1 /*
2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "opto/ad.hpp"
29 #include "opto/block.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/machnode.hpp"
34 #include "opto/runtime.hpp"
35 #include "opto/chaitin.hpp"
36 #include "runtime/sharedRuntime.hpp"
37 
38 // Optimization - Graph Style
39 
40 // Check whether val is not-null-decoded compressed oop,
41 // i.e. will grab into the base of the heap if it represents NULL.
accesses_heap_base_zone(Node * val)42 static bool accesses_heap_base_zone(Node *val) {
43   if (Universe::narrow_oop_base() != NULL) { // Implies UseCompressedOops.
44     if (val && val->is_Mach()) {
45       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
46         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
47         // decode NULL to point to the heap base (Decode_NN).
48         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
49           return true;
50         }
51       }
52       // Must recognize load operation with Decode matched in memory operand.
53       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
54       // returns true everywhere else. On PPC, no such memory operands
55       // exist, therefore we did not yet implement a check for such operands.
56       NOT_AIX(Unimplemented());
57     }
58   }
59   return false;
60 }
61 
needs_explicit_null_check_for_read(Node * val)62 static bool needs_explicit_null_check_for_read(Node *val) {
63   // On some OSes (AIX) the page at address 0 is only write protected.
64   // If so, only Store operations will trap.
65   if (os::zero_page_read_protected()) {
66     return false;  // Implicit null check will work.
67   }
68   // Also a read accessing the base of a heap-based compressed heap will trap.
69   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
70       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
71     return false;
72   }
73 
74   return true;
75 }
76 
77 //------------------------------implicit_null_check----------------------------
78 // Detect implicit-null-check opportunities.  Basically, find NULL checks
79 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
80 // I can generate a memory op if there is not one nearby.
81 // The proj is the control projection for the not-null case.
82 // The val is the pointer being checked for nullness or
83 // decodeHeapOop_not_null node if it did not fold into address.
implicit_null_check(Block * block,Node * proj,Node * val,int allowed_reasons)84 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
85   // Assume if null check need for 0 offset then always needed
86   // Intel solaris doesn't support any null checks yet and no
87   // mechanism exists (yet) to set the switches at an os_cpu level
88   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
89 
90   // Make sure the ptr-is-null path appears to be uncommon!
91   float f = block->end()->as_MachIf()->_prob;
92   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
93   if( f > PROB_UNLIKELY_MAG(4) ) return;
94 
95   uint bidx = 0;                // Capture index of value into memop
96   bool was_store;               // Memory op is a store op
97 
98   // Get the successor block for if the test ptr is non-null
99   Block* not_null_block;  // this one goes with the proj
100   Block* null_block;
101   if (block->get_node(block->number_of_nodes()-1) == proj) {
102     null_block     = block->_succs[0];
103     not_null_block = block->_succs[1];
104   } else {
105     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
106     not_null_block = block->_succs[0];
107     null_block     = block->_succs[1];
108   }
109   while (null_block->is_Empty() == Block::empty_with_goto) {
110     null_block     = null_block->_succs[0];
111   }
112 
113   // Search the exception block for an uncommon trap.
114   // (See Parse::do_if and Parse::do_ifnull for the reason
115   // we need an uncommon trap.  Briefly, we need a way to
116   // detect failure of this optimization, as in 6366351.)
117   {
118     bool found_trap = false;
119     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
120       Node* nn = null_block->get_node(i1);
121       if (nn->is_MachCall() &&
122           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
123         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
124         if (trtype->isa_int() && trtype->is_int()->is_con()) {
125           jint tr_con = trtype->is_int()->get_con();
126           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
127           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
128           assert((int)reason < (int)BitsPerInt, "recode bit map");
129           if (is_set_nth_bit(allowed_reasons, (int) reason)
130               && action != Deoptimization::Action_none) {
131             // This uncommon trap is sure to recompile, eventually.
132             // When that happens, C->too_many_traps will prevent
133             // this transformation from happening again.
134             found_trap = true;
135           }
136         }
137         break;
138       }
139     }
140     if (!found_trap) {
141       // We did not find an uncommon trap.
142       return;
143     }
144   }
145 
146   // Check for decodeHeapOop_not_null node which did not fold into address
147   bool is_decoden = ((intptr_t)val) & 1;
148   val = (Node*)(((intptr_t)val) & ~1);
149 
150   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
151          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
152 
153   // Search the successor block for a load or store who's base value is also
154   // the tested value.  There may be several.
155   Node_List *out = new Node_List(Thread::current()->resource_area());
156   MachNode *best = NULL;        // Best found so far
157   for (DUIterator i = val->outs(); val->has_out(i); i++) {
158     Node *m = val->out(i);
159     if( !m->is_Mach() ) continue;
160     MachNode *mach = m->as_Mach();
161     was_store = false;
162     int iop = mach->ideal_Opcode();
163     switch( iop ) {
164     case Op_LoadB:
165     case Op_LoadUB:
166     case Op_LoadUS:
167     case Op_LoadD:
168     case Op_LoadF:
169     case Op_LoadI:
170     case Op_LoadL:
171     case Op_LoadP:
172     case Op_LoadBarrierSlowReg:
173     case Op_LoadBarrierWeakSlowReg:
174     case Op_LoadN:
175     case Op_LoadS:
176     case Op_LoadKlass:
177     case Op_LoadNKlass:
178     case Op_LoadRange:
179     case Op_LoadD_unaligned:
180     case Op_LoadL_unaligned:
181       assert(mach->in(2) == val, "should be address");
182       break;
183     case Op_StoreB:
184     case Op_StoreC:
185     case Op_StoreCM:
186     case Op_StoreD:
187     case Op_StoreF:
188     case Op_StoreI:
189     case Op_StoreL:
190     case Op_StoreP:
191     case Op_StoreN:
192     case Op_StoreNKlass:
193       was_store = true;         // Memory op is a store op
194       // Stores will have their address in slot 2 (memory in slot 1).
195       // If the value being nul-checked is in another slot, it means we
196       // are storing the checked value, which does NOT check the value!
197       if( mach->in(2) != val ) continue;
198       break;                    // Found a memory op?
199     case Op_StrComp:
200     case Op_StrEquals:
201     case Op_StrIndexOf:
202     case Op_StrIndexOfChar:
203     case Op_AryEq:
204     case Op_StrInflatedCopy:
205     case Op_StrCompressedCopy:
206     case Op_EncodeISOArray:
207     case Op_HasNegatives:
208       // Not a legit memory op for implicit null check regardless of
209       // embedded loads
210       continue;
211     default:                    // Also check for embedded loads
212       if( !mach->needs_anti_dependence_check() )
213         continue;               // Not an memory op; skip it
214       if( must_clone[iop] ) {
215         // Do not move nodes which produce flags because
216         // RA will try to clone it to place near branch and
217         // it will cause recompilation, see clone_node().
218         continue;
219       }
220       {
221         // Check that value is used in memory address in
222         // instructions with embedded load (CmpP val1,(val2+off)).
223         Node* base;
224         Node* index;
225         const MachOper* oper = mach->memory_inputs(base, index);
226         if (oper == NULL || oper == (MachOper*)-1) {
227           continue;             // Not an memory op; skip it
228         }
229         if (val == base ||
230             (val == index && val->bottom_type()->isa_narrowoop())) {
231           break;                // Found it
232         } else {
233           continue;             // Skip it
234         }
235       }
236       break;
237     }
238 
239     // On some OSes (AIX) the page at address 0 is only write protected.
240     // If so, only Store operations will trap.
241     // But a read accessing the base of a heap-based compressed heap will trap.
242     if (!was_store && needs_explicit_null_check_for_read(val)) {
243       continue;
244     }
245 
246     // Check that node's control edge is not-null block's head or dominates it,
247     // otherwise we can't hoist it because there are other control dependencies.
248     Node* ctrl = mach->in(0);
249     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
250         get_block_for_node(ctrl)->dominates(not_null_block))) {
251       continue;
252     }
253 
254     // check if the offset is not too high for implicit exception
255     {
256       intptr_t offset = 0;
257       const TypePtr *adr_type = NULL;  // Do not need this return value here
258       const Node* base = mach->get_base_and_disp(offset, adr_type);
259       if (base == NULL || base == NodeSentinel) {
260         // Narrow oop address doesn't have base, only index.
261         // Give up if offset is beyond page size or if heap base is not protected.
262         if (val->bottom_type()->isa_narrowoop() &&
263             (MacroAssembler::needs_explicit_null_check(offset) ||
264              !Universe::narrow_oop_use_implicit_null_checks()))
265           continue;
266         // cannot reason about it; is probably not implicit null exception
267       } else {
268         const TypePtr* tptr;
269         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
270                                   Universe::narrow_klass_shift() == 0)) {
271           // 32-bits narrow oop can be the base of address expressions
272           tptr = base->get_ptr_type();
273         } else {
274           // only regular oops are expected here
275           tptr = base->bottom_type()->is_ptr();
276         }
277         // Give up if offset is not a compile-time constant.
278         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
279           continue;
280         offset += tptr->_offset; // correct if base is offseted
281         // Give up if reference is beyond page size.
282         if (MacroAssembler::needs_explicit_null_check(offset))
283           continue;
284         // Give up if base is a decode node and the heap base is not protected.
285         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
286             !Universe::narrow_oop_use_implicit_null_checks())
287           continue;
288       }
289     }
290 
291     // Check ctrl input to see if the null-check dominates the memory op
292     Block *cb = get_block_for_node(mach);
293     cb = cb->_idom;             // Always hoist at least 1 block
294     if( !was_store ) {          // Stores can be hoisted only one block
295       while( cb->_dom_depth > (block->_dom_depth + 1))
296         cb = cb->_idom;         // Hoist loads as far as we want
297       // The non-null-block should dominate the memory op, too. Live
298       // range spilling will insert a spill in the non-null-block if it is
299       // needs to spill the memory op for an implicit null check.
300       if (cb->_dom_depth == (block->_dom_depth + 1)) {
301         if (cb != not_null_block) continue;
302         cb = cb->_idom;
303       }
304     }
305     if( cb != block ) continue;
306 
307     // Found a memory user; see if it can be hoisted to check-block
308     uint vidx = 0;              // Capture index of value into memop
309     uint j;
310     for( j = mach->req()-1; j > 0; j-- ) {
311       if( mach->in(j) == val ) {
312         vidx = j;
313         // Ignore DecodeN val which could be hoisted to where needed.
314         if( is_decoden ) continue;
315       }
316       // Block of memory-op input
317       Block *inb = get_block_for_node(mach->in(j));
318       Block *b = block;          // Start from nul check
319       while( b != inb && b->_dom_depth > inb->_dom_depth )
320         b = b->_idom;           // search upwards for input
321       // See if input dominates null check
322       if( b != inb )
323         break;
324     }
325     if( j > 0 )
326       continue;
327     Block *mb = get_block_for_node(mach);
328     // Hoisting stores requires more checks for the anti-dependence case.
329     // Give up hoisting if we have to move the store past any load.
330     if( was_store ) {
331       Block *b = mb;            // Start searching here for a local load
332       // mach use (faulting) trying to hoist
333       // n might be blocker to hoisting
334       while( b != block ) {
335         uint k;
336         for( k = 1; k < b->number_of_nodes(); k++ ) {
337           Node *n = b->get_node(k);
338           if( n->needs_anti_dependence_check() &&
339               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
340             break;              // Found anti-dependent load
341         }
342         if( k < b->number_of_nodes() )
343           break;                // Found anti-dependent load
344         // Make sure control does not do a merge (would have to check allpaths)
345         if( b->num_preds() != 2 ) break;
346         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
347       }
348       if( b != block ) continue;
349     }
350 
351     // Make sure this memory op is not already being used for a NullCheck
352     Node *e = mb->end();
353     if( e->is_MachNullCheck() && e->in(1) == mach )
354       continue;                 // Already being used as a NULL check
355 
356     // Found a candidate!  Pick one with least dom depth - the highest
357     // in the dom tree should be closest to the null check.
358     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
359       best = mach;
360       bidx = vidx;
361     }
362   }
363   // No candidate!
364   if (best == NULL) {
365     return;
366   }
367 
368   // ---- Found an implicit null check
369 #ifndef PRODUCT
370   extern int implicit_null_checks;
371   implicit_null_checks++;
372 #endif
373 
374   if( is_decoden ) {
375     // Check if we need to hoist decodeHeapOop_not_null first.
376     Block *valb = get_block_for_node(val);
377     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
378       // Hoist it up to the end of the test block together with its inputs if they exist.
379       for (uint i = 2; i < val->req(); i++) {
380         // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs.
381         Node *temp = val->in(i);
382         Block *tempb = get_block_for_node(temp);
383         if (!tempb->dominates(block)) {
384           assert(block->dominates(tempb), "sanity check: temp node placement");
385           // We only expect nodes without further inputs, like MachTemp or load Base.
386           assert(temp->req() == 0 || (temp->req() == 1 && temp->in(0) == (Node*)C->root()),
387                  "need for recursive hoisting not expected");
388           tempb->find_remove(temp);
389           block->add_inst(temp);
390           map_node_to_block(temp, block);
391         }
392       }
393       valb->find_remove(val);
394       block->add_inst(val);
395       map_node_to_block(val, block);
396       // DecodeN on x86 may kill flags. Check for flag-killing projections
397       // that also need to be hoisted.
398       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
399         Node* n = val->fast_out(j);
400         if( n->is_MachProj() ) {
401           get_block_for_node(n)->find_remove(n);
402           block->add_inst(n);
403           map_node_to_block(n, block);
404         }
405       }
406     }
407   }
408   // Hoist the memory candidate up to the end of the test block.
409   Block *old_block = get_block_for_node(best);
410   old_block->find_remove(best);
411   block->add_inst(best);
412   map_node_to_block(best, block);
413 
414   // Move the control dependence if it is pinned to not-null block.
415   // Don't change it in other cases: NULL or dominating control.
416   Node* ctrl = best->in(0);
417   if (ctrl != NULL && get_block_for_node(ctrl) == not_null_block) {
418     // Set it to control edge of null check.
419     best->set_req(0, proj->in(0)->in(0));
420   }
421 
422   // Check for flag-killing projections that also need to be hoisted
423   // Should be DU safe because no edge updates.
424   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
425     Node* n = best->fast_out(j);
426     if( n->is_MachProj() ) {
427       get_block_for_node(n)->find_remove(n);
428       block->add_inst(n);
429       map_node_to_block(n, block);
430     }
431   }
432 
433   // proj==Op_True --> ne test; proj==Op_False --> eq test.
434   // One of two graph shapes got matched:
435   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
436   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
437   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
438   // then we are replacing a 'ne' test with a 'eq' NULL check test.
439   // We need to flip the projections to keep the same semantics.
440   if( proj->Opcode() == Op_IfTrue ) {
441     // Swap order of projections in basic block to swap branch targets
442     Node *tmp1 = block->get_node(block->end_idx()+1);
443     Node *tmp2 = block->get_node(block->end_idx()+2);
444     block->map_node(tmp2, block->end_idx()+1);
445     block->map_node(tmp1, block->end_idx()+2);
446     Node *tmp = new Node(C->top()); // Use not NULL input
447     tmp1->replace_by(tmp);
448     tmp2->replace_by(tmp1);
449     tmp->replace_by(tmp2);
450     tmp->destruct();
451   }
452 
453   // Remove the existing null check; use a new implicit null check instead.
454   // Since schedule-local needs precise def-use info, we need to correct
455   // it as well.
456   Node *old_tst = proj->in(0);
457   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
458   block->map_node(nul_chk, block->end_idx());
459   map_node_to_block(nul_chk, block);
460   // Redirect users of old_test to nul_chk
461   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
462     old_tst->last_out(i2)->set_req(0, nul_chk);
463   // Clean-up any dead code
464   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
465     Node* in = old_tst->in(i3);
466     old_tst->set_req(i3, NULL);
467     if (in->outcnt() == 0) {
468       // Remove dead input node
469       in->disconnect_inputs(NULL, C);
470       block->find_remove(in);
471     }
472   }
473 
474   latency_from_uses(nul_chk);
475   latency_from_uses(best);
476 
477   // insert anti-dependences to defs in this block
478   if (! best->needs_anti_dependence_check()) {
479     for (uint k = 1; k < block->number_of_nodes(); k++) {
480       Node *n = block->get_node(k);
481       if (n->needs_anti_dependence_check() &&
482           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
483         // Found anti-dependent load
484         insert_anti_dependences(block, n);
485       }
486     }
487   }
488 }
489 
490 
491 //------------------------------select-----------------------------------------
492 // Select a nice fellow from the worklist to schedule next. If there is only
493 // one choice, then use it. Projections take top priority for correctness
494 // reasons - if I see a projection, then it is next.  There are a number of
495 // other special cases, for instructions that consume condition codes, et al.
496 // These are chosen immediately. Some instructions are required to immediately
497 // precede the last instruction in the block, and these are taken last. Of the
498 // remaining cases (most), choose the instruction with the greatest latency
499 // (that is, the most number of pseudo-cycles required to the end of the
500 // routine). If there is a tie, choose the instruction with the most inputs.
select(Block * block,Node_List & worklist,GrowableArray<int> & ready_cnt,VectorSet & next_call,uint sched_slot,intptr_t * recalc_pressure_nodes)501 Node* PhaseCFG::select(
502   Block* block,
503   Node_List &worklist,
504   GrowableArray<int> &ready_cnt,
505   VectorSet &next_call,
506   uint sched_slot,
507   intptr_t* recalc_pressure_nodes) {
508 
509   // If only a single entry on the stack, use it
510   uint cnt = worklist.size();
511   if (cnt == 1) {
512     Node *n = worklist[0];
513     worklist.map(0,worklist.pop());
514     return n;
515   }
516 
517   uint choice  = 0; // Bigger is most important
518   uint latency = 0; // Bigger is scheduled first
519   uint score   = 0; // Bigger is better
520   int idx = -1;     // Index in worklist
521   int cand_cnt = 0; // Candidate count
522   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
523 
524   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
525     // Order in worklist is used to break ties.
526     // See caller for how this is used to delay scheduling
527     // of induction variable increments to after the other
528     // uses of the phi are scheduled.
529     Node *n = worklist[i];      // Get Node on worklist
530 
531     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
532     if( n->is_Proj() ||         // Projections always win
533         n->Opcode()== Op_Con || // So does constant 'Top'
534         iop == Op_CreateEx ||   // Create-exception must start block
535         iop == Op_CheckCastPP
536         ) {
537       worklist.map(i,worklist.pop());
538       return n;
539     }
540 
541     // Final call in a block must be adjacent to 'catch'
542     Node *e = block->end();
543     if( e->is_Catch() && e->in(0)->in(0) == n )
544       continue;
545 
546     // Memory op for an implicit null check has to be at the end of the block
547     if( e->is_MachNullCheck() && e->in(1) == n )
548       continue;
549 
550     // Schedule IV increment last.
551     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
552       // Cmp might be matched into CountedLoopEnd node.
553       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
554       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
555         continue;
556       }
557     }
558 
559     uint n_choice  = 2;
560 
561     // See if this instruction is consumed by a branch. If so, then (as the
562     // branch is the last instruction in the basic block) force it to the
563     // end of the basic block
564     if ( must_clone[iop] ) {
565       // See if any use is a branch
566       bool found_machif = false;
567 
568       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
569         Node* use = n->fast_out(j);
570 
571         // The use is a conditional branch, make them adjacent
572         if (use->is_MachIf() && get_block_for_node(use) == block) {
573           found_machif = true;
574           break;
575         }
576 
577         // More than this instruction pending for successor to be ready,
578         // don't choose this if other opportunities are ready
579         if (ready_cnt.at(use->_idx) > 1)
580           n_choice = 1;
581       }
582 
583       // loop terminated, prefer not to use this instruction
584       if (found_machif)
585         continue;
586     }
587 
588     // See if this has a predecessor that is "must_clone", i.e. sets the
589     // condition code. If so, choose this first
590     for (uint j = 0; j < n->req() ; j++) {
591       Node *inn = n->in(j);
592       if (inn) {
593         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
594           n_choice = 3;
595           break;
596         }
597       }
598     }
599 
600     // MachTemps should be scheduled last so they are near their uses
601     if (n->is_MachTemp()) {
602       n_choice = 1;
603     }
604 
605     uint n_latency = get_latency_for_node(n);
606     uint n_score = n->req();   // Many inputs get high score to break ties
607 
608     if (OptoRegScheduling && block_size_threshold_ok) {
609       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
610         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
611         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
612         // simulate the notion that we just picked this node to schedule
613         n->add_flag(Node::Flag_is_scheduled);
614         // now caculate its effect upon the graph if we did
615         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
616         // return its state for finalize in case somebody else wins
617         n->remove_flag(Node::Flag_is_scheduled);
618         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
619         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
620         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
621         recalc_pressure_nodes[n->_idx] = int_pressure;
622         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
623       }
624 
625       if (_scheduling_for_pressure) {
626         latency = n_latency;
627         if (n_choice != 3) {
628           // Now evaluate each register pressure component based on threshold in the score.
629           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
630           // on a single instruction, but we might see it shrink on both banks.
631           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
632           // live ranges that terminate on this instruction.
633           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
634             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
635             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
636           }
637           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
638             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
639             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
640           }
641         } else {
642           // make sure we choose these candidates
643           score = 0;
644         }
645       }
646     }
647 
648     // Keep best latency found
649     cand_cnt++;
650     if (choice < n_choice ||
651         (choice == n_choice &&
652          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
653           (!StressLCM &&
654            (latency < n_latency ||
655             (latency == n_latency &&
656              (score < n_score))))))) {
657       choice  = n_choice;
658       latency = n_latency;
659       score   = n_score;
660       idx     = i;               // Also keep index in worklist
661     }
662   } // End of for all ready nodes in worklist
663 
664   guarantee(idx >= 0, "index should be set");
665   Node *n = worklist[(uint)idx];      // Get the winner
666 
667   worklist.map((uint)idx, worklist.pop());     // Compress worklist
668   return n;
669 }
670 
671 //-------------------------adjust_register_pressure----------------------------
adjust_register_pressure(Node * n,Block * block,intptr_t * recalc_pressure_nodes,bool finalize_mode)672 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
673   PhaseLive* liveinfo = _regalloc->get_live();
674   IndexSet* liveout = liveinfo->live(block);
675   // first adjust the register pressure for the sources
676   for (uint i = 1; i < n->req(); i++) {
677     bool lrg_ends = false;
678     Node *src_n = n->in(i);
679     if (src_n == NULL) continue;
680     if (!src_n->is_Mach()) continue;
681     uint src = _regalloc->_lrg_map.find(src_n);
682     if (src == 0) continue;
683     LRG& lrg_src = _regalloc->lrgs(src);
684     // detect if the live range ends or not
685     if (liveout->member(src) == false) {
686       lrg_ends = true;
687       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
688         Node* m = src_n->fast_out(j); // Get user
689         if (m == n) continue;
690         if (!m->is_Mach()) continue;
691         MachNode *mach = m->as_Mach();
692         bool src_matches = false;
693         int iop = mach->ideal_Opcode();
694 
695         switch (iop) {
696         case Op_StoreB:
697         case Op_StoreC:
698         case Op_StoreCM:
699         case Op_StoreD:
700         case Op_StoreF:
701         case Op_StoreI:
702         case Op_StoreL:
703         case Op_StoreP:
704         case Op_StoreN:
705         case Op_StoreVector:
706         case Op_StoreNKlass:
707           for (uint k = 1; k < m->req(); k++) {
708             Node *in = m->in(k);
709             if (in == src_n) {
710               src_matches = true;
711               break;
712             }
713           }
714           break;
715 
716         default:
717           src_matches = true;
718           break;
719         }
720 
721         // If we have a store as our use, ignore the non source operands
722         if (src_matches == false) continue;
723 
724         // Mark every unscheduled use which is not n with a recalculation
725         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
726           if (finalize_mode && !m->is_Phi()) {
727             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
728           }
729           lrg_ends = false;
730         }
731       }
732     }
733     // if none, this live range ends and we can adjust register pressure
734     if (lrg_ends) {
735       if (finalize_mode) {
736         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
737       } else {
738         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
739       }
740     }
741   }
742 
743   // now add the register pressure from the dest and evaluate which heuristic we should use:
744   // 1.) The default, latency scheduling
745   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
746   uint dst = _regalloc->_lrg_map.find(n);
747   if (dst != 0) {
748     LRG& lrg_dst = _regalloc->lrgs(dst);
749     if (finalize_mode) {
750       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
751       // check to see if we fall over the register pressure cliff here
752       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
753         _scheduling_for_pressure = true;
754       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
755         _scheduling_for_pressure = true;
756       } else {
757         // restore latency scheduling mode
758         _scheduling_for_pressure = false;
759       }
760     } else {
761       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
762     }
763   }
764 }
765 
766 //------------------------------set_next_call----------------------------------
set_next_call(Block * block,Node * n,VectorSet & next_call)767 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
768   if( next_call.test_set(n->_idx) ) return;
769   for( uint i=0; i<n->len(); i++ ) {
770     Node *m = n->in(i);
771     if( !m ) continue;  // must see all nodes in block that precede call
772     if (get_block_for_node(m) == block) {
773       set_next_call(block, m, next_call);
774     }
775   }
776 }
777 
778 //------------------------------needed_for_next_call---------------------------
779 // Set the flag 'next_call' for each Node that is needed for the next call to
780 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
781 // next subroutine call get priority - basically it moves things NOT needed
782 // for the next call till after the call.  This prevents me from trying to
783 // carry lots of stuff live across a call.
needed_for_next_call(Block * block,Node * this_call,VectorSet & next_call)784 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
785   // Find the next control-defining Node in this block
786   Node* call = NULL;
787   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
788     Node* m = this_call->fast_out(i);
789     if (get_block_for_node(m) == block && // Local-block user
790         m != this_call &&       // Not self-start node
791         m->is_MachCall()) {
792       call = m;
793       break;
794     }
795   }
796   if (call == NULL)  return;    // No next call (e.g., block end is near)
797   // Set next-call for all inputs to this call
798   set_next_call(block, call, next_call);
799 }
800 
801 //------------------------------add_call_kills-------------------------------------
802 // helper function that adds caller save registers to MachProjNode
add_call_kills(MachProjNode * proj,RegMask & regs,const char * save_policy,bool exclude_soe)803 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
804   // Fill in the kill mask for the call
805   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
806     if( !regs.Member(r) ) {     // Not already defined by the call
807       // Save-on-call register?
808       if ((save_policy[r] == 'C') ||
809           (save_policy[r] == 'A') ||
810           ((save_policy[r] == 'E') && exclude_soe)) {
811         proj->_rout.Insert(r);
812       }
813     }
814   }
815 }
816 
817 
818 //------------------------------sched_call-------------------------------------
sched_call(Block * block,uint node_cnt,Node_List & worklist,GrowableArray<int> & ready_cnt,MachCallNode * mcall,VectorSet & next_call)819 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
820   RegMask regs;
821 
822   // Schedule all the users of the call right now.  All the users are
823   // projection Nodes, so they must be scheduled next to the call.
824   // Collect all the defined registers.
825   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
826     Node* n = mcall->fast_out(i);
827     assert( n->is_MachProj(), "" );
828     int n_cnt = ready_cnt.at(n->_idx)-1;
829     ready_cnt.at_put(n->_idx, n_cnt);
830     assert( n_cnt == 0, "" );
831     // Schedule next to call
832     block->map_node(n, node_cnt++);
833     // Collect defined registers
834     regs.OR(n->out_RegMask());
835     // Check for scheduling the next control-definer
836     if( n->bottom_type() == Type::CONTROL )
837       // Warm up next pile of heuristic bits
838       needed_for_next_call(block, n, next_call);
839 
840     // Children of projections are now all ready
841     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
842       Node* m = n->fast_out(j); // Get user
843       if(get_block_for_node(m) != block) {
844         continue;
845       }
846       if( m->is_Phi() ) continue;
847       int m_cnt = ready_cnt.at(m->_idx) - 1;
848       ready_cnt.at_put(m->_idx, m_cnt);
849       if( m_cnt == 0 )
850         worklist.push(m);
851     }
852 
853   }
854 
855   // Act as if the call defines the Frame Pointer.
856   // Certainly the FP is alive and well after the call.
857   regs.Insert(_matcher.c_frame_pointer());
858 
859   // Set all registers killed and not already defined by the call.
860   uint r_cnt = mcall->tf()->range()->cnt();
861   int op = mcall->ideal_Opcode();
862   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
863   map_node_to_block(proj, block);
864   block->insert_node(proj, node_cnt++);
865 
866   // Select the right register save policy.
867   const char *save_policy = NULL;
868   switch (op) {
869     case Op_CallRuntime:
870     case Op_CallLeaf:
871     case Op_CallLeafNoFP:
872       // Calling C code so use C calling convention
873       save_policy = _matcher._c_reg_save_policy;
874       break;
875 
876     case Op_CallStaticJava:
877     case Op_CallDynamicJava:
878       // Calling Java code so use Java calling convention
879       save_policy = _matcher._register_save_policy;
880       break;
881 
882     default:
883       ShouldNotReachHere();
884   }
885 
886   // When using CallRuntime mark SOE registers as killed by the call
887   // so values that could show up in the RegisterMap aren't live in a
888   // callee saved register since the register wouldn't know where to
889   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
890   // have debug info on them.  Strictly speaking this only needs to be
891   // done for oops since idealreg2debugmask takes care of debug info
892   // references but there no way to handle oops differently than other
893   // pointers as far as the kill mask goes.
894   bool exclude_soe = op == Op_CallRuntime;
895 
896   // If the call is a MethodHandle invoke, we need to exclude the
897   // register which is used to save the SP value over MH invokes from
898   // the mask.  Otherwise this register could be used for
899   // deoptimization information.
900   if (op == Op_CallStaticJava) {
901     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
902     if (mcallstaticjava->_method_handle_invoke)
903       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
904   }
905 
906   add_call_kills(proj, regs, save_policy, exclude_soe);
907 
908   return node_cnt;
909 }
910 
911 
912 //------------------------------schedule_local---------------------------------
913 // Topological sort within a block.  Someday become a real scheduler.
schedule_local(Block * block,GrowableArray<int> & ready_cnt,VectorSet & next_call,intptr_t * recalc_pressure_nodes)914 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
915   // Already "sorted" are the block start Node (as the first entry), and
916   // the block-ending Node and any trailing control projections.  We leave
917   // these alone.  PhiNodes and ParmNodes are made to follow the block start
918   // Node.  Everything else gets topo-sorted.
919 
920 #ifndef PRODUCT
921     if (trace_opto_pipelining()) {
922       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
923       for (uint i = 0;i < block->number_of_nodes(); i++) {
924         tty->print("# ");
925         block->get_node(i)->fast_dump();
926       }
927       tty->print_cr("#");
928     }
929 #endif
930 
931   // RootNode is already sorted
932   if (block->number_of_nodes() == 1) {
933     return true;
934   }
935 
936   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
937 
938   // We track the uses of local definitions as input dependences so that
939   // we know when a given instruction is avialable to be scheduled.
940   uint i;
941   if (OptoRegScheduling && block_size_threshold_ok) {
942     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
943       Node *n = block->get_node(i);
944       n->remove_flag(Node::Flag_is_scheduled);
945       if (!n->is_Phi()) {
946         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
947       }
948     }
949   }
950 
951   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
952   uint node_cnt = block->end_idx();
953   uint phi_cnt = 1;
954   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
955     Node *n = block->get_node(i);
956     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
957         (n->is_Proj()  && n->in(0) == block->head()) ) {
958       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
959       block->map_node(block->get_node(phi_cnt), i);
960       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
961       if (OptoRegScheduling && block_size_threshold_ok) {
962         // mark n as scheduled
963         n->add_flag(Node::Flag_is_scheduled);
964       }
965     } else {                    // All others
966       // Count block-local inputs to 'n'
967       uint cnt = n->len();      // Input count
968       uint local = 0;
969       for( uint j=0; j<cnt; j++ ) {
970         Node *m = n->in(j);
971         if( m && get_block_for_node(m) == block && !m->is_top() )
972           local++;              // One more block-local input
973       }
974       ready_cnt.at_put(n->_idx, local); // Count em up
975 
976 #ifdef ASSERT
977       if( UseConcMarkSweepGC || UseG1GC ) {
978         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
979           // Check the precedence edges
980           for (uint prec = n->req(); prec < n->len(); prec++) {
981             Node* oop_store = n->in(prec);
982             if (oop_store != NULL) {
983               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
984             }
985           }
986         }
987       }
988 #endif
989 
990       // A few node types require changing a required edge to a precedence edge
991       // before allocation.
992       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
993           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
994            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
995         // MemBarAcquire could be created without Precedent edge.
996         // del_req() replaces the specified edge with the last input edge
997         // and then removes the last edge. If the specified edge > number of
998         // edges the last edge will be moved outside of the input edges array
999         // and the edge will be lost. This is why this code should be
1000         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1001         Node *x = n->in(TypeFunc::Parms);
1002         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1003           // Old edge to node within same block will get removed, but no precedence
1004           // edge will get added because it already exists. Update ready count.
1005           int cnt = ready_cnt.at(n->_idx);
1006           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1007           ready_cnt.at_put(n->_idx, cnt-1);
1008         }
1009         n->del_req(TypeFunc::Parms);
1010         n->add_prec(x);
1011       }
1012     }
1013   }
1014   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1015     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1016 
1017   // All the prescheduled guys do not hold back internal nodes
1018   uint i3;
1019   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1020     Node *n = block->get_node(i3);       // Get pre-scheduled
1021     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1022       Node* m = n->fast_out(j);
1023       if (get_block_for_node(m) == block) { // Local-block user
1024         int m_cnt = ready_cnt.at(m->_idx)-1;
1025         if (OptoRegScheduling && block_size_threshold_ok) {
1026           // mark m as scheduled
1027           if (m_cnt < 0) {
1028             m->add_flag(Node::Flag_is_scheduled);
1029           }
1030         }
1031         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1032       }
1033     }
1034   }
1035 
1036   Node_List delay;
1037   // Make a worklist
1038   Node_List worklist;
1039   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1040     Node *m = block->get_node(i4);
1041     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1042       if (m->is_iteratively_computed()) {
1043         // Push induction variable increments last to allow other uses
1044         // of the phi to be scheduled first. The select() method breaks
1045         // ties in scheduling by worklist order.
1046         delay.push(m);
1047       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1048         // Force the CreateEx to the top of the list so it's processed
1049         // first and ends up at the start of the block.
1050         worklist.insert(0, m);
1051       } else {
1052         worklist.push(m);         // Then on to worklist!
1053       }
1054     }
1055   }
1056   while (delay.size()) {
1057     Node* d = delay.pop();
1058     worklist.push(d);
1059   }
1060 
1061   if (OptoRegScheduling && block_size_threshold_ok) {
1062     // To stage register pressure calculations we need to examine the live set variables
1063     // breaking them up by register class to compartmentalize the calculations.
1064     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1065     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1066     _regalloc->_sched_float_pressure.init(float_pressure);
1067     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1068     _regalloc->_scratch_float_pressure.init(float_pressure);
1069 
1070     _regalloc->compute_entry_block_pressure(block);
1071   }
1072 
1073   // Warm up the 'next_call' heuristic bits
1074   needed_for_next_call(block, block->head(), next_call);
1075 
1076 #ifndef PRODUCT
1077     if (trace_opto_pipelining()) {
1078       for (uint j=0; j< block->number_of_nodes(); j++) {
1079         Node     *n = block->get_node(j);
1080         int     idx = n->_idx;
1081         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1082         tty->print("latency:%3d  ", get_latency_for_node(n));
1083         tty->print("%4d: %s\n", idx, n->Name());
1084       }
1085     }
1086 #endif
1087 
1088   uint max_idx = (uint)ready_cnt.length();
1089   // Pull from worklist and schedule
1090   while( worklist.size() ) {    // Worklist is not ready
1091 
1092 #ifndef PRODUCT
1093     if (trace_opto_pipelining()) {
1094       tty->print("#   ready list:");
1095       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1096         Node *n = worklist[i];      // Get Node on worklist
1097         tty->print(" %d", n->_idx);
1098       }
1099       tty->cr();
1100     }
1101 #endif
1102 
1103     // Select and pop a ready guy from worklist
1104     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1105     block->map_node(n, phi_cnt++);    // Schedule him next
1106 
1107     if (OptoRegScheduling && block_size_threshold_ok) {
1108       n->add_flag(Node::Flag_is_scheduled);
1109 
1110       // Now adjust the resister pressure with the node we selected
1111       if (!n->is_Phi()) {
1112         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1113       }
1114     }
1115 
1116 #ifndef PRODUCT
1117     if (trace_opto_pipelining()) {
1118       tty->print("#    select %d: %s", n->_idx, n->Name());
1119       tty->print(", latency:%d", get_latency_for_node(n));
1120       n->dump();
1121       if (Verbose) {
1122         tty->print("#   ready list:");
1123         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1124           Node *n = worklist[i];      // Get Node on worklist
1125           tty->print(" %d", n->_idx);
1126         }
1127         tty->cr();
1128       }
1129     }
1130 
1131 #endif
1132     if( n->is_MachCall() ) {
1133       MachCallNode *mcall = n->as_MachCall();
1134       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1135       continue;
1136     }
1137 
1138     if (n->is_Mach() && n->as_Mach()->has_call()) {
1139       RegMask regs;
1140       regs.Insert(_matcher.c_frame_pointer());
1141       regs.OR(n->out_RegMask());
1142 
1143       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1144       map_node_to_block(proj, block);
1145       block->insert_node(proj, phi_cnt++);
1146 
1147       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1148     }
1149 
1150     // Children are now all ready
1151     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1152       Node* m = n->fast_out(i5); // Get user
1153       if (get_block_for_node(m) != block) {
1154         continue;
1155       }
1156       if( m->is_Phi() ) continue;
1157       if (m->_idx >= max_idx) { // new node, skip it
1158         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1159         continue;
1160       }
1161       int m_cnt = ready_cnt.at(m->_idx) - 1;
1162       ready_cnt.at_put(m->_idx, m_cnt);
1163       if( m_cnt == 0 )
1164         worklist.push(m);
1165     }
1166   }
1167 
1168   if( phi_cnt != block->end_idx() ) {
1169     // did not schedule all.  Retry, Bailout, or Die
1170     if (C->subsume_loads() == true && !C->failing()) {
1171       // Retry with subsume_loads == false
1172       // If this is the first failure, the sentinel string will "stick"
1173       // to the Compile object, and the C2Compiler will see it and retry.
1174       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1175     } else {
1176       assert(false, "graph should be schedulable");
1177     }
1178     // assert( phi_cnt == end_idx(), "did not schedule all" );
1179     return false;
1180   }
1181 
1182   if (OptoRegScheduling && block_size_threshold_ok) {
1183     _regalloc->compute_exit_block_pressure(block);
1184     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1185     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1186   }
1187 
1188 #ifndef PRODUCT
1189   if (trace_opto_pipelining()) {
1190     tty->print_cr("#");
1191     tty->print_cr("# after schedule_local");
1192     for (uint i = 0;i < block->number_of_nodes();i++) {
1193       tty->print("# ");
1194       block->get_node(i)->fast_dump();
1195     }
1196     tty->print_cr("# ");
1197 
1198     if (OptoRegScheduling && block_size_threshold_ok) {
1199       tty->print_cr("# pressure info : %d", block->_pre_order);
1200       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1201       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1202     }
1203     tty->cr();
1204   }
1205 #endif
1206 
1207   return true;
1208 }
1209 
1210 //--------------------------catch_cleanup_fix_all_inputs-----------------------
catch_cleanup_fix_all_inputs(Node * use,Node * old_def,Node * new_def)1211 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1212   for (uint l = 0; l < use->len(); l++) {
1213     if (use->in(l) == old_def) {
1214       if (l < use->req()) {
1215         use->set_req(l, new_def);
1216       } else {
1217         use->rm_prec(l);
1218         use->add_prec(new_def);
1219         l--;
1220       }
1221     }
1222   }
1223 }
1224 
1225 //------------------------------catch_cleanup_find_cloned_def------------------
catch_cleanup_find_cloned_def(Block * use_blk,Node * def,Block * def_blk,int n_clone_idx)1226 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1227   assert( use_blk != def_blk, "Inter-block cleanup only");
1228 
1229   // The use is some block below the Catch.  Find and return the clone of the def
1230   // that dominates the use. If there is no clone in a dominating block, then
1231   // create a phi for the def in a dominating block.
1232 
1233   // Find which successor block dominates this use.  The successor
1234   // blocks must all be single-entry (from the Catch only; I will have
1235   // split blocks to make this so), hence they all dominate.
1236   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1237     use_blk = use_blk->_idom;
1238 
1239   // Find the successor
1240   Node *fixup = NULL;
1241 
1242   uint j;
1243   for( j = 0; j < def_blk->_num_succs; j++ )
1244     if( use_blk == def_blk->_succs[j] )
1245       break;
1246 
1247   if( j == def_blk->_num_succs ) {
1248     // Block at same level in dom-tree is not a successor.  It needs a
1249     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1250     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1251     for(uint k = 1; k < use_blk->num_preds(); k++) {
1252       Block* block = get_block_for_node(use_blk->pred(k));
1253       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1254     }
1255 
1256     // Check to see if the use_blk already has an identical phi inserted.
1257     // If it exists, it will be at the first position since all uses of a
1258     // def are processed together.
1259     Node *phi = use_blk->get_node(1);
1260     if( phi->is_Phi() ) {
1261       fixup = phi;
1262       for (uint k = 1; k < use_blk->num_preds(); k++) {
1263         if (phi->in(k) != inputs[k]) {
1264           // Not a match
1265           fixup = NULL;
1266           break;
1267         }
1268       }
1269     }
1270 
1271     // If an existing PhiNode was not found, make a new one.
1272     if (fixup == NULL) {
1273       Node *new_phi = PhiNode::make(use_blk->head(), def);
1274       use_blk->insert_node(new_phi, 1);
1275       map_node_to_block(new_phi, use_blk);
1276       for (uint k = 1; k < use_blk->num_preds(); k++) {
1277         new_phi->set_req(k, inputs[k]);
1278       }
1279       fixup = new_phi;
1280     }
1281 
1282   } else {
1283     // Found the use just below the Catch.  Make it use the clone.
1284     fixup = use_blk->get_node(n_clone_idx);
1285   }
1286 
1287   return fixup;
1288 }
1289 
1290 //--------------------------catch_cleanup_intra_block--------------------------
1291 // Fix all input edges in use that reference "def".  The use is in the same
1292 // block as the def and both have been cloned in each successor block.
catch_cleanup_intra_block(Node * use,Node * def,Block * blk,int beg,int n_clone_idx)1293 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1294 
1295   // Both the use and def have been cloned. For each successor block,
1296   // get the clone of the use, and make its input the clone of the def
1297   // found in that block.
1298 
1299   uint use_idx = blk->find_node(use);
1300   uint offset_idx = use_idx - beg;
1301   for( uint k = 0; k < blk->_num_succs; k++ ) {
1302     // Get clone in each successor block
1303     Block *sb = blk->_succs[k];
1304     Node *clone = sb->get_node(offset_idx+1);
1305     assert( clone->Opcode() == use->Opcode(), "" );
1306 
1307     // Make use-clone reference the def-clone
1308     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1309   }
1310 }
1311 
1312 //------------------------------catch_cleanup_inter_block---------------------
1313 // Fix all input edges in use that reference "def".  The use is in a different
1314 // block than the def.
catch_cleanup_inter_block(Node * use,Block * use_blk,Node * def,Block * def_blk,int n_clone_idx)1315 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1316   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1317 
1318   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1319   catch_cleanup_fix_all_inputs(use, def, new_def);
1320 }
1321 
1322 //------------------------------call_catch_cleanup-----------------------------
1323 // If we inserted any instructions between a Call and his CatchNode,
1324 // clone the instructions on all paths below the Catch.
call_catch_cleanup(Block * block)1325 void PhaseCFG::call_catch_cleanup(Block* block) {
1326 
1327   // End of region to clone
1328   uint end = block->end_idx();
1329   if( !block->get_node(end)->is_Catch() ) return;
1330   // Start of region to clone
1331   uint beg = end;
1332   while(!block->get_node(beg-1)->is_MachProj() ||
1333         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1334     beg--;
1335     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1336   }
1337   // Range of inserted instructions is [beg, end)
1338   if( beg == end ) return;
1339 
1340   // Clone along all Catch output paths.  Clone area between the 'beg' and
1341   // 'end' indices.
1342   for( uint i = 0; i < block->_num_succs; i++ ) {
1343     Block *sb = block->_succs[i];
1344     // Clone the entire area; ignoring the edge fixup for now.
1345     for( uint j = end; j > beg; j-- ) {
1346       Node *clone = block->get_node(j-1)->clone();
1347       sb->insert_node(clone, 1);
1348       map_node_to_block(clone, sb);
1349       if (clone->needs_anti_dependence_check()) {
1350         insert_anti_dependences(sb, clone);
1351       }
1352     }
1353   }
1354 
1355 
1356   // Fixup edges.  Check the def-use info per cloned Node
1357   for(uint i2 = beg; i2 < end; i2++ ) {
1358     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1359     Node *n = block->get_node(i2);        // Node that got cloned
1360     // Need DU safe iterator because of edge manipulation in calls.
1361     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1362     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1363       out->push(n->fast_out(j1));
1364     }
1365     uint max = out->size();
1366     for (uint j = 0; j < max; j++) {// For all users
1367       Node *use = out->pop();
1368       Block *buse = get_block_for_node(use);
1369       if( use->is_Phi() ) {
1370         for( uint k = 1; k < use->req(); k++ )
1371           if( use->in(k) == n ) {
1372             Block* b = get_block_for_node(buse->pred(k));
1373             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1374             use->set_req(k, fixup);
1375           }
1376       } else {
1377         if (block == buse) {
1378           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1379         } else {
1380           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1381         }
1382       }
1383     } // End for all users
1384 
1385   } // End of for all Nodes in cloned area
1386 
1387   // Remove the now-dead cloned ops
1388   for(uint i3 = beg; i3 < end; i3++ ) {
1389     block->get_node(beg)->disconnect_inputs(NULL, C);
1390     block->remove_node(beg);
1391   }
1392 
1393   // If the successor blocks have a CreateEx node, move it back to the top
1394   for (uint i4 = 0; i4 < block->_num_succs; i4++) {
1395     Block *sb = block->_succs[i4];
1396     uint new_cnt = end - beg;
1397     // Remove any newly created, but dead, nodes by traversing their schedule
1398     // backwards. Here, a dead node is a node whose only outputs (if any) are
1399     // unused projections.
1400     for (uint j = new_cnt; j > 0; j--) {
1401       Node *n = sb->get_node(j);
1402       // Individual projections are examined together with all siblings when
1403       // their parent is visited.
1404       if (n->is_Proj()) {
1405         continue;
1406       }
1407       bool dead = true;
1408       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1409         Node* out = n->fast_out(i);
1410         // n is live if it has a non-projection output or a used projection.
1411         if (!out->is_Proj() || out->outcnt() > 0) {
1412           dead = false;
1413           break;
1414         }
1415       }
1416       if (dead) {
1417         // n's only outputs (if any) are unused projections scheduled next to n
1418         // (see PhaseCFG::select()). Remove these projections backwards.
1419         for (uint k = j + n->outcnt(); k > j; k--) {
1420           Node* proj = sb->get_node(k);
1421           assert(proj->is_Proj() && proj->in(0) == n,
1422                  "projection should correspond to dead node");
1423           proj->disconnect_inputs(NULL, C);
1424           sb->remove_node(k);
1425           new_cnt--;
1426         }
1427         // Now remove the node itself.
1428         n->disconnect_inputs(NULL, C);
1429         sb->remove_node(j);
1430         new_cnt--;
1431       }
1432     }
1433     // If any newly created nodes remain, move the CreateEx node to the top
1434     if (new_cnt > 0) {
1435       Node *cex = sb->get_node(1+new_cnt);
1436       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1437         sb->remove_node(1+new_cnt);
1438         sb->insert_node(cex, 1);
1439       }
1440     }
1441   }
1442 }
1443