1 /*
2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_SHARED_GENERATION_HPP
26 #define SHARE_VM_GC_SHARED_GENERATION_HPP
27 
28 #include "gc/shared/collectorCounters.hpp"
29 #include "gc/shared/referenceProcessor.hpp"
30 #include "logging/log.hpp"
31 #include "memory/allocation.hpp"
32 #include "memory/memRegion.hpp"
33 #include "memory/universe.hpp"
34 #include "memory/virtualspace.hpp"
35 #include "runtime/mutex.hpp"
36 #include "runtime/perfData.hpp"
37 
38 // A Generation models a heap area for similarly-aged objects.
39 // It will contain one ore more spaces holding the actual objects.
40 //
41 // The Generation class hierarchy:
42 //
43 // Generation                      - abstract base class
44 // - DefNewGeneration              - allocation area (copy collected)
45 //   - ParNewGeneration            - a DefNewGeneration that is collected by
46 //                                   several threads
47 // - CardGeneration                 - abstract class adding offset array behavior
48 //   - TenuredGeneration             - tenured (old object) space (markSweepCompact)
49 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
50 //                                       (Detlefs-Printezis refinement of
51 //                                       Boehm-Demers-Schenker)
52 //
53 // The system configurations currently allowed are:
54 //
55 //   DefNewGeneration + TenuredGeneration
56 //
57 //   ParNewGeneration + ConcurrentMarkSweepGeneration
58 //
59 
60 class DefNewGeneration;
61 class GCMemoryManager;
62 class GenerationSpec;
63 class CompactibleSpace;
64 class ContiguousSpace;
65 class CompactPoint;
66 class OopsInGenClosure;
67 class OopClosure;
68 class ScanClosure;
69 class FastScanClosure;
70 class GenCollectedHeap;
71 class GCStats;
72 
73 // A "ScratchBlock" represents a block of memory in one generation usable by
74 // another.  It represents "num_words" free words, starting at and including
75 // the address of "this".
76 struct ScratchBlock {
77   ScratchBlock* next;
78   size_t num_words;
79   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
80                               // first two fields are word-sized.)
81 };
82 
83 class Generation: public CHeapObj<mtGC> {
84   friend class VMStructs;
85  private:
86   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
87   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
88                                // used region at some specific point during collection.
89 
90   GCMemoryManager* _gc_manager;
91 
92  protected:
93   // Minimum and maximum addresses for memory reserved (not necessarily
94   // committed) for generation.
95   // Used by card marking code. Must not overlap with address ranges of
96   // other generations.
97   MemRegion _reserved;
98 
99   // Memory area reserved for generation
100   VirtualSpace _virtual_space;
101 
102   // ("Weak") Reference processing support
103   SpanSubjectToDiscoveryClosure _span_based_discoverer;
104   ReferenceProcessor* _ref_processor;
105 
106   // Performance Counters
107   CollectorCounters* _gc_counters;
108 
109   // Statistics for garbage collection
110   GCStats* _gc_stats;
111 
112   // Initialize the generation.
113   Generation(ReservedSpace rs, size_t initial_byte_size);
114 
115   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
116   // "sp" that point into younger generations.
117   // The iteration is only over objects allocated at the start of the
118   // iterations; objects allocated as a result of applying the closure are
119   // not included.
120   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl, uint n_threads);
121 
122  public:
123   // The set of possible generation kinds.
124   enum Name {
125     DefNew,
126     ParNew,
127     MarkSweepCompact,
128     ConcurrentMarkSweep,
129     Other
130   };
131 
132   enum SomePublicConstants {
133     // Generations are GenGrain-aligned and have size that are multiples of
134     // GenGrain.
135     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
136     // (we expect its low byte to be zero - see implementation of post_barrier)
137     LogOfGenGrain = 16 ARM32_ONLY(+1),
138     GenGrain = 1 << LogOfGenGrain
139   };
140 
141   // allocate and initialize ("weak") refs processing support
142   virtual void ref_processor_init();
set_ref_processor(ReferenceProcessor * rp)143   void set_ref_processor(ReferenceProcessor* rp) {
144     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
145     _ref_processor = rp;
146   }
147 
kind()148   virtual Generation::Name kind() { return Generation::Other; }
149 
150   // This properly belongs in the collector, but for now this
151   // will do.
refs_discovery_is_atomic() const152   virtual bool refs_discovery_is_atomic() const { return true;  }
refs_discovery_is_mt() const153   virtual bool refs_discovery_is_mt()     const { return false; }
154 
155   // Space inquiries (results in bytes)
156   size_t initial_size();
157   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
158                                         // generation can currently hold.
159   virtual size_t used() const = 0;      // The number of used bytes in the gen.
160   virtual size_t used_stable() const;   // The number of used bytes for memory monitoring tools.
161   virtual size_t free() const = 0;      // The number of free bytes in the gen.
162 
163   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
164   // Returns the total number of bytes  available in a generation
165   // for the allocation of objects.
166   virtual size_t max_capacity() const;
167 
168   // If this is a young generation, the maximum number of bytes that can be
169   // allocated in this generation before a GC is triggered.
capacity_before_gc() const170   virtual size_t capacity_before_gc() const { return 0; }
171 
172   // The largest number of contiguous free bytes in the generation,
173   // including expansion  (Assumes called at a safepoint.)
174   virtual size_t contiguous_available() const = 0;
175   // The largest number of contiguous free bytes in this or any higher generation.
176   virtual size_t max_contiguous_available() const;
177 
178   // Returns true if promotions of the specified amount are
179   // likely to succeed without a promotion failure.
180   // Promotion of the full amount is not guaranteed but
181   // might be attempted in the worst case.
182   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
183 
184   // For a non-young generation, this interface can be used to inform a
185   // generation that a promotion attempt into that generation failed.
186   // Typically used to enable diagnostic output for post-mortem analysis,
187   // but other uses of the interface are not ruled out.
promotion_failure_occurred()188   virtual void promotion_failure_occurred() { /* does nothing */ }
189 
190   // Return an estimate of the maximum allocation that could be performed
191   // in the generation without triggering any collection or expansion
192   // activity.  It is "unsafe" because no locks are taken; the result
193   // should be treated as an approximation, not a guarantee, for use in
194   // heuristic resizing decisions.
195   virtual size_t unsafe_max_alloc_nogc() const = 0;
196 
197   // Returns true if this generation cannot be expanded further
198   // without a GC. Override as appropriate.
is_maximal_no_gc() const199   virtual bool is_maximal_no_gc() const {
200     return _virtual_space.uncommitted_size() == 0;
201   }
202 
reserved() const203   MemRegion reserved() const { return _reserved; }
204 
205   // Returns a region guaranteed to contain all the objects in the
206   // generation.
used_region() const207   virtual MemRegion used_region() const { return _reserved; }
208 
prev_used_region() const209   MemRegion prev_used_region() const { return _prev_used_region; }
save_used_region()210   virtual void  save_used_region()   { _prev_used_region = used_region(); }
211 
212   // Returns "TRUE" iff "p" points into the committed areas in the generation.
213   // For some kinds of generations, this may be an expensive operation.
214   // To avoid performance problems stemming from its inadvertent use in
215   // product jvm's, we restrict its use to assertion checking or
216   // verification only.
217   virtual bool is_in(const void* p) const;
218 
219   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
is_in_reserved(const void * p) const220   bool is_in_reserved(const void* p) const {
221     return _reserved.contains(p);
222   }
223 
224   // If some space in the generation contains the given "addr", return a
225   // pointer to that space, else return "NULL".
226   virtual Space* space_containing(const void* addr) const;
227 
228   // Iteration - do not use for time critical operations
229   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
230 
231   // Returns the first space, if any, in the generation that can participate
232   // in compaction, or else "NULL".
233   virtual CompactibleSpace* first_compaction_space() const = 0;
234 
235   // Returns "true" iff this generation should be used to allocate an
236   // object of the given size.  Young generations might
237   // wish to exclude very large objects, for example, since, if allocated
238   // often, they would greatly increase the frequency of young-gen
239   // collection.
should_allocate(size_t word_size,bool is_tlab)240   virtual bool should_allocate(size_t word_size, bool is_tlab) {
241     bool result = false;
242     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
243     if (!is_tlab || supports_tlab_allocation()) {
244       result = (word_size > 0) && (word_size < overflow_limit);
245     }
246     return result;
247   }
248 
249   // Allocate and returns a block of the requested size, or returns "NULL".
250   // Assumes the caller has done any necessary locking.
251   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
252 
253   // Like "allocate", but performs any necessary locking internally.
254   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
255 
256   // Some generation may offer a region for shared, contiguous allocation,
257   // via inlined code (by exporting the address of the top and end fields
258   // defining the extent of the contiguous allocation region.)
259 
260   // This function returns "true" iff the heap supports this kind of
261   // allocation.  (More precisely, this means the style of allocation that
262   // increments *top_addr()" with a CAS.) (Default is "no".)
263   // A generation that supports this allocation style must use lock-free
264   // allocation for *all* allocation, since there are times when lock free
265   // allocation will be concurrent with plain "allocate" calls.
supports_inline_contig_alloc() const266   virtual bool supports_inline_contig_alloc() const { return false; }
267 
268   // These functions return the addresses of the fields that define the
269   // boundaries of the contiguous allocation area.  (These fields should be
270   // physically near to one another.)
top_addr() const271   virtual HeapWord* volatile* top_addr() const { return NULL; }
end_addr() const272   virtual HeapWord** end_addr() const { return NULL; }
273 
274   // Thread-local allocation buffers
supports_tlab_allocation() const275   virtual bool supports_tlab_allocation() const { return false; }
tlab_capacity() const276   virtual size_t tlab_capacity() const {
277     guarantee(false, "Generation doesn't support thread local allocation buffers");
278     return 0;
279   }
tlab_used() const280   virtual size_t tlab_used() const {
281     guarantee(false, "Generation doesn't support thread local allocation buffers");
282     return 0;
283   }
unsafe_max_tlab_alloc() const284   virtual size_t unsafe_max_tlab_alloc() const {
285     guarantee(false, "Generation doesn't support thread local allocation buffers");
286     return 0;
287   }
288 
289   // "obj" is the address of an object in a younger generation.  Allocate space
290   // for "obj" in the current (or some higher) generation, and copy "obj" into
291   // the newly allocated space, if possible, returning the result (or NULL if
292   // the allocation failed).
293   //
294   // The "obj_size" argument is just obj->size(), passed along so the caller can
295   // avoid repeating the virtual call to retrieve it.
296   virtual oop promote(oop obj, size_t obj_size);
297 
298   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
299   // object "obj", whose original mark word was "m", and whose size is
300   // "word_sz".  If possible, allocate space for "obj", copy obj into it
301   // (taking care to copy "m" into the mark word when done, since the mark
302   // word of "obj" may have been overwritten with a forwarding pointer, and
303   // also taking care to copy the klass pointer *last*.  Returns the new
304   // object if successful, or else NULL.
305   virtual oop par_promote(int thread_num, oop obj, markOop m, size_t word_sz);
306 
307   // Informs the current generation that all par_promote_alloc's in the
308   // collection have been completed; any supporting data structures can be
309   // reset.  Default is to do nothing.
par_promote_alloc_done(int thread_num)310   virtual void par_promote_alloc_done(int thread_num) {}
311 
312   // Informs the current generation that all oop_since_save_marks_iterates
313   // performed by "thread_num" in the current collection, if any, have been
314   // completed; any supporting data structures can be reset.  Default is to
315   // do nothing.
par_oop_since_save_marks_iterate_done(int thread_num)316   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
317 
318   // Returns "true" iff collect() should subsequently be called on this
319   // this generation. See comment below.
320   // This is a generic implementation which can be overridden.
321   //
322   // Note: in the current (1.4) implementation, when genCollectedHeap's
323   // incremental_collection_will_fail flag is set, all allocations are
324   // slow path (the only fast-path place to allocate is DefNew, which
325   // will be full if the flag is set).
326   // Thus, older generations which collect younger generations should
327   // test this flag and collect if it is set.
should_collect(bool full,size_t word_size,bool is_tlab)328   virtual bool should_collect(bool   full,
329                               size_t word_size,
330                               bool   is_tlab) {
331     return (full || should_allocate(word_size, is_tlab));
332   }
333 
334   // Returns true if the collection is likely to be safely
335   // completed. Even if this method returns true, a collection
336   // may not be guaranteed to succeed, and the system should be
337   // able to safely unwind and recover from that failure, albeit
338   // at some additional cost.
collection_attempt_is_safe()339   virtual bool collection_attempt_is_safe() {
340     guarantee(false, "Are you sure you want to call this method?");
341     return true;
342   }
343 
344   // Perform a garbage collection.
345   // If full is true attempt a full garbage collection of this generation.
346   // Otherwise, attempting to (at least) free enough space to support an
347   // allocation of the given "word_size".
348   virtual void collect(bool   full,
349                        bool   clear_all_soft_refs,
350                        size_t word_size,
351                        bool   is_tlab) = 0;
352 
353   // Perform a heap collection, attempting to create (at least) enough
354   // space to support an allocation of the given "word_size".  If
355   // successful, perform the allocation and return the resulting
356   // "oop" (initializing the allocated block). If the allocation is
357   // still unsuccessful, return "NULL".
358   virtual HeapWord* expand_and_allocate(size_t word_size,
359                                         bool is_tlab,
360                                         bool parallel = false) = 0;
361 
362   // Some generations may require some cleanup or preparation actions before
363   // allowing a collection.  The default is to do nothing.
gc_prologue(bool full)364   virtual void gc_prologue(bool full) {}
365 
366   // Some generations may require some cleanup actions after a collection.
367   // The default is to do nothing.
gc_epilogue(bool full)368   virtual void gc_epilogue(bool full) {}
369 
370   // Save the high water marks for the used space in a generation.
record_spaces_top()371   virtual void record_spaces_top() {}
372 
373   // Some generations may need to be "fixed-up" after some allocation
374   // activity to make them parsable again. The default is to do nothing.
ensure_parsability()375   virtual void ensure_parsability() {}
376 
377   // Time (in ms) when we were last collected or now if a collection is
378   // in progress.
time_of_last_gc(jlong now)379   virtual jlong time_of_last_gc(jlong now) {
380     // Both _time_of_last_gc and now are set using a time source
381     // that guarantees monotonically non-decreasing values provided
382     // the underlying platform provides such a source. So we still
383     // have to guard against non-monotonicity.
384     NOT_PRODUCT(
385       if (now < _time_of_last_gc) {
386         log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT, _time_of_last_gc, now);
387       }
388     )
389     return _time_of_last_gc;
390   }
391 
update_time_of_last_gc(jlong now)392   virtual void update_time_of_last_gc(jlong now)  {
393     _time_of_last_gc = now;
394   }
395 
396   // Generations may keep statistics about collection. This method
397   // updates those statistics. current_generation is the generation
398   // that was most recently collected. This allows the generation to
399   // decide what statistics are valid to collect. For example, the
400   // generation can decide to gather the amount of promoted data if
401   // the collection of the young generation has completed.
gc_stats() const402   GCStats* gc_stats() const { return _gc_stats; }
update_gc_stats(Generation * current_generation,bool full)403   virtual void update_gc_stats(Generation* current_generation, bool full) {}
404 
405 #if INCLUDE_SERIALGC
406   // Mark sweep support phase2
407   virtual void prepare_for_compaction(CompactPoint* cp);
408   // Mark sweep support phase3
409   virtual void adjust_pointers();
410   // Mark sweep support phase4
411   virtual void compact();
post_compact()412   virtual void post_compact() { ShouldNotReachHere(); }
413 #endif
414 
415   // Support for CMS's rescan. In this general form we return a pointer
416   // to an abstract object that can be used, based on specific previously
417   // decided protocols, to exchange information between generations,
418   // information that may be useful for speeding up certain types of
419   // garbage collectors. A NULL value indicates to the client that
420   // no data recording is expected by the provider. The data-recorder is
421   // expected to be GC worker thread-local, with the worker index
422   // indicated by "thr_num".
get_data_recorder(int thr_num)423   virtual void* get_data_recorder(int thr_num) { return NULL; }
sample_eden_chunk()424   virtual void sample_eden_chunk() {}
425 
426   // Some generations may require some cleanup actions before allowing
427   // a verification.
prepare_for_verify()428   virtual void prepare_for_verify() {}
429 
430   // Accessing "marks".
431 
432   // This function gives a generation a chance to note a point between
433   // collections.  For example, a contiguous generation might note the
434   // beginning allocation point post-collection, which might allow some later
435   // operations to be optimized.
save_marks()436   virtual void save_marks() {}
437 
438   // This function allows generations to initialize any "saved marks".  That
439   // is, should only be called when the generation is empty.
reset_saved_marks()440   virtual void reset_saved_marks() {}
441 
442   // This function is "true" iff any no allocations have occurred in the
443   // generation since the last call to "save_marks".
444   virtual bool no_allocs_since_save_marks() = 0;
445 
446   // The "requestor" generation is performing some garbage collection
447   // action for which it would be useful to have scratch space.  If
448   // the target is not the requestor, no gc actions will be required
449   // of the target.  The requestor promises to allocate no more than
450   // "max_alloc_words" in the target generation (via promotion say,
451   // if the requestor is a young generation and the target is older).
452   // If the target generation can provide any scratch space, it adds
453   // it to "list", leaving "list" pointing to the head of the
454   // augmented list.  The default is to offer no space.
contribute_scratch(ScratchBlock * & list,Generation * requestor,size_t max_alloc_words)455   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
456                                   size_t max_alloc_words) {}
457 
458   // Give each generation an opportunity to do clean up for any
459   // contributed scratch.
reset_scratch()460   virtual void reset_scratch() {}
461 
462   // When an older generation has been collected, and perhaps resized,
463   // this method will be invoked on all younger generations (from older to
464   // younger), allowing them to resize themselves as appropriate.
465   virtual void compute_new_size() = 0;
466 
467   // Printing
468   virtual const char* name() const = 0;
469   virtual const char* short_name() const = 0;
470 
471   // Reference Processing accessor
ref_processor()472   ReferenceProcessor* const ref_processor() { return _ref_processor; }
473 
474   // Iteration.
475 
476   // Iterate over all the ref-containing fields of all objects in the
477   // generation, calling "cl.do_oop" on each.
478   virtual void oop_iterate(OopIterateClosure* cl);
479 
480   // Iterate over all objects in the generation, calling "cl.do_object" on
481   // each.
482   virtual void object_iterate(ObjectClosure* cl);
483 
484   // Iterate over all safe objects in the generation, calling "cl.do_object" on
485   // each.  An object is safe if its references point to other objects in
486   // the heap.  This defaults to object_iterate() unless overridden.
487   virtual void safe_object_iterate(ObjectClosure* cl);
488 
489   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
490   // in the current generation that contain pointers to objects in younger
491   // generations. Objects allocated since the last "save_marks" call are
492   // excluded.
493   virtual void younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) = 0;
494 
495   // Inform a generation that it longer contains references to objects
496   // in any younger generation.    [e.g. Because younger gens are empty,
497   // clear the card table.]
clear_remembered_set()498   virtual void clear_remembered_set() { }
499 
500   // Inform a generation that some of its objects have moved.  [e.g. The
501   // generation's spaces were compacted, invalidating the card table.]
invalidate_remembered_set()502   virtual void invalidate_remembered_set() { }
503 
504   // Block abstraction.
505 
506   // Returns the address of the start of the "block" that contains the
507   // address "addr".  We say "blocks" instead of "object" since some heaps
508   // may not pack objects densely; a chunk may either be an object or a
509   // non-object.
510   virtual HeapWord* block_start(const void* addr) const;
511 
512   // Requires "addr" to be the start of a chunk, and returns its size.
513   // "addr + size" is required to be the start of a new chunk, or the end
514   // of the active area of the heap.
515   virtual size_t block_size(const HeapWord* addr) const ;
516 
517   // Requires "addr" to be the start of a block, and returns "TRUE" iff
518   // the block is an object.
519   virtual bool block_is_obj(const HeapWord* addr) const;
520 
521   void print_heap_change(size_t prev_used) const;
522 
523   virtual void print() const;
524   virtual void print_on(outputStream* st) const;
525 
526   virtual void verify() = 0;
527 
528   struct StatRecord {
529     int invocations;
530     elapsedTimer accumulated_time;
StatRecordGeneration::StatRecord531     StatRecord() :
532       invocations(0),
533       accumulated_time(elapsedTimer()) {}
534   };
535 private:
536   StatRecord _stat_record;
537 public:
stat_record()538   StatRecord* stat_record() { return &_stat_record; }
539 
540   virtual void print_summary_info_on(outputStream* st);
541 
542   // Performance Counter support
543   virtual void update_counters() = 0;
counters()544   virtual CollectorCounters* counters() { return _gc_counters; }
545 
gc_manager() const546   GCMemoryManager* gc_manager() const {
547     assert(_gc_manager != NULL, "not initialized yet");
548     return _gc_manager;
549   }
550 
set_gc_manager(GCMemoryManager * gc_manager)551   void set_gc_manager(GCMemoryManager* gc_manager) {
552     _gc_manager = gc_manager;
553   }
554 
555 };
556 
557 #endif // SHARE_VM_GC_SHARED_GENERATION_HPP
558