1 /*
2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "ci/bcEscapeAnalyzer.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/c2/barrierSetC2.hpp"
30 #include "libadt/vectset.hpp"
31 #include "memory/allocation.hpp"
32 #include "memory/resourceArea.hpp"
33 #include "opto/c2compiler.hpp"
34 #include "opto/arraycopynode.hpp"
35 #include "opto/callnode.hpp"
36 #include "opto/cfgnode.hpp"
37 #include "opto/compile.hpp"
38 #include "opto/escape.hpp"
39 #include "opto/phaseX.hpp"
40 #include "opto/movenode.hpp"
41 #include "opto/rootnode.hpp"
42 #include "utilities/macros.hpp"
43 
ConnectionGraph(Compile * C,PhaseIterGVN * igvn)44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
46   _in_worklist(C->comp_arena()),
47   _next_pidx(0),
48   _collecting(true),
49   _verify(false),
50   _compile(C),
51   _igvn(igvn),
52   _node_map(C->comp_arena()) {
53   // Add unknown java object.
54   add_java_object(C->top(), PointsToNode::GlobalEscape);
55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
56   // Add ConP(#NULL) and ConN(#NULL) nodes.
57   Node* oop_null = igvn->zerocon(T_OBJECT);
58   assert(oop_null->_idx < nodes_size(), "should be created already");
59   add_java_object(oop_null, PointsToNode::NoEscape);
60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
61   if (UseCompressedOops) {
62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
63     assert(noop_null->_idx < nodes_size(), "should be created already");
64     map_ideal_node(noop_null, null_obj);
65   }
66   _pcmp_neq = NULL; // Should be initialized
67   _pcmp_eq  = NULL;
68 }
69 
has_candidates(Compile * C)70 bool ConnectionGraph::has_candidates(Compile *C) {
71   // EA brings benefits only when the code has allocations and/or locks which
72   // are represented by ideal Macro nodes.
73   int cnt = C->macro_count();
74   for (int i = 0; i < cnt; i++) {
75     Node *n = C->macro_node(i);
76     if (n->is_Allocate())
77       return true;
78     if (n->is_Lock()) {
79       Node* obj = n->as_Lock()->obj_node()->uncast();
80       if (!(obj->is_Parm() || obj->is_Con()))
81         return true;
82     }
83     if (n->is_CallStaticJava() &&
84         n->as_CallStaticJava()->is_boxing_method()) {
85       return true;
86     }
87   }
88   return false;
89 }
90 
do_analysis(Compile * C,PhaseIterGVN * igvn)91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
93   ResourceMark rm;
94 
95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
96   // to create space for them in ConnectionGraph::_nodes[].
97   Node* oop_null = igvn->zerocon(T_OBJECT);
98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
100   // Perform escape analysis
101   if (congraph->compute_escape()) {
102     // There are non escaping objects.
103     C->set_congraph(congraph);
104   }
105   // Cleanup.
106   if (oop_null->outcnt() == 0)
107     igvn->hash_delete(oop_null);
108   if (noop_null->outcnt() == 0)
109     igvn->hash_delete(noop_null);
110 }
111 
compute_escape()112 bool ConnectionGraph::compute_escape() {
113   Compile* C = _compile;
114   PhaseGVN* igvn = _igvn;
115 
116   // Worklists used by EA.
117   Unique_Node_List delayed_worklist;
118   GrowableArray<Node*> alloc_worklist;
119   GrowableArray<Node*> ptr_cmp_worklist;
120   GrowableArray<Node*> storestore_worklist;
121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
122   GrowableArray<PointsToNode*>   ptnodes_worklist;
123   GrowableArray<JavaObjectNode*> java_objects_worklist;
124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
125   GrowableArray<FieldNode*>      oop_fields_worklist;
126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
127 
128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
129 
130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
132   // Initialize worklist
133   if (C->root() != NULL) {
134     ideal_nodes.push(C->root());
135   }
136   // Processed ideal nodes are unique on ideal_nodes list
137   // but several ideal nodes are mapped to the phantom_obj.
138   // To avoid duplicated entries on the following worklists
139   // add the phantom_obj only once to them.
140   ptnodes_worklist.append(phantom_obj);
141   java_objects_worklist.append(phantom_obj);
142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
143     Node* n = ideal_nodes.at(next);
144     // Create PointsTo nodes and add them to Connection Graph. Called
145     // only once per ideal node since ideal_nodes is Unique_Node list.
146     add_node_to_connection_graph(n, &delayed_worklist);
147     PointsToNode* ptn = ptnode_adr(n->_idx);
148     if (ptn != NULL && ptn != phantom_obj) {
149       ptnodes_worklist.append(ptn);
150       if (ptn->is_JavaObject()) {
151         java_objects_worklist.append(ptn->as_JavaObject());
152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
154           // Only allocations and java static calls results are interesting.
155           non_escaped_worklist.append(ptn->as_JavaObject());
156         }
157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
158         oop_fields_worklist.append(ptn->as_Field());
159       }
160     }
161     if (n->is_MergeMem()) {
162       // Collect all MergeMem nodes to add memory slices for
163       // scalar replaceable objects in split_unique_types().
164       _mergemem_worklist.append(n->as_MergeMem());
165     } else if (OptimizePtrCompare && n->is_Cmp() &&
166                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
167       // Collect compare pointers nodes.
168       ptr_cmp_worklist.append(n);
169     } else if (n->is_MemBarStoreStore()) {
170       // Collect all MemBarStoreStore nodes so that depending on the
171       // escape status of the associated Allocate node some of them
172       // may be eliminated.
173       storestore_worklist.append(n);
174     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
175                (n->req() > MemBarNode::Precedent)) {
176       record_for_optimizer(n);
177 #ifdef ASSERT
178     } else if (n->is_AddP()) {
179       // Collect address nodes for graph verification.
180       addp_worklist.append(n);
181 #endif
182     } else if (n->is_ArrayCopy()) {
183       // Keep a list of ArrayCopy nodes so if one of its input is non
184       // escaping, we can record a unique type
185       arraycopy_worklist.append(n->as_ArrayCopy());
186     }
187     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
188       Node* m = n->fast_out(i);   // Get user
189       ideal_nodes.push(m);
190     }
191   }
192   if (non_escaped_worklist.length() == 0) {
193     _collecting = false;
194     return false; // Nothing to do.
195   }
196   // Add final simple edges to graph.
197   while(delayed_worklist.size() > 0) {
198     Node* n = delayed_worklist.pop();
199     add_final_edges(n);
200   }
201   int ptnodes_length = ptnodes_worklist.length();
202 
203 #ifdef ASSERT
204   if (VerifyConnectionGraph) {
205     // Verify that no new simple edges could be created and all
206     // local vars has edges.
207     _verify = true;
208     for (int next = 0; next < ptnodes_length; ++next) {
209       PointsToNode* ptn = ptnodes_worklist.at(next);
210       add_final_edges(ptn->ideal_node());
211       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
212         ptn->dump();
213         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
214       }
215     }
216     _verify = false;
217   }
218 #endif
219   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
220   // processing, calls to CI to resolve symbols (types, fields, methods)
221   // referenced in bytecode. During symbol resolution VM may throw
222   // an exception which CI cleans and converts to compilation failure.
223   if (C->failing())  return false;
224 
225   // 2. Finish Graph construction by propagating references to all
226   //    java objects through graph.
227   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
228                                  java_objects_worklist, oop_fields_worklist)) {
229     // All objects escaped or hit time or iterations limits.
230     _collecting = false;
231     return false;
232   }
233 
234   // 3. Adjust scalar_replaceable state of nonescaping objects and push
235   //    scalar replaceable allocations on alloc_worklist for processing
236   //    in split_unique_types().
237   int non_escaped_length = non_escaped_worklist.length();
238   for (int next = 0; next < non_escaped_length; next++) {
239     JavaObjectNode* ptn = non_escaped_worklist.at(next);
240     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
241     Node* n = ptn->ideal_node();
242     if (n->is_Allocate()) {
243       n->as_Allocate()->_is_non_escaping = noescape;
244     }
245     if (n->is_CallStaticJava()) {
246       n->as_CallStaticJava()->_is_non_escaping = noescape;
247     }
248     if (noescape && ptn->scalar_replaceable()) {
249       adjust_scalar_replaceable_state(ptn);
250       if (ptn->scalar_replaceable()) {
251         alloc_worklist.append(ptn->ideal_node());
252       }
253     }
254   }
255 
256 #ifdef ASSERT
257   if (VerifyConnectionGraph) {
258     // Verify that graph is complete - no new edges could be added or needed.
259     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
260                             java_objects_worklist, addp_worklist);
261   }
262   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
263   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
264          null_obj->edge_count() == 0 &&
265          !null_obj->arraycopy_src() &&
266          !null_obj->arraycopy_dst(), "sanity");
267 #endif
268 
269   _collecting = false;
270 
271   } // TracePhase t3("connectionGraph")
272 
273   // 4. Optimize ideal graph based on EA information.
274   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
275   if (has_non_escaping_obj) {
276     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
277   }
278 
279 #ifndef PRODUCT
280   if (PrintEscapeAnalysis) {
281     dump(ptnodes_worklist); // Dump ConnectionGraph
282   }
283 #endif
284 
285   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
286 #ifdef ASSERT
287   if (VerifyConnectionGraph) {
288     int alloc_length = alloc_worklist.length();
289     for (int next = 0; next < alloc_length; ++next) {
290       Node* n = alloc_worklist.at(next);
291       PointsToNode* ptn = ptnode_adr(n->_idx);
292       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
293     }
294   }
295 #endif
296 
297   // 5. Separate memory graph for scalar replaceable allcations.
298   if (has_scalar_replaceable_candidates &&
299       C->AliasLevel() >= 3 && EliminateAllocations) {
300     // Now use the escape information to create unique types for
301     // scalar replaceable objects.
302     split_unique_types(alloc_worklist, arraycopy_worklist);
303     if (C->failing())  return false;
304     C->print_method(PHASE_AFTER_EA, 2);
305 
306 #ifdef ASSERT
307   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
308     tty->print("=== No allocations eliminated for ");
309     C->method()->print_short_name();
310     if(!EliminateAllocations) {
311       tty->print(" since EliminateAllocations is off ===");
312     } else if(!has_scalar_replaceable_candidates) {
313       tty->print(" since there are no scalar replaceable candidates ===");
314     } else if(C->AliasLevel() < 3) {
315       tty->print(" since AliasLevel < 3 ===");
316     }
317     tty->cr();
318 #endif
319   }
320   return has_non_escaping_obj;
321 }
322 
323 // Utility function for nodes that load an object
add_objload_to_connection_graph(Node * n,Unique_Node_List * delayed_worklist)324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
325   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
326   // ThreadLocal has RawPtr type.
327   const Type* t = _igvn->type(n);
328   if (t->make_ptr() != NULL) {
329     Node* adr = n->in(MemNode::Address);
330 #ifdef ASSERT
331     if (!adr->is_AddP()) {
332       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
333     } else {
334       assert((ptnode_adr(adr->_idx) == NULL ||
335               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
336     }
337 #endif
338     add_local_var_and_edge(n, PointsToNode::NoEscape,
339                            adr, delayed_worklist);
340   }
341 }
342 
343 // Populate Connection Graph with PointsTo nodes and create simple
344 // connection graph edges.
add_node_to_connection_graph(Node * n,Unique_Node_List * delayed_worklist)345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
346   assert(!_verify, "this method should not be called for verification");
347   PhaseGVN* igvn = _igvn;
348   uint n_idx = n->_idx;
349   PointsToNode* n_ptn = ptnode_adr(n_idx);
350   if (n_ptn != NULL)
351     return; // No need to redefine PointsTo node during first iteration.
352 
353   if (n->is_Call()) {
354     // Arguments to allocation and locking don't escape.
355     if (n->is_AbstractLock()) {
356       // Put Lock and Unlock nodes on IGVN worklist to process them during
357       // first IGVN optimization when escape information is still available.
358       record_for_optimizer(n);
359     } else if (n->is_Allocate()) {
360       add_call_node(n->as_Call());
361       record_for_optimizer(n);
362     } else {
363       if (n->is_CallStaticJava()) {
364         const char* name = n->as_CallStaticJava()->_name;
365         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
366           return; // Skip uncommon traps
367       }
368       // Don't mark as processed since call's arguments have to be processed.
369       delayed_worklist->push(n);
370       // Check if a call returns an object.
371       if ((n->as_Call()->returns_pointer() &&
372            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
373           (n->is_CallStaticJava() &&
374            n->as_CallStaticJava()->is_boxing_method())) {
375         add_call_node(n->as_Call());
376       }
377     }
378     return;
379   }
380   // Put this check here to process call arguments since some call nodes
381   // point to phantom_obj.
382   if (n_ptn == phantom_obj || n_ptn == null_obj)
383     return; // Skip predefined nodes.
384 
385   int opcode = n->Opcode();
386   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
387   if (gc_handled) {
388     return; // Ignore node if already handled by GC.
389   }
390   switch (opcode) {
391     case Op_AddP: {
392       Node* base = get_addp_base(n);
393       PointsToNode* ptn_base = ptnode_adr(base->_idx);
394       // Field nodes are created for all field types. They are used in
395       // adjust_scalar_replaceable_state() and split_unique_types().
396       // Note, non-oop fields will have only base edges in Connection
397       // Graph because such fields are not used for oop loads and stores.
398       int offset = address_offset(n, igvn);
399       add_field(n, PointsToNode::NoEscape, offset);
400       if (ptn_base == NULL) {
401         delayed_worklist->push(n); // Process it later.
402       } else {
403         n_ptn = ptnode_adr(n_idx);
404         add_base(n_ptn->as_Field(), ptn_base);
405       }
406       break;
407     }
408     case Op_CastX2P: {
409       map_ideal_node(n, phantom_obj);
410       break;
411     }
412     case Op_CastPP:
413     case Op_CheckCastPP:
414     case Op_EncodeP:
415     case Op_DecodeN:
416     case Op_EncodePKlass:
417     case Op_DecodeNKlass: {
418       add_local_var_and_edge(n, PointsToNode::NoEscape,
419                              n->in(1), delayed_worklist);
420       break;
421     }
422     case Op_CMoveP: {
423       add_local_var(n, PointsToNode::NoEscape);
424       // Do not add edges during first iteration because some could be
425       // not defined yet.
426       delayed_worklist->push(n);
427       break;
428     }
429     case Op_ConP:
430     case Op_ConN:
431     case Op_ConNKlass: {
432       // assume all oop constants globally escape except for null
433       PointsToNode::EscapeState es;
434       const Type* t = igvn->type(n);
435       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
436         es = PointsToNode::NoEscape;
437       } else {
438         es = PointsToNode::GlobalEscape;
439       }
440       add_java_object(n, es);
441       break;
442     }
443     case Op_CreateEx: {
444       // assume that all exception objects globally escape
445       map_ideal_node(n, phantom_obj);
446       break;
447     }
448     case Op_LoadKlass:
449     case Op_LoadNKlass: {
450       // Unknown class is loaded
451       map_ideal_node(n, phantom_obj);
452       break;
453     }
454     case Op_LoadP:
455     case Op_LoadN:
456     case Op_LoadPLocked: {
457       add_objload_to_connection_graph(n, delayed_worklist);
458       break;
459     }
460     case Op_Parm: {
461       map_ideal_node(n, phantom_obj);
462       break;
463     }
464     case Op_PartialSubtypeCheck: {
465       // Produces Null or notNull and is used in only in CmpP so
466       // phantom_obj could be used.
467       map_ideal_node(n, phantom_obj); // Result is unknown
468       break;
469     }
470     case Op_Phi: {
471       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
472       // ThreadLocal has RawPtr type.
473       const Type* t = n->as_Phi()->type();
474       if (t->make_ptr() != NULL) {
475         add_local_var(n, PointsToNode::NoEscape);
476         // Do not add edges during first iteration because some could be
477         // not defined yet.
478         delayed_worklist->push(n);
479       }
480       break;
481     }
482     case Op_Proj: {
483       // we are only interested in the oop result projection from a call
484       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
485           n->in(0)->as_Call()->returns_pointer()) {
486         add_local_var_and_edge(n, PointsToNode::NoEscape,
487                                n->in(0), delayed_worklist);
488       }
489       break;
490     }
491     case Op_Rethrow: // Exception object escapes
492     case Op_Return: {
493       if (n->req() > TypeFunc::Parms &&
494           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
495         // Treat Return value as LocalVar with GlobalEscape escape state.
496         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
497                                n->in(TypeFunc::Parms), delayed_worklist);
498       }
499       break;
500     }
501     case Op_CompareAndExchangeP:
502     case Op_CompareAndExchangeN:
503     case Op_GetAndSetP:
504     case Op_GetAndSetN: {
505       add_objload_to_connection_graph(n, delayed_worklist);
506       // fallthrough
507     }
508     case Op_StoreP:
509     case Op_StoreN:
510     case Op_StoreNKlass:
511     case Op_StorePConditional:
512     case Op_WeakCompareAndSwapP:
513     case Op_WeakCompareAndSwapN:
514     case Op_CompareAndSwapP:
515     case Op_CompareAndSwapN: {
516       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
517       break;
518     }
519     case Op_AryEq:
520     case Op_HasNegatives:
521     case Op_StrComp:
522     case Op_StrEquals:
523     case Op_StrIndexOf:
524     case Op_StrIndexOfChar:
525     case Op_StrInflatedCopy:
526     case Op_StrCompressedCopy:
527     case Op_EncodeISOArray: {
528       add_local_var(n, PointsToNode::ArgEscape);
529       delayed_worklist->push(n); // Process it later.
530       break;
531     }
532     case Op_ThreadLocal: {
533       add_java_object(n, PointsToNode::ArgEscape);
534       break;
535     }
536     default:
537       ; // Do nothing for nodes not related to EA.
538   }
539   return;
540 }
541 
542 #ifdef ASSERT
543 #define ELSE_FAIL(name)                               \
544       /* Should not be called for not pointer type. */  \
545       n->dump(1);                                       \
546       assert(false, name);                              \
547       break;
548 #else
549 #define ELSE_FAIL(name) \
550       break;
551 #endif
552 
553 // Add final simple edges to graph.
add_final_edges(Node * n)554 void ConnectionGraph::add_final_edges(Node *n) {
555   PointsToNode* n_ptn = ptnode_adr(n->_idx);
556 #ifdef ASSERT
557   if (_verify && n_ptn->is_JavaObject())
558     return; // This method does not change graph for JavaObject.
559 #endif
560 
561   if (n->is_Call()) {
562     process_call_arguments(n->as_Call());
563     return;
564   }
565   assert(n->is_Store() || n->is_LoadStore() ||
566          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
567          "node should be registered already");
568   int opcode = n->Opcode();
569   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
570   if (gc_handled) {
571     return; // Ignore node if already handled by GC.
572   }
573   switch (opcode) {
574     case Op_AddP: {
575       Node* base = get_addp_base(n);
576       PointsToNode* ptn_base = ptnode_adr(base->_idx);
577       assert(ptn_base != NULL, "field's base should be registered");
578       add_base(n_ptn->as_Field(), ptn_base);
579       break;
580     }
581     case Op_CastPP:
582     case Op_CheckCastPP:
583     case Op_EncodeP:
584     case Op_DecodeN:
585     case Op_EncodePKlass:
586     case Op_DecodeNKlass: {
587       add_local_var_and_edge(n, PointsToNode::NoEscape,
588                              n->in(1), NULL);
589       break;
590     }
591     case Op_CMoveP: {
592       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
593         Node* in = n->in(i);
594         if (in == NULL)
595           continue;  // ignore NULL
596         Node* uncast_in = in->uncast();
597         if (uncast_in->is_top() || uncast_in == n)
598           continue;  // ignore top or inputs which go back this node
599         PointsToNode* ptn = ptnode_adr(in->_idx);
600         assert(ptn != NULL, "node should be registered");
601         add_edge(n_ptn, ptn);
602       }
603       break;
604     }
605     case Op_LoadP:
606     case Op_LoadN:
607     case Op_LoadPLocked: {
608       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
609       // ThreadLocal has RawPtr type.
610       const Type* t = _igvn->type(n);
611       if (t->make_ptr() != NULL) {
612         Node* adr = n->in(MemNode::Address);
613         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
614         break;
615       }
616       ELSE_FAIL("Op_LoadP");
617     }
618     case Op_Phi: {
619       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
620       // ThreadLocal has RawPtr type.
621       const Type* t = n->as_Phi()->type();
622       if (t->make_ptr() != NULL) {
623         for (uint i = 1; i < n->req(); i++) {
624           Node* in = n->in(i);
625           if (in == NULL)
626             continue;  // ignore NULL
627           Node* uncast_in = in->uncast();
628           if (uncast_in->is_top() || uncast_in == n)
629             continue;  // ignore top or inputs which go back this node
630           PointsToNode* ptn = ptnode_adr(in->_idx);
631           assert(ptn != NULL, "node should be registered");
632           add_edge(n_ptn, ptn);
633         }
634         break;
635       }
636       ELSE_FAIL("Op_Phi");
637     }
638     case Op_Proj: {
639       // we are only interested in the oop result projection from a call
640       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
641           n->in(0)->as_Call()->returns_pointer()) {
642         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
643         break;
644       }
645       ELSE_FAIL("Op_Proj");
646     }
647     case Op_Rethrow: // Exception object escapes
648     case Op_Return: {
649       if (n->req() > TypeFunc::Parms &&
650           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
651         // Treat Return value as LocalVar with GlobalEscape escape state.
652         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
653                                n->in(TypeFunc::Parms), NULL);
654         break;
655       }
656       ELSE_FAIL("Op_Return");
657     }
658     case Op_StoreP:
659     case Op_StoreN:
660     case Op_StoreNKlass:
661     case Op_StorePConditional:
662     case Op_CompareAndExchangeP:
663     case Op_CompareAndExchangeN:
664     case Op_CompareAndSwapP:
665     case Op_CompareAndSwapN:
666     case Op_WeakCompareAndSwapP:
667     case Op_WeakCompareAndSwapN:
668     case Op_GetAndSetP:
669     case Op_GetAndSetN: {
670       if (add_final_edges_unsafe_access(n, opcode)) {
671         break;
672       }
673       ELSE_FAIL("Op_StoreP");
674     }
675     case Op_AryEq:
676     case Op_HasNegatives:
677     case Op_StrComp:
678     case Op_StrEquals:
679     case Op_StrIndexOf:
680     case Op_StrIndexOfChar:
681     case Op_StrInflatedCopy:
682     case Op_StrCompressedCopy:
683     case Op_EncodeISOArray: {
684       // char[]/byte[] arrays passed to string intrinsic do not escape but
685       // they are not scalar replaceable. Adjust escape state for them.
686       // Start from in(2) edge since in(1) is memory edge.
687       for (uint i = 2; i < n->req(); i++) {
688         Node* adr = n->in(i);
689         const Type* at = _igvn->type(adr);
690         if (!adr->is_top() && at->isa_ptr()) {
691           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
692                  at->isa_ptr() != NULL, "expecting a pointer");
693           if (adr->is_AddP()) {
694             adr = get_addp_base(adr);
695           }
696           PointsToNode* ptn = ptnode_adr(adr->_idx);
697           assert(ptn != NULL, "node should be registered");
698           add_edge(n_ptn, ptn);
699         }
700       }
701       break;
702     }
703     default: {
704       // This method should be called only for EA specific nodes which may
705       // miss some edges when they were created.
706 #ifdef ASSERT
707       n->dump(1);
708 #endif
709       guarantee(false, "unknown node");
710     }
711   }
712   return;
713 }
714 
add_to_congraph_unsafe_access(Node * n,uint opcode,Unique_Node_List * delayed_worklist)715 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
716   Node* adr = n->in(MemNode::Address);
717   const Type* adr_type = _igvn->type(adr);
718   adr_type = adr_type->make_ptr();
719   if (adr_type == NULL) {
720     return; // skip dead nodes
721   }
722   if (adr_type->isa_oopptr()
723       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
724           && adr_type == TypeRawPtr::NOTNULL
725           && adr->in(AddPNode::Address)->is_Proj()
726           && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
727     delayed_worklist->push(n); // Process it later.
728 #ifdef ASSERT
729     assert (adr->is_AddP(), "expecting an AddP");
730     if (adr_type == TypeRawPtr::NOTNULL) {
731       // Verify a raw address for a store captured by Initialize node.
732       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
733       assert(offs != Type::OffsetBot, "offset must be a constant");
734     }
735 #endif
736   } else {
737     // Ignore copy the displaced header to the BoxNode (OSR compilation).
738     if (adr->is_BoxLock()) {
739       return;
740     }
741     // Stored value escapes in unsafe access.
742     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
743       delayed_worklist->push(n); // Process unsafe access later.
744       return;
745     }
746 #ifdef ASSERT
747     n->dump(1);
748     assert(false, "not unsafe");
749 #endif
750   }
751 }
752 
add_final_edges_unsafe_access(Node * n,uint opcode)753 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
754   Node* adr = n->in(MemNode::Address);
755   const Type *adr_type = _igvn->type(adr);
756   adr_type = adr_type->make_ptr();
757 #ifdef ASSERT
758   if (adr_type == NULL) {
759     n->dump(1);
760     assert(adr_type != NULL, "dead node should not be on list");
761     return true;
762   }
763 #endif
764 
765   if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
766       opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
767     add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
768   }
769 
770   if (adr_type->isa_oopptr()
771       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
772            && adr_type == TypeRawPtr::NOTNULL
773            && adr->in(AddPNode::Address)->is_Proj()
774            && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
775     // Point Address to Value
776     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
777     assert(adr_ptn != NULL &&
778            adr_ptn->as_Field()->is_oop(), "node should be registered");
779     Node* val = n->in(MemNode::ValueIn);
780     PointsToNode* ptn = ptnode_adr(val->_idx);
781     assert(ptn != NULL, "node should be registered");
782     add_edge(adr_ptn, ptn);
783     return true;
784   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
785     // Stored value escapes in unsafe access.
786     Node* val = n->in(MemNode::ValueIn);
787     PointsToNode* ptn = ptnode_adr(val->_idx);
788     assert(ptn != NULL, "node should be registered");
789     set_escape_state(ptn, PointsToNode::GlobalEscape);
790     // Add edge to object for unsafe access with offset.
791     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
792     assert(adr_ptn != NULL, "node should be registered");
793     if (adr_ptn->is_Field()) {
794       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
795       add_edge(adr_ptn, ptn);
796     }
797     return true;
798   }
799   return false;
800 }
801 
add_call_node(CallNode * call)802 void ConnectionGraph::add_call_node(CallNode* call) {
803   assert(call->returns_pointer(), "only for call which returns pointer");
804   uint call_idx = call->_idx;
805   if (call->is_Allocate()) {
806     Node* k = call->in(AllocateNode::KlassNode);
807     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
808     assert(kt != NULL, "TypeKlassPtr  required.");
809     ciKlass* cik = kt->klass();
810     PointsToNode::EscapeState es = PointsToNode::NoEscape;
811     bool scalar_replaceable = true;
812     if (call->is_AllocateArray()) {
813       if (!cik->is_array_klass()) { // StressReflectiveCode
814         es = PointsToNode::GlobalEscape;
815       } else {
816         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
817         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
818           // Not scalar replaceable if the length is not constant or too big.
819           scalar_replaceable = false;
820         }
821       }
822     } else {  // Allocate instance
823       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
824           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
825          !cik->is_instance_klass() || // StressReflectiveCode
826          !cik->as_instance_klass()->can_be_instantiated() ||
827           cik->as_instance_klass()->has_finalizer()) {
828         es = PointsToNode::GlobalEscape;
829       }
830     }
831     add_java_object(call, es);
832     PointsToNode* ptn = ptnode_adr(call_idx);
833     if (!scalar_replaceable && ptn->scalar_replaceable()) {
834       ptn->set_scalar_replaceable(false);
835     }
836   } else if (call->is_CallStaticJava()) {
837     // Call nodes could be different types:
838     //
839     // 1. CallDynamicJavaNode (what happened during call is unknown):
840     //
841     //    - mapped to GlobalEscape JavaObject node if oop is returned;
842     //
843     //    - all oop arguments are escaping globally;
844     //
845     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
846     //
847     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
848     //
849     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
850     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
851     //      during call is returned;
852     //    - mapped to ArgEscape LocalVar node pointed to object arguments
853     //      which are returned and does not escape during call;
854     //
855     //    - oop arguments escaping status is defined by bytecode analysis;
856     //
857     // For a static call, we know exactly what method is being called.
858     // Use bytecode estimator to record whether the call's return value escapes.
859     ciMethod* meth = call->as_CallJava()->method();
860     if (meth == NULL) {
861       const char* name = call->as_CallStaticJava()->_name;
862       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
863       // Returns a newly allocated unescaped object.
864       add_java_object(call, PointsToNode::NoEscape);
865       ptnode_adr(call_idx)->set_scalar_replaceable(false);
866     } else if (meth->is_boxing_method()) {
867       // Returns boxing object
868       PointsToNode::EscapeState es;
869       vmIntrinsics::ID intr = meth->intrinsic_id();
870       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
871         // It does not escape if object is always allocated.
872         es = PointsToNode::NoEscape;
873       } else {
874         // It escapes globally if object could be loaded from cache.
875         es = PointsToNode::GlobalEscape;
876       }
877       add_java_object(call, es);
878     } else {
879       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
880       call_analyzer->copy_dependencies(_compile->dependencies());
881       if (call_analyzer->is_return_allocated()) {
882         // Returns a newly allocated unescaped object, simply
883         // update dependency information.
884         // Mark it as NoEscape so that objects referenced by
885         // it's fields will be marked as NoEscape at least.
886         add_java_object(call, PointsToNode::NoEscape);
887         ptnode_adr(call_idx)->set_scalar_replaceable(false);
888       } else {
889         // Determine whether any arguments are returned.
890         const TypeTuple* d = call->tf()->domain();
891         bool ret_arg = false;
892         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
893           if (d->field_at(i)->isa_ptr() != NULL &&
894               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
895             ret_arg = true;
896             break;
897           }
898         }
899         if (ret_arg) {
900           add_local_var(call, PointsToNode::ArgEscape);
901         } else {
902           // Returns unknown object.
903           map_ideal_node(call, phantom_obj);
904         }
905       }
906     }
907   } else {
908     // An other type of call, assume the worst case:
909     // returned value is unknown and globally escapes.
910     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
911     map_ideal_node(call, phantom_obj);
912   }
913 }
914 
process_call_arguments(CallNode * call)915 void ConnectionGraph::process_call_arguments(CallNode *call) {
916     bool is_arraycopy = false;
917     switch (call->Opcode()) {
918 #ifdef ASSERT
919     case Op_Allocate:
920     case Op_AllocateArray:
921     case Op_Lock:
922     case Op_Unlock:
923       assert(false, "should be done already");
924       break;
925 #endif
926     case Op_ArrayCopy:
927     case Op_CallLeafNoFP:
928       // Most array copies are ArrayCopy nodes at this point but there
929       // are still a few direct calls to the copy subroutines (See
930       // PhaseStringOpts::copy_string())
931       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
932         call->as_CallLeaf()->is_call_to_arraycopystub();
933       // fall through
934     case Op_CallLeaf: {
935       // Stub calls, objects do not escape but they are not scale replaceable.
936       // Adjust escape state for outgoing arguments.
937       const TypeTuple * d = call->tf()->domain();
938       bool src_has_oops = false;
939       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
940         const Type* at = d->field_at(i);
941         Node *arg = call->in(i);
942         if (arg == NULL) {
943           continue;
944         }
945         const Type *aat = _igvn->type(arg);
946         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
947           continue;
948         if (arg->is_AddP()) {
949           //
950           // The inline_native_clone() case when the arraycopy stub is called
951           // after the allocation before Initialize and CheckCastPP nodes.
952           // Or normal arraycopy for object arrays case.
953           //
954           // Set AddP's base (Allocate) as not scalar replaceable since
955           // pointer to the base (with offset) is passed as argument.
956           //
957           arg = get_addp_base(arg);
958         }
959         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
960         assert(arg_ptn != NULL, "should be registered");
961         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
962         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
963           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
964                  aat->isa_ptr() != NULL, "expecting an Ptr");
965           bool arg_has_oops = aat->isa_oopptr() &&
966                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
967                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
968           if (i == TypeFunc::Parms) {
969             src_has_oops = arg_has_oops;
970           }
971           //
972           // src or dst could be j.l.Object when other is basic type array:
973           //
974           //   arraycopy(char[],0,Object*,0,size);
975           //   arraycopy(Object*,0,char[],0,size);
976           //
977           // Don't add edges in such cases.
978           //
979           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
980                                        arg_has_oops && (i > TypeFunc::Parms);
981 #ifdef ASSERT
982           if (!(is_arraycopy ||
983                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
984                 (call->as_CallLeaf()->_name != NULL &&
985                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
986                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
987                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
988                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
989                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
990                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
991                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
992                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
993                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
994                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
995                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
996                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
997                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
998                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
999                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1007                  ))) {
1008             call->dump();
1009             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1010           }
1011 #endif
1012           // Always process arraycopy's destination object since
1013           // we need to add all possible edges to references in
1014           // source object.
1015           if (arg_esc >= PointsToNode::ArgEscape &&
1016               !arg_is_arraycopy_dest) {
1017             continue;
1018           }
1019           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1020           if (call->is_ArrayCopy()) {
1021             ArrayCopyNode* ac = call->as_ArrayCopy();
1022             if (ac->is_clonebasic() ||
1023                 ac->is_arraycopy_validated() ||
1024                 ac->is_copyof_validated() ||
1025                 ac->is_copyofrange_validated()) {
1026               es = PointsToNode::NoEscape;
1027             }
1028           }
1029           set_escape_state(arg_ptn, es);
1030           if (arg_is_arraycopy_dest) {
1031             Node* src = call->in(TypeFunc::Parms);
1032             if (src->is_AddP()) {
1033               src = get_addp_base(src);
1034             }
1035             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1036             assert(src_ptn != NULL, "should be registered");
1037             if (arg_ptn != src_ptn) {
1038               // Special arraycopy edge:
1039               // A destination object's field can't have the source object
1040               // as base since objects escape states are not related.
1041               // Only escape state of destination object's fields affects
1042               // escape state of fields in source object.
1043               add_arraycopy(call, es, src_ptn, arg_ptn);
1044             }
1045           }
1046         }
1047       }
1048       break;
1049     }
1050     case Op_CallStaticJava: {
1051       // For a static call, we know exactly what method is being called.
1052       // Use bytecode estimator to record the call's escape affects
1053 #ifdef ASSERT
1054       const char* name = call->as_CallStaticJava()->_name;
1055       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1056 #endif
1057       ciMethod* meth = call->as_CallJava()->method();
1058       if ((meth != NULL) && meth->is_boxing_method()) {
1059         break; // Boxing methods do not modify any oops.
1060       }
1061       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1062       // fall-through if not a Java method or no analyzer information
1063       if (call_analyzer != NULL) {
1064         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1065         const TypeTuple* d = call->tf()->domain();
1066         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1067           const Type* at = d->field_at(i);
1068           int k = i - TypeFunc::Parms;
1069           Node* arg = call->in(i);
1070           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1071           if (at->isa_ptr() != NULL &&
1072               call_analyzer->is_arg_returned(k)) {
1073             // The call returns arguments.
1074             if (call_ptn != NULL) { // Is call's result used?
1075               assert(call_ptn->is_LocalVar(), "node should be registered");
1076               assert(arg_ptn != NULL, "node should be registered");
1077               add_edge(call_ptn, arg_ptn);
1078             }
1079           }
1080           if (at->isa_oopptr() != NULL &&
1081               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1082             if (!call_analyzer->is_arg_stack(k)) {
1083               // The argument global escapes
1084               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1085             } else {
1086               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1087               if (!call_analyzer->is_arg_local(k)) {
1088                 // The argument itself doesn't escape, but any fields might
1089                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1090               }
1091             }
1092           }
1093         }
1094         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1095           // The call returns arguments.
1096           assert(call_ptn->edge_count() > 0, "sanity");
1097           if (!call_analyzer->is_return_local()) {
1098             // Returns also unknown object.
1099             add_edge(call_ptn, phantom_obj);
1100           }
1101         }
1102         break;
1103       }
1104     }
1105     default: {
1106       // Fall-through here if not a Java method or no analyzer information
1107       // or some other type of call, assume the worst case: all arguments
1108       // globally escape.
1109       const TypeTuple* d = call->tf()->domain();
1110       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1111         const Type* at = d->field_at(i);
1112         if (at->isa_oopptr() != NULL) {
1113           Node* arg = call->in(i);
1114           if (arg->is_AddP()) {
1115             arg = get_addp_base(arg);
1116           }
1117           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1118           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1119         }
1120       }
1121     }
1122   }
1123 }
1124 
1125 
1126 // Finish Graph construction.
complete_connection_graph(GrowableArray<PointsToNode * > & ptnodes_worklist,GrowableArray<JavaObjectNode * > & non_escaped_worklist,GrowableArray<JavaObjectNode * > & java_objects_worklist,GrowableArray<FieldNode * > & oop_fields_worklist)1127 bool ConnectionGraph::complete_connection_graph(
1128                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1129                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1130                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1131                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1132   // Normally only 1-3 passes needed to build Connection Graph depending
1133   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1134   // Set limit to 20 to catch situation when something did go wrong and
1135   // bailout Escape Analysis.
1136   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1137 #define CG_BUILD_ITER_LIMIT 20
1138 
1139   // Propagate GlobalEscape and ArgEscape escape states and check that
1140   // we still have non-escaping objects. The method pushs on _worklist
1141   // Field nodes which reference phantom_object.
1142   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1143     return false; // Nothing to do.
1144   }
1145   // Now propagate references to all JavaObject nodes.
1146   int java_objects_length = java_objects_worklist.length();
1147   elapsedTimer time;
1148   bool timeout = false;
1149   int new_edges = 1;
1150   int iterations = 0;
1151   do {
1152     while ((new_edges > 0) &&
1153            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1154       double start_time = time.seconds();
1155       time.start();
1156       new_edges = 0;
1157       // Propagate references to phantom_object for nodes pushed on _worklist
1158       // by find_non_escaped_objects() and find_field_value().
1159       new_edges += add_java_object_edges(phantom_obj, false);
1160       for (int next = 0; next < java_objects_length; ++next) {
1161         JavaObjectNode* ptn = java_objects_worklist.at(next);
1162         new_edges += add_java_object_edges(ptn, true);
1163 
1164 #define SAMPLE_SIZE 4
1165         if ((next % SAMPLE_SIZE) == 0) {
1166           // Each 4 iterations calculate how much time it will take
1167           // to complete graph construction.
1168           time.stop();
1169           // Poll for requests from shutdown mechanism to quiesce compiler
1170           // because Connection graph construction may take long time.
1171           CompileBroker::maybe_block();
1172           double stop_time = time.seconds();
1173           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1174           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1175           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1176             timeout = true;
1177             break; // Timeout
1178           }
1179           start_time = stop_time;
1180           time.start();
1181         }
1182 #undef SAMPLE_SIZE
1183 
1184       }
1185       if (timeout) break;
1186       if (new_edges > 0) {
1187         // Update escape states on each iteration if graph was updated.
1188         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1189           return false; // Nothing to do.
1190         }
1191       }
1192       time.stop();
1193       if (time.seconds() >= EscapeAnalysisTimeout) {
1194         timeout = true;
1195         break;
1196       }
1197     }
1198     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1199       time.start();
1200       // Find fields which have unknown value.
1201       int fields_length = oop_fields_worklist.length();
1202       for (int next = 0; next < fields_length; next++) {
1203         FieldNode* field = oop_fields_worklist.at(next);
1204         if (field->edge_count() == 0) {
1205           new_edges += find_field_value(field);
1206           // This code may added new edges to phantom_object.
1207           // Need an other cycle to propagate references to phantom_object.
1208         }
1209       }
1210       time.stop();
1211       if (time.seconds() >= EscapeAnalysisTimeout) {
1212         timeout = true;
1213         break;
1214       }
1215     } else {
1216       new_edges = 0; // Bailout
1217     }
1218   } while (new_edges > 0);
1219 
1220   // Bailout if passed limits.
1221   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1222     Compile* C = _compile;
1223     if (C->log() != NULL) {
1224       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1225       C->log()->text("%s", timeout ? "time" : "iterations");
1226       C->log()->end_elem(" limit'");
1227     }
1228     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1229            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1230     // Possible infinite build_connection_graph loop,
1231     // bailout (no changes to ideal graph were made).
1232     return false;
1233   }
1234 #ifdef ASSERT
1235   if (Verbose && PrintEscapeAnalysis) {
1236     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1237                   iterations, nodes_size(), ptnodes_worklist.length());
1238   }
1239 #endif
1240 
1241 #undef CG_BUILD_ITER_LIMIT
1242 
1243   // Find fields initialized by NULL for non-escaping Allocations.
1244   int non_escaped_length = non_escaped_worklist.length();
1245   for (int next = 0; next < non_escaped_length; next++) {
1246     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1247     PointsToNode::EscapeState es = ptn->escape_state();
1248     assert(es <= PointsToNode::ArgEscape, "sanity");
1249     if (es == PointsToNode::NoEscape) {
1250       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1251         // Adding references to NULL object does not change escape states
1252         // since it does not escape. Also no fields are added to NULL object.
1253         add_java_object_edges(null_obj, false);
1254       }
1255     }
1256     Node* n = ptn->ideal_node();
1257     if (n->is_Allocate()) {
1258       // The object allocated by this Allocate node will never be
1259       // seen by an other thread. Mark it so that when it is
1260       // expanded no MemBarStoreStore is added.
1261       InitializeNode* ini = n->as_Allocate()->initialization();
1262       if (ini != NULL)
1263         ini->set_does_not_escape();
1264     }
1265   }
1266   return true; // Finished graph construction.
1267 }
1268 
1269 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1270 // and check that we still have non-escaping java objects.
find_non_escaped_objects(GrowableArray<PointsToNode * > & ptnodes_worklist,GrowableArray<JavaObjectNode * > & non_escaped_worklist)1271 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1272                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1273   GrowableArray<PointsToNode*> escape_worklist;
1274   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1275   int ptnodes_length = ptnodes_worklist.length();
1276   for (int next = 0; next < ptnodes_length; ++next) {
1277     PointsToNode* ptn = ptnodes_worklist.at(next);
1278     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1279         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1280       escape_worklist.push(ptn);
1281     }
1282   }
1283   // Set escape states to referenced nodes (edges list).
1284   while (escape_worklist.length() > 0) {
1285     PointsToNode* ptn = escape_worklist.pop();
1286     PointsToNode::EscapeState es  = ptn->escape_state();
1287     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1288     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1289         es >= PointsToNode::ArgEscape) {
1290       // GlobalEscape or ArgEscape state of field means it has unknown value.
1291       if (add_edge(ptn, phantom_obj)) {
1292         // New edge was added
1293         add_field_uses_to_worklist(ptn->as_Field());
1294       }
1295     }
1296     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1297       PointsToNode* e = i.get();
1298       if (e->is_Arraycopy()) {
1299         assert(ptn->arraycopy_dst(), "sanity");
1300         // Propagate only fields escape state through arraycopy edge.
1301         if (e->fields_escape_state() < field_es) {
1302           set_fields_escape_state(e, field_es);
1303           escape_worklist.push(e);
1304         }
1305       } else if (es >= field_es) {
1306         // fields_escape_state is also set to 'es' if it is less than 'es'.
1307         if (e->escape_state() < es) {
1308           set_escape_state(e, es);
1309           escape_worklist.push(e);
1310         }
1311       } else {
1312         // Propagate field escape state.
1313         bool es_changed = false;
1314         if (e->fields_escape_state() < field_es) {
1315           set_fields_escape_state(e, field_es);
1316           es_changed = true;
1317         }
1318         if ((e->escape_state() < field_es) &&
1319             e->is_Field() && ptn->is_JavaObject() &&
1320             e->as_Field()->is_oop()) {
1321           // Change escape state of referenced fields.
1322           set_escape_state(e, field_es);
1323           es_changed = true;
1324         } else if (e->escape_state() < es) {
1325           set_escape_state(e, es);
1326           es_changed = true;
1327         }
1328         if (es_changed) {
1329           escape_worklist.push(e);
1330         }
1331       }
1332     }
1333   }
1334   // Remove escaped objects from non_escaped list.
1335   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1336     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1337     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1338       non_escaped_worklist.delete_at(next);
1339     }
1340     if (ptn->escape_state() == PointsToNode::NoEscape) {
1341       // Find fields in non-escaped allocations which have unknown value.
1342       find_init_values(ptn, phantom_obj, NULL);
1343     }
1344   }
1345   return (non_escaped_worklist.length() > 0);
1346 }
1347 
1348 // Add all references to JavaObject node by walking over all uses.
add_java_object_edges(JavaObjectNode * jobj,bool populate_worklist)1349 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1350   int new_edges = 0;
1351   if (populate_worklist) {
1352     // Populate _worklist by uses of jobj's uses.
1353     for (UseIterator i(jobj); i.has_next(); i.next()) {
1354       PointsToNode* use = i.get();
1355       if (use->is_Arraycopy())
1356         continue;
1357       add_uses_to_worklist(use);
1358       if (use->is_Field() && use->as_Field()->is_oop()) {
1359         // Put on worklist all field's uses (loads) and
1360         // related field nodes (same base and offset).
1361         add_field_uses_to_worklist(use->as_Field());
1362       }
1363     }
1364   }
1365   for (int l = 0; l < _worklist.length(); l++) {
1366     PointsToNode* use = _worklist.at(l);
1367     if (PointsToNode::is_base_use(use)) {
1368       // Add reference from jobj to field and from field to jobj (field's base).
1369       use = PointsToNode::get_use_node(use)->as_Field();
1370       if (add_base(use->as_Field(), jobj)) {
1371         new_edges++;
1372       }
1373       continue;
1374     }
1375     assert(!use->is_JavaObject(), "sanity");
1376     if (use->is_Arraycopy()) {
1377       if (jobj == null_obj) // NULL object does not have field edges
1378         continue;
1379       // Added edge from Arraycopy node to arraycopy's source java object
1380       if (add_edge(use, jobj)) {
1381         jobj->set_arraycopy_src();
1382         new_edges++;
1383       }
1384       // and stop here.
1385       continue;
1386     }
1387     if (!add_edge(use, jobj))
1388       continue; // No new edge added, there was such edge already.
1389     new_edges++;
1390     if (use->is_LocalVar()) {
1391       add_uses_to_worklist(use);
1392       if (use->arraycopy_dst()) {
1393         for (EdgeIterator i(use); i.has_next(); i.next()) {
1394           PointsToNode* e = i.get();
1395           if (e->is_Arraycopy()) {
1396             if (jobj == null_obj) // NULL object does not have field edges
1397               continue;
1398             // Add edge from arraycopy's destination java object to Arraycopy node.
1399             if (add_edge(jobj, e)) {
1400               new_edges++;
1401               jobj->set_arraycopy_dst();
1402             }
1403           }
1404         }
1405       }
1406     } else {
1407       // Added new edge to stored in field values.
1408       // Put on worklist all field's uses (loads) and
1409       // related field nodes (same base and offset).
1410       add_field_uses_to_worklist(use->as_Field());
1411     }
1412   }
1413   _worklist.clear();
1414   _in_worklist.Reset();
1415   return new_edges;
1416 }
1417 
1418 // Put on worklist all related field nodes.
add_field_uses_to_worklist(FieldNode * field)1419 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1420   assert(field->is_oop(), "sanity");
1421   int offset = field->offset();
1422   add_uses_to_worklist(field);
1423   // Loop over all bases of this field and push on worklist Field nodes
1424   // with the same offset and base (since they may reference the same field).
1425   for (BaseIterator i(field); i.has_next(); i.next()) {
1426     PointsToNode* base = i.get();
1427     add_fields_to_worklist(field, base);
1428     // Check if the base was source object of arraycopy and go over arraycopy's
1429     // destination objects since values stored to a field of source object are
1430     // accessable by uses (loads) of fields of destination objects.
1431     if (base->arraycopy_src()) {
1432       for (UseIterator j(base); j.has_next(); j.next()) {
1433         PointsToNode* arycp = j.get();
1434         if (arycp->is_Arraycopy()) {
1435           for (UseIterator k(arycp); k.has_next(); k.next()) {
1436             PointsToNode* abase = k.get();
1437             if (abase->arraycopy_dst() && abase != base) {
1438               // Look for the same arraycopy reference.
1439               add_fields_to_worklist(field, abase);
1440             }
1441           }
1442         }
1443       }
1444     }
1445   }
1446 }
1447 
1448 // Put on worklist all related field nodes.
add_fields_to_worklist(FieldNode * field,PointsToNode * base)1449 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1450   int offset = field->offset();
1451   if (base->is_LocalVar()) {
1452     for (UseIterator j(base); j.has_next(); j.next()) {
1453       PointsToNode* f = j.get();
1454       if (PointsToNode::is_base_use(f)) { // Field
1455         f = PointsToNode::get_use_node(f);
1456         if (f == field || !f->as_Field()->is_oop())
1457           continue;
1458         int offs = f->as_Field()->offset();
1459         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1460           add_to_worklist(f);
1461         }
1462       }
1463     }
1464   } else {
1465     assert(base->is_JavaObject(), "sanity");
1466     if (// Skip phantom_object since it is only used to indicate that
1467         // this field's content globally escapes.
1468         (base != phantom_obj) &&
1469         // NULL object node does not have fields.
1470         (base != null_obj)) {
1471       for (EdgeIterator i(base); i.has_next(); i.next()) {
1472         PointsToNode* f = i.get();
1473         // Skip arraycopy edge since store to destination object field
1474         // does not update value in source object field.
1475         if (f->is_Arraycopy()) {
1476           assert(base->arraycopy_dst(), "sanity");
1477           continue;
1478         }
1479         if (f == field || !f->as_Field()->is_oop())
1480           continue;
1481         int offs = f->as_Field()->offset();
1482         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1483           add_to_worklist(f);
1484         }
1485       }
1486     }
1487   }
1488 }
1489 
1490 // Find fields which have unknown value.
find_field_value(FieldNode * field)1491 int ConnectionGraph::find_field_value(FieldNode* field) {
1492   // Escaped fields should have init value already.
1493   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1494   int new_edges = 0;
1495   for (BaseIterator i(field); i.has_next(); i.next()) {
1496     PointsToNode* base = i.get();
1497     if (base->is_JavaObject()) {
1498       // Skip Allocate's fields which will be processed later.
1499       if (base->ideal_node()->is_Allocate())
1500         return 0;
1501       assert(base == null_obj, "only NULL ptr base expected here");
1502     }
1503   }
1504   if (add_edge(field, phantom_obj)) {
1505     // New edge was added
1506     new_edges++;
1507     add_field_uses_to_worklist(field);
1508   }
1509   return new_edges;
1510 }
1511 
1512 // Find fields initializing values for allocations.
find_init_values(JavaObjectNode * pta,PointsToNode * init_val,PhaseTransform * phase)1513 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1514   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1515   int new_edges = 0;
1516   Node* alloc = pta->ideal_node();
1517   if (init_val == phantom_obj) {
1518     // Do nothing for Allocate nodes since its fields values are
1519     // "known" unless they are initialized by arraycopy/clone.
1520     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1521       return 0;
1522     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1523 #ifdef ASSERT
1524     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1525       const char* name = alloc->as_CallStaticJava()->_name;
1526       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1527     }
1528 #endif
1529     // Non-escaped allocation returned from Java or runtime call have
1530     // unknown values in fields.
1531     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1532       PointsToNode* field = i.get();
1533       if (field->is_Field() && field->as_Field()->is_oop()) {
1534         if (add_edge(field, phantom_obj)) {
1535           // New edge was added
1536           new_edges++;
1537           add_field_uses_to_worklist(field->as_Field());
1538         }
1539       }
1540     }
1541     return new_edges;
1542   }
1543   assert(init_val == null_obj, "sanity");
1544   // Do nothing for Call nodes since its fields values are unknown.
1545   if (!alloc->is_Allocate())
1546     return 0;
1547 
1548   InitializeNode* ini = alloc->as_Allocate()->initialization();
1549   bool visited_bottom_offset = false;
1550   GrowableArray<int> offsets_worklist;
1551 
1552   // Check if an oop field's initializing value is recorded and add
1553   // a corresponding NULL if field's value if it is not recorded.
1554   // Connection Graph does not record a default initialization by NULL
1555   // captured by Initialize node.
1556   //
1557   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1558     PointsToNode* field = i.get(); // Field (AddP)
1559     if (!field->is_Field() || !field->as_Field()->is_oop())
1560       continue; // Not oop field
1561     int offset = field->as_Field()->offset();
1562     if (offset == Type::OffsetBot) {
1563       if (!visited_bottom_offset) {
1564         // OffsetBot is used to reference array's element,
1565         // always add reference to NULL to all Field nodes since we don't
1566         // known which element is referenced.
1567         if (add_edge(field, null_obj)) {
1568           // New edge was added
1569           new_edges++;
1570           add_field_uses_to_worklist(field->as_Field());
1571           visited_bottom_offset = true;
1572         }
1573       }
1574     } else {
1575       // Check only oop fields.
1576       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1577       if (adr_type->isa_rawptr()) {
1578 #ifdef ASSERT
1579         // Raw pointers are used for initializing stores so skip it
1580         // since it should be recorded already
1581         Node* base = get_addp_base(field->ideal_node());
1582         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1583                (base->in(0) == alloc),"unexpected pointer type");
1584 #endif
1585         continue;
1586       }
1587       if (!offsets_worklist.contains(offset)) {
1588         offsets_worklist.append(offset);
1589         Node* value = NULL;
1590         if (ini != NULL) {
1591           // StoreP::memory_type() == T_ADDRESS
1592           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1593           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1594           // Make sure initializing store has the same type as this AddP.
1595           // This AddP may reference non existing field because it is on a
1596           // dead branch of bimorphic call which is not eliminated yet.
1597           if (store != NULL && store->is_Store() &&
1598               store->as_Store()->memory_type() == ft) {
1599             value = store->in(MemNode::ValueIn);
1600 #ifdef ASSERT
1601             if (VerifyConnectionGraph) {
1602               // Verify that AddP already points to all objects the value points to.
1603               PointsToNode* val = ptnode_adr(value->_idx);
1604               assert((val != NULL), "should be processed already");
1605               PointsToNode* missed_obj = NULL;
1606               if (val->is_JavaObject()) {
1607                 if (!field->points_to(val->as_JavaObject())) {
1608                   missed_obj = val;
1609                 }
1610               } else {
1611                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1612                   tty->print_cr("----------init store has invalid value -----");
1613                   store->dump();
1614                   val->dump();
1615                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1616                 }
1617                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1618                   PointsToNode* obj = j.get();
1619                   if (obj->is_JavaObject()) {
1620                     if (!field->points_to(obj->as_JavaObject())) {
1621                       missed_obj = obj;
1622                       break;
1623                     }
1624                   }
1625                 }
1626               }
1627               if (missed_obj != NULL) {
1628                 tty->print_cr("----------field---------------------------------");
1629                 field->dump();
1630                 tty->print_cr("----------missed referernce to object-----------");
1631                 missed_obj->dump();
1632                 tty->print_cr("----------object referernced by init store -----");
1633                 store->dump();
1634                 val->dump();
1635                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1636               }
1637             }
1638 #endif
1639           } else {
1640             // There could be initializing stores which follow allocation.
1641             // For example, a volatile field store is not collected
1642             // by Initialize node.
1643             //
1644             // Need to check for dependent loads to separate such stores from
1645             // stores which follow loads. For now, add initial value NULL so
1646             // that compare pointers optimization works correctly.
1647           }
1648         }
1649         if (value == NULL) {
1650           // A field's initializing value was not recorded. Add NULL.
1651           if (add_edge(field, null_obj)) {
1652             // New edge was added
1653             new_edges++;
1654             add_field_uses_to_worklist(field->as_Field());
1655           }
1656         }
1657       }
1658     }
1659   }
1660   return new_edges;
1661 }
1662 
1663 // Adjust scalar_replaceable state after Connection Graph is built.
adjust_scalar_replaceable_state(JavaObjectNode * jobj)1664 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1665   // Search for non-escaping objects which are not scalar replaceable
1666   // and mark them to propagate the state to referenced objects.
1667 
1668   // 1. An object is not scalar replaceable if the field into which it is
1669   // stored has unknown offset (stored into unknown element of an array).
1670   //
1671   for (UseIterator i(jobj); i.has_next(); i.next()) {
1672     PointsToNode* use = i.get();
1673     if (use->is_Arraycopy()) {
1674       continue;
1675     }
1676     if (use->is_Field()) {
1677       FieldNode* field = use->as_Field();
1678       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1679       if (field->offset() == Type::OffsetBot) {
1680         jobj->set_scalar_replaceable(false);
1681         return;
1682       }
1683       // 2. An object is not scalar replaceable if the field into which it is
1684       // stored has multiple bases one of which is null.
1685       if (field->base_count() > 1) {
1686         for (BaseIterator i(field); i.has_next(); i.next()) {
1687           PointsToNode* base = i.get();
1688           if (base == null_obj) {
1689             jobj->set_scalar_replaceable(false);
1690             return;
1691           }
1692         }
1693       }
1694     }
1695     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1696     // 3. An object is not scalar replaceable if it is merged with other objects.
1697     for (EdgeIterator j(use); j.has_next(); j.next()) {
1698       PointsToNode* ptn = j.get();
1699       if (ptn->is_JavaObject() && ptn != jobj) {
1700         // Mark all objects.
1701         jobj->set_scalar_replaceable(false);
1702          ptn->set_scalar_replaceable(false);
1703       }
1704     }
1705     if (!jobj->scalar_replaceable()) {
1706       return;
1707     }
1708   }
1709 
1710   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1711     if (j.get()->is_Arraycopy()) {
1712       continue;
1713     }
1714 
1715     // Non-escaping object node should point only to field nodes.
1716     FieldNode* field = j.get()->as_Field();
1717     int offset = field->as_Field()->offset();
1718 
1719     // 4. An object is not scalar replaceable if it has a field with unknown
1720     // offset (array's element is accessed in loop).
1721     if (offset == Type::OffsetBot) {
1722       jobj->set_scalar_replaceable(false);
1723       return;
1724     }
1725     // 5. Currently an object is not scalar replaceable if a LoadStore node
1726     // access its field since the field value is unknown after it.
1727     //
1728     Node* n = field->ideal_node();
1729 
1730     // Test for an unsafe access that was parsed as maybe off heap
1731     // (with a CheckCastPP to raw memory).
1732     assert(n->is_AddP(), "expect an address computation");
1733     if (n->in(AddPNode::Base)->is_top() &&
1734         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
1735       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
1736       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
1737       jobj->set_scalar_replaceable(false);
1738       return;
1739     }
1740 
1741     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1742       Node* u = n->fast_out(i);
1743       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
1744         jobj->set_scalar_replaceable(false);
1745         return;
1746       }
1747     }
1748 
1749     // 6. Or the address may point to more then one object. This may produce
1750     // the false positive result (set not scalar replaceable)
1751     // since the flow-insensitive escape analysis can't separate
1752     // the case when stores overwrite the field's value from the case
1753     // when stores happened on different control branches.
1754     //
1755     // Note: it will disable scalar replacement in some cases:
1756     //
1757     //    Point p[] = new Point[1];
1758     //    p[0] = new Point(); // Will be not scalar replaced
1759     //
1760     // but it will save us from incorrect optimizations in next cases:
1761     //
1762     //    Point p[] = new Point[1];
1763     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1764     //
1765     if (field->base_count() > 1) {
1766       for (BaseIterator i(field); i.has_next(); i.next()) {
1767         PointsToNode* base = i.get();
1768         // Don't take into account LocalVar nodes which
1769         // may point to only one object which should be also
1770         // this field's base by now.
1771         if (base->is_JavaObject() && base != jobj) {
1772           // Mark all bases.
1773           jobj->set_scalar_replaceable(false);
1774           base->set_scalar_replaceable(false);
1775         }
1776       }
1777     }
1778   }
1779 }
1780 
1781 #ifdef ASSERT
verify_connection_graph(GrowableArray<PointsToNode * > & ptnodes_worklist,GrowableArray<JavaObjectNode * > & non_escaped_worklist,GrowableArray<JavaObjectNode * > & java_objects_worklist,GrowableArray<Node * > & addp_worklist)1782 void ConnectionGraph::verify_connection_graph(
1783                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1784                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1785                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1786                          GrowableArray<Node*>& addp_worklist) {
1787   // Verify that graph is complete - no new edges could be added.
1788   int java_objects_length = java_objects_worklist.length();
1789   int non_escaped_length  = non_escaped_worklist.length();
1790   int new_edges = 0;
1791   for (int next = 0; next < java_objects_length; ++next) {
1792     JavaObjectNode* ptn = java_objects_worklist.at(next);
1793     new_edges += add_java_object_edges(ptn, true);
1794   }
1795   assert(new_edges == 0, "graph was not complete");
1796   // Verify that escape state is final.
1797   int length = non_escaped_worklist.length();
1798   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1799   assert((non_escaped_length == non_escaped_worklist.length()) &&
1800          (non_escaped_length == length) &&
1801          (_worklist.length() == 0), "escape state was not final");
1802 
1803   // Verify fields information.
1804   int addp_length = addp_worklist.length();
1805   for (int next = 0; next < addp_length; ++next ) {
1806     Node* n = addp_worklist.at(next);
1807     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1808     if (field->is_oop()) {
1809       // Verify that field has all bases
1810       Node* base = get_addp_base(n);
1811       PointsToNode* ptn = ptnode_adr(base->_idx);
1812       if (ptn->is_JavaObject()) {
1813         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1814       } else {
1815         assert(ptn->is_LocalVar(), "sanity");
1816         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1817           PointsToNode* e = i.get();
1818           if (e->is_JavaObject()) {
1819             assert(field->has_base(e->as_JavaObject()), "sanity");
1820           }
1821         }
1822       }
1823       // Verify that all fields have initializing values.
1824       if (field->edge_count() == 0) {
1825         tty->print_cr("----------field does not have references----------");
1826         field->dump();
1827         for (BaseIterator i(field); i.has_next(); i.next()) {
1828           PointsToNode* base = i.get();
1829           tty->print_cr("----------field has next base---------------------");
1830           base->dump();
1831           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1832             tty->print_cr("----------base has fields-------------------------");
1833             for (EdgeIterator j(base); j.has_next(); j.next()) {
1834               j.get()->dump();
1835             }
1836             tty->print_cr("----------base has references---------------------");
1837             for (UseIterator j(base); j.has_next(); j.next()) {
1838               j.get()->dump();
1839             }
1840           }
1841         }
1842         for (UseIterator i(field); i.has_next(); i.next()) {
1843           i.get()->dump();
1844         }
1845         assert(field->edge_count() > 0, "sanity");
1846       }
1847     }
1848   }
1849 }
1850 #endif
1851 
1852 // Optimize ideal graph.
optimize_ideal_graph(GrowableArray<Node * > & ptr_cmp_worklist,GrowableArray<Node * > & storestore_worklist)1853 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1854                                            GrowableArray<Node*>& storestore_worklist) {
1855   Compile* C = _compile;
1856   PhaseIterGVN* igvn = _igvn;
1857   if (EliminateLocks) {
1858     // Mark locks before changing ideal graph.
1859     int cnt = C->macro_count();
1860     for( int i=0; i < cnt; i++ ) {
1861       Node *n = C->macro_node(i);
1862       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1863         AbstractLockNode* alock = n->as_AbstractLock();
1864         if (!alock->is_non_esc_obj()) {
1865           if (not_global_escape(alock->obj_node())) {
1866             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1867             // The lock could be marked eliminated by lock coarsening
1868             // code during first IGVN before EA. Replace coarsened flag
1869             // to eliminate all associated locks/unlocks.
1870 #ifdef ASSERT
1871             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1872 #endif
1873             alock->set_non_esc_obj();
1874           }
1875         }
1876       }
1877     }
1878   }
1879 
1880   if (OptimizePtrCompare) {
1881     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1882     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1883     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1884     // Optimize objects compare.
1885     while (ptr_cmp_worklist.length() != 0) {
1886       Node *n = ptr_cmp_worklist.pop();
1887       Node *res = optimize_ptr_compare(n);
1888       if (res != NULL) {
1889 #ifndef PRODUCT
1890         if (PrintOptimizePtrCompare) {
1891           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1892           if (Verbose) {
1893             n->dump(1);
1894           }
1895         }
1896 #endif
1897         igvn->replace_node(n, res);
1898       }
1899     }
1900     // cleanup
1901     if (_pcmp_neq->outcnt() == 0)
1902       igvn->hash_delete(_pcmp_neq);
1903     if (_pcmp_eq->outcnt()  == 0)
1904       igvn->hash_delete(_pcmp_eq);
1905   }
1906 
1907   // For MemBarStoreStore nodes added in library_call.cpp, check
1908   // escape status of associated AllocateNode and optimize out
1909   // MemBarStoreStore node if the allocated object never escapes.
1910   while (storestore_worklist.length() != 0) {
1911     Node *n = storestore_worklist.pop();
1912     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1913     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1914     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1915     if (not_global_escape(alloc)) {
1916       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1917       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1918       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1919       igvn->register_new_node_with_optimizer(mb);
1920       igvn->replace_node(storestore, mb);
1921     }
1922   }
1923 }
1924 
1925 // Optimize objects compare.
optimize_ptr_compare(Node * n)1926 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1927   assert(OptimizePtrCompare, "sanity");
1928   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1929   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1930   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1931   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1932   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1933   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1934 
1935   // Check simple cases first.
1936   if (jobj1 != NULL) {
1937     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1938       if (jobj1 == jobj2) {
1939         // Comparing the same not escaping object.
1940         return _pcmp_eq;
1941       }
1942       Node* obj = jobj1->ideal_node();
1943       // Comparing not escaping allocation.
1944       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1945           !ptn2->points_to(jobj1)) {
1946         return _pcmp_neq; // This includes nullness check.
1947       }
1948     }
1949   }
1950   if (jobj2 != NULL) {
1951     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1952       Node* obj = jobj2->ideal_node();
1953       // Comparing not escaping allocation.
1954       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1955           !ptn1->points_to(jobj2)) {
1956         return _pcmp_neq; // This includes nullness check.
1957       }
1958     }
1959   }
1960   if (jobj1 != NULL && jobj1 != phantom_obj &&
1961       jobj2 != NULL && jobj2 != phantom_obj &&
1962       jobj1->ideal_node()->is_Con() &&
1963       jobj2->ideal_node()->is_Con()) {
1964     // Klass or String constants compare. Need to be careful with
1965     // compressed pointers - compare types of ConN and ConP instead of nodes.
1966     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1967     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1968     if (t1->make_ptr() == t2->make_ptr()) {
1969       return _pcmp_eq;
1970     } else {
1971       return _pcmp_neq;
1972     }
1973   }
1974   if (ptn1->meet(ptn2)) {
1975     return NULL; // Sets are not disjoint
1976   }
1977 
1978   // Sets are disjoint.
1979   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1980   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1981   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1982   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1983   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1984       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1985     // Check nullness of unknown object.
1986     return NULL;
1987   }
1988 
1989   // Disjointness by itself is not sufficient since
1990   // alias analysis is not complete for escaped objects.
1991   // Disjoint sets are definitely unrelated only when
1992   // at least one set has only not escaping allocations.
1993   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1994     if (ptn1->non_escaping_allocation()) {
1995       return _pcmp_neq;
1996     }
1997   }
1998   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1999     if (ptn2->non_escaping_allocation()) {
2000       return _pcmp_neq;
2001     }
2002   }
2003   return NULL;
2004 }
2005 
2006 // Connection Graph constuction functions.
2007 
add_local_var(Node * n,PointsToNode::EscapeState es)2008 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2009   PointsToNode* ptadr = _nodes.at(n->_idx);
2010   if (ptadr != NULL) {
2011     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2012     return;
2013   }
2014   Compile* C = _compile;
2015   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2016   _nodes.at_put(n->_idx, ptadr);
2017 }
2018 
add_java_object(Node * n,PointsToNode::EscapeState es)2019 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2020   PointsToNode* ptadr = _nodes.at(n->_idx);
2021   if (ptadr != NULL) {
2022     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2023     return;
2024   }
2025   Compile* C = _compile;
2026   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2027   _nodes.at_put(n->_idx, ptadr);
2028 }
2029 
add_field(Node * n,PointsToNode::EscapeState es,int offset)2030 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2031   PointsToNode* ptadr = _nodes.at(n->_idx);
2032   if (ptadr != NULL) {
2033     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2034     return;
2035   }
2036   bool unsafe = false;
2037   bool is_oop = is_oop_field(n, offset, &unsafe);
2038   if (unsafe) {
2039     es = PointsToNode::GlobalEscape;
2040   }
2041   Compile* C = _compile;
2042   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2043   _nodes.at_put(n->_idx, field);
2044 }
2045 
add_arraycopy(Node * n,PointsToNode::EscapeState es,PointsToNode * src,PointsToNode * dst)2046 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2047                                     PointsToNode* src, PointsToNode* dst) {
2048   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2049   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2050   PointsToNode* ptadr = _nodes.at(n->_idx);
2051   if (ptadr != NULL) {
2052     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2053     return;
2054   }
2055   Compile* C = _compile;
2056   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2057   _nodes.at_put(n->_idx, ptadr);
2058   // Add edge from arraycopy node to source object.
2059   (void)add_edge(ptadr, src);
2060   src->set_arraycopy_src();
2061   // Add edge from destination object to arraycopy node.
2062   (void)add_edge(dst, ptadr);
2063   dst->set_arraycopy_dst();
2064 }
2065 
is_oop_field(Node * n,int offset,bool * unsafe)2066 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2067   const Type* adr_type = n->as_AddP()->bottom_type();
2068   BasicType bt = T_INT;
2069   if (offset == Type::OffsetBot) {
2070     // Check only oop fields.
2071     if (!adr_type->isa_aryptr() ||
2072         (adr_type->isa_aryptr()->klass() == NULL) ||
2073          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2074       // OffsetBot is used to reference array's element. Ignore first AddP.
2075       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2076         bt = T_OBJECT;
2077       }
2078     }
2079   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2080     if (adr_type->isa_instptr()) {
2081       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2082       if (field != NULL) {
2083         bt = field->layout_type();
2084       } else {
2085         // Check for unsafe oop field access
2086         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2087             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2088             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2089             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2090           bt = T_OBJECT;
2091           (*unsafe) = true;
2092         }
2093       }
2094     } else if (adr_type->isa_aryptr()) {
2095       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2096         // Ignore array length load.
2097       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2098         // Ignore first AddP.
2099       } else {
2100         const Type* elemtype = adr_type->isa_aryptr()->elem();
2101         bt = elemtype->array_element_basic_type();
2102       }
2103     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2104       // Allocation initialization, ThreadLocal field access, unsafe access
2105       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2106           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2107           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2108           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2109         bt = T_OBJECT;
2110       }
2111     }
2112   }
2113   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2114 }
2115 
2116 // Returns unique pointed java object or NULL.
unique_java_object(Node * n)2117 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2118   assert(!_collecting, "should not call when contructed graph");
2119   // If the node was created after the escape computation we can't answer.
2120   uint idx = n->_idx;
2121   if (idx >= nodes_size()) {
2122     return NULL;
2123   }
2124   PointsToNode* ptn = ptnode_adr(idx);
2125   if (ptn->is_JavaObject()) {
2126     return ptn->as_JavaObject();
2127   }
2128   assert(ptn->is_LocalVar(), "sanity");
2129   // Check all java objects it points to.
2130   JavaObjectNode* jobj = NULL;
2131   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2132     PointsToNode* e = i.get();
2133     if (e->is_JavaObject()) {
2134       if (jobj == NULL) {
2135         jobj = e->as_JavaObject();
2136       } else if (jobj != e) {
2137         return NULL;
2138       }
2139     }
2140   }
2141   return jobj;
2142 }
2143 
2144 // Return true if this node points only to non-escaping allocations.
non_escaping_allocation()2145 bool PointsToNode::non_escaping_allocation() {
2146   if (is_JavaObject()) {
2147     Node* n = ideal_node();
2148     if (n->is_Allocate() || n->is_CallStaticJava()) {
2149       return (escape_state() == PointsToNode::NoEscape);
2150     } else {
2151       return false;
2152     }
2153   }
2154   assert(is_LocalVar(), "sanity");
2155   // Check all java objects it points to.
2156   for (EdgeIterator i(this); i.has_next(); i.next()) {
2157     PointsToNode* e = i.get();
2158     if (e->is_JavaObject()) {
2159       Node* n = e->ideal_node();
2160       if ((e->escape_state() != PointsToNode::NoEscape) ||
2161           !(n->is_Allocate() || n->is_CallStaticJava())) {
2162         return false;
2163       }
2164     }
2165   }
2166   return true;
2167 }
2168 
2169 // Return true if we know the node does not escape globally.
not_global_escape(Node * n)2170 bool ConnectionGraph::not_global_escape(Node *n) {
2171   assert(!_collecting, "should not call during graph construction");
2172   // If the node was created after the escape computation we can't answer.
2173   uint idx = n->_idx;
2174   if (idx >= nodes_size()) {
2175     return false;
2176   }
2177   PointsToNode* ptn = ptnode_adr(idx);
2178   PointsToNode::EscapeState es = ptn->escape_state();
2179   // If we have already computed a value, return it.
2180   if (es >= PointsToNode::GlobalEscape)
2181     return false;
2182   if (ptn->is_JavaObject()) {
2183     return true; // (es < PointsToNode::GlobalEscape);
2184   }
2185   assert(ptn->is_LocalVar(), "sanity");
2186   // Check all java objects it points to.
2187   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2188     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2189       return false;
2190   }
2191   return true;
2192 }
2193 
2194 
2195 // Helper functions
2196 
2197 // Return true if this node points to specified node or nodes it points to.
points_to(JavaObjectNode * ptn) const2198 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2199   if (is_JavaObject()) {
2200     return (this == ptn);
2201   }
2202   assert(is_LocalVar() || is_Field(), "sanity");
2203   for (EdgeIterator i(this); i.has_next(); i.next()) {
2204     if (i.get() == ptn)
2205       return true;
2206   }
2207   return false;
2208 }
2209 
2210 // Return true if one node points to an other.
meet(PointsToNode * ptn)2211 bool PointsToNode::meet(PointsToNode* ptn) {
2212   if (this == ptn) {
2213     return true;
2214   } else if (ptn->is_JavaObject()) {
2215     return this->points_to(ptn->as_JavaObject());
2216   } else if (this->is_JavaObject()) {
2217     return ptn->points_to(this->as_JavaObject());
2218   }
2219   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2220   int ptn_count =  ptn->edge_count();
2221   for (EdgeIterator i(this); i.has_next(); i.next()) {
2222     PointsToNode* this_e = i.get();
2223     for (int j = 0; j < ptn_count; j++) {
2224       if (this_e == ptn->edge(j))
2225         return true;
2226     }
2227   }
2228   return false;
2229 }
2230 
2231 #ifdef ASSERT
2232 // Return true if bases point to this java object.
has_base(JavaObjectNode * jobj) const2233 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2234   for (BaseIterator i(this); i.has_next(); i.next()) {
2235     if (i.get() == jobj)
2236       return true;
2237   }
2238   return false;
2239 }
2240 #endif
2241 
address_offset(Node * adr,PhaseTransform * phase)2242 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2243   const Type *adr_type = phase->type(adr);
2244   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2245       adr->in(AddPNode::Address)->is_Proj() &&
2246       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2247     // We are computing a raw address for a store captured by an Initialize
2248     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2249     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2250     assert(offs != Type::OffsetBot ||
2251            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2252            "offset must be a constant or it is initialization of array");
2253     return offs;
2254   }
2255   const TypePtr *t_ptr = adr_type->isa_ptr();
2256   assert(t_ptr != NULL, "must be a pointer type");
2257   return t_ptr->offset();
2258 }
2259 
get_addp_base(Node * addp)2260 Node* ConnectionGraph::get_addp_base(Node *addp) {
2261   assert(addp->is_AddP(), "must be AddP");
2262   //
2263   // AddP cases for Base and Address inputs:
2264   // case #1. Direct object's field reference:
2265   //     Allocate
2266   //       |
2267   //     Proj #5 ( oop result )
2268   //       |
2269   //     CheckCastPP (cast to instance type)
2270   //      | |
2271   //     AddP  ( base == address )
2272   //
2273   // case #2. Indirect object's field reference:
2274   //      Phi
2275   //       |
2276   //     CastPP (cast to instance type)
2277   //      | |
2278   //     AddP  ( base == address )
2279   //
2280   // case #3. Raw object's field reference for Initialize node:
2281   //      Allocate
2282   //        |
2283   //      Proj #5 ( oop result )
2284   //  top   |
2285   //     \  |
2286   //     AddP  ( base == top )
2287   //
2288   // case #4. Array's element reference:
2289   //   {CheckCastPP | CastPP}
2290   //     |  | |
2291   //     |  AddP ( array's element offset )
2292   //     |  |
2293   //     AddP ( array's offset )
2294   //
2295   // case #5. Raw object's field reference for arraycopy stub call:
2296   //          The inline_native_clone() case when the arraycopy stub is called
2297   //          after the allocation before Initialize and CheckCastPP nodes.
2298   //      Allocate
2299   //        |
2300   //      Proj #5 ( oop result )
2301   //       | |
2302   //       AddP  ( base == address )
2303   //
2304   // case #6. Constant Pool, ThreadLocal, CastX2P or
2305   //          Raw object's field reference:
2306   //      {ConP, ThreadLocal, CastX2P, raw Load}
2307   //  top   |
2308   //     \  |
2309   //     AddP  ( base == top )
2310   //
2311   // case #7. Klass's field reference.
2312   //      LoadKlass
2313   //       | |
2314   //       AddP  ( base == address )
2315   //
2316   // case #8. narrow Klass's field reference.
2317   //      LoadNKlass
2318   //       |
2319   //      DecodeN
2320   //       | |
2321   //       AddP  ( base == address )
2322   //
2323   // case #9. Mixed unsafe access
2324   //    {instance}
2325   //        |
2326   //      CheckCastPP (raw)
2327   //  top   |
2328   //     \  |
2329   //     AddP  ( base == top )
2330   //
2331   Node *base = addp->in(AddPNode::Base);
2332   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2333     base = addp->in(AddPNode::Address);
2334     while (base->is_AddP()) {
2335       // Case #6 (unsafe access) may have several chained AddP nodes.
2336       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2337       base = base->in(AddPNode::Address);
2338     }
2339     if (base->Opcode() == Op_CheckCastPP &&
2340         base->bottom_type()->isa_rawptr() &&
2341         _igvn->type(base->in(1))->isa_oopptr()) {
2342       base = base->in(1); // Case #9
2343     } else {
2344       Node* uncast_base = base->uncast();
2345       int opcode = uncast_base->Opcode();
2346       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2347              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2348              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2349              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()) ||
2350              BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(uncast_base), "sanity");
2351     }
2352   }
2353   return base;
2354 }
2355 
find_second_addp(Node * addp,Node * n)2356 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2357   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2358   Node* addp2 = addp->raw_out(0);
2359   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2360       addp2->in(AddPNode::Base) == n &&
2361       addp2->in(AddPNode::Address) == addp) {
2362     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2363     //
2364     // Find array's offset to push it on worklist first and
2365     // as result process an array's element offset first (pushed second)
2366     // to avoid CastPP for the array's offset.
2367     // Otherwise the inserted CastPP (LocalVar) will point to what
2368     // the AddP (Field) points to. Which would be wrong since
2369     // the algorithm expects the CastPP has the same point as
2370     // as AddP's base CheckCastPP (LocalVar).
2371     //
2372     //    ArrayAllocation
2373     //     |
2374     //    CheckCastPP
2375     //     |
2376     //    memProj (from ArrayAllocation CheckCastPP)
2377     //     |  ||
2378     //     |  ||   Int (element index)
2379     //     |  ||    |   ConI (log(element size))
2380     //     |  ||    |   /
2381     //     |  ||   LShift
2382     //     |  ||  /
2383     //     |  AddP (array's element offset)
2384     //     |  |
2385     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2386     //     | / /
2387     //     AddP (array's offset)
2388     //      |
2389     //     Load/Store (memory operation on array's element)
2390     //
2391     return addp2;
2392   }
2393   return NULL;
2394 }
2395 
2396 //
2397 // Adjust the type and inputs of an AddP which computes the
2398 // address of a field of an instance
2399 //
split_AddP(Node * addp,Node * base)2400 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2401   PhaseGVN* igvn = _igvn;
2402   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2403   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2404   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2405   if (t == NULL) {
2406     // We are computing a raw address for a store captured by an Initialize
2407     // compute an appropriate address type (cases #3 and #5).
2408     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2409     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2410     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2411     assert(offs != Type::OffsetBot, "offset must be a constant");
2412     t = base_t->add_offset(offs)->is_oopptr();
2413   }
2414   int inst_id =  base_t->instance_id();
2415   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2416                              "old type must be non-instance or match new type");
2417 
2418   // The type 't' could be subclass of 'base_t'.
2419   // As result t->offset() could be large then base_t's size and it will
2420   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2421   // constructor verifies correctness of the offset.
2422   //
2423   // It could happened on subclass's branch (from the type profiling
2424   // inlining) which was not eliminated during parsing since the exactness
2425   // of the allocation type was not propagated to the subclass type check.
2426   //
2427   // Or the type 't' could be not related to 'base_t' at all.
2428   // It could happened when CHA type is different from MDO type on a dead path
2429   // (for example, from instanceof check) which is not collapsed during parsing.
2430   //
2431   // Do nothing for such AddP node and don't process its users since
2432   // this code branch will go away.
2433   //
2434   if (!t->is_known_instance() &&
2435       !base_t->klass()->is_subtype_of(t->klass())) {
2436      return false; // bail out
2437   }
2438   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2439   // Do NOT remove the next line: ensure a new alias index is allocated
2440   // for the instance type. Note: C++ will not remove it since the call
2441   // has side effect.
2442   int alias_idx = _compile->get_alias_index(tinst);
2443   igvn->set_type(addp, tinst);
2444   // record the allocation in the node map
2445   set_map(addp, get_map(base->_idx));
2446   // Set addp's Base and Address to 'base'.
2447   Node *abase = addp->in(AddPNode::Base);
2448   Node *adr   = addp->in(AddPNode::Address);
2449   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2450       adr->in(0)->_idx == (uint)inst_id) {
2451     // Skip AddP cases #3 and #5.
2452   } else {
2453     assert(!abase->is_top(), "sanity"); // AddP case #3
2454     if (abase != base) {
2455       igvn->hash_delete(addp);
2456       addp->set_req(AddPNode::Base, base);
2457       if (abase == adr) {
2458         addp->set_req(AddPNode::Address, base);
2459       } else {
2460         // AddP case #4 (adr is array's element offset AddP node)
2461 #ifdef ASSERT
2462         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2463         assert(adr->is_AddP() && atype != NULL &&
2464                atype->instance_id() == inst_id, "array's element offset should be processed first");
2465 #endif
2466       }
2467       igvn->hash_insert(addp);
2468     }
2469   }
2470   // Put on IGVN worklist since at least addp's type was changed above.
2471   record_for_optimizer(addp);
2472   return true;
2473 }
2474 
2475 //
2476 // Create a new version of orig_phi if necessary. Returns either the newly
2477 // created phi or an existing phi.  Sets create_new to indicate whether a new
2478 // phi was created.  Cache the last newly created phi in the node map.
2479 //
create_split_phi(PhiNode * orig_phi,int alias_idx,GrowableArray<PhiNode * > & orig_phi_worklist,bool & new_created)2480 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2481   Compile *C = _compile;
2482   PhaseGVN* igvn = _igvn;
2483   new_created = false;
2484   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2485   // nothing to do if orig_phi is bottom memory or matches alias_idx
2486   if (phi_alias_idx == alias_idx) {
2487     return orig_phi;
2488   }
2489   // Have we recently created a Phi for this alias index?
2490   PhiNode *result = get_map_phi(orig_phi->_idx);
2491   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2492     return result;
2493   }
2494   // Previous check may fail when the same wide memory Phi was split into Phis
2495   // for different memory slices. Search all Phis for this region.
2496   if (result != NULL) {
2497     Node* region = orig_phi->in(0);
2498     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2499       Node* phi = region->fast_out(i);
2500       if (phi->is_Phi() &&
2501           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2502         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2503         return phi->as_Phi();
2504       }
2505     }
2506   }
2507   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2508     if (C->do_escape_analysis() == true && !C->failing()) {
2509       // Retry compilation without escape analysis.
2510       // If this is the first failure, the sentinel string will "stick"
2511       // to the Compile object, and the C2Compiler will see it and retry.
2512       C->record_failure(C2Compiler::retry_no_escape_analysis());
2513     }
2514     return NULL;
2515   }
2516   orig_phi_worklist.append_if_missing(orig_phi);
2517   const TypePtr *atype = C->get_adr_type(alias_idx);
2518   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2519   C->copy_node_notes_to(result, orig_phi);
2520   igvn->set_type(result, result->bottom_type());
2521   record_for_optimizer(result);
2522   set_map(orig_phi, result);
2523   new_created = true;
2524   return result;
2525 }
2526 
2527 //
2528 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2529 // specified alias index.
2530 //
split_memory_phi(PhiNode * orig_phi,int alias_idx,GrowableArray<PhiNode * > & orig_phi_worklist)2531 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2532   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2533   Compile *C = _compile;
2534   PhaseGVN* igvn = _igvn;
2535   bool new_phi_created;
2536   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2537   if (!new_phi_created) {
2538     return result;
2539   }
2540   GrowableArray<PhiNode *>  phi_list;
2541   GrowableArray<uint>  cur_input;
2542   PhiNode *phi = orig_phi;
2543   uint idx = 1;
2544   bool finished = false;
2545   while(!finished) {
2546     while (idx < phi->req()) {
2547       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2548       if (mem != NULL && mem->is_Phi()) {
2549         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2550         if (new_phi_created) {
2551           // found an phi for which we created a new split, push current one on worklist and begin
2552           // processing new one
2553           phi_list.push(phi);
2554           cur_input.push(idx);
2555           phi = mem->as_Phi();
2556           result = newphi;
2557           idx = 1;
2558           continue;
2559         } else {
2560           mem = newphi;
2561         }
2562       }
2563       if (C->failing()) {
2564         return NULL;
2565       }
2566       result->set_req(idx++, mem);
2567     }
2568 #ifdef ASSERT
2569     // verify that the new Phi has an input for each input of the original
2570     assert( phi->req() == result->req(), "must have same number of inputs.");
2571     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2572 #endif
2573     // Check if all new phi's inputs have specified alias index.
2574     // Otherwise use old phi.
2575     for (uint i = 1; i < phi->req(); i++) {
2576       Node* in = result->in(i);
2577       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2578     }
2579     // we have finished processing a Phi, see if there are any more to do
2580     finished = (phi_list.length() == 0 );
2581     if (!finished) {
2582       phi = phi_list.pop();
2583       idx = cur_input.pop();
2584       PhiNode *prev_result = get_map_phi(phi->_idx);
2585       prev_result->set_req(idx++, result);
2586       result = prev_result;
2587     }
2588   }
2589   return result;
2590 }
2591 
2592 //
2593 // The next methods are derived from methods in MemNode.
2594 //
step_through_mergemem(MergeMemNode * mmem,int alias_idx,const TypeOopPtr * toop)2595 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2596   Node *mem = mmem;
2597   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2598   // means an array I have not precisely typed yet.  Do not do any
2599   // alias stuff with it any time soon.
2600   if (toop->base() != Type::AnyPtr &&
2601       !(toop->klass() != NULL &&
2602         toop->klass()->is_java_lang_Object() &&
2603         toop->offset() == Type::OffsetBot)) {
2604     mem = mmem->memory_at(alias_idx);
2605     // Update input if it is progress over what we have now
2606   }
2607   return mem;
2608 }
2609 
2610 //
2611 // Move memory users to their memory slices.
2612 //
move_inst_mem(Node * n,GrowableArray<PhiNode * > & orig_phis)2613 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2614   Compile* C = _compile;
2615   PhaseGVN* igvn = _igvn;
2616   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2617   assert(tp != NULL, "ptr type");
2618   int alias_idx = C->get_alias_index(tp);
2619   int general_idx = C->get_general_index(alias_idx);
2620 
2621   // Move users first
2622   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2623     Node* use = n->fast_out(i);
2624     if (use->is_MergeMem()) {
2625       MergeMemNode* mmem = use->as_MergeMem();
2626       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2627       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2628         continue; // Nothing to do
2629       }
2630       // Replace previous general reference to mem node.
2631       uint orig_uniq = C->unique();
2632       Node* m = find_inst_mem(n, general_idx, orig_phis);
2633       assert(orig_uniq == C->unique(), "no new nodes");
2634       mmem->set_memory_at(general_idx, m);
2635       --imax;
2636       --i;
2637     } else if (use->is_MemBar()) {
2638       assert(!use->is_Initialize(), "initializing stores should not be moved");
2639       if (use->req() > MemBarNode::Precedent &&
2640           use->in(MemBarNode::Precedent) == n) {
2641         // Don't move related membars.
2642         record_for_optimizer(use);
2643         continue;
2644       }
2645       tp = use->as_MemBar()->adr_type()->isa_ptr();
2646       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2647           alias_idx == general_idx) {
2648         continue; // Nothing to do
2649       }
2650       // Move to general memory slice.
2651       uint orig_uniq = C->unique();
2652       Node* m = find_inst_mem(n, general_idx, orig_phis);
2653       assert(orig_uniq == C->unique(), "no new nodes");
2654       igvn->hash_delete(use);
2655       imax -= use->replace_edge(n, m);
2656       igvn->hash_insert(use);
2657       record_for_optimizer(use);
2658       --i;
2659 #ifdef ASSERT
2660     } else if (use->is_Mem()) {
2661       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2662         // Don't move related cardmark.
2663         continue;
2664       }
2665       // Memory nodes should have new memory input.
2666       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2667       assert(tp != NULL, "ptr type");
2668       int idx = C->get_alias_index(tp);
2669       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2670              "Following memory nodes should have new memory input or be on the same memory slice");
2671     } else if (use->is_Phi()) {
2672       // Phi nodes should be split and moved already.
2673       tp = use->as_Phi()->adr_type()->isa_ptr();
2674       assert(tp != NULL, "ptr type");
2675       int idx = C->get_alias_index(tp);
2676       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2677     } else {
2678       use->dump();
2679       assert(false, "should not be here");
2680 #endif
2681     }
2682   }
2683 }
2684 
2685 //
2686 // Search memory chain of "mem" to find a MemNode whose address
2687 // is the specified alias index.
2688 //
find_inst_mem(Node * orig_mem,int alias_idx,GrowableArray<PhiNode * > & orig_phis)2689 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2690   if (orig_mem == NULL)
2691     return orig_mem;
2692   Compile* C = _compile;
2693   PhaseGVN* igvn = _igvn;
2694   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2695   bool is_instance = (toop != NULL) && toop->is_known_instance();
2696   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2697   Node *prev = NULL;
2698   Node *result = orig_mem;
2699   while (prev != result) {
2700     prev = result;
2701     if (result == start_mem)
2702       break;  // hit one of our sentinels
2703     if (result->is_Mem()) {
2704       const Type *at = igvn->type(result->in(MemNode::Address));
2705       if (at == Type::TOP)
2706         break; // Dead
2707       assert (at->isa_ptr() != NULL, "pointer type required.");
2708       int idx = C->get_alias_index(at->is_ptr());
2709       if (idx == alias_idx)
2710         break; // Found
2711       if (!is_instance && (at->isa_oopptr() == NULL ||
2712                            !at->is_oopptr()->is_known_instance())) {
2713         break; // Do not skip store to general memory slice.
2714       }
2715       result = result->in(MemNode::Memory);
2716     }
2717     if (!is_instance)
2718       continue;  // don't search further for non-instance types
2719     // skip over a call which does not affect this memory slice
2720     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2721       Node *proj_in = result->in(0);
2722       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2723         break;  // hit one of our sentinels
2724       } else if (proj_in->is_Call()) {
2725         // ArrayCopy node processed here as well
2726         CallNode *call = proj_in->as_Call();
2727         if (!call->may_modify(toop, igvn)) {
2728           result = call->in(TypeFunc::Memory);
2729         }
2730       } else if (proj_in->is_Initialize()) {
2731         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2732         // Stop if this is the initialization for the object instance which
2733         // which contains this memory slice, otherwise skip over it.
2734         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2735           result = proj_in->in(TypeFunc::Memory);
2736         }
2737       } else if (proj_in->is_MemBar()) {
2738         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2739             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2740             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2741           // clone
2742           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2743           if (ac->may_modify(toop, igvn)) {
2744             break;
2745           }
2746         }
2747         result = proj_in->in(TypeFunc::Memory);
2748       }
2749     } else if (result->is_MergeMem()) {
2750       MergeMemNode *mmem = result->as_MergeMem();
2751       result = step_through_mergemem(mmem, alias_idx, toop);
2752       if (result == mmem->base_memory()) {
2753         // Didn't find instance memory, search through general slice recursively.
2754         result = mmem->memory_at(C->get_general_index(alias_idx));
2755         result = find_inst_mem(result, alias_idx, orig_phis);
2756         if (C->failing()) {
2757           return NULL;
2758         }
2759         mmem->set_memory_at(alias_idx, result);
2760       }
2761     } else if (result->is_Phi() &&
2762                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2763       Node *un = result->as_Phi()->unique_input(igvn);
2764       if (un != NULL) {
2765         orig_phis.append_if_missing(result->as_Phi());
2766         result = un;
2767       } else {
2768         break;
2769       }
2770     } else if (result->is_ClearArray()) {
2771       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2772         // Can not bypass initialization of the instance
2773         // we are looking for.
2774         break;
2775       }
2776       // Otherwise skip it (the call updated 'result' value).
2777     } else if (result->Opcode() == Op_SCMemProj) {
2778       Node* mem = result->in(0);
2779       Node* adr = NULL;
2780       if (mem->is_LoadStore()) {
2781         adr = mem->in(MemNode::Address);
2782       } else {
2783         assert(mem->Opcode() == Op_EncodeISOArray ||
2784                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2785         adr = mem->in(3); // Memory edge corresponds to destination array
2786       }
2787       const Type *at = igvn->type(adr);
2788       if (at != Type::TOP) {
2789         assert(at->isa_ptr() != NULL, "pointer type required.");
2790         int idx = C->get_alias_index(at->is_ptr());
2791         if (idx == alias_idx) {
2792           // Assert in debug mode
2793           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2794           break; // In product mode return SCMemProj node
2795         }
2796       }
2797       result = mem->in(MemNode::Memory);
2798     } else if (result->Opcode() == Op_StrInflatedCopy) {
2799       Node* adr = result->in(3); // Memory edge corresponds to destination array
2800       const Type *at = igvn->type(adr);
2801       if (at != Type::TOP) {
2802         assert(at->isa_ptr() != NULL, "pointer type required.");
2803         int idx = C->get_alias_index(at->is_ptr());
2804         if (idx == alias_idx) {
2805           // Assert in debug mode
2806           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2807           break; // In product mode return SCMemProj node
2808         }
2809       }
2810       result = result->in(MemNode::Memory);
2811     }
2812   }
2813   if (result->is_Phi()) {
2814     PhiNode *mphi = result->as_Phi();
2815     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2816     const TypePtr *t = mphi->adr_type();
2817     if (!is_instance) {
2818       // Push all non-instance Phis on the orig_phis worklist to update inputs
2819       // during Phase 4 if needed.
2820       orig_phis.append_if_missing(mphi);
2821     } else if (C->get_alias_index(t) != alias_idx) {
2822       // Create a new Phi with the specified alias index type.
2823       result = split_memory_phi(mphi, alias_idx, orig_phis);
2824     }
2825   }
2826   // the result is either MemNode, PhiNode, InitializeNode.
2827   return result;
2828 }
2829 
2830 //
2831 //  Convert the types of unescaped object to instance types where possible,
2832 //  propagate the new type information through the graph, and update memory
2833 //  edges and MergeMem inputs to reflect the new type.
2834 //
2835 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2836 //  The processing is done in 4 phases:
2837 //
2838 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2839 //            types for the CheckCastPP for allocations where possible.
2840 //            Propagate the new types through users as follows:
2841 //               casts and Phi:  push users on alloc_worklist
2842 //               AddP:  cast Base and Address inputs to the instance type
2843 //                      push any AddP users on alloc_worklist and push any memnode
2844 //                      users onto memnode_worklist.
2845 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2846 //            search the Memory chain for a store with the appropriate type
2847 //            address type.  If a Phi is found, create a new version with
2848 //            the appropriate memory slices from each of the Phi inputs.
2849 //            For stores, process the users as follows:
2850 //               MemNode:  push on memnode_worklist
2851 //               MergeMem: push on mergemem_worklist
2852 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2853 //            moving the first node encountered of each  instance type to the
2854 //            the input corresponding to its alias index.
2855 //            appropriate memory slice.
2856 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2857 //
2858 // In the following example, the CheckCastPP nodes are the cast of allocation
2859 // results and the allocation of node 29 is unescaped and eligible to be an
2860 // instance type.
2861 //
2862 // We start with:
2863 //
2864 //     7 Parm #memory
2865 //    10  ConI  "12"
2866 //    19  CheckCastPP   "Foo"
2867 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2868 //    29  CheckCastPP   "Foo"
2869 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2870 //
2871 //    40  StoreP  25   7  20   ... alias_index=4
2872 //    50  StoreP  35  40  30   ... alias_index=4
2873 //    60  StoreP  45  50  20   ... alias_index=4
2874 //    70  LoadP    _  60  30   ... alias_index=4
2875 //    80  Phi     75  50  60   Memory alias_index=4
2876 //    90  LoadP    _  80  30   ... alias_index=4
2877 //   100  LoadP    _  80  20   ... alias_index=4
2878 //
2879 //
2880 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2881 // and creating a new alias index for node 30.  This gives:
2882 //
2883 //     7 Parm #memory
2884 //    10  ConI  "12"
2885 //    19  CheckCastPP   "Foo"
2886 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2887 //    29  CheckCastPP   "Foo"  iid=24
2888 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2889 //
2890 //    40  StoreP  25   7  20   ... alias_index=4
2891 //    50  StoreP  35  40  30   ... alias_index=6
2892 //    60  StoreP  45  50  20   ... alias_index=4
2893 //    70  LoadP    _  60  30   ... alias_index=6
2894 //    80  Phi     75  50  60   Memory alias_index=4
2895 //    90  LoadP    _  80  30   ... alias_index=6
2896 //   100  LoadP    _  80  20   ... alias_index=4
2897 //
2898 // In phase 2, new memory inputs are computed for the loads and stores,
2899 // And a new version of the phi is created.  In phase 4, the inputs to
2900 // node 80 are updated and then the memory nodes are updated with the
2901 // values computed in phase 2.  This results in:
2902 //
2903 //     7 Parm #memory
2904 //    10  ConI  "12"
2905 //    19  CheckCastPP   "Foo"
2906 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2907 //    29  CheckCastPP   "Foo"  iid=24
2908 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2909 //
2910 //    40  StoreP  25  7   20   ... alias_index=4
2911 //    50  StoreP  35  7   30   ... alias_index=6
2912 //    60  StoreP  45  40  20   ... alias_index=4
2913 //    70  LoadP    _  50  30   ... alias_index=6
2914 //    80  Phi     75  40  60   Memory alias_index=4
2915 //   120  Phi     75  50  50   Memory alias_index=6
2916 //    90  LoadP    _ 120  30   ... alias_index=6
2917 //   100  LoadP    _  80  20   ... alias_index=4
2918 //
split_unique_types(GrowableArray<Node * > & alloc_worklist,GrowableArray<ArrayCopyNode * > & arraycopy_worklist)2919 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2920   GrowableArray<Node *>  memnode_worklist;
2921   GrowableArray<PhiNode *>  orig_phis;
2922   PhaseIterGVN  *igvn = _igvn;
2923   uint new_index_start = (uint) _compile->num_alias_types();
2924   Arena* arena = Thread::current()->resource_area();
2925   VectorSet visited(arena);
2926   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2927   uint unique_old = _compile->unique();
2928 
2929   //  Phase 1:  Process possible allocations from alloc_worklist.
2930   //  Create instance types for the CheckCastPP for allocations where possible.
2931   //
2932   // (Note: don't forget to change the order of the second AddP node on
2933   //  the alloc_worklist if the order of the worklist processing is changed,
2934   //  see the comment in find_second_addp().)
2935   //
2936   while (alloc_worklist.length() != 0) {
2937     Node *n = alloc_worklist.pop();
2938     uint ni = n->_idx;
2939     if (n->is_Call()) {
2940       CallNode *alloc = n->as_Call();
2941       // copy escape information to call node
2942       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2943       PointsToNode::EscapeState es = ptn->escape_state();
2944       // We have an allocation or call which returns a Java object,
2945       // see if it is unescaped.
2946       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2947         continue;
2948       // Find CheckCastPP for the allocate or for the return value of a call
2949       n = alloc->result_cast();
2950       if (n == NULL) {            // No uses except Initialize node
2951         if (alloc->is_Allocate()) {
2952           // Set the scalar_replaceable flag for allocation
2953           // so it could be eliminated if it has no uses.
2954           alloc->as_Allocate()->_is_scalar_replaceable = true;
2955         }
2956         if (alloc->is_CallStaticJava()) {
2957           // Set the scalar_replaceable flag for boxing method
2958           // so it could be eliminated if it has no uses.
2959           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2960         }
2961         continue;
2962       }
2963       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2964         assert(!alloc->is_Allocate(), "allocation should have unique type");
2965         continue;
2966       }
2967 
2968       // The inline code for Object.clone() casts the allocation result to
2969       // java.lang.Object and then to the actual type of the allocated
2970       // object. Detect this case and use the second cast.
2971       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2972       // the allocation result is cast to java.lang.Object and then
2973       // to the actual Array type.
2974       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2975           && (alloc->is_AllocateArray() ||
2976               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2977         Node *cast2 = NULL;
2978         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2979           Node *use = n->fast_out(i);
2980           if (use->is_CheckCastPP()) {
2981             cast2 = use;
2982             break;
2983           }
2984         }
2985         if (cast2 != NULL) {
2986           n = cast2;
2987         } else {
2988           // Non-scalar replaceable if the allocation type is unknown statically
2989           // (reflection allocation), the object can't be restored during
2990           // deoptimization without precise type.
2991           continue;
2992         }
2993       }
2994 
2995       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2996       if (t == NULL)
2997         continue;  // not a TypeOopPtr
2998       if (!t->klass_is_exact())
2999         continue; // not an unique type
3000 
3001       if (alloc->is_Allocate()) {
3002         // Set the scalar_replaceable flag for allocation
3003         // so it could be eliminated.
3004         alloc->as_Allocate()->_is_scalar_replaceable = true;
3005       }
3006       if (alloc->is_CallStaticJava()) {
3007         // Set the scalar_replaceable flag for boxing method
3008         // so it could be eliminated.
3009         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3010       }
3011       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3012       // in order for an object to be scalar-replaceable, it must be:
3013       //   - a direct allocation (not a call returning an object)
3014       //   - non-escaping
3015       //   - eligible to be a unique type
3016       //   - not determined to be ineligible by escape analysis
3017       set_map(alloc, n);
3018       set_map(n, alloc);
3019       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3020       igvn->hash_delete(n);
3021       igvn->set_type(n,  tinst);
3022       n->raise_bottom_type(tinst);
3023       igvn->hash_insert(n);
3024       record_for_optimizer(n);
3025       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3026 
3027         // First, put on the worklist all Field edges from Connection Graph
3028         // which is more accurate than putting immediate users from Ideal Graph.
3029         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3030           PointsToNode* tgt = e.get();
3031           if (tgt->is_Arraycopy()) {
3032             continue;
3033           }
3034           Node* use = tgt->ideal_node();
3035           assert(tgt->is_Field() && use->is_AddP(),
3036                  "only AddP nodes are Field edges in CG");
3037           if (use->outcnt() > 0) { // Don't process dead nodes
3038             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3039             if (addp2 != NULL) {
3040               assert(alloc->is_AllocateArray(),"array allocation was expected");
3041               alloc_worklist.append_if_missing(addp2);
3042             }
3043             alloc_worklist.append_if_missing(use);
3044           }
3045         }
3046 
3047         // An allocation may have an Initialize which has raw stores. Scan
3048         // the users of the raw allocation result and push AddP users
3049         // on alloc_worklist.
3050         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3051         assert (raw_result != NULL, "must have an allocation result");
3052         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3053           Node *use = raw_result->fast_out(i);
3054           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3055             Node* addp2 = find_second_addp(use, raw_result);
3056             if (addp2 != NULL) {
3057               assert(alloc->is_AllocateArray(),"array allocation was expected");
3058               alloc_worklist.append_if_missing(addp2);
3059             }
3060             alloc_worklist.append_if_missing(use);
3061           } else if (use->is_MemBar()) {
3062             memnode_worklist.append_if_missing(use);
3063           }
3064         }
3065       }
3066     } else if (n->is_AddP()) {
3067       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3068       if (jobj == NULL || jobj == phantom_obj) {
3069 #ifdef ASSERT
3070         ptnode_adr(get_addp_base(n)->_idx)->dump();
3071         ptnode_adr(n->_idx)->dump();
3072         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3073 #endif
3074         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3075         return;
3076       }
3077       Node *base = get_map(jobj->idx());  // CheckCastPP node
3078       if (!split_AddP(n, base)) continue; // wrong type from dead path
3079     } else if (n->is_Phi() ||
3080                n->is_CheckCastPP() ||
3081                n->is_EncodeP() ||
3082                n->is_DecodeN() ||
3083                BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(n) ||
3084                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3085       if (visited.test_set(n->_idx)) {
3086         assert(n->is_Phi(), "loops only through Phi's");
3087         continue;  // already processed
3088       }
3089       JavaObjectNode* jobj = unique_java_object(n);
3090       if (jobj == NULL || jobj == phantom_obj) {
3091 #ifdef ASSERT
3092         ptnode_adr(n->_idx)->dump();
3093         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3094 #endif
3095         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3096         return;
3097       } else {
3098         Node *val = get_map(jobj->idx());   // CheckCastPP node
3099         TypeNode *tn = n->as_Type();
3100         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3101         assert(tinst != NULL && tinst->is_known_instance() &&
3102                tinst->instance_id() == jobj->idx() , "instance type expected.");
3103 
3104         const Type *tn_type = igvn->type(tn);
3105         const TypeOopPtr *tn_t;
3106         if (tn_type->isa_narrowoop()) {
3107           tn_t = tn_type->make_ptr()->isa_oopptr();
3108         } else {
3109           tn_t = tn_type->isa_oopptr();
3110         }
3111         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3112           if (tn_type->isa_narrowoop()) {
3113             tn_type = tinst->make_narrowoop();
3114           } else {
3115             tn_type = tinst;
3116           }
3117           igvn->hash_delete(tn);
3118           igvn->set_type(tn, tn_type);
3119           tn->set_type(tn_type);
3120           igvn->hash_insert(tn);
3121           record_for_optimizer(n);
3122         } else {
3123           assert(tn_type == TypePtr::NULL_PTR ||
3124                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3125                  "unexpected type");
3126           continue; // Skip dead path with different type
3127         }
3128       }
3129     } else {
3130       debug_only(n->dump();)
3131       assert(false, "EA: unexpected node");
3132       continue;
3133     }
3134     // push allocation's users on appropriate worklist
3135     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3136       Node *use = n->fast_out(i);
3137       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3138         // Load/store to instance's field
3139         memnode_worklist.append_if_missing(use);
3140       } else if (use->is_MemBar()) {
3141         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3142           memnode_worklist.append_if_missing(use);
3143         }
3144       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3145         Node* addp2 = find_second_addp(use, n);
3146         if (addp2 != NULL) {
3147           alloc_worklist.append_if_missing(addp2);
3148         }
3149         alloc_worklist.append_if_missing(use);
3150       } else if (use->is_Phi() ||
3151                  use->is_CheckCastPP() ||
3152                  use->is_EncodeNarrowPtr() ||
3153                  use->is_DecodeNarrowPtr() ||
3154                  BarrierSet::barrier_set()->barrier_set_c2()->escape_is_barrier_node(use) ||
3155                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3156         alloc_worklist.append_if_missing(use);
3157 #ifdef ASSERT
3158       } else if (use->is_Mem()) {
3159         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3160       } else if (use->is_MergeMem()) {
3161         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3162       } else if (use->is_SafePoint()) {
3163         // Look for MergeMem nodes for calls which reference unique allocation
3164         // (through CheckCastPP nodes) even for debug info.
3165         Node* m = use->in(TypeFunc::Memory);
3166         if (m->is_MergeMem()) {
3167           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3168         }
3169       } else if (use->Opcode() == Op_EncodeISOArray) {
3170         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3171           // EncodeISOArray overwrites destination array
3172           memnode_worklist.append_if_missing(use);
3173         }
3174       } else {
3175         uint op = use->Opcode();
3176         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3177             (use->in(MemNode::Memory) == n)) {
3178           // They overwrite memory edge corresponding to destination array,
3179           memnode_worklist.append_if_missing(use);
3180         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3181               op == Op_CastP2X || op == Op_StoreCM ||
3182               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3183               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3184               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3185               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3186           n->dump();
3187           use->dump();
3188           assert(false, "EA: missing allocation reference path");
3189         }
3190 #endif
3191       }
3192     }
3193 
3194   }
3195 
3196   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3197   // type, record it in the ArrayCopy node so we know what memory this
3198   // node uses/modified.
3199   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3200     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3201     Node* dest = ac->in(ArrayCopyNode::Dest);
3202     if (dest->is_AddP()) {
3203       dest = get_addp_base(dest);
3204     }
3205     JavaObjectNode* jobj = unique_java_object(dest);
3206     if (jobj != NULL) {
3207       Node *base = get_map(jobj->idx());
3208       if (base != NULL) {
3209         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3210         ac->_dest_type = base_t;
3211       }
3212     }
3213     Node* src = ac->in(ArrayCopyNode::Src);
3214     if (src->is_AddP()) {
3215       src = get_addp_base(src);
3216     }
3217     jobj = unique_java_object(src);
3218     if (jobj != NULL) {
3219       Node* base = get_map(jobj->idx());
3220       if (base != NULL) {
3221         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3222         ac->_src_type = base_t;
3223       }
3224     }
3225   }
3226 
3227   // New alias types were created in split_AddP().
3228   uint new_index_end = (uint) _compile->num_alias_types();
3229   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3230 
3231   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3232   //            compute new values for Memory inputs  (the Memory inputs are not
3233   //            actually updated until phase 4.)
3234   if (memnode_worklist.length() == 0)
3235     return;  // nothing to do
3236   while (memnode_worklist.length() != 0) {
3237     Node *n = memnode_worklist.pop();
3238     if (visited.test_set(n->_idx))
3239       continue;
3240     if (n->is_Phi() || n->is_ClearArray()) {
3241       // we don't need to do anything, but the users must be pushed
3242     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3243       // we don't need to do anything, but the users must be pushed
3244       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3245       if (n == NULL)
3246         continue;
3247     } else if (n->Opcode() == Op_StrCompressedCopy ||
3248                n->Opcode() == Op_EncodeISOArray) {
3249       // get the memory projection
3250       n = n->find_out_with(Op_SCMemProj);
3251       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3252     } else {
3253       assert(n->is_Mem(), "memory node required.");
3254       Node *addr = n->in(MemNode::Address);
3255       const Type *addr_t = igvn->type(addr);
3256       if (addr_t == Type::TOP)
3257         continue;
3258       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3259       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3260       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3261       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3262       if (_compile->failing()) {
3263         return;
3264       }
3265       if (mem != n->in(MemNode::Memory)) {
3266         // We delay the memory edge update since we need old one in
3267         // MergeMem code below when instances memory slices are separated.
3268         set_map(n, mem);
3269       }
3270       if (n->is_Load()) {
3271         continue;  // don't push users
3272       } else if (n->is_LoadStore()) {
3273         // get the memory projection
3274         n = n->find_out_with(Op_SCMemProj);
3275         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3276       }
3277     }
3278     // push user on appropriate worklist
3279     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3280       Node *use = n->fast_out(i);
3281       if (use->is_Phi() || use->is_ClearArray()) {
3282         memnode_worklist.append_if_missing(use);
3283       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3284         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3285           continue;
3286         memnode_worklist.append_if_missing(use);
3287       } else if (use->is_MemBar()) {
3288         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3289           memnode_worklist.append_if_missing(use);
3290         }
3291 #ifdef ASSERT
3292       } else if(use->is_Mem()) {
3293         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3294       } else if (use->is_MergeMem()) {
3295         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3296       } else if (use->Opcode() == Op_EncodeISOArray) {
3297         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3298           // EncodeISOArray overwrites destination array
3299           memnode_worklist.append_if_missing(use);
3300         }
3301       } else {
3302         uint op = use->Opcode();
3303         if ((use->in(MemNode::Memory) == n) &&
3304             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3305           // They overwrite memory edge corresponding to destination array,
3306           memnode_worklist.append_if_missing(use);
3307         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3308               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3309               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3310               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3311           n->dump();
3312           use->dump();
3313           assert(false, "EA: missing memory path");
3314         }
3315 #endif
3316       }
3317     }
3318   }
3319 
3320   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3321   //            Walk each memory slice moving the first node encountered of each
3322   //            instance type to the the input corresponding to its alias index.
3323   uint length = _mergemem_worklist.length();
3324   for( uint next = 0; next < length; ++next ) {
3325     MergeMemNode* nmm = _mergemem_worklist.at(next);
3326     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3327     // Note: we don't want to use MergeMemStream here because we only want to
3328     // scan inputs which exist at the start, not ones we add during processing.
3329     // Note 2: MergeMem may already contains instance memory slices added
3330     // during find_inst_mem() call when memory nodes were processed above.
3331     igvn->hash_delete(nmm);
3332     uint nslices = MIN2(nmm->req(), new_index_start);
3333     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3334       Node* mem = nmm->in(i);
3335       Node* cur = NULL;
3336       if (mem == NULL || mem->is_top())
3337         continue;
3338       // First, update mergemem by moving memory nodes to corresponding slices
3339       // if their type became more precise since this mergemem was created.
3340       while (mem->is_Mem()) {
3341         const Type *at = igvn->type(mem->in(MemNode::Address));
3342         if (at != Type::TOP) {
3343           assert (at->isa_ptr() != NULL, "pointer type required.");
3344           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3345           if (idx == i) {
3346             if (cur == NULL)
3347               cur = mem;
3348           } else {
3349             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3350               nmm->set_memory_at(idx, mem);
3351             }
3352           }
3353         }
3354         mem = mem->in(MemNode::Memory);
3355       }
3356       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3357       // Find any instance of the current type if we haven't encountered
3358       // already a memory slice of the instance along the memory chain.
3359       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3360         if((uint)_compile->get_general_index(ni) == i) {
3361           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3362           if (nmm->is_empty_memory(m)) {
3363             Node* result = find_inst_mem(mem, ni, orig_phis);
3364             if (_compile->failing()) {
3365               return;
3366             }
3367             nmm->set_memory_at(ni, result);
3368           }
3369         }
3370       }
3371     }
3372     // Find the rest of instances values
3373     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3374       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3375       Node* result = step_through_mergemem(nmm, ni, tinst);
3376       if (result == nmm->base_memory()) {
3377         // Didn't find instance memory, search through general slice recursively.
3378         result = nmm->memory_at(_compile->get_general_index(ni));
3379         result = find_inst_mem(result, ni, orig_phis);
3380         if (_compile->failing()) {
3381           return;
3382         }
3383         nmm->set_memory_at(ni, result);
3384       }
3385     }
3386     igvn->hash_insert(nmm);
3387     record_for_optimizer(nmm);
3388   }
3389 
3390   //  Phase 4:  Update the inputs of non-instance memory Phis and
3391   //            the Memory input of memnodes
3392   // First update the inputs of any non-instance Phi's from
3393   // which we split out an instance Phi.  Note we don't have
3394   // to recursively process Phi's encounted on the input memory
3395   // chains as is done in split_memory_phi() since they  will
3396   // also be processed here.
3397   for (int j = 0; j < orig_phis.length(); j++) {
3398     PhiNode *phi = orig_phis.at(j);
3399     int alias_idx = _compile->get_alias_index(phi->adr_type());
3400     igvn->hash_delete(phi);
3401     for (uint i = 1; i < phi->req(); i++) {
3402       Node *mem = phi->in(i);
3403       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3404       if (_compile->failing()) {
3405         return;
3406       }
3407       if (mem != new_mem) {
3408         phi->set_req(i, new_mem);
3409       }
3410     }
3411     igvn->hash_insert(phi);
3412     record_for_optimizer(phi);
3413   }
3414 
3415   // Update the memory inputs of MemNodes with the value we computed
3416   // in Phase 2 and move stores memory users to corresponding memory slices.
3417   // Disable memory split verification code until the fix for 6984348.
3418   // Currently it produces false negative results since it does not cover all cases.
3419 #if 0 // ifdef ASSERT
3420   visited.Reset();
3421   Node_Stack old_mems(arena, _compile->unique() >> 2);
3422 #endif
3423   for (uint i = 0; i < ideal_nodes.size(); i++) {
3424     Node*    n = ideal_nodes.at(i);
3425     Node* nmem = get_map(n->_idx);
3426     assert(nmem != NULL, "sanity");
3427     if (n->is_Mem()) {
3428 #if 0 // ifdef ASSERT
3429       Node* old_mem = n->in(MemNode::Memory);
3430       if (!visited.test_set(old_mem->_idx)) {
3431         old_mems.push(old_mem, old_mem->outcnt());
3432       }
3433 #endif
3434       assert(n->in(MemNode::Memory) != nmem, "sanity");
3435       if (!n->is_Load()) {
3436         // Move memory users of a store first.
3437         move_inst_mem(n, orig_phis);
3438       }
3439       // Now update memory input
3440       igvn->hash_delete(n);
3441       n->set_req(MemNode::Memory, nmem);
3442       igvn->hash_insert(n);
3443       record_for_optimizer(n);
3444     } else {
3445       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3446              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3447     }
3448   }
3449 #if 0 // ifdef ASSERT
3450   // Verify that memory was split correctly
3451   while (old_mems.is_nonempty()) {
3452     Node* old_mem = old_mems.node();
3453     uint  old_cnt = old_mems.index();
3454     old_mems.pop();
3455     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3456   }
3457 #endif
3458 }
3459 
3460 #ifndef PRODUCT
3461 static const char *node_type_names[] = {
3462   "UnknownType",
3463   "JavaObject",
3464   "LocalVar",
3465   "Field",
3466   "Arraycopy"
3467 };
3468 
3469 static const char *esc_names[] = {
3470   "UnknownEscape",
3471   "NoEscape",
3472   "ArgEscape",
3473   "GlobalEscape"
3474 };
3475 
dump(bool print_state) const3476 void PointsToNode::dump(bool print_state) const {
3477   NodeType nt = node_type();
3478   tty->print("%s ", node_type_names[(int) nt]);
3479   if (print_state) {
3480     EscapeState es = escape_state();
3481     EscapeState fields_es = fields_escape_state();
3482     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3483     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3484       tty->print("NSR ");
3485   }
3486   if (is_Field()) {
3487     FieldNode* f = (FieldNode*)this;
3488     if (f->is_oop())
3489       tty->print("oop ");
3490     if (f->offset() > 0)
3491       tty->print("+%d ", f->offset());
3492     tty->print("(");
3493     for (BaseIterator i(f); i.has_next(); i.next()) {
3494       PointsToNode* b = i.get();
3495       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3496     }
3497     tty->print(" )");
3498   }
3499   tty->print("[");
3500   for (EdgeIterator i(this); i.has_next(); i.next()) {
3501     PointsToNode* e = i.get();
3502     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3503   }
3504   tty->print(" [");
3505   for (UseIterator i(this); i.has_next(); i.next()) {
3506     PointsToNode* u = i.get();
3507     bool is_base = false;
3508     if (PointsToNode::is_base_use(u)) {
3509       is_base = true;
3510       u = PointsToNode::get_use_node(u)->as_Field();
3511     }
3512     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3513   }
3514   tty->print(" ]]  ");
3515   if (_node == NULL)
3516     tty->print_cr("<null>");
3517   else
3518     _node->dump();
3519 }
3520 
dump(GrowableArray<PointsToNode * > & ptnodes_worklist)3521 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3522   bool first = true;
3523   int ptnodes_length = ptnodes_worklist.length();
3524   for (int i = 0; i < ptnodes_length; i++) {
3525     PointsToNode *ptn = ptnodes_worklist.at(i);
3526     if (ptn == NULL || !ptn->is_JavaObject())
3527       continue;
3528     PointsToNode::EscapeState es = ptn->escape_state();
3529     if ((es != PointsToNode::NoEscape) && !Verbose) {
3530       continue;
3531     }
3532     Node* n = ptn->ideal_node();
3533     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3534                              n->as_CallStaticJava()->is_boxing_method())) {
3535       if (first) {
3536         tty->cr();
3537         tty->print("======== Connection graph for ");
3538         _compile->method()->print_short_name();
3539         tty->cr();
3540         first = false;
3541       }
3542       ptn->dump();
3543       // Print all locals and fields which reference this allocation
3544       for (UseIterator j(ptn); j.has_next(); j.next()) {
3545         PointsToNode* use = j.get();
3546         if (use->is_LocalVar()) {
3547           use->dump(Verbose);
3548         } else if (Verbose) {
3549           use->dump();
3550         }
3551       }
3552       tty->cr();
3553     }
3554   }
3555 }
3556 #endif
3557 
record_for_optimizer(Node * n)3558 void ConnectionGraph::record_for_optimizer(Node *n) {
3559   _igvn->_worklist.push(n);
3560   _igvn->add_users_to_worklist(n);
3561 }
3562