1 /*
2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/oopMap.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/block.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/chaitin.hpp"
34 #include "opto/coalesce.hpp"
35 #include "opto/indexSet.hpp"
36 #include "opto/machnode.hpp"
37 #include "opto/memnode.hpp"
38 #include "opto/opcodes.hpp"
39 
PhaseIFG(Arena * arena)40 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
41 }
42 
init(uint maxlrg)43 void PhaseIFG::init( uint maxlrg ) {
44   _maxlrg = maxlrg;
45   _yanked = new (_arena) VectorSet(_arena);
46   _is_square = false;
47   // Make uninitialized adjacency lists
48   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
49   // Also make empty live range structures
50   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
51   memset((void*)_lrgs,0,sizeof(LRG)*maxlrg);
52   // Init all to empty
53   for( uint i = 0; i < maxlrg; i++ ) {
54     _adjs[i].initialize(maxlrg);
55     _lrgs[i].Set_All();
56   }
57 }
58 
59 // Add edge between vertices a & b.  These are sorted (triangular matrix),
60 // then the smaller number is inserted in the larger numbered array.
add_edge(uint a,uint b)61 int PhaseIFG::add_edge( uint a, uint b ) {
62   lrgs(a).invalid_degree();
63   lrgs(b).invalid_degree();
64   // Sort a and b, so that a is bigger
65   assert( !_is_square, "only on triangular" );
66   if( a < b ) { uint tmp = a; a = b; b = tmp; }
67   return _adjs[a].insert( b );
68 }
69 
70 // Add an edge between 'a' and everything in the vector.
add_vector(uint a,IndexSet * vec)71 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
72   // IFG is triangular, so do the inserts where 'a' < 'b'.
73   assert( !_is_square, "only on triangular" );
74   IndexSet *adjs_a = &_adjs[a];
75   if( !vec->count() ) return;
76 
77   IndexSetIterator elements(vec);
78   uint neighbor;
79   while ((neighbor = elements.next()) != 0) {
80     add_edge( a, neighbor );
81   }
82 }
83 
84 // Is there an edge between a and b?
test_edge(uint a,uint b) const85 int PhaseIFG::test_edge( uint a, uint b ) const {
86   // Sort a and b, so that a is larger
87   assert( !_is_square, "only on triangular" );
88   if( a < b ) { uint tmp = a; a = b; b = tmp; }
89   return _adjs[a].member(b);
90 }
91 
92 // Convert triangular matrix to square matrix
SquareUp()93 void PhaseIFG::SquareUp() {
94   assert( !_is_square, "only on triangular" );
95 
96   // Simple transpose
97   for( uint i = 0; i < _maxlrg; i++ ) {
98     IndexSetIterator elements(&_adjs[i]);
99     uint datum;
100     while ((datum = elements.next()) != 0) {
101       _adjs[datum].insert( i );
102     }
103   }
104   _is_square = true;
105 }
106 
107 // Compute effective degree in bulk
Compute_Effective_Degree()108 void PhaseIFG::Compute_Effective_Degree() {
109   assert( _is_square, "only on square" );
110 
111   for( uint i = 0; i < _maxlrg; i++ )
112     lrgs(i).set_degree(effective_degree(i));
113 }
114 
test_edge_sq(uint a,uint b) const115 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
116   assert( _is_square, "only on square" );
117   // Swap, so that 'a' has the lesser count.  Then binary search is on
118   // the smaller of a's list and b's list.
119   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
120   //return _adjs[a].unordered_member(b);
121   return _adjs[a].member(b);
122 }
123 
124 // Union edges of B into A
Union(uint a,uint b)125 void PhaseIFG::Union( uint a, uint b ) {
126   assert( _is_square, "only on square" );
127   IndexSet *A = &_adjs[a];
128   IndexSetIterator b_elements(&_adjs[b]);
129   uint datum;
130   while ((datum = b_elements.next()) != 0) {
131     if(A->insert(datum)) {
132       _adjs[datum].insert(a);
133       lrgs(a).invalid_degree();
134       lrgs(datum).invalid_degree();
135     }
136   }
137 }
138 
139 // Yank a Node and all connected edges from the IFG.  Return a
140 // list of neighbors (edges) yanked.
remove_node(uint a)141 IndexSet *PhaseIFG::remove_node( uint a ) {
142   assert( _is_square, "only on square" );
143   assert( !_yanked->test(a), "" );
144   _yanked->set(a);
145 
146   // I remove the LRG from all neighbors.
147   IndexSetIterator elements(&_adjs[a]);
148   LRG &lrg_a = lrgs(a);
149   uint datum;
150   while ((datum = elements.next()) != 0) {
151     _adjs[datum].remove(a);
152     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
153   }
154   return neighbors(a);
155 }
156 
157 // Re-insert a yanked Node.
re_insert(uint a)158 void PhaseIFG::re_insert( uint a ) {
159   assert( _is_square, "only on square" );
160   assert( _yanked->test(a), "" );
161   (*_yanked) >>= a;
162 
163   IndexSetIterator elements(&_adjs[a]);
164   uint datum;
165   while ((datum = elements.next()) != 0) {
166     _adjs[datum].insert(a);
167     lrgs(datum).invalid_degree();
168   }
169 }
170 
171 // Compute the degree between 2 live ranges.  If both live ranges are
172 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
173 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
174 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
175 // this is so.
compute_degree(LRG & l) const176 int LRG::compute_degree( LRG &l ) const {
177   int tmp;
178   int num_regs = _num_regs;
179   int nregs = l.num_regs();
180   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
181     ? (num_regs * nregs)                // then use product
182     : MAX2(num_regs,nregs);             // else use max
183   return tmp;
184 }
185 
186 // Compute effective degree for this live range.  If both live ranges are
187 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
188 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
189 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
190 // this is so.
effective_degree(uint lidx) const191 int PhaseIFG::effective_degree( uint lidx ) const {
192   int eff = 0;
193   int num_regs = lrgs(lidx).num_regs();
194   int fat_proj = lrgs(lidx)._fat_proj;
195   IndexSet *s = neighbors(lidx);
196   IndexSetIterator elements(s);
197   uint nidx;
198   while((nidx = elements.next()) != 0) {
199     LRG &lrgn = lrgs(nidx);
200     int nregs = lrgn.num_regs();
201     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
202       ? (num_regs * nregs)              // then use product
203       : MAX2(num_regs,nregs);           // else use max
204   }
205   return eff;
206 }
207 
208 
209 #ifndef PRODUCT
dump() const210 void PhaseIFG::dump() const {
211   tty->print_cr("-- Interference Graph --%s--",
212                 _is_square ? "square" : "triangular" );
213   if( _is_square ) {
214     for( uint i = 0; i < _maxlrg; i++ ) {
215       tty->print( (*_yanked)[i] ? "XX " : "  ");
216       tty->print("L%d: { ",i);
217       IndexSetIterator elements(&_adjs[i]);
218       uint datum;
219       while ((datum = elements.next()) != 0) {
220         tty->print("L%d ", datum);
221       }
222       tty->print_cr("}");
223 
224     }
225     return;
226   }
227 
228   // Triangular
229   for( uint i = 0; i < _maxlrg; i++ ) {
230     uint j;
231     tty->print( (*_yanked)[i] ? "XX " : "  ");
232     tty->print("L%d: { ",i);
233     for( j = _maxlrg; j > i; j-- )
234       if( test_edge(j - 1,i) ) {
235         tty->print("L%d ",j - 1);
236       }
237     tty->print("| ");
238     IndexSetIterator elements(&_adjs[i]);
239     uint datum;
240     while ((datum = elements.next()) != 0) {
241       tty->print("L%d ", datum);
242     }
243     tty->print("}\n");
244   }
245   tty->print("\n");
246 }
247 
stats() const248 void PhaseIFG::stats() const {
249   ResourceMark rm;
250   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
251   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
252   uint i;
253   for( i = 0; i < _maxlrg; i++ ) {
254     h_cnt[neighbor_cnt(i)]++;
255   }
256   tty->print_cr("--Histogram of counts--");
257   for( i = 0; i < _maxlrg*2; i++ )
258     if( h_cnt[i] )
259       tty->print("%d/%d ",i,h_cnt[i]);
260   tty->cr();
261 }
262 
verify(const PhaseChaitin * pc) const263 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
264   // IFG is square, sorted and no need for Find
265   for( uint i = 0; i < _maxlrg; i++ ) {
266     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
267     IndexSet *set = &_adjs[i];
268     IndexSetIterator elements(set);
269     uint idx;
270     uint last = 0;
271     while ((idx = elements.next()) != 0) {
272       assert(idx != i, "Must have empty diagonal");
273       assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find");
274       assert(_adjs[idx].member(i), "IFG not square");
275       assert(!(*_yanked)[idx], "No yanked neighbors");
276       assert(last < idx, "not sorted increasing");
277       last = idx;
278     }
279     assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong");
280   }
281 }
282 #endif
283 
284 /*
285  * Interfere this register with everything currently live.
286  * Check for interference by checking overlap of regmasks.
287  * Only interfere if acceptable register masks overlap.
288  */
interfere_with_live(uint lid,IndexSet * liveout)289 void PhaseChaitin::interfere_with_live(uint lid, IndexSet* liveout) {
290   LRG& lrg = lrgs(lid);
291   const RegMask& rm = lrg.mask();
292   IndexSetIterator elements(liveout);
293   uint interfering_lid = elements.next();
294   while (interfering_lid != 0) {
295     LRG& interfering_lrg = lrgs(interfering_lid);
296     if (rm.overlap(interfering_lrg.mask())) {
297       _ifg->add_edge(lid, interfering_lid);
298     }
299     interfering_lid = elements.next();
300   }
301 }
302 
303 // Actually build the interference graph.  Uses virtual registers only, no
304 // physical register masks.  This allows me to be very aggressive when
305 // coalescing copies.  Some of this aggressiveness will have to be undone
306 // later, but I'd rather get all the copies I can now (since unremoved copies
307 // at this point can end up in bad places).  Copies I re-insert later I have
308 // more opportunity to insert them in low-frequency locations.
build_ifg_virtual()309 void PhaseChaitin::build_ifg_virtual( ) {
310   Compile::TracePhase tp("buildIFG_virt", &timers[_t_buildIFGvirtual]);
311 
312   // For all blocks (in any order) do...
313   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
314     Block* block = _cfg.get_block(i);
315     IndexSet* liveout = _live->live(block);
316 
317     // The IFG is built by a single reverse pass over each basic block.
318     // Starting with the known live-out set, we remove things that get
319     // defined and add things that become live (essentially executing one
320     // pass of a standard LIVE analysis). Just before a Node defines a value
321     // (and removes it from the live-ness set) that value is certainly live.
322     // The defined value interferes with everything currently live.  The
323     // value is then removed from the live-ness set and it's inputs are
324     // added to the live-ness set.
325     for (uint j = block->end_idx() + 1; j > 1; j--) {
326       Node* n = block->get_node(j - 1);
327 
328       // Get value being defined
329       uint r = _lrg_map.live_range_id(n);
330 
331       // Some special values do not allocate
332       if (r) {
333 
334         // Remove from live-out set
335         liveout->remove(r);
336 
337         // Copies do not define a new value and so do not interfere.
338         // Remove the copies source from the liveout set before interfering.
339         uint idx = n->is_Copy();
340         if (idx != 0) {
341           liveout->remove(_lrg_map.live_range_id(n->in(idx)));
342         }
343 
344         // Interfere with everything live
345         interfere_with_live(r, liveout);
346       }
347 
348       // Make all inputs live
349       if (!n->is_Phi()) {      // Phi function uses come from prior block
350         for(uint k = 1; k < n->req(); k++) {
351           liveout->insert(_lrg_map.live_range_id(n->in(k)));
352         }
353       }
354 
355       // 2-address instructions always have the defined value live
356       // on entry to the instruction, even though it is being defined
357       // by the instruction.  We pretend a virtual copy sits just prior
358       // to the instruction and kills the src-def'd register.
359       // In other words, for 2-address instructions the defined value
360       // interferes with all inputs.
361       uint idx;
362       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
363         const MachNode *mach = n->as_Mach();
364         // Sometimes my 2-address ADDs are commuted in a bad way.
365         // We generally want the USE-DEF register to refer to the
366         // loop-varying quantity, to avoid a copy.
367         uint op = mach->ideal_Opcode();
368         // Check that mach->num_opnds() == 3 to ensure instruction is
369         // not subsuming constants, effectively excludes addI_cin_imm
370         // Can NOT swap for instructions like addI_cin_imm since it
371         // is adding zero to yhi + carry and the second ideal-input
372         // points to the result of adding low-halves.
373         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
374         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
375             n->in(1)->bottom_type()->base() == Type::Int &&
376             // See if the ADD is involved in a tight data loop the wrong way
377             n->in(2)->is_Phi() &&
378             n->in(2)->in(2) == n ) {
379           Node *tmp = n->in(1);
380           n->set_req( 1, n->in(2) );
381           n->set_req( 2, tmp );
382         }
383         // Defined value interferes with all inputs
384         uint lidx = _lrg_map.live_range_id(n->in(idx));
385         for (uint k = 1; k < n->req(); k++) {
386           uint kidx = _lrg_map.live_range_id(n->in(k));
387           if (kidx != lidx) {
388             _ifg->add_edge(r, kidx);
389           }
390         }
391       }
392     } // End of forall instructions in block
393   } // End of forall blocks
394 }
395 
396 #ifdef ASSERT
count_int_pressure(IndexSet * liveout)397 uint PhaseChaitin::count_int_pressure(IndexSet* liveout) {
398   IndexSetIterator elements(liveout);
399   uint lidx = elements.next();
400   uint cnt = 0;
401   while (lidx != 0) {
402     LRG& lrg = lrgs(lidx);
403     if (lrg.mask_is_nonempty_and_up() &&
404         !lrg.is_float_or_vector() &&
405         lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
406       cnt += lrg.reg_pressure();
407     }
408     lidx = elements.next();
409   }
410   return cnt;
411 }
412 
count_float_pressure(IndexSet * liveout)413 uint PhaseChaitin::count_float_pressure(IndexSet* liveout) {
414   IndexSetIterator elements(liveout);
415   uint lidx = elements.next();
416   uint cnt = 0;
417   while (lidx != 0) {
418     LRG& lrg = lrgs(lidx);
419     if (lrg.mask_is_nonempty_and_up() && lrg.is_float_or_vector()) {
420       cnt += lrg.reg_pressure();
421     }
422     lidx = elements.next();
423   }
424   return cnt;
425 }
426 #endif
427 
428 /*
429  * Adjust register pressure down by 1.  Capture last hi-to-low transition,
430  */
lower_pressure(Block * b,uint location,LRG & lrg,IndexSet * liveout,Pressure & int_pressure,Pressure & float_pressure)431 void PhaseChaitin::lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure) {
432   if (lrg.mask_is_nonempty_and_up()) {
433     if (lrg.is_float_or_vector()) {
434       float_pressure.lower(lrg, location);
435     } else {
436       // Do not count the SP and flag registers
437       const RegMask& r = lrg.mask();
438       if (r.overlap(*Matcher::idealreg2regmask[Op_RegI])) {
439         int_pressure.lower(lrg, location);
440       }
441     }
442   }
443   if (_scheduling_info_generated == false) {
444     assert(int_pressure.current_pressure() == count_int_pressure(liveout), "the int pressure is incorrect");
445     assert(float_pressure.current_pressure() == count_float_pressure(liveout), "the float pressure is incorrect");
446   }
447 }
448 
449 /* Go to the first non-phi index in a block */
first_nonphi_index(Block * b)450 static uint first_nonphi_index(Block* b) {
451   uint i;
452   uint end_idx = b->end_idx();
453   for (i = 1; i < end_idx; i++) {
454     Node* n = b->get_node(i);
455     if (!n->is_Phi()) {
456       break;
457     }
458   }
459   return i;
460 }
461 
462 /*
463  * Spills could be inserted before a CreateEx node which should be the first
464  * instruction in a block after Phi nodes. If so, move the CreateEx node up.
465  */
move_exception_node_up(Block * b,uint first_inst,uint last_inst)466 static void move_exception_node_up(Block* b, uint first_inst, uint last_inst) {
467   for (uint i = first_inst; i < last_inst; i++) {
468     Node* ex = b->get_node(i);
469     if (ex->is_SpillCopy()) {
470       continue;
471     }
472 
473     if (i > first_inst &&
474         ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
475       b->remove_node(i);
476       b->insert_node(ex, first_inst);
477     }
478     // Stop once a CreateEx or any other node is found
479     break;
480   }
481 }
482 
483 /*
484  * When new live ranges are live, we raise the register pressure
485  */
raise_pressure(Block * b,LRG & lrg,Pressure & int_pressure,Pressure & float_pressure)486 void PhaseChaitin::raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure) {
487   if (lrg.mask_is_nonempty_and_up()) {
488     if (lrg.is_float_or_vector()) {
489       float_pressure.raise(lrg);
490     } else {
491       // Do not count the SP and flag registers
492       const RegMask& rm = lrg.mask();
493       if (rm.overlap(*Matcher::idealreg2regmask[Op_RegI])) {
494         int_pressure.raise(lrg);
495       }
496     }
497   }
498 }
499 
500 
501 /*
502  * Computes the initial register pressure of a block, looking at all live
503  * ranges in the liveout. The register pressure is computed for both float
504  * and int/pointer registers.
505  * Live ranges in the liveout are presumed live for the whole block.
506  * We add the cost for the whole block to the area of the live ranges initially.
507  * If a live range gets killed in the block, we'll subtract the unused part of
508  * the block from the area.
509  */
compute_initial_block_pressure(Block * b,IndexSet * liveout,Pressure & int_pressure,Pressure & float_pressure,double cost)510 void PhaseChaitin::compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost) {
511   IndexSetIterator elements(liveout);
512   uint lid = elements.next();
513   while (lid != 0) {
514     LRG& lrg = lrgs(lid);
515     lrg._area += cost;
516     raise_pressure(b, lrg, int_pressure, float_pressure);
517     lid = elements.next();
518   }
519   assert(int_pressure.current_pressure() == count_int_pressure(liveout), "the int pressure is incorrect");
520   assert(float_pressure.current_pressure() == count_float_pressure(liveout), "the float pressure is incorrect");
521 }
522 
523 /*
524 * Computes the entry register pressure of a block, looking at all live
525 * ranges in the livein. The register pressure is computed for both float
526 * and int/pointer registers.
527 */
compute_entry_block_pressure(Block * b)528 void PhaseChaitin::compute_entry_block_pressure(Block* b) {
529   IndexSet* livein = _live->livein(b);
530   IndexSetIterator elements(livein);
531   uint lid = elements.next();
532   while (lid != 0) {
533     LRG& lrg = lrgs(lid);
534     raise_pressure(b, lrg, _sched_int_pressure, _sched_float_pressure);
535     lid = elements.next();
536   }
537   // Now check phis for locally defined inputs
538   for (uint j = 0; j < b->number_of_nodes(); j++) {
539     Node* n = b->get_node(j);
540     if (n->is_Phi()) {
541       for (uint k = 1; k < n->req(); k++) {
542         Node* phi_in = n->in(k);
543         // Because we are talking about phis, raise register pressure once for each
544         // instance of a phi to account for a single value
545         if (_cfg.get_block_for_node(phi_in) == b) {
546           LRG& lrg = lrgs(phi_in->_idx);
547           raise_pressure(b, lrg, _sched_int_pressure, _sched_float_pressure);
548           break;
549         }
550       }
551     }
552   }
553   _sched_int_pressure.set_start_pressure(_sched_int_pressure.current_pressure());
554   _sched_float_pressure.set_start_pressure(_sched_float_pressure.current_pressure());
555 }
556 
557 /*
558 * Computes the exit register pressure of a block, looking at all live
559 * ranges in the liveout. The register pressure is computed for both float
560 * and int/pointer registers.
561 */
compute_exit_block_pressure(Block * b)562 void PhaseChaitin::compute_exit_block_pressure(Block* b) {
563   IndexSet* livein = _live->live(b);
564   IndexSetIterator elements(livein);
565   _sched_int_pressure.set_current_pressure(0);
566   _sched_float_pressure.set_current_pressure(0);
567   uint lid = elements.next();
568   while (lid != 0) {
569     LRG& lrg = lrgs(lid);
570     raise_pressure(b, lrg, _sched_int_pressure, _sched_float_pressure);
571     lid = elements.next();
572   }
573 }
574 
575 /*
576  * Remove dead node if it's not used.
577  * We only remove projection nodes if the node "defining" the projection is
578  * dead, for example on x86, if we have a dead Add node we remove its
579  * RFLAGS node.
580  */
remove_node_if_not_used(Block * b,uint location,Node * n,uint lid,IndexSet * liveout)581 bool PhaseChaitin::remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout) {
582   Node* def = n->in(0);
583   if (!n->is_Proj() ||
584       (_lrg_map.live_range_id(def) && !liveout->member(_lrg_map.live_range_id(def)))) {
585     if (n->is_MachProj()) {
586       // Don't remove KILL projections if their "defining" nodes have
587       // memory effects (have SCMemProj projection node) -
588       // they are not dead even when their result is not used.
589       // For example, compareAndSwapL (and other CAS) and EncodeISOArray nodes.
590       // The method add_input_to_liveout() keeps such nodes alive (put them on liveout list)
591       // when it sees SCMemProj node in a block. Unfortunately SCMemProj node could be placed
592       // in block in such order that KILL MachProj nodes are processed first.
593       if (def->has_out_with(Op_SCMemProj)) {
594         return false;
595       }
596     }
597     b->remove_node(location);
598     LRG& lrg = lrgs(lid);
599     if (lrg._def == n) {
600       lrg._def = 0;
601     }
602     n->disconnect_inputs(NULL, C);
603     _cfg.unmap_node_from_block(n);
604     n->replace_by(C->top());
605     return true;
606   }
607   return false;
608 }
609 
610 /*
611  * When encountering a fat projection, we might go from a low to high to low
612  * (since the fat proj only lives at this instruction) going backwards in the
613  * block. If we find a low to high transition, we record it.
614  */
check_for_high_pressure_transition_at_fatproj(uint & block_reg_pressure,uint location,LRG & lrg,Pressure & pressure,const int op_regtype)615 void PhaseChaitin::check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype) {
616   RegMask mask_tmp = lrg.mask();
617   mask_tmp.AND(*Matcher::idealreg2regmask[op_regtype]);
618   pressure.check_pressure_at_fatproj(location, mask_tmp);
619 }
620 
621 /*
622  * Insure high score for immediate-use spill copies so they get a color.
623  * All single-use MachSpillCopy(s) that immediately precede their
624  * use must color early.  If a longer live range steals their
625  * color, the spill copy will split and may push another spill copy
626  * further away resulting in an infinite spill-split-retry cycle.
627  * Assigning a zero area results in a high score() and a good
628  * location in the simplify list.
629  */
assign_high_score_to_immediate_copies(Block * b,Node * n,LRG & lrg,uint next_inst,uint last_inst)630 void PhaseChaitin::assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst) {
631   if (n->is_SpillCopy() &&
632       lrg.is_singledef() && // A multi defined live range can still split
633       n->outcnt() == 1 &&   // and use must be in this block
634       _cfg.get_block_for_node(n->unique_out()) == b) {
635 
636     Node* single_use = n->unique_out();
637     assert(b->find_node(single_use) >= next_inst, "Use must be later in block");
638     // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
639 
640     // Find first non SpillCopy 'm' that follows the current instruction
641     // (current_inst - 1) is index for current instruction 'n'
642     Node* m = n;
643     for (uint i = next_inst; i <= last_inst && m->is_SpillCopy(); ++i) {
644       m = b->get_node(i);
645     }
646     if (m == single_use) {
647       lrg._area = 0.0;
648     }
649   }
650 }
651 
652 /*
653  * Copies do not define a new value and so do not interfere.
654  * Remove the copies source from the liveout set before interfering.
655  */
remove_interference_from_copy(Block * b,uint location,uint lid_copy,IndexSet * liveout,double cost,Pressure & int_pressure,Pressure & float_pressure)656 void PhaseChaitin::remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure) {
657   if (liveout->remove(lid_copy)) {
658     LRG& lrg_copy = lrgs(lid_copy);
659     lrg_copy._area -= cost;
660 
661     // Lower register pressure since copy and definition can share the same register
662     lower_pressure(b, location, lrg_copy, liveout, int_pressure, float_pressure);
663   }
664 }
665 
666 /*
667  * The defined value must go in a particular register. Remove that register from
668  * all conflicting parties and avoid the interference.
669  */
remove_bound_register_from_interfering_live_ranges(LRG & lrg,IndexSet * liveout,uint & must_spill)670 void PhaseChaitin::remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill) {
671   // Check for common case
672   const RegMask& rm = lrg.mask();
673   int r_size = lrg.num_regs();
674   // Smear odd bits
675   IndexSetIterator elements(liveout);
676   uint l = elements.next();
677   while (l != 0) {
678     LRG& interfering_lrg = lrgs(l);
679     // If 'l' must spill already, do not further hack his bits.
680     // He'll get some interferences and be forced to spill later.
681     if (interfering_lrg._must_spill) {
682       l = elements.next();
683       continue;
684     }
685 
686     // Remove bound register(s) from 'l's choices
687     RegMask old = interfering_lrg.mask();
688     uint old_size = interfering_lrg.mask_size();
689 
690     // Remove the bits from LRG 'rm' from LRG 'l' so 'l' no
691     // longer interferes with 'rm'.  If 'l' requires aligned
692     // adjacent pairs, subtract out bit pairs.
693     assert(!interfering_lrg._is_vector || !interfering_lrg._fat_proj, "sanity");
694 
695     if (interfering_lrg.num_regs() > 1 && !interfering_lrg._fat_proj) {
696       RegMask r2mask = rm;
697       // Leave only aligned set of bits.
698       r2mask.smear_to_sets(interfering_lrg.num_regs());
699       // It includes vector case.
700       interfering_lrg.SUBTRACT(r2mask);
701       interfering_lrg.compute_set_mask_size();
702     } else if (r_size != 1) {
703       // fat proj
704       interfering_lrg.SUBTRACT(rm);
705       interfering_lrg.compute_set_mask_size();
706     } else {
707       // Common case: size 1 bound removal
708       OptoReg::Name r_reg = rm.find_first_elem();
709       if (interfering_lrg.mask().Member(r_reg)) {
710         interfering_lrg.Remove(r_reg);
711         interfering_lrg.set_mask_size(interfering_lrg.mask().is_AllStack() ? LRG::AllStack_size : old_size - 1);
712       }
713     }
714 
715     // If 'l' goes completely dry, it must spill.
716     if (interfering_lrg.not_free()) {
717       // Give 'l' some kind of reasonable mask, so it picks up
718       // interferences (and will spill later).
719       interfering_lrg.set_mask(old);
720       interfering_lrg.set_mask_size(old_size);
721       must_spill++;
722       interfering_lrg._must_spill = 1;
723       interfering_lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
724     }
725     l = elements.next();
726   }
727 }
728 
729 /*
730  * Start loop at 1 (skip control edge) for most Nodes. SCMemProj's might be the
731  * sole use of a StoreLConditional. While StoreLConditionals set memory (the
732  * SCMemProj use) they also def flags; if that flag def is unused the allocator
733  * sees a flag-setting instruction with no use of the flags and assumes it's
734  * dead.  This keeps the (useless) flag-setting behavior alive while also
735  * keeping the (useful) memory update effect.
736  */
add_input_to_liveout(Block * b,Node * n,IndexSet * liveout,double cost,Pressure & int_pressure,Pressure & float_pressure)737 void PhaseChaitin::add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure) {
738   JVMState* jvms = n->jvms();
739   uint debug_start = jvms ? jvms->debug_start() : 999999;
740 
741   for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
742     Node* def = n->in(k);
743     uint lid = _lrg_map.live_range_id(def);
744     if (!lid) {
745       continue;
746     }
747     LRG& lrg = lrgs(lid);
748 
749     // No use-side cost for spilling debug info
750     if (k < debug_start) {
751       // A USE costs twice block frequency (once for the Load, once
752       // for a Load-delay).  Rematerialized uses only cost once.
753       lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq * 2));
754     }
755 
756     if (liveout->insert(lid)) {
757       // Newly live things assumed live from here to top of block
758       lrg._area += cost;
759       raise_pressure(b, lrg, int_pressure, float_pressure);
760       assert(int_pressure.current_pressure() == count_int_pressure(liveout), "the int pressure is incorrect");
761       assert(float_pressure.current_pressure() == count_float_pressure(liveout), "the float pressure is incorrect");
762     }
763     assert(lrg._area >= 0.0, "negative spill area" );
764   }
765 }
766 
767 /*
768  * If we run off the top of the block with high pressure just record that the
769  * whole block is high pressure. (Even though we might have a transition
770  * later down in the block)
771  */
check_for_high_pressure_block(Pressure & pressure)772 void PhaseChaitin::check_for_high_pressure_block(Pressure& pressure) {
773   // current pressure now means the pressure before the first instruction in the block
774   // (since we have stepped through all instructions backwards)
775   if (pressure.current_pressure() > pressure.high_pressure_limit()) {
776     pressure.set_high_pressure_index_to_block_start();
777   }
778 }
779 
780 /*
781  * Compute high pressure indice; avoid landing in the middle of projnodes
782  * and set the high pressure index for the block
783  */
adjust_high_pressure_index(Block * b,uint & block_hrp_index,Pressure & pressure)784 void PhaseChaitin::adjust_high_pressure_index(Block* b, uint& block_hrp_index, Pressure& pressure) {
785   uint i = pressure.high_pressure_index();
786   if (i < b->number_of_nodes() && i < b->end_idx() + 1) {
787     Node* cur = b->get_node(i);
788     while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
789       cur = b->get_node(--i);
790     }
791   }
792   block_hrp_index = i;
793 }
794 
print_pressure_info(Pressure & pressure,const char * str)795 void PhaseChaitin::print_pressure_info(Pressure& pressure, const char *str) {
796   if (str != NULL) {
797     tty->print_cr("#  *** %s ***", str);
798   }
799   tty->print_cr("#     start pressure is = %d", pressure.start_pressure());
800   tty->print_cr("#     max pressure is = %d", pressure.final_pressure());
801   tty->print_cr("#     end pressure is = %d", pressure.current_pressure());
802   tty->print_cr("#");
803 }
804 
805 /* Build an interference graph:
806  *   That is, if 2 live ranges are simultaneously alive but in their acceptable
807  *   register sets do not overlap, then they do not interfere. The IFG is built
808  *   by a single reverse pass over each basic block. Starting with the known
809  *   live-out set, we remove things that get defined and add things that become
810  *   live (essentially executing one pass of a standard LIVE analysis). Just
811  *   before a Node defines a value (and removes it from the live-ness set) that
812  *   value is certainly live. The defined value interferes with everything
813  *   currently live. The value is then removed from the live-ness set and it's
814  *   inputs are added to the live-ness set.
815  * Compute register pressure for each block:
816  *   We store the biggest register pressure for each block and also the first
817  *   low to high register pressure transition within the block (if any).
818  */
build_ifg_physical(ResourceArea * a)819 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
820   Compile::TracePhase tp("buildIFG", &timers[_t_buildIFGphysical]);
821 
822   uint must_spill = 0;
823   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
824     Block* block = _cfg.get_block(i);
825 
826     // Clone (rather than smash in place) the liveout info, so it is alive
827     // for the "collect_gc_info" phase later.
828     IndexSet liveout(_live->live(block));
829 
830     uint first_inst = first_nonphi_index(block);
831     uint last_inst = block->end_idx();
832 
833     move_exception_node_up(block, first_inst, last_inst);
834 
835     Pressure int_pressure(last_inst + 1, INTPRESSURE);
836     Pressure float_pressure(last_inst + 1, FLOATPRESSURE);
837     block->_reg_pressure = 0;
838     block->_freg_pressure = 0;
839 
840     int inst_count = last_inst - first_inst;
841     double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
842     assert(cost >= 0.0, "negative spill cost" );
843 
844     compute_initial_block_pressure(block, &liveout, int_pressure, float_pressure, cost);
845 
846     for (uint location = last_inst; location > 0; location--) {
847       Node* n = block->get_node(location);
848       uint lid = _lrg_map.live_range_id(n);
849 
850       if(lid) {
851         LRG& lrg = lrgs(lid);
852 
853         // A DEF normally costs block frequency; rematerialized values are
854         // removed from the DEF sight, so LOWER costs here.
855         lrg._cost += n->rematerialize() ? 0 : block->_freq;
856 
857         if (!liveout.member(lid) && n->Opcode() != Op_SafePoint) {
858           if (remove_node_if_not_used(block, location, n, lid, &liveout)) {
859             float_pressure.lower_high_pressure_index();
860             int_pressure.lower_high_pressure_index();
861             continue;
862           }
863           if (lrg._fat_proj) {
864             check_for_high_pressure_transition_at_fatproj(block->_reg_pressure, location, lrg, int_pressure, Op_RegI);
865             check_for_high_pressure_transition_at_fatproj(block->_freg_pressure, location, lrg, float_pressure, Op_RegD);
866           }
867         } else {
868           // A live range ends at its definition, remove the remaining area.
869           // If the cost is +Inf (which might happen in extreme cases), the lrg area will also be +Inf,
870           // and +Inf - +Inf = NaN. So let's not do that subtraction.
871           if (g_isfinite(cost)) {
872             lrg._area -= cost;
873           }
874           assert(lrg._area >= 0.0, "negative spill area" );
875 
876           assign_high_score_to_immediate_copies(block, n, lrg, location + 1, last_inst);
877 
878           if (liveout.remove(lid)) {
879             lower_pressure(block, location, lrg, &liveout, int_pressure, float_pressure);
880           }
881           uint copy_idx = n->is_Copy();
882           if (copy_idx) {
883             uint lid_copy = _lrg_map.live_range_id(n->in(copy_idx));
884             remove_interference_from_copy(block, location, lid_copy, &liveout, cost, int_pressure, float_pressure);
885           }
886         }
887 
888         // Since rematerializable DEFs are not bound but the live range is,
889         // some uses must be bound. If we spill live range 'r', it can
890         // rematerialize at each use site according to its bindings.
891         if (lrg.is_bound() && !n->rematerialize() && lrg.mask().is_NotEmpty()) {
892           remove_bound_register_from_interfering_live_ranges(lrg, &liveout, must_spill);
893         }
894         interfere_with_live(lid, &liveout);
895       }
896 
897       // Area remaining in the block
898       inst_count--;
899       cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
900 
901       if (!n->is_Phi()) {
902         add_input_to_liveout(block, n, &liveout, cost, int_pressure, float_pressure);
903       }
904     }
905 
906     check_for_high_pressure_block(int_pressure);
907     check_for_high_pressure_block(float_pressure);
908     adjust_high_pressure_index(block, block->_ihrp_index, int_pressure);
909     adjust_high_pressure_index(block, block->_fhrp_index, float_pressure);
910     // set the final_pressure as the register pressure for the block
911     block->_reg_pressure = int_pressure.final_pressure();
912     block->_freg_pressure = float_pressure.final_pressure();
913 
914 #ifndef PRODUCT
915     // Gather Register Pressure Statistics
916     if (PrintOptoStatistics) {
917       if (block->_reg_pressure > int_pressure.high_pressure_limit() || block->_freg_pressure > float_pressure.high_pressure_limit()) {
918         _high_pressure++;
919       } else {
920         _low_pressure++;
921       }
922     }
923 #endif
924   }
925 
926   return must_spill;
927 }
928