which the
698     // previous one ended.
699     if (start_region == prev_last_region) {
700       bottom_address = prev_last_addr + 1;
701     }
702 
703     // Verify that the regions were all marked as archive regions by
704     // alloc_archive_regions.
705     HeapRegion* curr_region = start_region;
706     while (curr_region != NULL) {
707       guarantee(curr_region->is_archive(),
708                 "Expected archive region at index %u", curr_region->hrm_index());
709       if (curr_region != last_region) {
710         curr_region = _hrm.next_region_in_heap(curr_region);
711       } else {
712         curr_region = NULL;
713       }
714     }
715 
716     prev_last_addr = last_address;
717     prev_last_region = last_region;
718 
719     // Fill the memory below the allocated range with dummy object(s),
720     // if the region bottom does not match the range start, or if the previous
721     // range ended within the same G1 region, and there is a gap.
722     if (start_address != bottom_address) {
723       size_t fill_size = pointer_delta(start_address, bottom_address);
724       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
725       increase_used(fill_size * HeapWordSize);
726     }
727   }
728 }
729 
attempt_allocation(size_t min_word_size,size_t desired_word_size,size_t * actual_word_size)730 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
731                                                      size_t desired_word_size,
732                                                      size_t* actual_word_size) {
733   assert_heap_not_locked_and_not_at_safepoint();
734   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
735          "be called for humongous allocation requests");
736 
737   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
738 
739   if (result == NULL) {
740     *actual_word_size = desired_word_size;
741     result = attempt_allocation_slow(desired_word_size);
742   }
743 
744   assert_heap_not_locked();
745   if (result != NULL) {
746     assert(*actual_word_size != 0, "Actual size must have been set here");
747     dirty_young_block(result, *actual_word_size);
748   } else {
749     *actual_word_size = 0;
750   }
751 
752   return result;
753 }
754 
dealloc_archive_regions(MemRegion * ranges,size_t count,bool is_open)755 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
756   assert(!is_init_completed(), "Expect to be called at JVM init time");
757   assert(ranges != NULL, "MemRegion array NULL");
758   assert(count != 0, "No MemRegions provided");
759   MemRegion reserved = _hrm.reserved();
760   HeapWord* prev_last_addr = NULL;
761   HeapRegion* prev_last_region = NULL;
762   size_t size_used = 0;
763   size_t uncommitted_regions = 0;
764 
765   // For each Memregion, free the G1 regions that constitute it, and
766   // notify mark-sweep that the range is no longer to be considered 'archive.'
767   MutexLockerEx x(Heap_lock);
768   for (size_t i = 0; i < count; i++) {
769     HeapWord* start_address = ranges[i].start();
770     HeapWord* last_address = ranges[i].last();
771 
772     assert(reserved.contains(start_address) && reserved.contains(last_address),
773            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
774            p2i(start_address), p2i(last_address));
775     assert(start_address > prev_last_addr,
776            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
777            p2i(start_address), p2i(prev_last_addr));
778     size_used += ranges[i].byte_size();
779     prev_last_addr = last_address;
780 
781     HeapRegion* start_region = _hrm.addr_to_region(start_address);
782     HeapRegion* last_region = _hrm.addr_to_region(last_address);
783 
784     // Check for ranges that start in the same G1 region in which the previous
785     // range ended, and adjust the start address so we don't try to free
786     // the same region again. If the current range is entirely within that
787     // region, skip it.
788     if (start_region == prev_last_region) {
789       start_address = start_region->end();
790       if (start_address > last_address) {
791         continue;
792       }
793       start_region = _hrm.addr_to_region(start_address);
794     }
795     prev_last_region = last_region;
796 
797     // After verifying that each region was marked as an archive region by
798     // alloc_archive_regions, set it free and empty and uncommit it.
799     HeapRegion* curr_region = start_region;
800     while (curr_region != NULL) {
801       guarantee(curr_region->is_archive(),
802                 "Expected archive region at index %u", curr_region->hrm_index());
803       uint curr_index = curr_region->hrm_index();
804       _old_set.remove(curr_region);
805       curr_region->set_free();
806       curr_region->set_top(curr_region->bottom());
807       if (curr_region != last_region) {
808         curr_region = _hrm.next_region_in_heap(curr_region);
809       } else {
810         curr_region = NULL;
811       }
812       _hrm.shrink_at(curr_index, 1);
813       uncommitted_regions++;
814     }
815 
816     // Notify mark-sweep that this is no longer an archive range.
817     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
818   }
819 
820   if (uncommitted_regions != 0) {
821     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
822                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
823   }
824   decrease_used(size_used);
825 }
826 
materialize_archived_object(oop obj)827 oop G1CollectedHeap::materialize_archived_object(oop obj) {
828   assert(obj != NULL, "archived obj is NULL");
829   assert(MetaspaceShared::is_archive_object(obj), "must be archived object");
830 
831   // Loading an archived object makes it strongly reachable. If it is
832   // loaded during concurrent marking, it must be enqueued to the SATB
833   // queue, shading the previously white object gray.
834   G1BarrierSet::enqueue(obj);
835 
836   return obj;
837 }
838 
attempt_allocation_humongous(size_t word_size)839 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
840   ResourceMark rm; // For retrieving the thread names in log messages.
841 
842   // The structure of this method has a lot of similarities to
843   // attempt_allocation_slow(). The reason these two were not merged
844   // into a single one is that such a method would require several "if
845   // allocation is not humongous do this, otherwise do that"
846   // conditional paths which would obscure its flow. In fact, an early
847   // version of this code did use a unified method which was harder to
848   // follow and, as a result, it had subtle bugs that were hard to
849   // track down. So keeping these two methods separate allows each to
850   // be more readable. It will be good to keep these two in sync as
851   // much as possible.
852 
853   assert_heap_not_locked_and_not_at_safepoint();
854   assert(is_humongous(word_size), "attempt_allocation_humongous() "
855          "should only be called for humongous allocations");
856 
857   // Humongous objects can exhaust the heap quickly, so we should check if we
858   // need to start a marking cycle at each humongous object allocation. We do
859   // the check before we do the actual allocation. The reason for doing it
860   // before the allocation is that we avoid having to keep track of the newly
861   // allocated memory while we do a GC.
862   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
863                                            word_size)) {
864     collect(GCCause::_g1_humongous_allocation);
865   }
866 
867   // We will loop until a) we manage to successfully perform the
868   // allocation or b) we successfully schedule a collection which
869   // fails to perform the allocation. b) is the only case when we'll
870   // return NULL.
871   HeapWord* result = NULL;
872   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
873     bool should_try_gc;
874     uint gc_count_before;
875 
876 
877     {
878       MutexLockerEx x(Heap_lock);
879 
880       // Given that humongous objects are not allocated in young
881       // regions, we'll first try to do the allocation without doing a
882       // collection hoping that there's enough space in the heap.
883       result = humongous_obj_allocate(word_size);
884       if (result != NULL) {
885         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
886         g1_policy()->old_gen_alloc_tracker()->
887           add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
888         return result;
889       }
890 
891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
892       // the GCLocker initiated GC has been performed and then retry. This includes
893       // the case when the GC Locker is not active but has not been performed.
894       should_try_gc = !GCLocker::needs_gc();
895       // Read the GC count while still holding the Heap_lock.
896       gc_count_before = total_collections();
897     }
898 
899     if (should_try_gc) {
900       bool succeeded;
901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
902                                    GCCause::_g1_humongous_allocation);
903       if (result != NULL) {
904         assert(succeeded, "only way to get back a non-NULL result");
905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
906                              Thread::current()->name(), p2i(result));
907         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
908         g1_policy()->old_gen_alloc_tracker()->
909           record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes);
910         return result;
911       }
912 
913       if (succeeded) {
914         // We successfully scheduled a collection which failed to allocate. No
915         // point in trying to allocate further. We'll just return NULL.
916         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
917                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
918         return NULL;
919       }
920       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
921                            Thread::current()->name(), word_size);
922     } else {
923       // Failed to schedule a collection.
924       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
925         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
926                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
927         return NULL;
928       }
929       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
930       // The GCLocker is either active or the GCLocker initiated
931       // GC has not yet been performed. Stall until it is and
932       // then retry the allocation.
933       GCLocker::stall_until_clear();
934       gclocker_retry_count += 1;
935     }
936 
937 
938     // We can reach here if we were unsuccessful in scheduling a
939     // collection (because another thread beat us to it) or if we were
940     // stalled due to the GC locker. In either can we should retry the
941     // allocation attempt in case another thread successfully
942     // performed a collection and reclaimed enough space.
943     // Humongous object allocation always needs a lock, so we wait for the retry
944     // in the next iteration of the loop, unlike for the regular iteration case.
945     // Give a warning if we seem to be looping forever.
946 
947     if ((QueuedAllocationWarningCount > 0) &&
948         (try_count % QueuedAllocationWarningCount == 0)) {
949       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
950                              Thread::current()->name(), try_count, word_size);
951     }
952   }
953 
954   ShouldNotReachHere();
955   return NULL;
956 }
957 
attempt_allocation_at_safepoint(size_t word_size,bool expect_null_mutator_alloc_region)958 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
959                                                            bool expect_null_mutator_alloc_region) {
960   assert_at_safepoint_on_vm_thread();
961   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
962          "the current alloc region was unexpectedly found to be non-NULL");
963 
964   if (!is_humongous(word_size)) {
965     return _allocator->attempt_allocation_locked(word_size);
966   } else {
967     HeapWord* result = humongous_obj_allocate(word_size);
968     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
969       collector_state()->set_initiate_conc_mark_if_possible(true);
970     }
971     return result;
972   }
973 
974   ShouldNotReachHere();
975 }
976 
977 class PostCompactionPrinterClosure: public HeapRegionClosure {
978 private:
979   G1HRPrinter* _hr_printer;
980 public:
do_heap_region(HeapRegion * hr)981   bool do_heap_region(HeapRegion* hr) {
982     assert(!hr->is_young(), "not expecting to find young regions");
983     _hr_printer->post_compaction(hr);
984     return false;
985   }
986 
PostCompactionPrinterClosure(G1HRPrinter * hr_printer)987   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
988     : _hr_printer(hr_printer) { }
989 };
990 
print_hrm_post_compaction()991 void G1CollectedHeap::print_hrm_post_compaction() {
992   if (_hr_printer.is_active()) {
993     PostCompactionPrinterClosure cl(hr_printer());
994     heap_region_iterate(&cl);
995   }
996 }
997 
abort_concurrent_cycle()998 void G1CollectedHeap::abort_concurrent_cycle() {
999   // If we start the compaction before the CM threads finish
1000   // scanning the root regions we might trip them over as we'll
1001   // be moving objects / updating references. So let's wait until
1002   // they are done. By telling them to abort, they should complete
1003   // early.
1004   _cm->root_regions()->abort();
1005   _cm->root_regions()->wait_until_scan_finished();
1006 
1007   // Disable discovery and empty the discovered lists
1008   // for the CM ref processor.
1009   _ref_processor_cm->disable_discovery();
1010   _ref_processor_cm->abandon_partial_discovery();
1011   _ref_processor_cm->verify_no_references_recorded();
1012 
1013   // Abandon current iterations of concurrent marking and concurrent
1014   // refinement, if any are in progress.
1015   concurrent_mark()->concurrent_cycle_abort();
1016 }
1017 
prepare_heap_for_full_collection()1018 void G1CollectedHeap::prepare_heap_for_full_collection() {
1019   // Make sure we'll choose a new allocation region afterwards.
1020   _allocator->release_mutator_alloc_region();
1021   _allocator->abandon_gc_alloc_regions();
1022   g1_rem_set()->cleanupHRRS();
1023 
1024   // We may have added regions to the current incremental collection
1025   // set between the last GC or pause and now. We need to clear the
1026   // incremental collection set and then start rebuilding it afresh
1027   // after this full GC.
1028   abandon_collection_set(collection_set());
1029 
1030   tear_down_region_sets(false /* free_list_only */);
1031 }
1032 
verify_before_full_collection(bool explicit_gc)1033 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1034   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1035   assert(used() == recalculate_used(), "Should be equal");
1036   _verifier->verify_region_sets_optional();
1037   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1038   _verifier->check_bitmaps("Full GC Start");
1039 }
1040 
prepare_heap_for_mutators()1041 void G1CollectedHeap::prepare_heap_for_mutators() {
1042   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1043   ClassLoaderDataGraph::purge();
1044   MetaspaceUtils::verify_metrics();
1045 
1046   // Prepare heap for normal collections.
1047   assert(num_free_regions() == 0, "we should not have added any free regions");
1048   rebuild_region_sets(false /* free_list_only */);
1049   abort_refinement();
1050   resize_if_necessary_after_full_collection();
1051 
1052   // Rebuild the strong code root lists for each region
1053   rebuild_strong_code_roots();
1054 
1055   // Purge code root memory
1056   purge_code_root_memory();
1057 
1058   // Start a new incremental collection set for the next pause
1059   start_new_collection_set();
1060 
1061   _allocator->init_mutator_alloc_region();
1062 
1063   // Post collection state updates.
1064   MetaspaceGC::compute_new_size();
1065 }
1066 
abort_refinement()1067 void G1CollectedHeap::abort_refinement() {
1068   if (_hot_card_cache->use_cache()) {
1069     _hot_card_cache->reset_hot_cache();
1070   }
1071 
1072   // Discard all remembered set updates.
1073   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1074   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1075 }
1076 
verify_after_full_collection()1077 void G1CollectedHeap::verify_after_full_collection() {
1078   _hrm.verify_optional();
1079   _verifier->verify_region_sets_optional();
1080   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1081   // Clear the previous marking bitmap, if needed for bitmap verification.
1082   // Note we cannot do this when we clear the next marking bitmap in
1083   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1084   // objects marked during a full GC against the previous bitmap.
1085   // But we need to clear it before calling check_bitmaps below since
1086   // the full GC has compacted objects and updated TAMS but not updated
1087   // the prev bitmap.
1088   if (G1VerifyBitmaps) {
1089     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1090     _cm->clear_prev_bitmap(workers());
1091   }
1092   _verifier->check_bitmaps("Full GC End");
1093 
1094   // At this point there should be no regions in the
1095   // entire heap tagged as young.
1096   assert(check_young_list_empty(), "young list should be empty at this point");
1097 
1098   // Note: since we've just done a full GC, concurrent
1099   // marking is no longer active. Therefore we need not
1100   // re-enable reference discovery for the CM ref processor.
1101   // That will be done at the start of the next marking cycle.
1102   // We also know that the STW processor should no longer
1103   // discover any new references.
1104   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1105   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1106   _ref_processor_stw->verify_no_references_recorded();
1107   _ref_processor_cm->verify_no_references_recorded();
1108 }
1109 
print_heap_after_full_collection(G1HeapTransition * heap_transition)1110 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1111   // Post collection logging.
1112   // We should do this after we potentially resize the heap so
1113   // that all the COMMIT / UNCOMMIT events are generated before
1114   // the compaction events.
1115   print_hrm_post_compaction();
1116   heap_transition->print();
1117   print_heap_after_gc();
1118   print_heap_regions();
1119 #ifdef TRACESPINNING
1120   ParallelTaskTerminator::print_termination_counts();
1121 #endif
1122 }
1123 
do_full_collection(bool explicit_gc,bool clear_all_soft_refs)1124 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1125                                          bool clear_all_soft_refs) {
1126   assert_at_safepoint_on_vm_thread();
1127 
1128   if (GCLocker::check_active_before_gc()) {
1129     // Full GC was not completed.
1130     return false;
1131   }
1132 
1133   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1134       soft_ref_policy()->should_clear_all_soft_refs();
1135 
1136   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1137   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1138 
1139   collector.prepare_collection();
1140   collector.collect();
1141   collector.complete_collection();
1142 
1143   // Full collection was successfully completed.
1144   return true;
1145 }
1146 
do_full_collection(bool clear_all_soft_refs)1147 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1148   // Currently, there is no facility in the do_full_collection(bool) API to notify
1149   // the caller that the collection did not succeed (e.g., because it was locked
1150   // out by the GC locker). So, right now, we'll ignore the return value.
1151   bool dummy = do_full_collection(true,                /* explicit_gc */
1152                                   clear_all_soft_refs);
1153 }
1154 
resize_if_necessary_after_full_collection()1155 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1156   // Capacity, free and used after the GC counted as full regions to
1157   // include the waste in the following calculations.
1158   const size_t capacity_after_gc = capacity();
1159   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1160 
1161   // This is enforced in arguments.cpp.
1162   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1163          "otherwise the code below doesn't make sense");
1164 
1165   // We don't have floating point command-line arguments
1166   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1167   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1168   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1169   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1170 
1171   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1172   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1173 
1174   // We have to be careful here as these two calculations can overflow
1175   // 32-bit size_t's.
1176   double used_after_gc_d = (double) used_after_gc;
1177   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1178   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1179 
1180   // Let's make sure that they are both under the max heap size, which
1181   // by default will make them fit into a size_t.
1182   double desired_capacity_upper_bound = (double) max_heap_size;
1183   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1184                                     desired_capacity_upper_bound);
1185   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1186                                     desired_capacity_upper_bound);
1187 
1188   // We can now safely turn them into size_t's.
1189   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1190   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1191 
1192   // This assert only makes sense here, before we adjust them
1193   // with respect to the min and max heap size.
1194   assert(minimum_desired_capacity <= maximum_desired_capacity,
1195          "minimum_desired_capacity = " SIZE_FORMAT ", "
1196          "maximum_desired_capacity = " SIZE_FORMAT,
1197          minimum_desired_capacity, maximum_desired_capacity);
1198 
1199   // Should not be greater than the heap max size. No need to adjust
1200   // it with respect to the heap min size as it's a lower bound (i.e.,
1201   // we'll try to make the capacity larger than it, not smaller).
1202   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1203   // Should not be less than the heap min size. No need to adjust it
1204   // with respect to the heap max size as it's an upper bound (i.e.,
1205   // we'll try to make the capacity smaller than it, not greater).
1206   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1207 
1208   if (capacity_after_gc < minimum_desired_capacity) {
1209     // Don't expand unless it's significant
1210     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1211 
1212     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1213                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1214                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1215                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1216 
1217     expand(expand_bytes, _workers);
1218 
1219     // No expansion, now see if we want to shrink
1220   } else if (capacity_after_gc > maximum_desired_capacity) {
1221     // Capacity too large, compute shrinking size
1222     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1223 
1224     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1225                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1226                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1227                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1228 
1229     shrink(shrink_bytes);
1230   }
1231 }
1232 
satisfy_failed_allocation_helper(size_t word_size,bool do_gc,bool clear_all_soft_refs,bool expect_null_mutator_alloc_region,bool * gc_succeeded)1233 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1234                                                             bool do_gc,
1235                                                             bool clear_all_soft_refs,
1236                                                             bool expect_null_mutator_alloc_region,
1237                                                             bool* gc_succeeded) {
1238   *gc_succeeded = true;
1239   // Let's attempt the allocation first.
1240   HeapWord* result =
1241     attempt_allocation_at_safepoint(word_size,
1242                                     expect_null_mutator_alloc_region);
1243   if (result != NULL) {
1244     return result;
1245   }
1246 
1247   // In a G1 heap, we're supposed to keep allocation from failing by
1248   // incremental pauses.  Therefore, at least for now, we'll favor
1249   // expansion over collection.  (This might change in the future if we can
1250   // do something smarter than full collection to satisfy a failed alloc.)
1251   result = expand_and_allocate(word_size);
1252   if (result != NULL) {
1253     return result;
1254   }
1255 
1256   if (do_gc) {
1257     // Expansion didn't work, we'll try to do a Full GC.
1258     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1259                                        clear_all_soft_refs);
1260   }
1261 
1262   return NULL;
1263 }
1264 
satisfy_failed_allocation(size_t word_size,bool * succeeded)1265 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1266                                                      bool* succeeded) {
1267   assert_at_safepoint_on_vm_thread();
1268 
1269   // Attempts to allocate followed by Full GC.
1270   HeapWord* result =
1271     satisfy_failed_allocation_helper(word_size,
1272                                      true,  /* do_gc */
1273                                      false, /* clear_all_soft_refs */
1274                                      false, /* expect_null_mutator_alloc_region */
1275                                      succeeded);
1276 
1277   if (result != NULL || !*succeeded) {
1278     return result;
1279   }
1280 
1281   // Attempts to allocate followed by Full GC that will collect all soft references.
1282   result = satisfy_failed_allocation_helper(word_size,
1283                                             true, /* do_gc */
1284                                             true, /* clear_all_soft_refs */
1285                                             true, /* expect_null_mutator_alloc_region */
1286                                             succeeded);
1287 
1288   if (result != NULL || !*succeeded) {
1289     return result;
1290   }
1291 
1292   // Attempts to allocate, no GC
1293   result = satisfy_failed_allocation_helper(word_size,
1294                                             false, /* do_gc */
1295                                             false, /* clear_all_soft_refs */
1296                                             true,  /* expect_null_mutator_alloc_region */
1297                                             succeeded);
1298 
1299   if (result != NULL) {
1300     return result;
1301   }
1302 
1303   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1304          "Flag should have been handled and cleared prior to this point");
1305 
1306   // What else?  We might try synchronous finalization later.  If the total
1307   // space available is large enough for the allocation, then a more
1308   // complete compaction phase than we've tried so far might be
1309   // appropriate.
1310   return NULL;
1311 }
1312 
1313 // Attempting to expand the heap sufficiently
1314 // to support an allocation of the given "word_size".  If
1315 // successful, perform the allocation and return the address of the
1316 // allocated block, or else "NULL".
1317 
expand_and_allocate(size_t word_size)1318 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1319   assert_at_safepoint_on_vm_thread();
1320 
1321   _verifier->verify_region_sets_optional();
1322 
1323   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1324   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1325                             word_size * HeapWordSize);
1326 
1327 
1328   if (expand(expand_bytes, _workers)) {
1329     _hrm.verify_optional();
1330     _verifier->verify_region_sets_optional();
1331     return attempt_allocation_at_safepoint(word_size,
1332                                            false /* expect_null_mutator_alloc_region */);
1333   }
1334   return NULL;
1335 }
1336 
expand(size_t expand_bytes,WorkGang * pretouch_workers,double * expand_time_ms)1337 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1338   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1339   aligned_expand_bytes = align_up(aligned_expand_bytes,
1340                                        HeapRegion::GrainBytes);
1341 
1342   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1343                             expand_bytes, aligned_expand_bytes);
1344 
1345   if (is_maximal_no_gc()) {
1346     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1347     return false;
1348   }
1349 
1350   double expand_heap_start_time_sec = os::elapsedTime();
1351   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1352   assert(regions_to_expand > 0, "Must expand by at least one region");
1353 
1354   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1355   if (expand_time_ms != NULL) {
1356     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1357   }
1358 
1359   if (expanded_by > 0) {
1360     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1361     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1362     g1_policy()->record_new_heap_size(num_regions());
1363   } else {
1364     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1365 
1366     // The expansion of the virtual storage space was unsuccessful.
1367     // Let's see if it was because we ran out of swap.
1368     if (G1ExitOnExpansionFailure &&
1369         _hrm.available() >= regions_to_expand) {
1370       // We had head room...
1371       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1372     }
1373   }
1374   return regions_to_expand > 0;
1375 }
1376 
shrink_helper(size_t shrink_bytes)1377 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1378   size_t aligned_shrink_bytes =
1379     ReservedSpace::page_align_size_down(shrink_bytes);
1380   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1381                                          HeapRegion::GrainBytes);
1382   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1383 
1384   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1385   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1386 
1387 
1388   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1389                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1390   if (num_regions_removed > 0) {
1391     g1_policy()->record_new_heap_size(num_regions());
1392   } else {
1393     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1394   }
1395 }
1396 
shrink(size_t shrink_bytes)1397 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1398   _verifier->verify_region_sets_optional();
1399 
1400   // We should only reach here at the end of a Full GC which means we
1401   // should not not be holding to any GC alloc regions. The method
1402   // below will make sure of that and do any remaining clean up.
1403   _allocator->abandon_gc_alloc_regions();
1404 
1405   // Instead of tearing down / rebuilding the free lists here, we
1406   // could instead use the remove_all_pending() method on free_list to
1407   // remove only the ones that we need to remove.
1408   tear_down_region_sets(true /* free_list_only */);
1409   shrink_helper(shrink_bytes);
1410   rebuild_region_sets(true /* free_list_only */);
1411 
1412   _hrm.verify_optional();
1413   _verifier->verify_region_sets_optional();
1414 }
1415 
1416 // Public methods.
1417 
G1CollectedHeap(G1CollectorPolicy * collector_policy)1418 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1419   CollectedHeap(),
1420   _young_gen_sampling_thread(NULL),
1421   _collector_policy(collector_policy),
1422   _soft_ref_policy(),
1423   _card_table(NULL),
1424   _memory_manager("G1 Young Generation", "end of minor GC"),
1425   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1426   _eden_pool(NULL),
1427   _survivor_pool(NULL),
1428   _old_pool(NULL),
1429   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1430   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1431   _g1_policy(new G1Policy(_gc_timer_stw)),
1432   _collection_set(this, _g1_policy),
1433   _dirty_card_queue_set(false),
1434   _ref_processor_stw(NULL),
1435   _is_alive_closure_stw(this),
1436   _is_subject_to_discovery_stw(this),
1437   _ref_processor_cm(NULL),
1438   _is_alive_closure_cm(this),
1439   _is_subject_to_discovery_cm(this),
1440   _bot(NULL),
1441   _hot_card_cache(NULL),
1442   _g1_rem_set(NULL),
1443   _cr(NULL),
1444   _g1mm(NULL),
1445   _preserved_marks_set(true /* in_c_heap */),
1446   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1447   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1448   _humongous_reclaim_candidates(),
1449   _has_humongous_reclaim_candidates(false),
1450   _archive_allocator(NULL),
1451   _summary_bytes_used(0),
1452   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1453   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1454   _expand_heap_after_alloc_failure(true),
1455   _old_marking_cycles_started(0),
1456   _old_marking_cycles_completed(0),
1457   _in_cset_fast_test() {
1458 
1459   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1460                           /* are_GC_task_threads */true,
1461                           /* are_ConcurrentGC_threads */false);
1462   _workers->initialize_workers();
1463   _verifier = new G1HeapVerifier(this);
1464 
1465   _allocator = new G1Allocator(this);
1466 
1467   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1468 
1469   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1470 
1471   // Override the default _filler_array_max_size so that no humongous filler
1472   // objects are created.
1473   _filler_array_max_size = _humongous_object_threshold_in_words;
1474 
1475   uint n_queues = ParallelGCThreads;
1476   _task_queues = new RefToScanQueueSet(n_queues);
1477 
1478   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1479 
1480   for (uint i = 0; i < n_queues; i++) {
1481     RefToScanQueue* q = new RefToScanQueue();
1482     q->initialize();
1483     _task_queues->register_queue(i, q);
1484     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1485   }
1486 
1487   // Initialize the G1EvacuationFailureALot counters and flags.
1488   NOT_PRODUCT(reset_evacuation_should_fail();)
1489   _gc_tracer_stw->initialize();
1490 
1491   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1492 }
1493 
create_aux_memory_mapper(const char * description,size_t size,size_t translation_factor)1494 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1495                                                                  size_t size,
1496                                                                  size_t translation_factor) {
1497   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1498   // Allocate a new reserved space, preferring to use large pages.
1499   ReservedSpace rs(size, preferred_page_size);
1500   G1RegionToSpaceMapper* result  =
1501     G1RegionToSpaceMapper::create_mapper(rs,
1502                                          size,
1503                                          rs.alignment(),
1504                                          HeapRegion::GrainBytes,
1505                                          translation_factor,
1506                                          mtGC);
1507 
1508   os::trace_page_sizes_for_requested_size(description,
1509                                           size,
1510                                           preferred_page_size,
1511                                           rs.alignment(),
1512                                           rs.base(),
1513                                           rs.size());
1514 
1515   return result;
1516 }
1517 
initialize_concurrent_refinement()1518 jint G1CollectedHeap::initialize_concurrent_refinement() {
1519   jint ecode = JNI_OK;
1520   _cr = G1ConcurrentRefine::create(&ecode);
1521   return ecode;
1522 }
1523 
initialize_young_gen_sampling_thread()1524 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1525   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1526   if (_young_gen_sampling_thread->osthread() == NULL) {
1527     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1528     return JNI_ENOMEM;
1529   }
1530   return JNI_OK;
1531 }
1532 
initialize()1533 jint G1CollectedHeap::initialize() {
1534   os::enable_vtime();
1535 
1536   // Necessary to satisfy locking discipline assertions.
1537 
1538   MutexLocker x(Heap_lock);
1539 
1540   // While there are no constraints in the GC code that HeapWordSize
1541   // be any particular value, there are multiple other areas in the
1542   // system which believe this to be true (e.g. oop->object_size in some
1543   // cases incorrectly returns the size in wordSize units rather than
1544   // HeapWordSize).
1545   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1546 
1547   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1548   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1549   size_t heap_alignment = collector_policy()->heap_alignment();
1550 
1551   // Ensure that the sizes are properly aligned.
1552   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1553   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1554   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1555 
1556   // Reserve the maximum.
1557 
1558   // When compressed oops are enabled, the preferred heap base
1559   // is calculated by subtracting the requested size from the
1560   // 32Gb boundary and using the result as the base address for
1561   // heap reservation. If the requested size is not aligned to
1562   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1563   // into the ReservedHeapSpace constructor) then the actual
1564   // base of the reserved heap may end up differing from the
1565   // address that was requested (i.e. the preferred heap base).
1566   // If this happens then we could end up using a non-optimal
1567   // compressed oops mode.
1568 
1569   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1570                                                  heap_alignment);
1571 
1572   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1573 
1574   // Create the barrier set for the entire reserved region.
1575   G1CardTable* ct = new G1CardTable(reserved_region());
1576   ct->initialize();
1577   G1BarrierSet* bs = new G1BarrierSet(ct);
1578   bs->initialize();
1579   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1580   BarrierSet::set_barrier_set(bs);
1581   _card_table = ct;
1582 
1583   // Create the hot card cache.
1584   _hot_card_cache = new G1HotCardCache(this);
1585 
1586   // Carve out the G1 part of the heap.
1587   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1588   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1589   G1RegionToSpaceMapper* heap_storage =
1590     G1RegionToSpaceMapper::create_mapper(g1_rs,
1591                                          g1_rs.size(),
1592                                          page_size,
1593                                          HeapRegion::GrainBytes,
1594                                          1,
1595                                          mtJavaHeap);
1596   os::trace_page_sizes("Heap",
1597                        collector_policy()->min_heap_byte_size(),
1598                        max_byte_size,
1599                        page_size,
1600                        heap_rs.base(),
1601                        heap_rs.size());
1602   heap_storage->set_mapping_changed_listener(&_listener);
1603 
1604   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1605   G1RegionToSpaceMapper* bot_storage =
1606     create_aux_memory_mapper("Block Offset Table",
1607                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1608                              G1BlockOffsetTable::heap_map_factor());
1609 
1610   G1RegionToSpaceMapper* cardtable_storage =
1611     create_aux_memory_mapper("Card Table",
1612                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1613                              G1CardTable::heap_map_factor());
1614 
1615   G1RegionToSpaceMapper* card_counts_storage =
1616     create_aux_memory_mapper("Card Counts Table",
1617                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1618                              G1CardCounts::heap_map_factor());
1619 
1620   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1621   G1RegionToSpaceMapper* prev_bitmap_storage =
1622     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1623   G1RegionToSpaceMapper* next_bitmap_storage =
1624     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1625 
1626   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1627   _card_table->initialize(cardtable_storage);
1628   // Do later initialization work for concurrent refinement.
1629   _hot_card_cache->initialize(card_counts_storage);
1630 
1631   // 6843694 - ensure that the maximum region index can fit
1632   // in the remembered set structures.
1633   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1634   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1635 
1636   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1637   // start within the first card.
1638   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1639   // Also create a G1 rem set.
1640   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1641   _g1_rem_set->initialize(max_capacity(), max_regions());
1642 
1643   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1644   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1645   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1646             "too many cards per region");
1647 
1648   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1649 
1650   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1651 
1652   {
1653     HeapWord* start = _hrm.reserved().start();
1654     HeapWord* end = _hrm.reserved().end();
1655     size_t granularity = HeapRegion::GrainBytes;
1656 
1657     _in_cset_fast_test.initialize(start, end, granularity);
1658     _humongous_reclaim_candidates.initialize(start, end, granularity);
1659   }
1660 
1661   // Create the G1ConcurrentMark data structure and thread.
1662   // (Must do this late, so that "max_regions" is defined.)
1663   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1664   if (_cm == NULL || !_cm->completed_initialization()) {
1665     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1666     return JNI_ENOMEM;
1667   }
1668   _cm_thread = _cm->cm_thread();
1669 
1670   // Now expand into the initial heap size.
1671   if (!expand(init_byte_size, _workers)) {
1672     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1673     return JNI_ENOMEM;
1674   }
1675 
1676   // Perform any initialization actions delegated to the policy.
1677   g1_policy()->init(this, &_collection_set);
1678 
1679   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1680                                                  SATB_Q_FL_lock,
1681                                                  G1SATBProcessCompletedThreshold,
1682                                                  Shared_SATB_Q_lock);
1683 
1684   jint ecode = initialize_concurrent_refinement();
1685   if (ecode != JNI_OK) {
1686     return ecode;
1687   }
1688 
1689   ecode = initialize_young_gen_sampling_thread();
1690   if (ecode != JNI_OK) {
1691     return ecode;
1692   }
1693 
1694   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1695                                                   DirtyCardQ_FL_lock,
1696                                                   (int)concurrent_refine()->yellow_zone(),
1697                                                   (int)concurrent_refine()->red_zone(),
1698                                                   Shared_DirtyCardQ_lock,
1699                                                   NULL,  // fl_owner
1700                                                   true); // init_free_ids
1701 
1702   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1703                                     DirtyCardQ_FL_lock,
1704                                     -1, // never trigger processing
1705                                     -1, // no limit on length
1706                                     Shared_DirtyCardQ_lock,
1707                                     &G1BarrierSet::dirty_card_queue_set());
1708 
1709   // Here we allocate the dummy HeapRegion that is required by the
1710   // G1AllocRegion class.
1711   HeapRegion* dummy_region = _hrm.get_dummy_region();
1712 
1713   // We'll re-use the same region whether the alloc region will
1714   // require BOT updates or not and, if it doesn't, then a non-young
1715   // region will complain that it cannot support allocations without
1716   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1717   dummy_region->set_eden();
1718   // Make sure it's full.
1719   dummy_region->set_top(dummy_region->end());
1720   G1AllocRegion::setup(this, dummy_region);
1721 
1722   _allocator->init_mutator_alloc_region();
1723 
1724   // Do create of the monitoring and management support so that
1725   // values in the heap have been properly initialized.
1726   _g1mm = new G1MonitoringSupport(this);
1727 
1728   G1StringDedup::initialize();
1729 
1730   _preserved_marks_set.init(ParallelGCThreads);
1731 
1732   _collection_set.initialize(max_regions());
1733 
1734   return JNI_OK;
1735 }
1736 
initialize_serviceability()1737 void G1CollectedHeap::initialize_serviceability() {
1738   _eden_pool = new G1EdenPool(this);
1739   _survivor_pool = new G1SurvivorPool(this);
1740   _old_pool = new G1OldGenPool(this);
1741 
1742   _full_gc_memory_manager.add_pool(_eden_pool);
1743   _full_gc_memory_manager.add_pool(_survivor_pool);
1744   _full_gc_memory_manager.add_pool(_old_pool);
1745 
1746   _memory_manager.add_pool(_eden_pool);
1747   _memory_manager.add_pool(_survivor_pool);
1748   _memory_manager.add_pool(_old_pool, false /* always_affected_by_gc */);
1749 }
1750 
stop()1751 void G1CollectedHeap::stop() {
1752   // Stop all concurrent threads. We do this to make sure these threads
1753   // do not continue to execute and access resources (e.g. logging)
1754   // that are destroyed during shutdown.
1755   _cr->stop();
1756   _young_gen_sampling_thread->stop();
1757   _cm_thread->stop();
1758   if (G1StringDedup::is_enabled()) {
1759     G1StringDedup::stop();
1760   }
1761 }
1762 
safepoint_synchronize_begin()1763 void G1CollectedHeap::safepoint_synchronize_begin() {
1764   SuspendibleThreadSet::synchronize();
1765 }
1766 
safepoint_synchronize_end()1767 void G1CollectedHeap::safepoint_synchronize_end() {
1768   SuspendibleThreadSet::desynchronize();
1769 }
1770 
conservative_max_heap_alignment()1771 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1772   return HeapRegion::max_region_size();
1773 }
1774 
post_initialize()1775 void G1CollectedHeap::post_initialize() {
1776   CollectedHeap::post_initialize();
1777   ref_processing_init();
1778 }
1779 
ref_processing_init()1780 void G1CollectedHeap::ref_processing_init() {
1781   // Reference processing in G1 currently works as follows:
1782   //
1783   // * There are two reference processor instances. One is
1784   //   used to record and process discovered references
1785   //   during concurrent marking; the other is used to
1786   //   record and process references during STW pauses
1787   //   (both full and incremental).
1788   // * Both ref processors need to 'span' the entire heap as
1789   //   the regions in the collection set may be dotted around.
1790   //
1791   // * For the concurrent marking ref processor:
1792   //   * Reference discovery is enabled at initial marking.
1793   //   * Reference discovery is disabled and the discovered
1794   //     references processed etc during remarking.
1795   //   * Reference discovery is MT (see below).
1796   //   * Reference discovery requires a barrier (see below).
1797   //   * Reference processing may or may not be MT
1798   //     (depending on the value of ParallelRefProcEnabled
1799   //     and ParallelGCThreads).
1800   //   * A full GC disables reference discovery by the CM
1801   //     ref processor and abandons any entries on it's
1802   //     discovered lists.
1803   //
1804   // * For the STW processor:
1805   //   * Non MT discovery is enabled at the start of a full GC.
1806   //   * Processing and enqueueing during a full GC is non-MT.
1807   //   * During a full GC, references are processed after marking.
1808   //
1809   //   * Discovery (may or may not be MT) is enabled at the start
1810   //     of an incremental evacuation pause.
1811   //   * References are processed near the end of a STW evacuation pause.
1812   //   * For both types of GC:
1813   //     * Discovery is atomic - i.e. not concurrent.
1814   //     * Reference discovery will not need a barrier.
1815 
1816   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1817 
1818   // Concurrent Mark ref processor
1819   _ref_processor_cm =
1820     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1821                            mt_processing,                                  // mt processing
1822                            ParallelGCThreads,                              // degree of mt processing
1823                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1824                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1825                            false,                                          // Reference discovery is not atomic
1826                            &_is_alive_closure_cm,                          // is alive closure
1827                            true);                                          // allow changes to number of processing threads
1828 
1829   // STW ref processor
1830   _ref_processor_stw =
1831     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1832                            mt_processing,                        // mt processing
1833                            ParallelGCThreads,                    // degree of mt processing
1834                            (ParallelGCThreads > 1),              // mt discovery
1835                            ParallelGCThreads,                    // degree of mt discovery
1836                            true,                                 // Reference discovery is atomic
1837                            &_is_alive_closure_stw,               // is alive closure
1838                            true);                                // allow changes to number of processing threads
1839 }
1840 
collector_policy() const1841 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1842   return _collector_policy;
1843 }
1844 
soft_ref_policy()1845 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1846   return &_soft_ref_policy;
1847 }
1848 
capacity() const1849 size_t G1CollectedHeap::capacity() const {
1850   return _hrm.length() * HeapRegion::GrainBytes;
1851 }
1852 
unused_committed_regions_in_bytes() const1853 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1854   return _hrm.total_free_bytes();
1855 }
1856 
iterate_hcc_closure(CardTableEntryClosure * cl,uint worker_i)1857 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1858   _hot_card_cache->drain(cl, worker_i);
1859 }
1860 
iterate_dirty_card_closure(CardTableEntryClosure * cl,uint worker_i)1861 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1862   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1863   size_t n_completed_buffers = 0;
1864   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1865     n_completed_buffers++;
1866   }
1867   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1868   dcqs.clear_n_completed_buffers();
1869   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1870 }
1871 
1872 // Computes the sum of the storage used by the various regions.
used() const1873 size_t G1CollectedHeap::used() const {
1874   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1875   if (_archive_allocator != NULL) {
1876     result += _archive_allocator->used();
1877   }
1878   return result;
1879 }
1880 
used_unlocked() const1881 size_t G1CollectedHeap::used_unlocked() const {
1882   return _summary_bytes_used;
1883 }
1884 
1885 class SumUsedClosure: public HeapRegionClosure {
1886   size_t _used;
1887 public:
SumUsedClosure()1888   SumUsedClosure() : _used(0) {}
do_heap_region(HeapRegion * r)1889   bool do_heap_region(HeapRegion* r) {
1890     _used += r->used();
1891     return false;
1892   }
result()1893   size_t result() { return _used; }
1894 };
1895 
recalculate_used() const1896 size_t G1CollectedHeap::recalculate_used() const {
1897   double recalculate_used_start = os::elapsedTime();
1898 
1899   SumUsedClosure blk;
1900   heap_region_iterate(&blk);
1901 
1902   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1903   return blk.result();
1904 }
1905 
is_user_requested_concurrent_full_gc(GCCause::Cause cause)1906 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1907   switch (cause) {
1908     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1909     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1910     case GCCause::_wb_conc_mark:                        return true;
1911     default :                                           return false;
1912   }
1913 }
1914 
should_do_concurrent_full_gc(GCCause::Cause cause)1915 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1916   switch (cause) {
1917     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1918     case GCCause::_g1_humongous_allocation: return true;
1919     default:                                return is_user_requested_concurrent_full_gc(cause);
1920   }
1921 }
1922 
1923 #ifndef PRODUCT
allocate_dummy_regions()1924 void G1CollectedHeap::allocate_dummy_regions() {
1925   // Let's fill up most of the region
1926   size_t word_size = HeapRegion::GrainWords - 1024;
1927   // And as a result the region we'll allocate will be humongous.
1928   guarantee(is_humongous(word_size), "sanity");
1929 
1930   // _filler_array_max_size is set to humongous object threshold
1931   // but temporarily change it to use CollectedHeap::fill_with_object().
1932   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1933 
1934   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1935     // Let's use the existing mechanism for the allocation
1936     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1937     if (dummy_obj != NULL) {
1938       MemRegion mr(dummy_obj, word_size);
1939       CollectedHeap::fill_with_object(mr);
1940     } else {
1941       // If we can't allocate once, we probably cannot allocate
1942       // again. Let's get out of the loop.
1943       break;
1944     }
1945   }
1946 }
1947 #endif // !PRODUCT
1948 
increment_old_marking_cycles_started()1949 void G1CollectedHeap::increment_old_marking_cycles_started() {
1950   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1951          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1952          "Wrong marking cycle count (started: %d, completed: %d)",
1953          _old_marking_cycles_started, _old_marking_cycles_completed);
1954 
1955   _old_marking_cycles_started++;
1956 }
1957 
increment_old_marking_cycles_completed(bool concurrent)1958 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1959   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1960 
1961   // We assume that if concurrent == true, then the caller is a
1962   // concurrent thread that was joined the Suspendible Thread
1963   // Set. If there's ever a cheap way to check this, we should add an
1964   // assert here.
1965 
1966   // Given that this method is called at the end of a Full GC or of a
1967   // concurrent cycle, and those can be nested (i.e., a Full GC can
1968   // interrupt a concurrent cycle), the number of full collections
1969   // completed should be either one (in the case where there was no
1970   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1971   // behind the number of full collections started.
1972 
1973   // This is the case for the inner caller, i.e. a Full GC.
1974   assert(concurrent ||
1975          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1976          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1977          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1978          "is inconsistent with _old_marking_cycles_completed = %u",
1979          _old_marking_cycles_started, _old_marking_cycles_completed);
1980 
1981   // This is the case for the outer caller, i.e. the concurrent cycle.
1982   assert(!concurrent ||
1983          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1984          "for outer caller (concurrent cycle): "
1985          "_old_marking_cycles_started = %u "
1986          "is inconsistent with _old_marking_cycles_completed = %u",
1987          _old_marking_cycles_started, _old_marking_cycles_completed);
1988 
1989   _old_marking_cycles_completed += 1;
1990 
1991   // We need to clear the "in_progress" flag in the CM thread before
1992   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1993   // is set) so that if a waiter requests another System.gc() it doesn't
1994   // incorrectly see that a marking cycle is still in progress.
1995   if (concurrent) {
1996     _cm_thread->set_idle();
1997   }
1998 
1999   // This notify_all() will ensure that a thread that called
2000   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2001   // and it's waiting for a full GC to finish will be woken up. It is
2002   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2003   FullGCCount_lock->notify_all();
2004 }
2005 
collect(GCCause::Cause cause)2006 void G1CollectedHeap::collect(GCCause::Cause cause) {
2007   assert_heap_not_locked();
2008 
2009   uint gc_count_before;
2010   uint old_marking_count_before;
2011   uint full_gc_count_before;
2012   bool retry_gc;
2013 
2014   do {
2015     retry_gc = false;
2016 
2017     {
2018       MutexLocker ml(Heap_lock);
2019 
2020       // Read the GC count while holding the Heap_lock
2021       gc_count_before = total_collections();
2022       full_gc_count_before = total_full_collections();
2023       old_marking_count_before = _old_marking_cycles_started;
2024     }
2025 
2026     if (should_do_concurrent_full_gc(cause)) {
2027       // Schedule an initial-mark evacuation pause that will start a
2028       // concurrent cycle. We're setting word_size to 0 which means that
2029       // we are not requesting a post-GC allocation.
2030       VM_G1CollectForAllocation op(0,     /* word_size */
2031                                    gc_count_before,
2032                                    cause,
2033                                    true,  /* should_initiate_conc_mark */
2034                                    g1_policy()->max_pause_time_ms());
2035       VMThread::execute(&op);
2036       if (!op.pause_succeeded()) {
2037         if (old_marking_count_before == _old_marking_cycles_started) {
2038           retry_gc = op.should_retry_gc();
2039         } else {
2040           // A Full GC happened while we were trying to schedule the
2041           // initial-mark GC. No point in starting a new cycle given
2042           // that the whole heap was collected anyway.
2043         }
2044 
2045         if (retry_gc) {
2046           if (GCLocker::is_active_and_needs_gc()) {
2047             GCLocker::stall_until_clear();
2048           }
2049         }
2050       }
2051     } else if (GCLocker::should_discard(cause, gc_count_before)) {
2052       // Return false to be consistent with VMOp failure due to
2053       // another collection slipping in after our gc_count but before
2054       // our request is processed.  _gc_locker collections upgraded by
2055       // GCLockerInvokesConcurrent are handled above and never discarded.
2056       return;
2057     } else {
2058       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2059           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2060 
2061         // Schedule a standard evacuation pause. We're setting word_size
2062         // to 0 which means that we are not requesting a post-GC allocation.
2063         VM_G1CollectForAllocation op(0,     /* word_size */
2064                                      gc_count_before,
2065                                      cause,
2066                                      false, /* should_initiate_conc_mark */
2067                                      g1_policy()->max_pause_time_ms());
2068         VMThread::execute(&op);
2069       } else {
2070         // Schedule a Full GC.
2071         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2072         VMThread::execute(&op);
2073       }
2074     }
2075   } while (retry_gc);
2076 }
2077 
is_in(const void * p) const2078 bool G1CollectedHeap::is_in(const void* p) const {
2079   if (_hrm.reserved().contains(p)) {
2080     // Given that we know that p is in the reserved space,
2081     // heap_region_containing() should successfully
2082     // return the containing region.
2083     HeapRegion* hr = heap_region_containing(p);
2084     return hr->is_in(p);
2085   } else {
2086     return false;
2087   }
2088 }
2089 
2090 #ifdef ASSERT
is_in_exact(const void * p) const2091 bool G1CollectedHeap::is_in_exact(const void* p) const {
2092   bool contains = reserved_region().contains(p);
2093   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2094   if (contains && available) {
2095     return true;
2096   } else {
2097     return false;
2098   }
2099 }
2100 #endif
2101 
2102 // Iteration functions.
2103 
2104 // Iterates an ObjectClosure over all objects within a HeapRegion.
2105 
2106 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2107   ObjectClosure* _cl;
2108 public:
IterateObjectClosureRegionClosure(ObjectClosure * cl)2109   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
do_heap_region(HeapRegion * r)2110   bool do_heap_region(HeapRegion* r) {
2111     if (!r->is_continues_humongous()) {
2112       r->object_iterate(_cl);
2113     }
2114     return false;
2115   }
2116 };
2117 
object_iterate(ObjectClosure * cl)2118 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2119   IterateObjectClosureRegionClosure blk(cl);
2120   heap_region_iterate(&blk);
2121 }
2122 
keep_alive(oop obj)2123 void G1CollectedHeap::keep_alive(oop obj) {
2124   G1BarrierSet::enqueue(obj);
2125 }
2126 
heap_region_iterate(HeapRegionClosure * cl) const2127 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2128   _hrm.iterate(cl);
2129 }
2130 
heap_region_par_iterate_from_worker_offset(HeapRegionClosure * cl,HeapRegionClaimer * hrclaimer,uint worker_id) const2131 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2132                                                                  HeapRegionClaimer *hrclaimer,
2133                                                                  uint worker_id) const {
2134   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2135 }
2136 
heap_region_par_iterate_from_start(HeapRegionClosure * cl,HeapRegionClaimer * hrclaimer) const2137 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2138                                                          HeapRegionClaimer *hrclaimer) const {
2139   _hrm.par_iterate(cl, hrclaimer, 0);
2140 }
2141 
collection_set_iterate(HeapRegionClosure * cl)2142 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2143   _collection_set.iterate(cl);
2144 }
2145 
collection_set_iterate_from(HeapRegionClosure * cl,uint worker_id)2146 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2147   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2148 }
2149 
block_start(const void * addr) const2150 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2151   HeapRegion* hr = heap_region_containing(addr);
2152   return hr->block_start(addr);
2153 }
2154 
block_size(const HeapWord * addr) const2155 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2156   HeapRegion* hr = heap_region_containing(addr);
2157   return hr->block_size(addr);
2158 }
2159 
block_is_obj(const HeapWord * addr) const2160 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2161   HeapRegion* hr = heap_region_containing(addr);
2162   return hr->block_is_obj(addr);
2163 }
2164 
supports_tlab_allocation() const2165 bool G1CollectedHeap::supports_tlab_allocation() const {
2166   return true;
2167 }
2168 
tlab_capacity(Thread * ignored) const2169 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2170   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2171 }
2172 
tlab_used(Thread * ignored) const2173 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2174   return _eden.length() * HeapRegion::GrainBytes;
2175 }
2176 
2177 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2178 // must be equal to the humongous object limit.
max_tlab_size() const2179 size_t G1CollectedHeap::max_tlab_size() const {
2180   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2181 }
2182 
unsafe_max_tlab_alloc(Thread * ignored) const2183 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2184   return _allocator->unsafe_max_tlab_alloc();
2185 }
2186 
max_capacity() const2187 size_t G1CollectedHeap::max_capacity() const {
2188   return _hrm.reserved().byte_size();
2189 }
2190 
millis_since_last_gc()2191 jlong G1CollectedHeap::millis_since_last_gc() {
2192   // See the notes in GenCollectedHeap::millis_since_last_gc()
2193   // for more information about the implementation.
2194   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2195     _g1_policy->collection_pause_end_millis();
2196   if (ret_val < 0) {
2197     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2198       ". returning zero instead.", ret_val);
2199     return 0;
2200   }
2201   return ret_val;
2202 }
2203 
deduplicate_string(oop str)2204 void G1CollectedHeap::deduplicate_string(oop str) {
2205   assert(java_lang_String::is_instance(str), "invariant");
2206 
2207   if (G1StringDedup::is_enabled()) {
2208     G1StringDedup::deduplicate(str);
2209   }
2210 }
2211 
prepare_for_verify()2212 void G1CollectedHeap::prepare_for_verify() {
2213   _verifier->prepare_for_verify();
2214 }
2215 
verify(VerifyOption vo)2216 void G1CollectedHeap::verify(VerifyOption vo) {
2217   _verifier->verify(vo);
2218 }
2219 
supports_concurrent_phase_control() const2220 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2221   return true;
2222 }
2223 
concurrent_phases() const2224 const char* const* G1CollectedHeap::concurrent_phases() const {
2225   return _cm_thread->concurrent_phases();
2226 }
2227 
request_concurrent_phase(const char * phase)2228 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2229   return _cm_thread->request_concurrent_phase(phase);
2230 }
2231 
2232 class PrintRegionClosure: public HeapRegionClosure {
2233   outputStream* _st;
2234 public:
PrintRegionClosure(outputStream * st)2235   PrintRegionClosure(outputStream* st) : _st(st) {}
do_heap_region(HeapRegion * r)2236   bool do_heap_region(HeapRegion* r) {
2237     r->print_on(_st);
2238     return false;
2239   }
2240 };
2241 
is_obj_dead_cond(const oop obj,const HeapRegion * hr,const VerifyOption vo) const2242 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2243                                        const HeapRegion* hr,
2244                                        const VerifyOption vo) const {
2245   switch (vo) {
2246   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2247   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2248   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2249   default:                            ShouldNotReachHere();
2250   }
2251   return false; // keep some compilers happy
2252 }
2253 
is_obj_dead_cond(const oop obj,const VerifyOption vo) const2254 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2255                                        const VerifyOption vo) const {
2256   switch (vo) {
2257   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2258   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2259   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2260   default:                            ShouldNotReachHere();
2261   }
2262   return false; // keep some compilers happy
2263 }
2264 
print_heap_regions() const2265 void G1CollectedHeap::print_heap_regions() const {
2266   LogTarget(Trace, gc, heap, region) lt;
2267   if (lt.is_enabled()) {
2268     LogStream ls(lt);
2269     print_regions_on(&ls);
2270   }
2271 }
2272 
print_on(outputStream * st) const2273 void G1CollectedHeap::print_on(outputStream* st) const {
2274   st->print(" %-20s", "garbage-first heap");
2275   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2276             capacity()/K, used_unlocked()/K);
2277   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2278             p2i(_hrm.reserved().start()),
2279             p2i(_hrm.reserved().end()));
2280   st->cr();
2281   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2282   uint young_regions = young_regions_count();
2283   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2284             (size_t) young_regions * HeapRegion::GrainBytes / K);
2285   uint survivor_regions = survivor_regions_count();
2286   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2287             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2288   st->cr();
2289   MetaspaceUtils::print_on(st);
2290 }
2291 
print_regions_on(outputStream * st) const2292 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2293   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2294                "HS=humongous(starts), HC=humongous(continues), "
2295                "CS=collection set, F=free, A=archive, "
2296                "TAMS=top-at-mark-start (previous, next)");
2297   PrintRegionClosure blk(st);
2298   heap_region_iterate(&blk);
2299 }
2300 
print_extended_on(outputStream * st) const2301 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2302   print_on(st);
2303 
2304   // Print the per-region information.
2305   print_regions_on(st);
2306 }
2307 
print_on_error(outputStream * st) const2308 void G1CollectedHeap::print_on_error(outputStream* st) const {
2309   this->CollectedHeap::print_on_error(st);
2310 
2311   if (_cm != NULL) {
2312     st->cr();
2313     _cm->print_on_error(st);
2314   }
2315 }
2316 
print_gc_threads_on(outputStream * st) const2317 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2318   workers()->print_worker_threads_on(st);
2319   _cm_thread->print_on(st);
2320   st->cr();
2321   _cm->print_worker_threads_on(st);
2322   _cr->print_threads_on(st);
2323   _young_gen_sampling_thread->print_on(st);
2324   if (G1StringDedup::is_enabled()) {
2325     G1StringDedup::print_worker_threads_on(st);
2326   }
2327 }
2328 
gc_threads_do(ThreadClosure * tc) const2329 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2330   workers()->threads_do(tc);
2331   tc->do_thread(_cm_thread);
2332   _cm->threads_do(tc);
2333   _cr->threads_do(tc);
2334   tc->do_thread(_young_gen_sampling_thread);
2335   if (G1StringDedup::is_enabled()) {
2336     G1StringDedup::threads_do(tc);
2337   }
2338 }
2339 
print_tracing_info() const2340 void G1CollectedHeap::print_tracing_info() const {
2341   g1_rem_set()->print_summary_info();
2342   concurrent_mark()->print_summary_info();
2343 }
2344 
2345 #ifndef PRODUCT
2346 // Helpful for debugging RSet issues.
2347 
2348 class PrintRSetsClosure : public HeapRegionClosure {
2349 private:
2350   const char* _msg;
2351   size_t _occupied_sum;
2352 
2353 public:
do_heap_region(HeapRegion * r)2354   bool do_heap_region(HeapRegion* r) {
2355     HeapRegionRemSet* hrrs = r->rem_set();
2356     size_t occupied = hrrs->occupied();
2357     _occupied_sum += occupied;
2358 
2359     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2360     if (occupied == 0) {
2361       tty->print_cr("  RSet is empty");
2362     } else {
2363       hrrs->print();
2364     }
2365     tty->print_cr("----------");
2366     return false;
2367   }
2368 
PrintRSetsClosure(const char * msg)2369   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2370     tty->cr();
2371     tty->print_cr("========================================");
2372     tty->print_cr("%s", msg);
2373     tty->cr();
2374   }
2375 
~PrintRSetsClosure()2376   ~PrintRSetsClosure() {
2377     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2378     tty->print_cr("========================================");
2379     tty->cr();
2380   }
2381 };
2382 
print_cset_rsets()2383 void G1CollectedHeap::print_cset_rsets() {
2384   PrintRSetsClosure cl("Printing CSet RSets");
2385   collection_set_iterate(&cl);
2386 }
2387 
print_all_rsets()2388 void G1CollectedHeap::print_all_rsets() {
2389   PrintRSetsClosure cl("Printing All RSets");;
2390   heap_region_iterate(&cl);
2391 }
2392 #endif // PRODUCT
2393 
create_g1_heap_summary()2394 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2395 
2396   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2397   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2398   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2399 
2400   size_t eden_capacity_bytes =
2401     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2402 
2403   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2404   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2405                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2406 }
2407 
create_g1_evac_summary(G1EvacStats * stats)2408 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2409   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2410                        stats->unused(), stats->used(), stats->region_end_waste(),
2411                        stats->regions_filled(), stats->direct_allocated(),
2412                        stats->failure_used(), stats->failure_waste());
2413 }
2414 
trace_heap(GCWhen::Type when,const GCTracer * gc_tracer)2415 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2416   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2417   gc_tracer->report_gc_heap_summary(when, heap_summary);
2418 
2419   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2420   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2421 }
2422 
heap()2423 G1CollectedHeap* G1CollectedHeap::heap() {
2424   CollectedHeap* heap = Universe::heap();
2425   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2426   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2427   return (G1CollectedHeap*)heap;
2428 }
2429 
gc_prologue(bool full)2430 void G1CollectedHeap::gc_prologue(bool full) {
2431   // always_do_update_barrier = false;
2432   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2433 
2434   // This summary needs to be printed before incrementing total collections.
2435   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2436 
2437   // Update common counters.
2438   increment_total_collections(full /* full gc */);
2439   if (full) {
2440     increment_old_marking_cycles_started();
2441   }
2442 
2443   // Fill TLAB's and such
2444   double start = os::elapsedTime();
2445   accumulate_statistics_all_tlabs();
2446   ensure_parsability(true);
2447   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2448 }
2449 
gc_epilogue(bool full)2450 void G1CollectedHeap::gc_epilogue(bool full) {
2451   // Update common counters.
2452   if (full) {
2453     // Update the number of full collections that have been completed.
2454     increment_old_marking_cycles_completed(false /* concurrent */);
2455   }
2456 
2457   // We are at the end of the GC. Total collections has already been increased.
2458   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2459 
2460   // FIXME: what is this about?
2461   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2462   // is set.
2463 #if COMPILER2_OR_JVMCI
2464   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2465 #endif
2466   // always_do_update_barrier = true;
2467 
2468   double start = os::elapsedTime();
2469   resize_all_tlabs();
2470   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2471 
2472   MemoryService::track_memory_usage();
2473   // We have just completed a GC. Update the soft reference
2474   // policy with the new heap occupancy
2475   Universe::update_heap_info_at_gc();
2476 }
2477 
do_collection_pause(size_t word_size,uint gc_count_before,bool * succeeded,GCCause::Cause gc_cause)2478 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2479                                                uint gc_count_before,
2480                                                bool* succeeded,
2481                                                GCCause::Cause gc_cause) {
2482   assert_heap_not_locked_and_not_at_safepoint();
2483   VM_G1CollectForAllocation op(word_size,
2484                                gc_count_before,
2485                                gc_cause,
2486                                false, /* should_initiate_conc_mark */
2487                                g1_policy()->max_pause_time_ms());
2488   VMThread::execute(&op);
2489 
2490   HeapWord* result = op.result();
2491   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2492   assert(result == NULL || ret_succeeded,
2493          "the result should be NULL if the VM did not succeed");
2494   *succeeded = ret_succeeded;
2495 
2496   assert_heap_not_locked();
2497   return result;
2498 }
2499 
do_concurrent_mark()2500 void G1CollectedHeap::do_concurrent_mark() {
2501   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2502   if (!_cm_thread->in_progress()) {
2503     _cm_thread->set_started();
2504     CGC_lock->notify();
2505   }
2506 }
2507 
pending_card_num()2508 size_t G1CollectedHeap::pending_card_num() {
2509   size_t extra_cards = 0;
2510   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2511     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2512     extra_cards += dcq.size();
2513   }
2514   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2515   size_t buffer_size = dcqs.buffer_size();
2516   size_t buffer_num = dcqs.completed_buffers_num();
2517 
2518   return buffer_size * buffer_num + extra_cards;
2519 }
2520 
is_potential_eager_reclaim_candidate(HeapRegion * r) const2521 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2522   // We don't nominate objects with many remembered set entries, on
2523   // the assumption that such objects are likely still live.
2524   HeapRegionRemSet* rem_set = r->rem_set();
2525 
2526   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2527          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2528          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2529 }
2530 
2531 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2532  private:
2533   size_t _total_humongous;
2534   size_t _candidate_humongous;
2535 
2536   DirtyCardQueue _dcq;
2537 
humongous_region_is_candidate(G1CollectedHeap * g1h,HeapRegion * region) const2538   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2539     assert(region->is_starts_humongous(), "Must start a humongous object");
2540 
2541     oop obj = oop(region->bottom());
2542 
2543     // Dead objects cannot be eager reclaim candidates. Due to class
2544     // unloading it is unsafe to query their classes so we return early.
2545     if (g1h->is_obj_dead(obj, region)) {
2546       return false;
2547     }
2548 
2549     // If we do not have a complete remembered set for the region, then we can
2550     // not be sure that we have all references to it.
2551     if (!region->rem_set()->is_complete()) {
2552       return false;
2553     }
2554     // Candidate selection must satisfy the following constraints
2555     // while concurrent marking is in progress:
2556     //
2557     // * In order to maintain SATB invariants, an object must not be
2558     // reclaimed if it was allocated before the start of marking and
2559     // has not had its references scanned.  Such an object must have
2560     // its references (including type metadata) scanned to ensure no
2561     // live objects are missed by the marking process.  Objects
2562     // allocated after the start of concurrent marking don't need to
2563     // be scanned.
2564     //
2565     // * An object must not be reclaimed if it is on the concurrent
2566     // mark stack.  Objects allocated after the start of concurrent
2567     // marking are never pushed on the mark stack.
2568     //
2569     // Nominating only objects allocated after the start of concurrent
2570     // marking is sufficient to meet both constraints.  This may miss
2571     // some objects that satisfy the constraints, but the marking data
2572     // structures don't support efficiently performing the needed
2573     // additional tests or scrubbing of the mark stack.
2574     //
2575     // However, we presently only nominate is_typeArray() objects.
2576     // A humongous object containing references induces remembered
2577     // set entries on other regions.  In order to reclaim such an
2578     // object, those remembered sets would need to be cleaned up.
2579     //
2580     // We also treat is_typeArray() objects specially, allowing them
2581     // to be reclaimed even if allocated before the start of
2582     // concurrent mark.  For this we rely on mark stack insertion to
2583     // exclude is_typeArray() objects, preventing reclaiming an object
2584     // that is in the mark stack.  We also rely on the metadata for
2585     // such objects to be built-in and so ensured to be kept live.
2586     // Frequent allocation and drop of large binary blobs is an
2587     // important use case for eager reclaim, and this special handling
2588     // may reduce needed headroom.
2589 
2590     return obj->is_typeArray() &&
2591            g1h->is_potential_eager_reclaim_candidate(region);
2592   }
2593 
2594  public:
RegisterHumongousWithInCSetFastTestClosure()2595   RegisterHumongousWithInCSetFastTestClosure()
2596   : _total_humongous(0),
2597     _candidate_humongous(0),
2598     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2599   }
2600 
do_heap_region(HeapRegion * r)2601   virtual bool do_heap_region(HeapRegion* r) {
2602     if (!r->is_starts_humongous()) {
2603       return false;
2604     }
2605     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2606 
2607     bool is_candidate = humongous_region_is_candidate(g1h, r);
2608     uint rindex = r->hrm_index();
2609     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2610     if (is_candidate) {
2611       _candidate_humongous++;
2612       g1h->register_humongous_region_with_cset(rindex);
2613       // Is_candidate already filters out humongous object with large remembered sets.
2614       // If we have a humongous object with a few remembered sets, we simply flush these
2615       // remembered set entries into the DCQS. That will result in automatic
2616       // re-evaluation of their remembered set entries during the following evacuation
2617       // phase.
2618       if (!r->rem_set()->is_empty()) {
2619         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2620                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2621         G1CardTable* ct = g1h->card_table();
2622         HeapRegionRemSetIterator hrrs(r->rem_set());
2623         size_t card_index;
2624         while (hrrs.has_next(card_index)) {
2625           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2626           // The remembered set might contain references to already freed
2627           // regions. Filter out such entries to avoid failing card table
2628           // verification.
2629           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2630             if (*card_ptr != G1CardTable::dirty_card_val()) {
2631               *card_ptr = G1CardTable::dirty_card_val();
2632               _dcq.enqueue(card_ptr);
2633             }
2634           }
2635         }
2636         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2637                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2638                hrrs.n_yielded(), r->rem_set()->occupied());
2639         // We should only clear the card based remembered set here as we will not
2640         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2641         // (and probably never) we do not enter this path if there are other kind of
2642         // remembered sets for this region.
2643         r->rem_set()->clear_locked(true /* only_cardset */);
2644         // Clear_locked() above sets the state to Empty. However we want to continue
2645         // collecting remembered set entries for humongous regions that were not
2646         // reclaimed.
2647         r->rem_set()->set_state_complete();
2648       }
2649       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2650     }
2651     _total_humongous++;
2652 
2653     return false;
2654   }
2655 
total_humongous() const2656   size_t total_humongous() const { return _total_humongous; }
candidate_humongous() const2657   size_t candidate_humongous() const { return _candidate_humongous; }
2658 
flush_rem_set_entries()2659   void flush_rem_set_entries() { _dcq.flush(); }
2660 };
2661 
register_humongous_regions_with_cset()2662 void G1CollectedHeap::register_humongous_regions_with_cset() {
2663   if (!G1EagerReclaimHumongousObjects) {
2664     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2665     return;
2666   }
2667   double time = os::elapsed_counter();
2668 
2669   // Collect reclaim candidate information and register candidates with cset.
2670   RegisterHumongousWithInCSetFastTestClosure cl;
2671   heap_region_iterate(&cl);
2672 
2673   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2674   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2675                                                                   cl.total_humongous(),
2676                                                                   cl.candidate_humongous());
2677   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2678 
2679   // Finally flush all remembered set entries to re-check into the global DCQS.
2680   cl.flush_rem_set_entries();
2681 }
2682 
2683 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2684   public:
do_heap_region(HeapRegion * hr)2685     bool do_heap_region(HeapRegion* hr) {
2686       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2687         hr->verify_rem_set();
2688       }
2689       return false;
2690     }
2691 };
2692 
num_task_queues() const2693 uint G1CollectedHeap::num_task_queues() const {
2694   return _task_queues->size();
2695 }
2696 
2697 #if TASKQUEUE_STATS
print_taskqueue_stats_hdr(outputStream * const st)2698 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2699   st->print_raw_cr("GC Task Stats");
2700   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2701   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2702 }
2703 
print_taskqueue_stats() const2704 void G1CollectedHeap::print_taskqueue_stats() const {
2705   if (!log_is_enabled(Trace, gc, task, stats)) {
2706     return;
2707   }
2708   Log(gc, task, stats) log;
2709   ResourceMark rm;
2710   LogStream ls(log.trace());
2711   outputStream* st = &ls;
2712 
2713   print_taskqueue_stats_hdr(st);
2714 
2715   TaskQueueStats totals;
2716   const uint n = num_task_queues();
2717   for (uint i = 0; i < n; ++i) {
2718     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2719     totals += task_queue(i)->stats;
2720   }
2721   st->print_raw("tot "); totals.print(st); st->cr();
2722 
2723   DEBUG_ONLY(totals.verify());
2724 }
2725 
reset_taskqueue_stats()2726 void G1CollectedHeap::reset_taskqueue_stats() {
2727   const uint n = num_task_queues();
2728   for (uint i = 0; i < n; ++i) {
2729     task_queue(i)->stats.reset();
2730   }
2731 }
2732 #endif // TASKQUEUE_STATS
2733 
wait_for_root_region_scanning()2734 void G1CollectedHeap::wait_for_root_region_scanning() {
2735   double scan_wait_start = os::elapsedTime();
2736   // We have to wait until the CM threads finish scanning the
2737   // root regions as it's the only way to ensure that all the
2738   // objects on them have been correctly scanned before we start
2739   // moving them during the GC.
2740   bool waited = _cm->root_regions()->wait_until_scan_finished();
2741   double wait_time_ms = 0.0;
2742   if (waited) {
2743     double scan_wait_end = os::elapsedTime();
2744     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2745   }
2746   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2747 }
2748 
2749 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2750 private:
2751   G1HRPrinter* _hr_printer;
2752 public:
G1PrintCollectionSetClosure(G1HRPrinter * hr_printer)2753   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2754 
do_heap_region(HeapRegion * r)2755   virtual bool do_heap_region(HeapRegion* r) {
2756     _hr_printer->cset(r);
2757     return false;
2758   }
2759 };
2760 
start_new_collection_set()2761 void G1CollectedHeap::start_new_collection_set() {
2762   collection_set()->start_incremental_building();
2763 
2764   clear_cset_fast_test();
2765 
2766   guarantee(_eden.length() == 0, "eden should have been cleared");
2767   g1_policy()->transfer_survivors_to_cset(survivor());
2768 }
2769 
2770 bool
do_collection_pause_at_safepoint(double target_pause_time_ms)2771 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2772   assert_at_safepoint_on_vm_thread();
2773   guarantee(!is_gc_active(), "collection is not reentrant");
2774 
2775   if (GCLocker::check_active_before_gc()) {
2776     return false;
2777   }
2778 
2779   _gc_timer_stw->register_gc_start();
2780 
2781   GCIdMark gc_id_mark;
2782   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2783 
2784   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2785   ResourceMark rm;
2786 
2787   g1_policy()->note_gc_start();
2788 
2789   wait_for_root_region_scanning();
2790 
2791   print_heap_before_gc();
2792   print_heap_regions();
2793   trace_heap_before_gc(_gc_tracer_stw);
2794 
2795   _verifier->verify_region_sets_optional();
2796   _verifier->verify_dirty_young_regions();
2797 
2798   // We should not be doing initial mark unless the conc mark thread is running
2799   if (!_cm_thread->should_terminate()) {
2800     // This call will decide whether this pause is an initial-mark
2801     // pause. If it is, in_initial_mark_gc() will return true
2802     // for the duration of this pause.
2803     g1_policy()->decide_on_conc_mark_initiation();
2804   }
2805 
2806   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2807   assert(!collector_state()->in_initial_mark_gc() ||
2808           collector_state()->in_young_only_phase(), "sanity");
2809 
2810   // We also do not allow mixed GCs during marking.
2811   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2812 
2813   // Record whether this pause is an initial mark. When the current
2814   // thread has completed its logging output and it's safe to signal
2815   // the CM thread, the flag's value in the policy has been reset.
2816   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2817 
2818   // Inner scope for scope based logging, timers, and stats collection
2819   {
2820     EvacuationInfo evacuation_info;
2821 
2822     if (collector_state()->in_initial_mark_gc()) {
2823       // We are about to start a marking cycle, so we increment the
2824       // full collection counter.
2825       increment_old_marking_cycles_started();
2826       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2827     }
2828 
2829     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2830 
2831     GCTraceCPUTime tcpu;
2832 
2833     G1HeapVerifier::G1VerifyType verify_type;
2834     FormatBuffer<> gc_string("Pause Young ");
2835     if (collector_state()->in_initial_mark_gc()) {
2836       gc_string.append("(Concurrent Start)");
2837       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2838     } else if (collector_state()->in_young_only_phase()) {
2839       if (collector_state()->in_young_gc_before_mixed()) {
2840         gc_string.append("(Prepare Mixed)");
2841       } else {
2842         gc_string.append("(Normal)");
2843       }
2844       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2845     } else {
2846       gc_string.append("(Mixed)");
2847       verify_type = G1HeapVerifier::G1VerifyMixed;
2848     }
2849     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2850 
2851     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2852                                                                   workers()->active_workers(),
2853                                                                   Threads::number_of_non_daemon_threads());
2854     active_workers = workers()->update_active_workers(active_workers);
2855     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2856 
2857     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2858     TraceMemoryManagerStats tms(&_memory_manager, gc_cause(),
2859                                 collector_state()->yc_type() == Mixed /* allMemoryPoolsAffected */);
2860 
2861     G1HeapTransition heap_transition(this);
2862     size_t heap_used_bytes_before_gc = used();
2863 
2864     // Don't dynamically change the number of GC threads this early.  A value of
2865     // 0 is used to indicate serial work.  When parallel work is done,
2866     // it will be set.
2867 
2868     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2869       IsGCActiveMark x;
2870 
2871       gc_prologue(false);
2872 
2873       if (VerifyRememberedSets) {
2874         log_info(gc, verify)("[Verifying RemSets before GC]");
2875         VerifyRegionRemSetClosure v_cl;
2876         heap_region_iterate(&v_cl);
2877       }
2878 
2879       _verifier->verify_before_gc(verify_type);
2880 
2881       _verifier->check_bitmaps("GC Start");
2882 
2883 #if COMPILER2_OR_JVMCI
2884       DerivedPointerTable::clear();
2885 #endif
2886 
2887       // Please see comment in g1CollectedHeap.hpp and
2888       // G1CollectedHeap::ref_processing_init() to see how
2889       // reference processing currently works in G1.
2890 
2891       // Enable discovery in the STW reference processor
2892       _ref_processor_stw->enable_discovery();
2893 
2894       {
2895         // We want to temporarily turn off discovery by the
2896         // CM ref processor, if necessary, and turn it back on
2897         // on again later if we do. Using a scoped
2898         // NoRefDiscovery object will do this.
2899         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2900 
2901         // Forget the current alloc region (we might even choose it to be part
2902         // of the collection set!).
2903         _allocator->release_mutator_alloc_region();
2904 
2905         // This timing is only used by the ergonomics to handle our pause target.
2906         // It is unclear why this should not include the full pause. We will
2907         // investigate this in CR 7178365.
2908         //
2909         // Preserving the old comment here if that helps the investigation:
2910         //
2911         // The elapsed time induced by the start time below deliberately elides
2912         // the possible verification above.
2913         double sample_start_time_sec = os::elapsedTime();
2914 
2915         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2916 
2917         if (collector_state()->in_initial_mark_gc()) {
2918           concurrent_mark()->pre_initial_mark();
2919         }
2920 
2921         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2922 
2923         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2924 
2925         // Make sure the remembered sets are up to date. This needs to be
2926         // done before register_humongous_regions_with_cset(), because the
2927         // remembered sets are used there to choose eager reclaim candidates.
2928         // If the remembered sets are not up to date we might miss some
2929         // entries that need to be handled.
2930         g1_rem_set()->cleanupHRRS();
2931 
2932         register_humongous_regions_with_cset();
2933 
2934         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2935 
2936         // We call this after finalize_cset() to
2937         // ensure that the CSet has been finalized.
2938         _cm->verify_no_cset_oops();
2939 
2940         if (_hr_printer.is_active()) {
2941           G1PrintCollectionSetClosure cl(&_hr_printer);
2942           _collection_set.iterate(&cl);
2943         }
2944 
2945         // Initialize the GC alloc regions.
2946         _allocator->init_gc_alloc_regions(evacuation_info);
2947 
2948         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2949         pre_evacuate_collection_set();
2950 
2951         // Actually do the work...
2952         evacuate_collection_set(&per_thread_states);
2953 
2954         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2955 
2956         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2957         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2958 
2959         eagerly_reclaim_humongous_regions();
2960 
2961         record_obj_copy_mem_stats();
2962         _survivor_evac_stats.adjust_desired_plab_sz();
2963         _old_evac_stats.adjust_desired_plab_sz();
2964 
2965         double start = os::elapsedTime();
2966         start_new_collection_set();
2967         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2968 
2969         if (evacuation_failed()) {
2970           set_used(recalculate_used());
2971           if (_archive_allocator != NULL) {
2972             _archive_allocator->clear_used();
2973           }
2974           for (uint i = 0; i < ParallelGCThreads; i++) {
2975             if (_evacuation_failed_info_array[i].has_failed()) {
2976               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2977             }
2978           }
2979         } else {
2980           // The "used" of the the collection set have already been subtracted
2981           // when they were freed.  Add in the bytes evacuated.
2982           increase_used(g1_policy()->bytes_copied_during_gc());
2983         }
2984 
2985         if (collector_state()->in_initial_mark_gc()) {
2986           // We have to do this before we notify the CM threads that
2987           // they can start working to make sure that all the
2988           // appropriate initialization is done on the CM object.
2989           concurrent_mark()->post_initial_mark();
2990           // Note that we don't actually trigger the CM thread at
2991           // this point. We do that later when we're sure that
2992           // the current thread has completed its logging output.
2993         }
2994 
2995         allocate_dummy_regions();
2996 
2997         _allocator->init_mutator_alloc_region();
2998 
2999         {
3000           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3001           if (expand_bytes > 0) {
3002             size_t bytes_before = capacity();
3003             // No need for an ergo logging here,
3004             // expansion_amount() does this when it returns a value > 0.
3005             double expand_ms = 0.0;
3006             if (!expand(expand_bytes, _workers, &expand_ms)) {
3007               // We failed to expand the heap. Cannot do anything about it.
3008             }
3009             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3010           }
3011         }
3012 
3013         // We redo the verification but now wrt to the new CSet which
3014         // has just got initialized after the previous CSet was freed.
3015         _cm->verify_no_cset_oops();
3016 
3017         // This timing is only used by the ergonomics to handle our pause target.
3018         // It is unclear why this should not include the full pause. We will
3019         // investigate this in CR 7178365.
3020         double sample_end_time_sec = os::elapsedTime();
3021         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3022         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3023         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3024 
3025         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3026         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3027 
3028         if (VerifyRememberedSets) {
3029           log_info(gc, verify)("[Verifying RemSets after GC]");
3030           VerifyRegionRemSetClosure v_cl;
3031           heap_region_iterate(&v_cl);
3032         }
3033 
3034         _verifier->verify_after_gc(verify_type);
3035         _verifier->check_bitmaps("GC End");
3036 
3037         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3038         _ref_processor_stw->verify_no_references_recorded();
3039 
3040         // CM reference discovery will be re-enabled if necessary.
3041       }
3042 
3043 #ifdef TRACESPINNING
3044       ParallelTaskTerminator::print_termination_counts();
3045 #endif
3046 
3047       gc_epilogue(false);
3048     }
3049 
3050     // Print the remainder of the GC log output.
3051     if (evacuation_failed()) {
3052       log_info(gc)("To-space exhausted");
3053     }
3054 
3055     g1_policy()->print_phases();
3056     heap_transition.print();
3057 
3058     // It is not yet to safe to tell the concurrent mark to
3059     // start as we have some optional output below. We don't want the
3060     // output from the concurrent mark thread interfering with this
3061     // logging output either.
3062 
3063     _hrm.verify_optional();
3064     _verifier->verify_region_sets_optional();
3065 
3066     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3067     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3068 
3069     print_heap_after_gc();
3070     print_heap_regions();
3071     trace_heap_after_gc(_gc_tracer_stw);
3072 
3073     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3074     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3075     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3076     // before any GC notifications are raised.
3077     g1mm()->update_sizes();
3078 
3079     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3080     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3081     _gc_timer_stw->register_gc_end();
3082     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3083   }
3084   // It should now be safe to tell the concurrent mark thread to start
3085   // without its logging output interfering with the logging output
3086   // that came from the pause.
3087 
3088   if (should_start_conc_mark) {
3089     // CAUTION: after the doConcurrentMark() call below,
3090     // the concurrent marking thread(s) could be running
3091     // concurrently with us. Make sure that anything after
3092     // this point does not assume that we are the only GC thread
3093     // running. Note: of course, the actual marking work will
3094     // not start until the safepoint itself is released in
3095     // SuspendibleThreadSet::desynchronize().
3096     do_concurrent_mark();
3097   }
3098 
3099   return true;
3100 }
3101 
remove_self_forwarding_pointers()3102 void G1CollectedHeap::remove_self_forwarding_pointers() {
3103   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3104   workers()->run_task(&rsfp_task);
3105 }
3106 
restore_after_evac_failure()3107 void G1CollectedHeap::restore_after_evac_failure() {
3108   double remove_self_forwards_start = os::elapsedTime();
3109 
3110   remove_self_forwarding_pointers();
3111   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3112   _preserved_marks_set.restore(&task_executor);
3113 
3114   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3115 }
3116 
preserve_mark_during_evac_failure(uint worker_id,oop obj,markOop m)3117 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3118   if (!_evacuation_failed) {
3119     _evacuation_failed = true;
3120   }
3121 
3122   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3123   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3124 }
3125 
offer_termination()3126 bool G1ParEvacuateFollowersClosure::offer_termination() {
3127   G1ParScanThreadState* const pss = par_scan_state();
3128   start_term_time();
3129   const bool res = terminator()->offer_termination();
3130   end_term_time();
3131   return res;
3132 }
3133 
do_void()3134 void G1ParEvacuateFollowersClosure::do_void() {
3135   G1ParScanThreadState* const pss = par_scan_state();
3136   pss->trim_queue();
3137   do {
3138     pss->steal_and_trim_queue(queues());
3139   } while (!offer_termination());
3140 }
3141 
3142 class G1ParTask : public AbstractGangTask {
3143 protected:
3144   G1CollectedHeap*         _g1h;
3145   G1ParScanThreadStateSet* _pss;
3146   RefToScanQueueSet*       _queues;
3147   G1RootProcessor*         _root_processor;
3148   ParallelTaskTerminator   _terminator;
3149   uint                     _n_workers;
3150 
3151 public:
G1ParTask(G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * task_queues,G1RootProcessor * root_processor,uint n_workers)3152   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3153     : AbstractGangTask("G1 collection"),
3154       _g1h(g1h),
3155       _pss(per_thread_states),
3156       _queues(task_queues),
3157       _root_processor(root_processor),
3158       _terminator(n_workers, _queues),
3159       _n_workers(n_workers)
3160   {}
3161 
work(uint worker_id)3162   void work(uint worker_id) {
3163     if (worker_id >= _n_workers) return;  // no work needed this round
3164 
3165     double start_sec = os::elapsedTime();
3166     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3167 
3168     {
3169       ResourceMark rm;
3170       HandleMark   hm;
3171 
3172       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3173 
3174       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3175       pss->set_ref_discoverer(rp);
3176 
3177       double start_strong_roots_sec = os::elapsedTime();
3178 
3179       _root_processor->evacuate_roots(pss, worker_id);
3180 
3181       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3182       // treating the nmethods visited to act as roots for concurrent marking.
3183       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3184       // objects copied by the current evacuation.
3185       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3186 
3187       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3188 
3189       double term_sec = 0.0;
3190       size_t evac_term_attempts = 0;
3191       {
3192         double start = os::elapsedTime();
3193         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3194         evac.do_void();
3195 
3196         evac_term_attempts = evac.term_attempts();
3197         term_sec = evac.term_time();
3198         double elapsed_sec = os::elapsedTime() - start;
3199 
3200         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3201         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3202         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3203         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3204       }
3205 
3206       assert(pss->queue_is_empty(), "should be empty");
3207 
3208       if (log_is_enabled(Debug, gc, task, stats)) {
3209         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3210         size_t lab_waste;
3211         size_t lab_undo_waste;
3212         pss->waste(lab_waste, lab_undo_waste);
3213         _g1h->print_termination_stats(worker_id,
3214                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3215                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3216                                       term_sec * 1000.0,                          /* evac term time */
3217                                       evac_term_attempts,                         /* evac term attempts */
3218                                       lab_waste,                                  /* alloc buffer waste */
3219                                       lab_undo_waste                              /* undo waste */
3220                                       );
3221       }
3222 
3223       // Close the inner scope so that the ResourceMark and HandleMark
3224       // destructors are executed here and are included as part of the
3225       // "GC Worker Time".
3226     }
3227     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3228   }
3229 };
3230 
print_termination_stats_hdr()3231 void G1CollectedHeap::print_termination_stats_hdr() {
3232   log_debug(gc, task, stats)("GC Termination Stats");
3233   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3234   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3235   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3236 }
3237 
print_termination_stats(uint worker_id,double elapsed_ms,double strong_roots_ms,double term_ms,size_t term_attempts,size_t alloc_buffer_waste,size_t undo_waste) const3238 void G1CollectedHeap::print_termination_stats(uint worker_id,
3239                                               double elapsed_ms,
3240                                               double strong_roots_ms,
3241                                               double term_ms,
3242                                               size_t term_attempts,
3243                                               size_t alloc_buffer_waste,
3244                                               size_t undo_waste) const {
3245   log_debug(gc, task, stats)
3246               ("%3d %9.2f %9.2f %6.2f "
3247                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3248                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3249                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3250                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3251                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3252                alloc_buffer_waste * HeapWordSize / K,
3253                undo_waste * HeapWordSize / K);
3254 }
3255 
3256 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3257 private:
3258   BoolObjectClosure* _is_alive;
3259   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3260   OopStorage::ParState<false /* concurrent */, false /* const */> _par_state_string;
3261 
3262   int _initial_string_table_size;
3263   int _initial_symbol_table_size;
3264 
3265   bool  _process_strings;
3266   int _strings_processed;
3267   int _strings_removed;
3268 
3269   bool  _process_symbols;
3270   int _symbols_processed;
3271   int _symbols_removed;
3272 
3273   bool _process_string_dedup;
3274 
3275 public:
G1StringAndSymbolCleaningTask(BoolObjectClosure * is_alive,bool process_strings,bool process_symbols,bool process_string_dedup)3276   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3277     AbstractGangTask("String/Symbol Unlinking"),
3278     _is_alive(is_alive),
3279     _dedup_closure(is_alive, NULL, false),
3280     _par_state_string(StringTable::weak_storage()),
3281     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3282     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3283     _process_string_dedup(process_string_dedup) {
3284 
3285     _initial_string_table_size = (int) StringTable::the_table()->table_size();
3286     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3287     if (process_symbols) {
3288       SymbolTable::clear_parallel_claimed_index();
3289     }
3290     if (process_strings) {
3291       StringTable::reset_dead_counter();
3292     }
3293   }
3294 
~G1StringAndSymbolCleaningTask()3295   ~G1StringAndSymbolCleaningTask() {
3296     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3297               "claim value %d after unlink less than initial symbol table size %d",
3298               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3299 
3300     log_info(gc, stringtable)(
3301         "Cleaned string and symbol table, "
3302         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3303         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3304         strings_processed(), strings_removed(),
3305         symbols_processed(), symbols_removed());
3306     if (_process_strings) {
3307       StringTable::finish_dead_counter();
3308     }
3309   }
3310 
work(uint worker_id)3311   void work(uint worker_id) {
3312     int strings_processed = 0;
3313     int strings_removed = 0;
3314     int symbols_processed = 0;
3315     int symbols_removed = 0;
3316     if (_process_strings) {
3317       StringTable::possibly_parallel_unlink(&_par_state_string, _is_alive, &strings_processed, &strings_removed);
3318       Atomic::add(strings_processed, &_strings_processed);
3319       Atomic::add(strings_removed, &_strings_removed);
3320     }
3321     if (_process_symbols) {
3322       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3323       Atomic::add(symbols_processed, &_symbols_processed);
3324       Atomic::add(symbols_removed, &_symbols_removed);
3325     }
3326     if (_process_string_dedup) {
3327       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3328     }
3329   }
3330 
strings_processed() const3331   size_t strings_processed() const { return (size_t)_strings_processed; }
strings_removed() const3332   size_t strings_removed()   const { return (size_t)_strings_removed; }
3333 
symbols_processed() const3334   size_t symbols_processed() const { return (size_t)_symbols_processed; }
symbols_removed() const3335   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3336 };
3337 
3338 class G1CodeCacheUnloadingTask {
3339 private:
3340   static Monitor* _lock;
3341 
3342   BoolObjectClosure* const _is_alive;
3343   const bool               _unloading_occurred;
3344   const uint               _num_workers;
3345 
3346   // Variables used to claim nmethods.
3347   CompiledMethod* _first_nmethod;
3348   CompiledMethod* volatile _claimed_nmethod;
3349 
3350   // The list of nmethods that need to be processed by the second pass.
3351   CompiledMethod* volatile _postponed_list;
3352   volatile uint            _num_entered_barrier;
3353 
3354  public:
G1CodeCacheUnloadingTask(uint num_workers,BoolObjectClosure * is_alive,bool unloading_occurred)3355   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3356       _is_alive(is_alive),
3357       _unloading_occurred(unloading_occurred),
3358       _num_workers(num_workers),
3359       _first_nmethod(NULL),
3360       _claimed_nmethod(NULL),
3361       _postponed_list(NULL),
3362       _num_entered_barrier(0)
3363   {
3364     CompiledMethod::increase_unloading_clock();
3365     // Get first alive nmethod
3366     CompiledMethodIterator iter = CompiledMethodIterator();
3367     if(iter.next_alive()) {
3368       _first_nmethod = iter.method();
3369     }
3370     _claimed_nmethod = _first_nmethod;
3371   }
3372 
~G1CodeCacheUnloadingTask()3373   ~G1CodeCacheUnloadingTask() {
3374     CodeCache::verify_clean_inline_caches();
3375 
3376     CodeCache::set_needs_cache_clean(false);
3377     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3378 
3379     CodeCache::verify_icholder_relocations();
3380   }
3381 
3382  private:
add_to_postponed_list(CompiledMethod * nm)3383   void add_to_postponed_list(CompiledMethod* nm) {
3384       CompiledMethod* old;
3385       do {
3386         old = _postponed_list;
3387         nm->set_unloading_next(old);
3388       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3389   }
3390 
clean_nmethod(CompiledMethod * nm)3391   void clean_nmethod(CompiledMethod* nm) {
3392     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3393 
3394     if (postponed) {
3395       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3396       add_to_postponed_list(nm);
3397     }
3398 
3399     // Mark that this nmethod has been cleaned/unloaded.
3400     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3401     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3402   }
3403 
clean_nmethod_postponed(CompiledMethod * nm)3404   void clean_nmethod_postponed(CompiledMethod* nm) {
3405     nm->do_unloading_parallel_postponed();
3406   }
3407 
3408   static const int MaxClaimNmethods = 16;
3409 
claim_nmethods(CompiledMethod ** claimed_nmethods,int * num_claimed_nmethods)3410   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3411     CompiledMethod* first;
3412     CompiledMethodIterator last;
3413 
3414     do {
3415       *num_claimed_nmethods = 0;
3416 
3417       first = _claimed_nmethod;
3418       last = CompiledMethodIterator(first);
3419 
3420       if (first != NULL) {
3421 
3422         for (int i = 0; i < MaxClaimNmethods; i++) {
3423           if (!last.next_alive()) {
3424             break;
3425           }
3426           claimed_nmethods[i] = last.method();
3427           (*num_claimed_nmethods)++;
3428         }
3429       }
3430 
3431     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3432   }
3433 
claim_postponed_nmethod()3434   CompiledMethod* claim_postponed_nmethod() {
3435     CompiledMethod* claim;
3436     CompiledMethod* next;
3437 
3438     do {
3439       claim = _postponed_list;
3440       if (claim == NULL) {
3441         return NULL;
3442       }
3443 
3444       next = claim->unloading_next();
3445 
3446     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3447 
3448     return claim;
3449   }
3450 
3451  public:
3452   // Mark that we're done with the first pass of nmethod cleaning.
barrier_mark(uint worker_id)3453   void barrier_mark(uint worker_id) {
3454     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3455     _num_entered_barrier++;
3456     if (_num_entered_barrier == _num_workers) {
3457       ml.notify_all();
3458     }
3459   }
3460 
3461   // See if we have to wait for the other workers to
3462   // finish their first-pass nmethod cleaning work.
barrier_wait(uint worker_id)3463   void barrier_wait(uint worker_id) {
3464     if (_num_entered_barrier < _num_workers) {
3465       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3466       while (_num_entered_barrier < _num_workers) {
3467           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3468       }
3469     }
3470   }
3471 
3472   // Cleaning and unloading of nmethods. Some work has to be postponed
3473   // to the second pass, when we know which nmethods survive.
work_first_pass(uint worker_id)3474   void work_first_pass(uint worker_id) {
3475     // The first nmethods is claimed by the first worker.
3476     if (worker_id == 0 && _first_nmethod != NULL) {
3477       clean_nmethod(_first_nmethod);
3478       _first_nmethod = NULL;
3479     }
3480 
3481     int num_claimed_nmethods;
3482     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3483 
3484     while (true) {
3485       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3486 
3487       if (num_claimed_nmethods == 0) {
3488         break;
3489       }
3490 
3491       for (int i = 0; i < num_claimed_nmethods; i++) {
3492         clean_nmethod(claimed_nmethods[i]);
3493       }
3494     }
3495   }
3496 
work_second_pass(uint worker_id)3497   void work_second_pass(uint worker_id) {
3498     CompiledMethod* nm;
3499     // Take care of postponed nmethods.
3500     while ((nm = claim_postponed_nmethod()) != NULL) {
3501       clean_nmethod_postponed(nm);
3502     }
3503   }
3504 };
3505 
3506 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3507 
3508 class G1KlassCleaningTask : public StackObj {
3509   volatile int                            _clean_klass_tree_claimed;
3510   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3511 
3512  public:
G1KlassCleaningTask()3513   G1KlassCleaningTask() :
3514       _clean_klass_tree_claimed(0),
3515       _klass_iterator() {
3516   }
3517 
3518  private:
claim_clean_klass_tree_task()3519   bool claim_clean_klass_tree_task() {
3520     if (_clean_klass_tree_claimed) {
3521       return false;
3522     }
3523 
3524     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3525   }
3526 
claim_next_klass()3527   InstanceKlass* claim_next_klass() {
3528     Klass* klass;
3529     do {
3530       klass =_klass_iterator.next_klass();
3531     } while (klass != NULL && !klass->is_instance_klass());
3532 
3533     // this can be null so don't call InstanceKlass::cast
3534     return static_cast<InstanceKlass*>(klass);
3535   }
3536 
3537 public:
3538 
clean_klass(InstanceKlass * ik)3539   void clean_klass(InstanceKlass* ik) {
3540     ik->clean_weak_instanceklass_links();
3541   }
3542 
work()3543   void work() {
3544     ResourceMark rm;
3545 
3546     // One worker will clean the subklass/sibling klass tree.
3547     if (claim_clean_klass_tree_task()) {
3548       Klass::clean_subklass_tree();
3549     }
3550 
3551     // All workers will help cleaning the classes,
3552     InstanceKlass* klass;
3553     while ((klass = claim_next_klass()) != NULL) {
3554       clean_klass(klass);
3555     }
3556   }
3557 };
3558 
3559 class G1ResolvedMethodCleaningTask : public StackObj {
3560   volatile int       _resolved_method_task_claimed;
3561 public:
G1ResolvedMethodCleaningTask()3562   G1ResolvedMethodCleaningTask() :
3563       _resolved_method_task_claimed(0) {}
3564 
claim_resolved_method_task()3565   bool claim_resolved_method_task() {
3566     if (_resolved_method_task_claimed) {
3567       return false;
3568     }
3569     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3570   }
3571 
3572   // These aren't big, one thread can do it all.
work()3573   void work() {
3574     if (claim_resolved_method_task()) {
3575       ResolvedMethodTable::unlink();
3576     }
3577   }
3578 };
3579 
3580 
3581 // To minimize the remark pause times, the tasks below are done in parallel.
3582 class G1ParallelCleaningTask : public AbstractGangTask {
3583 private:
3584   bool                          _unloading_occurred;
3585   G1StringAndSymbolCleaningTask _string_symbol_task;
3586   G1CodeCacheUnloadingTask      _code_cache_task;
3587   G1KlassCleaningTask           _klass_cleaning_task;
3588   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3589 
3590 public:
3591   // The constructor is run in the VMThread.
G1ParallelCleaningTask(BoolObjectClosure * is_alive,uint num_workers,bool unloading_occurred)3592   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3593       AbstractGangTask("Parallel Cleaning"),
3594       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3595       _code_cache_task(num_workers, is_alive, unloading_occurred),
3596       _klass_cleaning_task(),
3597       _unloading_occurred(unloading_occurred),
3598       _resolved_method_cleaning_task() {
3599   }
3600 
3601   // The parallel work done by all worker threads.
work(uint worker_id)3602   void work(uint worker_id) {
3603     // Do first pass of code cache cleaning.
3604     _code_cache_task.work_first_pass(worker_id);
3605 
3606     // Let the threads mark that the first pass is done.
3607     _code_cache_task.barrier_mark(worker_id);
3608 
3609     // Clean the Strings and Symbols.
3610     _string_symbol_task.work(worker_id);
3611 
3612     // Clean unreferenced things in the ResolvedMethodTable
3613     _resolved_method_cleaning_task.work();
3614 
3615     // Wait for all workers to finish the first code cache cleaning pass.
3616     _code_cache_task.barrier_wait(worker_id);
3617 
3618     // Do the second code cache cleaning work, which realize on
3619     // the liveness information gathered during the first pass.
3620     _code_cache_task.work_second_pass(worker_id);
3621 
3622     // Clean all klasses that were not unloaded.
3623     // The weak metadata in klass doesn't need to be
3624     // processed if there was no unloading.
3625     if (_unloading_occurred) {
3626       _klass_cleaning_task.work();
3627     }
3628   }
3629 };
3630 
3631 
complete_cleaning(BoolObjectClosure * is_alive,bool class_unloading_occurred)3632 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3633                                         bool class_unloading_occurred) {
3634   uint n_workers = workers()->active_workers();
3635 
3636   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3637   workers()->run_task(&g1_unlink_task);
3638 }
3639 
partial_cleaning(BoolObjectClosure * is_alive,bool process_strings,bool process_symbols,bool process_string_dedup)3640 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3641                                        bool process_strings,
3642                                        bool process_symbols,
3643                                        bool process_string_dedup) {
3644   if (!process_strings && !process_symbols && !process_string_dedup) {
3645     // Nothing to clean.
3646     return;
3647   }
3648 
3649   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3650   workers()->run_task(&g1_unlink_task);
3651 
3652 }
3653 
3654 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3655  private:
3656   DirtyCardQueueSet* _queue;
3657   G1CollectedHeap* _g1h;
3658  public:
G1RedirtyLoggedCardsTask(DirtyCardQueueSet * queue,G1CollectedHeap * g1h)3659   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3660     _queue(queue), _g1h(g1h) { }
3661 
work(uint worker_id)3662   virtual void work(uint worker_id) {
3663     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3664     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3665 
3666     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3667     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3668 
3669     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3670   }
3671 };
3672 
redirty_logged_cards()3673 void G1CollectedHeap::redirty_logged_cards() {
3674   double redirty_logged_cards_start = os::elapsedTime();
3675 
3676   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3677   dirty_card_queue_set().reset_for_par_iteration();
3678   workers()->run_task(&redirty_task);
3679 
3680   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3681   dcq.merge_bufferlists(&dirty_card_queue_set());
3682   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3683 
3684   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3685 }
3686 
3687 // Weak Reference Processing support
3688 
do_object_b(oop p)3689 bool G1STWIsAliveClosure::do_object_b(oop p) {
3690   // An object is reachable if it is outside the collection set,
3691   // or is inside and copied.
3692   return !_g1h->is_in_cset(p) || p->is_forwarded();
3693 }
3694 
do_object_b(oop obj)3695 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3696   assert(obj != NULL, "must not be NULL");
3697   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3698   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3699   // may falsely indicate that this is not the case here: however the collection set only
3700   // contains old regions when concurrent mark is not running.
3701   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3702 }
3703 
3704 // Non Copying Keep Alive closure
3705 class G1KeepAliveClosure: public OopClosure {
3706   G1CollectedHeap*_g1h;
3707 public:
G1KeepAliveClosure(G1CollectedHeap * g1h)3708   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
do_oop(narrowOop * p)3709   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
do_oop(oop * p)3710   void do_oop(oop* p) {
3711     oop obj = *p;
3712     assert(obj != NULL, "the caller should have filtered out NULL values");
3713 
3714     const InCSetState cset_state =_g1h->in_cset_state(obj);
3715     if (!cset_state.is_in_cset_or_humongous()) {
3716       return;
3717     }
3718     if (cset_state.is_in_cset()) {
3719       assert( obj->is_forwarded(), "invariant" );
3720       *p = obj->forwardee();
3721     } else {
3722       assert(!obj->is_forwarded(), "invariant" );
3723       assert(cset_state.is_humongous(),
3724              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3725      _g1h->set_humongous_is_live(obj);
3726     }
3727   }
3728 };
3729 
3730 // Copying Keep Alive closure - can be called from both
3731 // serial and parallel code as long as different worker
3732 // threads utilize different G1ParScanThreadState instances
3733 // and different queues.
3734 
3735 class G1CopyingKeepAliveClosure: public OopClosure {
3736   G1CollectedHeap*         _g1h;
3737   OopClosure*              _copy_non_heap_obj_cl;
3738   G1ParScanThreadState*    _par_scan_state;
3739 
3740 public:
G1CopyingKeepAliveClosure(G1CollectedHeap * g1h,OopClosure * non_heap_obj_cl,G1ParScanThreadState * pss)3741   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3742                             OopClosure* non_heap_obj_cl,
3743                             G1ParScanThreadState* pss):
3744     _g1h(g1h),
3745     _copy_non_heap_obj_cl(non_heap_obj_cl),
3746     _par_scan_state(pss)
3747   {}
3748 
do_oop(narrowOop * p)3749   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)3750   virtual void do_oop(      oop* p) { do_oop_work(p); }
3751 
do_oop_work(T * p)3752   template <class T> void do_oop_work(T* p) {
3753     oop obj = RawAccess<>::oop_load(p);
3754 
3755     if (_g1h->is_in_cset_or_humongous(obj)) {
3756       // If the referent object has been forwarded (either copied
3757       // to a new location or to itself in the event of an
3758       // evacuation failure) then we need to update the reference
3759       // field and, if both reference and referent are in the G1
3760       // heap, update the RSet for the referent.
3761       //
3762       // If the referent has not been forwarded then we have to keep
3763       // it alive by policy. Therefore we have copy the referent.
3764       //
3765       // If the reference field is in the G1 heap then we can push
3766       // on the PSS queue. When the queue is drained (after each
3767       // phase of reference processing) the object and it's followers
3768       // will be copied, the reference field set to point to the
3769       // new location, and the RSet updated. Otherwise we need to
3770       // use the the non-heap or metadata closures directly to copy
3771       // the referent object and update the pointer, while avoiding
3772       // updating the RSet.
3773 
3774       if (_g1h->is_in_g1_reserved(p)) {
3775         _par_scan_state->push_on_queue(p);
3776       } else {
3777         assert(!Metaspace::contains((const void*)p),
3778                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3779         _copy_non_heap_obj_cl->do_oop(p);
3780       }
3781     }
3782   }
3783 };
3784 
3785 // Serial drain queue closure. Called as the 'complete_gc'
3786 // closure for each discovered list in some of the
3787 // reference processing phases.
3788 
3789 class G1STWDrainQueueClosure: public VoidClosure {
3790 protected:
3791   G1CollectedHeap* _g1h;
3792   G1ParScanThreadState* _par_scan_state;
3793 
par_scan_state()3794   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3795 
3796 public:
G1STWDrainQueueClosure(G1CollectedHeap * g1h,G1ParScanThreadState * pss)3797   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3798     _g1h(g1h),
3799     _par_scan_state(pss)
3800   { }
3801 
do_void()3802   void do_void() {
3803     G1ParScanThreadState* const pss = par_scan_state();
3804     pss->trim_queue();
3805   }
3806 };
3807 
3808 // Parallel Reference Processing closures
3809 
3810 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3811 // processing during G1 evacuation pauses.
3812 
3813 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3814 private:
3815   G1CollectedHeap*          _g1h;
3816   G1ParScanThreadStateSet*  _pss;
3817   RefToScanQueueSet*        _queues;
3818   WorkGang*                 _workers;
3819 
3820 public:
G1STWRefProcTaskExecutor(G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,WorkGang * workers,RefToScanQueueSet * task_queues)3821   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3822                            G1ParScanThreadStateSet* per_thread_states,
3823                            WorkGang* workers,
3824                            RefToScanQueueSet *task_queues) :
3825     _g1h(g1h),
3826     _pss(per_thread_states),
3827     _queues(task_queues),
3828     _workers(workers)
3829   {
3830     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3831   }
3832 
3833   // Executes the given task using concurrent marking worker threads.
3834   virtual void execute(ProcessTask& task, uint ergo_workers);
3835 };
3836 
3837 // Gang task for possibly parallel reference processing
3838 
3839 class G1STWRefProcTaskProxy: public AbstractGangTask {
3840   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3841   ProcessTask&     _proc_task;
3842   G1CollectedHeap* _g1h;
3843   G1ParScanThreadStateSet* _pss;
3844   RefToScanQueueSet* _task_queues;
3845   ParallelTaskTerminator* _terminator;
3846 
3847 public:
G1STWRefProcTaskProxy(ProcessTask & proc_task,G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * task_queues,ParallelTaskTerminator * terminator)3848   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3849                         G1CollectedHeap* g1h,
3850                         G1ParScanThreadStateSet* per_thread_states,
3851                         RefToScanQueueSet *task_queues,
3852                         ParallelTaskTerminator* terminator) :
3853     AbstractGangTask("Process reference objects in parallel"),
3854     _proc_task(proc_task),
3855     _g1h(g1h),
3856     _pss(per_thread_states),
3857     _task_queues(task_queues),
3858     _terminator(terminator)
3859   {}
3860 
work(uint worker_id)3861   virtual void work(uint worker_id) {
3862     // The reference processing task executed by a single worker.
3863     ResourceMark rm;
3864     HandleMark   hm;
3865 
3866     G1STWIsAliveClosure is_alive(_g1h);
3867 
3868     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3869     pss->set_ref_discoverer(NULL);
3870 
3871     // Keep alive closure.
3872     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3873 
3874     // Complete GC closure
3875     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3876 
3877     // Call the reference processing task's work routine.
3878     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3879 
3880     // Note we cannot assert that the refs array is empty here as not all
3881     // of the processing tasks (specifically phase2 - pp2_work) execute
3882     // the complete_gc closure (which ordinarily would drain the queue) so
3883     // the queue may not be empty.
3884   }
3885 };
3886 
3887 // Driver routine for parallel reference processing.
3888 // Creates an instance of the ref processing gang
3889 // task and has the worker threads execute it.
execute(ProcessTask & proc_task,uint ergo_workers)3890 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3891   assert(_workers != NULL, "Need parallel worker threads.");
3892 
3893   assert(_workers->active_workers() >= ergo_workers,
3894          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3895          ergo_workers, _workers->active_workers());
3896   ParallelTaskTerminator terminator(ergo_workers, _queues);
3897   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3898 
3899   _workers->run_task(&proc_task_proxy, ergo_workers);
3900 }
3901 
3902 // End of weak reference support closures
3903 
process_discovered_references(G1ParScanThreadStateSet * per_thread_states)3904 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3905   double ref_proc_start = os::elapsedTime();
3906 
3907   ReferenceProcessor* rp = _ref_processor_stw;
3908   assert(rp->discovery_enabled(), "should have been enabled");
3909 
3910   // Closure to test whether a referent is alive.
3911   G1STWIsAliveClosure is_alive(this);
3912 
3913   // Even when parallel reference processing is enabled, the processing
3914   // of JNI refs is serial and performed serially by the current thread
3915   // rather than by a worker. The following PSS will be used for processing
3916   // JNI refs.
3917 
3918   // Use only a single queue for this PSS.
3919   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3920   pss->set_ref_discoverer(NULL);
3921   assert(pss->queue_is_empty(), "pre-condition");
3922 
3923   // Keep alive closure.
3924   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
3925 
3926   // Serial Complete GC closure
3927   G1STWDrainQueueClosure drain_queue(this, pss);
3928 
3929   // Setup the soft refs policy...
3930   rp->setup_policy(false);
3931 
3932   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3933 
3934   ReferenceProcessorStats stats;
3935   if (!rp->processing_is_mt()) {
3936     // Serial reference processing...
3937     stats = rp->process_discovered_references(&is_alive,
3938                                               &keep_alive,
3939                                               &drain_queue,
3940                                               NULL,
3941                                               pt);
3942   } else {
3943     uint no_of_gc_workers = workers()->active_workers();
3944 
3945     // Parallel reference processing
3946     assert(no_of_gc_workers <= rp->max_num_queues(),
3947            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3948            no_of_gc_workers,  rp->max_num_queues());
3949 
3950     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3951     stats = rp->process_discovered_references(&is_alive,
3952                                               &keep_alive,
3953                                               &drain_queue,
3954                                               &par_task_executor,
3955                                               pt);
3956   }
3957 
3958   _gc_tracer_stw->report_gc_reference_stats(stats);
3959 
3960   // We have completed copying any necessary live referent objects.
3961   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3962 
3963   make_pending_list_reachable();
3964 
3965   rp->verify_no_references_recorded();
3966 
3967   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3968   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3969 }
3970 
make_pending_list_reachable()3971 void G1CollectedHeap::make_pending_list_reachable() {
3972   if (collector_state()->in_initial_mark_gc()) {
3973     oop pll_head = Universe::reference_pending_list();
3974     if (pll_head != NULL) {
3975       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3976       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3977     }
3978   }
3979 }
3980 
merge_per_thread_state_info(G1ParScanThreadStateSet * per_thread_states)3981 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3982   double merge_pss_time_start = os::elapsedTime();
3983   per_thread_states->flush();
3984   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3985 }
3986 
pre_evacuate_collection_set()3987 void G1CollectedHeap::pre_evacuate_collection_set() {
3988   _expand_heap_after_alloc_failure = true;
3989   _evacuation_failed = false;
3990 
3991   // Disable the hot card cache.
3992   _hot_card_cache->reset_hot_cache_claimed_index();
3993   _hot_card_cache->set_use_cache(false);
3994 
3995   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3996   _preserved_marks_set.assert_empty();
3997 
3998   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3999 
4000   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4001   if (collector_state()->in_initial_mark_gc()) {
4002     double start_clear_claimed_marks = os::elapsedTime();
4003 
4004     ClassLoaderDataGraph::clear_claimed_marks();
4005 
4006     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4007     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4008   }
4009 }
4010 
evacuate_collection_set(G1ParScanThreadStateSet * per_thread_states)4011 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4012   // Should G1EvacuationFailureALot be in effect for this GC?
4013   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4014 
4015   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4016 
4017   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4018 
4019   double start_par_time_sec = os::elapsedTime();
4020   double end_par_time_sec;
4021 
4022   {
4023     const uint n_workers = workers()->active_workers();
4024     G1RootProcessor root_processor(this, n_workers);
4025     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4026 
4027     print_termination_stats_hdr();
4028 
4029     workers()->run_task(&g1_par_task);
4030     end_par_time_sec = os::elapsedTime();
4031 
4032     // Closing the inner scope will execute the destructor
4033     // for the G1RootProcessor object. We record the current
4034     // elapsed time before closing the scope so that time
4035     // taken for the destructor is NOT included in the
4036     // reported parallel time.
4037   }
4038 
4039   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4040   phase_times->record_par_time(par_time_ms);
4041 
4042   double code_root_fixup_time_ms =
4043         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4044   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4045 }
4046 
post_evacuate_collection_set(EvacuationInfo & evacuation_info,G1ParScanThreadStateSet * per_thread_states)4047 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4048   // Also cleans the card table from temporary duplicate detection information used
4049   // during UpdateRS/ScanRS.
4050   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4051 
4052   // Process any discovered reference objects - we have
4053   // to do this _before_ we retire the GC alloc regions
4054   // as we may have to copy some 'reachable' referent
4055   // objects (and their reachable sub-graphs) that were
4056   // not copied during the pause.
4057   process_discovered_references(per_thread_states);
4058 
4059   // FIXME
4060   // CM's reference processing also cleans up the string and symbol tables.
4061   // Should we do that here also? We could, but it is a serial operation
4062   // and could significantly increase the pause time.
4063 
4064   G1STWIsAliveClosure is_alive(this);
4065   G1KeepAliveClosure keep_alive(this);
4066 
4067   {
4068     double start = os::elapsedTime();
4069 
4070     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4071 
4072     double time_ms = (os::elapsedTime() - start) * 1000.0;
4073     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4074   }
4075 
4076   if (G1StringDedup::is_enabled()) {
4077     double fixup_start = os::elapsedTime();
4078 
4079     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4080 
4081     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4082     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4083   }
4084 
4085   if (evacuation_failed()) {
4086     restore_after_evac_failure();
4087 
4088     // Reset the G1EvacuationFailureALot counters and flags
4089     // Note: the values are reset only when an actual
4090     // evacuation failure occurs.
4091     NOT_PRODUCT(reset_evacuation_should_fail();)
4092   }
4093 
4094   _preserved_marks_set.assert_empty();
4095 
4096   _allocator->release_gc_alloc_regions(evacuation_info);
4097 
4098   merge_per_thread_state_info(per_thread_states);
4099 
4100   // Reset and re-enable the hot card cache.
4101   // Note the counts for the cards in the regions in the
4102   // collection set are reset when the collection set is freed.
4103   _hot_card_cache->reset_hot_cache();
4104   _hot_card_cache->set_use_cache(true);
4105 
4106   purge_code_root_memory();
4107 
4108   redirty_logged_cards();
4109 #if COMPILER2_OR_JVMCI
4110   double start = os::elapsedTime();
4111   DerivedPointerTable::update_pointers();
4112   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4113 #endif
4114   g1_policy()->print_age_table();
4115 }
4116 
record_obj_copy_mem_stats()4117 void G1CollectedHeap::record_obj_copy_mem_stats() {
4118   g1_policy()->old_gen_alloc_tracker()->
4119     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4120 
4121   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4122                                                create_g1_evac_summary(&_old_evac_stats));
4123 }
4124 
free_region(HeapRegion * hr,FreeRegionList * free_list,bool skip_remset,bool skip_hot_card_cache,bool locked)4125 void G1CollectedHeap::free_region(HeapRegion* hr,
4126                                   FreeRegionList* free_list,
4127                                   bool skip_remset,
4128                                   bool skip_hot_card_cache,
4129                                   bool locked) {
4130   assert(!hr->is_free(), "the region should not be free");
4131   assert(!hr->is_empty(), "the region should not be empty");
4132   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4133   assert(free_list != NULL, "pre-condition");
4134 
4135   if (G1VerifyBitmaps) {
4136     MemRegion mr(hr->bottom(), hr->end());
4137     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4138   }
4139 
4140   // Clear the card counts for this region.
4141   // Note: we only need to do this if the region is not young
4142   // (since we don't refine cards in young regions).
4143   if (!skip_hot_card_cache && !hr->is_young()) {
4144     _hot_card_cache->reset_card_counts(hr);
4145   }
4146   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4147   _g1_policy->remset_tracker()->update_at_free(hr);
4148   free_list->add_ordered(hr);
4149 }
4150 
free_humongous_region(HeapRegion * hr,FreeRegionList * free_list)4151 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4152                                             FreeRegionList* free_list) {
4153   assert(hr->is_humongous(), "this is only for humongous regions");
4154   assert(free_list != NULL, "pre-condition");
4155   hr->clear_humongous();
4156   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4157 }
4158 
remove_from_old_sets(const uint old_regions_removed,const uint humongous_regions_removed)4159 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4160                                            const uint humongous_regions_removed) {
4161   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4162     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4163     _old_set.bulk_remove(old_regions_removed);
4164     _humongous_set.bulk_remove(humongous_regions_removed);
4165   }
4166 
4167 }
4168 
prepend_to_freelist(FreeRegionList * list)4169 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4170   assert(list != NULL, "list can't be null");
4171   if (!list->is_empty()) {
4172     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4173     _hrm.insert_list_into_free_list(list);
4174   }
4175 }
4176 
decrement_summary_bytes(size_t bytes)4177 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4178   decrease_used(bytes);
4179 }
4180 
4181 class G1FreeCollectionSetTask : public AbstractGangTask {
4182 private:
4183 
4184   // Closure applied to all regions in the collection set to do work that needs to
4185   // be done serially in a single thread.
4186   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4187   private:
4188     EvacuationInfo* _evacuation_info;
4189     const size_t* _surviving_young_words;
4190 
4191     // Bytes used in successfully evacuated regions before the evacuation.
4192     size_t _before_used_bytes;
4193     // Bytes used in unsucessfully evacuated regions before the evacuation
4194     size_t _after_used_bytes;
4195 
4196     size_t _bytes_allocated_in_old_since_last_gc;
4197 
4198     size_t _failure_used_words;
4199     size_t _failure_waste_words;
4200 
4201     FreeRegionList _local_free_list;
4202   public:
G1SerialFreeCollectionSetClosure(EvacuationInfo * evacuation_info,const size_t * surviving_young_words)4203     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4204       HeapRegionClosure(),
4205       _evacuation_info(evacuation_info),
4206       _surviving_young_words(surviving_young_words),
4207       _before_used_bytes(0),
4208       _after_used_bytes(0),
4209       _bytes_allocated_in_old_since_last_gc(0),
4210       _failure_used_words(0),
4211       _failure_waste_words(0),
4212       _local_free_list("Local Region List for CSet Freeing") {
4213     }
4214 
do_heap_region(HeapRegion * r)4215     virtual bool do_heap_region(HeapRegion* r) {
4216       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4217 
4218       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4219       g1h->clear_in_cset(r);
4220 
4221       if (r->is_young()) {
4222         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4223                "Young index %d is wrong for region %u of type %s with %u young regions",
4224                r->young_index_in_cset(),
4225                r->hrm_index(),
4226                r->get_type_str(),
4227                g1h->collection_set()->young_region_length());
4228         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4229         r->record_surv_words_in_group(words_survived);
4230       }
4231 
4232       if (!r->evacuation_failed()) {
4233         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4234         _before_used_bytes += r->used();
4235         g1h->free_region(r,
4236                          &_local_free_list,
4237                          true, /* skip_remset */
4238                          true, /* skip_hot_card_cache */
4239                          true  /* locked */);
4240       } else {
4241         r->uninstall_surv_rate_group();
4242         r->set_young_index_in_cset(-1);
4243         r->set_evacuation_failed(false);
4244         // When moving a young gen region to old gen, we "allocate" that whole region
4245         // there. This is in addition to any already evacuated objects. Notify the
4246         // policy about that.
4247         // Old gen regions do not cause an additional allocation: both the objects
4248         // still in the region and the ones already moved are accounted for elsewhere.
4249         if (r->is_young()) {
4250           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4251         }
4252         // The region is now considered to be old.
4253         r->set_old();
4254         // Do some allocation statistics accounting. Regions that failed evacuation
4255         // are always made old, so there is no need to update anything in the young
4256         // gen statistics, but we need to update old gen statistics.
4257         size_t used_words = r->marked_bytes() / HeapWordSize;
4258 
4259         _failure_used_words += used_words;
4260         _failure_waste_words += HeapRegion::GrainWords - used_words;
4261 
4262         g1h->old_set_add(r);
4263         _after_used_bytes += r->used();
4264       }
4265       return false;
4266     }
4267 
complete_work()4268     void complete_work() {
4269       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4270 
4271       _evacuation_info->set_regions_freed(_local_free_list.length());
4272       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4273 
4274       g1h->prepend_to_freelist(&_local_free_list);
4275       g1h->decrement_summary_bytes(_before_used_bytes);
4276 
4277       G1Policy* policy = g1h->g1_policy();
4278       policy->old_gen_alloc_tracker()->add_allocated_bytes_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4279 
4280       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4281     }
4282   };
4283 
4284   G1CollectionSet* _collection_set;
4285   G1SerialFreeCollectionSetClosure _cl;
4286   const size_t* _surviving_young_words;
4287 
4288   size_t _rs_lengths;
4289 
4290   volatile jint _serial_work_claim;
4291 
4292   struct WorkItem {
4293     uint region_idx;
4294     bool is_young;
4295     bool evacuation_failed;
4296 
WorkItemG1FreeCollectionSetTask::WorkItem4297     WorkItem(HeapRegion* r) {
4298       region_idx = r->hrm_index();
4299       is_young = r->is_young();
4300       evacuation_failed = r->evacuation_failed();
4301     }
4302   };
4303 
4304   volatile size_t _parallel_work_claim;
4305   size_t _num_work_items;
4306   WorkItem* _work_items;
4307 
do_serial_work()4308   void do_serial_work() {
4309     // Need to grab the lock to be allowed to modify the old region list.
4310     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4311     _collection_set->iterate(&_cl);
4312   }
4313 
do_parallel_work_for_region(uint region_idx,bool is_young,bool evacuation_failed)4314   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4315     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4316 
4317     HeapRegion* r = g1h->region_at(region_idx);
4318     assert(!g1h->is_on_master_free_list(r), "sanity");
4319 
4320     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4321 
4322     if (!is_young) {
4323       g1h->_hot_card_cache->reset_card_counts(r);
4324     }
4325 
4326     if (!evacuation_failed) {
4327       r->rem_set()->clear_locked();
4328     }
4329   }
4330 
4331   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4332   private:
4333     size_t _cur_idx;
4334     WorkItem* _work_items;
4335   public:
G1PrepareFreeCollectionSetClosure(WorkItem * work_items)4336     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4337 
do_heap_region(HeapRegion * r)4338     virtual bool do_heap_region(HeapRegion* r) {
4339       _work_items[_cur_idx++] = WorkItem(r);
4340       return false;
4341     }
4342   };
4343 
prepare_work()4344   void prepare_work() {
4345     G1PrepareFreeCollectionSetClosure cl(_work_items);
4346     _collection_set->iterate(&cl);
4347   }
4348 
complete_work()4349   void complete_work() {
4350     _cl.complete_work();
4351 
4352     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4353     policy->record_max_rs_lengths(_rs_lengths);
4354     policy->cset_regions_freed();
4355   }
4356 public:
G1FreeCollectionSetTask(G1CollectionSet * collection_set,EvacuationInfo * evacuation_info,const size_t * surviving_young_words)4357   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4358     AbstractGangTask("G1 Free Collection Set"),
4359     _cl(evacuation_info, surviving_young_words),
4360     _collection_set(collection_set),
4361     _surviving_young_words(surviving_young_words),
4362     _serial_work_claim(0),
4363     _rs_lengths(0),
4364     _parallel_work_claim(0),
4365     _num_work_items(collection_set->region_length()),
4366     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4367     prepare_work();
4368   }
4369 
~G1FreeCollectionSetTask()4370   ~G1FreeCollectionSetTask() {
4371     complete_work();
4372     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4373   }
4374 
4375   // Chunk size for work distribution. The chosen value has been determined experimentally
4376   // to be a good tradeoff between overhead and achievable parallelism.
chunk_size()4377   static uint chunk_size() { return 32; }
4378 
work(uint worker_id)4379   virtual void work(uint worker_id) {
4380     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4381 
4382     // Claim serial work.
4383     if (_serial_work_claim == 0) {
4384       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4385       if (value == 0) {
4386         double serial_time = os::elapsedTime();
4387         do_serial_work();
4388         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4389       }
4390     }
4391 
4392     // Start parallel work.
4393     double young_time = 0.0;
4394     bool has_young_time = false;
4395     double non_young_time = 0.0;
4396     bool has_non_young_time = false;
4397 
4398     while (true) {
4399       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4400       size_t cur = end - chunk_size();
4401 
4402       if (cur >= _num_work_items) {
4403         break;
4404       }
4405 
4406       double start_time = os::elapsedTime();
4407 
4408       end = MIN2(end, _num_work_items);
4409 
4410       for (; cur < end; cur++) {
4411         bool is_young = _work_items[cur].is_young;
4412 
4413         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4414 
4415         double end_time = os::elapsedTime();
4416         double time_taken = end_time - start_time;
4417         if (is_young) {
4418           young_time += time_taken;
4419           has_young_time = true;
4420         } else {
4421           non_young_time += time_taken;
4422           has_non_young_time = true;
4423         }
4424         start_time = end_time;
4425       }
4426     }
4427 
4428     if (has_young_time) {
4429       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4430     }
4431     if (has_non_young_time) {
4432       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4433     }
4434   }
4435 };
4436 
free_collection_set(G1CollectionSet * collection_set,EvacuationInfo & evacuation_info,const size_t * surviving_young_words)4437 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4438   _eden.clear();
4439 
4440   double free_cset_start_time = os::elapsedTime();
4441 
4442   {
4443     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4444     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4445 
4446     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4447 
4448     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4449                         cl.name(),
4450                         num_workers,
4451                         _collection_set.region_length());
4452     workers()->run_task(&cl, num_workers);
4453   }
4454   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4455 
4456   collection_set->clear();
4457 }
4458 
4459 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4460  private:
4461   FreeRegionList* _free_region_list;
4462   HeapRegionSet* _proxy_set;
4463   uint _humongous_objects_reclaimed;
4464   uint _humongous_regions_reclaimed;
4465   size_t _freed_bytes;
4466  public:
4467 
G1FreeHumongousRegionClosure(FreeRegionList * free_region_list)4468   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4469     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4470   }
4471 
do_heap_region(HeapRegion * r)4472   virtual bool do_heap_region(HeapRegion* r) {
4473     if (!r->is_starts_humongous()) {
4474       return false;
4475     }
4476 
4477     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4478 
4479     oop obj = (oop)r->bottom();
4480     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4481 
4482     // The following checks whether the humongous object is live are sufficient.
4483     // The main additional check (in addition to having a reference from the roots
4484     // or the young gen) is whether the humongous object has a remembered set entry.
4485     //
4486     // A humongous object cannot be live if there is no remembered set for it
4487     // because:
4488     // - there can be no references from within humongous starts regions referencing
4489     // the object because we never allocate other objects into them.
4490     // (I.e. there are no intra-region references that may be missed by the
4491     // remembered set)
4492     // - as soon there is a remembered set entry to the humongous starts region
4493     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4494     // until the end of a concurrent mark.
4495     //
4496     // It is not required to check whether the object has been found dead by marking
4497     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4498     // all objects allocated during that time are considered live.
4499     // SATB marking is even more conservative than the remembered set.
4500     // So if at this point in the collection there is no remembered set entry,
4501     // nobody has a reference to it.
4502     // At the start of collection we flush all refinement logs, and remembered sets
4503     // are completely up-to-date wrt to references to the humongous object.
4504     //
4505     // Other implementation considerations:
4506     // - never consider object arrays at this time because they would pose
4507     // considerable effort for cleaning up the the remembered sets. This is
4508     // required because stale remembered sets might reference locations that
4509     // are currently allocated into.
4510     uint region_idx = r->hrm_index();
4511     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4512         !r->rem_set()->is_empty()) {
4513       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4514                                region_idx,
4515                                (size_t)obj->size() * HeapWordSize,
4516                                p2i(r->bottom()),
4517                                r->rem_set()->occupied(),
4518                                r->rem_set()->strong_code_roots_list_length(),
4519                                next_bitmap->is_marked(r->bottom()),
4520                                g1h->is_humongous_reclaim_candidate(region_idx),
4521                                obj->is_typeArray()
4522                               );
4523       return false;
4524     }
4525 
4526     guarantee(obj->is_typeArray(),
4527               "Only eagerly reclaiming type arrays is supported, but the object "
4528               PTR_FORMAT " is not.", p2i(r->bottom()));
4529 
4530     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4531                              region_idx,
4532                              (size_t)obj->size() * HeapWordSize,
4533                              p2i(r->bottom()),
4534                              r->rem_set()->occupied(),
4535                              r->rem_set()->strong_code_roots_list_length(),
4536                              next_bitmap->is_marked(r->bottom()),
4537                              g1h->is_humongous_reclaim_candidate(region_idx),
4538                              obj->is_typeArray()
4539                             );
4540 
4541     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4542     cm->humongous_object_eagerly_reclaimed(r);
4543     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4544            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4545            region_idx,
4546            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4547            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4548     _humongous_objects_reclaimed++;
4549     do {
4550       HeapRegion* next = g1h->next_region_in_humongous(r);
4551       _freed_bytes += r->used();
4552       r->set_containing_set(NULL);
4553       _humongous_regions_reclaimed++;
4554       g1h->free_humongous_region(r, _free_region_list);
4555       r = next;
4556     } while (r != NULL);
4557 
4558     return false;
4559   }
4560 
humongous_objects_reclaimed()4561   uint humongous_objects_reclaimed() {
4562     return _humongous_objects_reclaimed;
4563   }
4564 
humongous_regions_reclaimed()4565   uint humongous_regions_reclaimed() {
4566     return _humongous_regions_reclaimed;
4567   }
4568 
bytes_freed() const4569   size_t bytes_freed() const {
4570     return _freed_bytes;
4571   }
4572 };
4573 
eagerly_reclaim_humongous_regions()4574 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4575   assert_at_safepoint_on_vm_thread();
4576 
4577   if (!G1EagerReclaimHumongousObjects ||
4578       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4579     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4580     return;
4581   }
4582 
4583   double start_time = os::elapsedTime();
4584 
4585   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4586 
4587   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4588   heap_region_iterate(&cl);
4589 
4590   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4591 
4592   G1HRPrinter* hrp = hr_printer();
4593   if (hrp->is_active()) {
4594     FreeRegionListIterator iter(&local_cleanup_list);
4595     while (iter.more_available()) {
4596       HeapRegion* hr = iter.get_next();
4597       hrp->cleanup(hr);
4598     }
4599   }
4600 
4601   prepend_to_freelist(&local_cleanup_list);
4602   decrement_summary_bytes(cl.bytes_freed());
4603 
4604   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4605                                                                     cl.humongous_objects_reclaimed());
4606 }
4607 
4608 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4609 public:
do_heap_region(HeapRegion * r)4610   virtual bool do_heap_region(HeapRegion* r) {
4611     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4612     G1CollectedHeap::heap()->clear_in_cset(r);
4613     r->set_young_index_in_cset(-1);
4614     return false;
4615   }
4616 };
4617 
abandon_collection_set(G1CollectionSet * collection_set)4618 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4619   G1AbandonCollectionSetClosure cl;
4620   collection_set->iterate(&cl);
4621 
4622   collection_set->clear();
4623   collection_set->stop_incremental_building();
4624 }
4625 
is_old_gc_alloc_region(HeapRegion * hr)4626 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4627   return _allocator->is_retained_old_region(hr);
4628 }
4629 
set_region_short_lived_locked(HeapRegion * hr)4630 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4631   _eden.add(hr);
4632   _g1_policy->set_region_eden(hr);
4633 }
4634 
4635 #ifdef ASSERT
4636 
4637 class NoYoungRegionsClosure: public HeapRegionClosure {
4638 private:
4639   bool _success;
4640 public:
NoYoungRegionsClosure()4641   NoYoungRegionsClosure() : _success(true) { }
do_heap_region(HeapRegion * r)4642   bool do_heap_region(HeapRegion* r) {
4643     if (r->is_young()) {
4644       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4645                             p2i(r->bottom()), p2i(r->end()));
4646       _success = false;
4647     }
4648     return false;
4649   }
success()4650   bool success() { return _success; }
4651 };
4652 
check_young_list_empty()4653 bool G1CollectedHeap::check_young_list_empty() {
4654   bool ret = (young_regions_count() == 0);
4655 
4656   NoYoungRegionsClosure closure;
4657   heap_region_iterate(&closure);
4658   ret = ret && closure.success();
4659 
4660   return ret;
4661 }
4662 
4663 #endif // ASSERT
4664 
4665 class TearDownRegionSetsClosure : public HeapRegionClosure {
4666 private:
4667   HeapRegionSet *_old_set;
4668 
4669 public:
TearDownRegionSetsClosure(HeapRegionSet * old_set)4670   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4671 
do_heap_region(HeapRegion * r)4672   bool do_heap_region(HeapRegion* r) {
4673     if (r->is_old()) {
4674       _old_set->remove(r);
4675     } else if(r->is_young()) {
4676       r->uninstall_surv_rate_group();
4677     } else {
4678       // We ignore free regions, we'll empty the free list afterwards.
4679       // We ignore humongous regions, we're not tearing down the
4680       // humongous regions set.
4681       assert(r->is_free() || r->is_humongous(),
4682              "it cannot be another type");
4683     }
4684     return false;
4685   }
4686 
~TearDownRegionSetsClosure()4687   ~TearDownRegionSetsClosure() {
4688     assert(_old_set->is_empty(), "post-condition");
4689   }
4690 };
4691 
tear_down_region_sets(bool free_list_only)4692 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4693   assert_at_safepoint_on_vm_thread();
4694 
4695   if (!free_list_only) {
4696     TearDownRegionSetsClosure cl(&_old_set);
4697     heap_region_iterate(&cl);
4698 
4699     // Note that emptying the _young_list is postponed and instead done as
4700     // the first step when rebuilding the regions sets again. The reason for
4701     // this is that during a full GC string deduplication needs to know if
4702     // a collected region was young or old when the full GC was initiated.
4703   }
4704   _hrm.remove_all_free_regions();
4705 }
4706 
increase_used(size_t bytes)4707 void G1CollectedHeap::increase_used(size_t bytes) {
4708   _summary_bytes_used += bytes;
4709 }
4710 
decrease_used(size_t bytes)4711 void G1CollectedHeap::decrease_used(size_t bytes) {
4712   assert(_summary_bytes_used >= bytes,
4713          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4714          _summary_bytes_used, bytes);
4715   _summary_bytes_used -= bytes;
4716 }
4717 
set_used(size_t bytes)4718 void G1CollectedHeap::set_used(size_t bytes) {
4719   _summary_bytes_used = bytes;
4720 }
4721 
4722 class RebuildRegionSetsClosure : public HeapRegionClosure {
4723 private:
4724   bool            _free_list_only;
4725   HeapRegionSet*   _old_set;
4726   HeapRegionManager*   _hrm;
4727   size_t          _total_used;
4728 
4729 public:
RebuildRegionSetsClosure(bool free_list_only,HeapRegionSet * old_set,HeapRegionManager * hrm)4730   RebuildRegionSetsClosure(bool free_list_only,
4731                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4732     _free_list_only(free_list_only),
4733     _old_set(old_set), _hrm(hrm), _total_used(0) {
4734     assert(_hrm->num_free_regions() == 0, "pre-condition");
4735     if (!free_list_only) {
4736       assert(_old_set->is_empty(), "pre-condition");
4737     }
4738   }
4739 
do_heap_region(HeapRegion * r)4740   bool do_heap_region(HeapRegion* r) {
4741     // After full GC, no region should have a remembered set.
4742     r->rem_set()->clear(true);
4743     if (r->is_empty()) {
4744       // Add free regions to the free list
4745       r->set_free();
4746       _hrm->insert_into_free_list(r);
4747     } else if (!_free_list_only) {
4748 
4749       if (r->is_humongous()) {
4750         // We ignore humongous regions. We left the humongous set unchanged.
4751       } else {
4752         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4753         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4754         r->move_to_old();
4755         _old_set->add(r);
4756       }
4757       _total_used += r->used();
4758     }
4759 
4760     return false;
4761   }
4762 
total_used()4763   size_t total_used() {
4764     return _total_used;
4765   }
4766 };
4767 
rebuild_region_sets(bool free_list_only)4768 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4769   assert_at_safepoint_on_vm_thread();
4770 
4771   if (!free_list_only) {
4772     _eden.clear();
4773     _survivor.clear();
4774   }
4775 
4776   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4777   heap_region_iterate(&cl);
4778 
4779   if (!free_list_only) {
4780     set_used(cl.total_used());
4781     if (_archive_allocator != NULL) {
4782       _archive_allocator->clear_used();
4783     }
4784   }
4785   assert(used_unlocked() == recalculate_used(),
4786          "inconsistent used_unlocked(), "
4787          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4788          used_unlocked(), recalculate_used());
4789 }
4790 
is_in_closed_subset(const void * p) const4791 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4792   HeapRegion* hr = heap_region_containing(p);
4793   return hr->is_in(p);
4794 }
4795 
4796 // Methods for the mutator alloc region
4797 
new_mutator_alloc_region(size_t word_size,bool force)4798 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4799                                                       bool force) {
4800   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4801   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4802   if (force || should_allocate) {
4803     HeapRegion* new_alloc_region = new_region(word_size,
4804                                               false /* is_old */,
4805                                               false /* do_expand */);
4806     if (new_alloc_region != NULL) {
4807       set_region_short_lived_locked(new_alloc_region);
4808       _hr_printer.alloc(new_alloc_region, !should_allocate);
4809       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4810       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4811       return new_alloc_region;
4812     }
4813   }
4814   return NULL;
4815 }
4816 
retire_mutator_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes)4817 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4818                                                   size_t allocated_bytes) {
4819   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4820   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4821 
4822   collection_set()->add_eden_region(alloc_region);
4823   increase_used(allocated_bytes);
4824   _hr_printer.retire(alloc_region);
4825   // We update the eden sizes here, when the region is retired,
4826   // instead of when it's allocated, since this is the point that its
4827   // used space has been recored in _summary_bytes_used.
4828   g1mm()->update_eden_size();
4829 }
4830 
4831 // Methods for the GC alloc regions
4832 
has_more_regions(InCSetState dest)4833 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4834   if (dest.is_old()) {
4835     return true;
4836   } else {
4837     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4838   }
4839 }
4840 
new_gc_alloc_region(size_t word_size,InCSetState dest)4841 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4842   assert(FreeList_lock->owned_by_self(), "pre-condition");
4843 
4844   if (!has_more_regions(dest)) {
4845     return NULL;
4846   }
4847 
4848   const bool is_survivor = dest.is_young();
4849 
4850   HeapRegion* new_alloc_region = new_region(word_size,
4851                                             !is_survivor,
4852                                             true /* do_expand */);
4853   if (new_alloc_region != NULL) {
4854     if (is_survivor) {
4855       new_alloc_region->set_survivor();
4856       _survivor.add(new_alloc_region);
4857       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4858     } else {
4859       new_alloc_region->set_old();
4860       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4861     }
4862     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4863     _hr_printer.alloc(new_alloc_region);
4864     bool during_im = collector_state()->in_initial_mark_gc();
4865     new_alloc_region->note_start_of_copying(during_im);
4866     return new_alloc_region;
4867   }
4868   return NULL;
4869 }
4870 
retire_gc_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes,InCSetState dest)4871 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4872                                              size_t allocated_bytes,
4873                                              InCSetState dest) {
4874   bool during_im = collector_state()->in_initial_mark_gc();
4875   alloc_region->note_end_of_copying(during_im);
4876   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4877   if (dest.is_old()) {
4878     _old_set.add(alloc_region);
4879   }
4880   _hr_printer.retire(alloc_region);
4881 }
4882 
alloc_highest_free_region()4883 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4884   bool expanded = false;
4885   uint index = _hrm.find_highest_free(&expanded);
4886 
4887   if (index != G1_NO_HRM_INDEX) {
4888     if (expanded) {
4889       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4890                                 HeapRegion::GrainWords * HeapWordSize);
4891     }
4892     _hrm.allocate_free_regions_starting_at(index, 1);
4893     return region_at(index);
4894   }
4895   return NULL;
4896 }
4897 
4898 // Optimized nmethod scanning
4899 
4900 class RegisterNMethodOopClosure: public OopClosure {
4901   G1CollectedHeap* _g1h;
4902   nmethod* _nm;
4903 
do_oop_work(T * p)4904   template <class T> void do_oop_work(T* p) {
4905     T heap_oop = RawAccess<>::oop_load(p);
4906     if (!CompressedOops::is_null(heap_oop)) {
4907       oop obj = CompressedOops::decode_not_null(heap_oop);
4908       HeapRegion* hr = _g1h->heap_region_containing(obj);
4909       assert(!hr->is_continues_humongous(),
4910              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4911              " starting at " HR_FORMAT,
4912              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4913 
4914       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4915       hr->add_strong_code_root_locked(_nm);
4916     }
4917   }
4918 
4919 public:
RegisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)4920   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4921     _g1h(g1h), _nm(nm) {}
4922 
do_oop(oop * p)4923   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)4924   void do_oop(narrowOop* p) { do_oop_work(p); }
4925 };
4926 
4927 class UnregisterNMethodOopClosure: public OopClosure {
4928   G1CollectedHeap* _g1h;
4929   nmethod* _nm;
4930 
do_oop_work(T * p)4931   template <class T> void do_oop_work(T* p) {
4932     T heap_oop = RawAccess<>::oop_load(p);
4933     if (!CompressedOops::is_null(heap_oop)) {
4934       oop obj = CompressedOops::decode_not_null(heap_oop);
4935       HeapRegion* hr = _g1h->heap_region_containing(obj);
4936       assert(!hr->is_continues_humongous(),
4937              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4938              " starting at " HR_FORMAT,
4939              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4940 
4941       hr->remove_strong_code_root(_nm);
4942     }
4943   }
4944 
4945 public:
UnregisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)4946   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4947     _g1h(g1h), _nm(nm) {}
4948 
do_oop(oop * p)4949   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)4950   void do_oop(narrowOop* p) { do_oop_work(p); }
4951 };
4952 
4953 // Returns true if the reference points to an object that
4954 // can move in an incremental collection.
is_scavengable(oop obj)4955 bool G1CollectedHeap::is_scavengable(oop obj) {
4956   HeapRegion* hr = heap_region_containing(obj);
4957   return !hr->is_pinned();
4958 }
4959 
register_nmethod(nmethod * nm)4960 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4961   guarantee(nm != NULL, "sanity");
4962   RegisterNMethodOopClosure reg_cl(this, nm);
4963   nm->oops_do(&reg_cl);
4964 }
4965 
unregister_nmethod(nmethod * nm)4966 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4967   guarantee(nm != NULL, "sanity");
4968   UnregisterNMethodOopClosure reg_cl(this, nm);
4969   nm->oops_do(&reg_cl, true);
4970 }
4971 
purge_code_root_memory()4972 void G1CollectedHeap::purge_code_root_memory() {
4973   double purge_start = os::elapsedTime();
4974   G1CodeRootSet::purge();
4975   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4976   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4977 }
4978 
4979 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4980   G1CollectedHeap* _g1h;
4981 
4982 public:
RebuildStrongCodeRootClosure(G1CollectedHeap * g1h)4983   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4984     _g1h(g1h) {}
4985 
do_code_blob(CodeBlob * cb)4986   void do_code_blob(CodeBlob* cb) {
4987     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4988     if (nm == NULL) {
4989       return;
4990     }
4991 
4992     if (ScavengeRootsInCode) {
4993       _g1h->register_nmethod(nm);
4994     }
4995   }
4996 };
4997 
rebuild_strong_code_roots()4998 void G1CollectedHeap::rebuild_strong_code_roots() {
4999   RebuildStrongCodeRootClosure blob_cl(this);
5000   CodeCache::blobs_do(&blob_cl);
5001 }
5002 
memory_managers()5003 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5004   GrowableArray<GCMemoryManager*> memory_managers(2);
5005   memory_managers.append(&_memory_manager);
5006   memory_managers.append(&_full_gc_memory_manager);
5007   return memory_managers;
5008 }
5009 
memory_pools()5010 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5011   GrowableArray<MemoryPool*> memory_pools(3);
5012   memory_pools.append(_eden_pool);
5013   memory_pools.append(_survivor_pool);
5014   memory_pools.append(_old_pool);
5015   return memory_pools;
5016 }
5017