1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/c2/barrierSetC2.hpp"
30 #include "memory/allocation.inline.hpp"
31 #include "memory/resourceArea.hpp"
32 #include "oops/objArrayKlass.hpp"
33 #include "opto/addnode.hpp"
34 #include "opto/arraycopynode.hpp"
35 #include "opto/cfgnode.hpp"
36 #include "opto/compile.hpp"
37 #include "opto/connode.hpp"
38 #include "opto/convertnode.hpp"
39 #include "opto/loopnode.hpp"
40 #include "opto/machnode.hpp"
41 #include "opto/matcher.hpp"
42 #include "opto/memnode.hpp"
43 #include "opto/mulnode.hpp"
44 #include "opto/narrowptrnode.hpp"
45 #include "opto/phaseX.hpp"
46 #include "opto/regmask.hpp"
47 #include "utilities/align.hpp"
48 #include "utilities/copy.hpp"
49 #include "utilities/macros.hpp"
50 #include "utilities/vmError.hpp"
51 #if INCLUDE_ZGC
52 #include "gc/z/c2/zBarrierSetC2.hpp"
53 #endif
54 
55 // Portions of code courtesy of Clifford Click
56 
57 // Optimization - Graph Style
58 
59 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
60 
61 //=============================================================================
size_of() const62 uint MemNode::size_of() const { return sizeof(*this); }
63 
adr_type() const64 const TypePtr *MemNode::adr_type() const {
65   Node* adr = in(Address);
66   if (adr == NULL)  return NULL; // node is dead
67   const TypePtr* cross_check = NULL;
68   DEBUG_ONLY(cross_check = _adr_type);
69   return calculate_adr_type(adr->bottom_type(), cross_check);
70 }
71 
check_if_adr_maybe_raw(Node * adr)72 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
73   if (adr != NULL) {
74     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
75       return true;
76     }
77   }
78   return false;
79 }
80 
81 #ifndef PRODUCT
dump_spec(outputStream * st) const82 void MemNode::dump_spec(outputStream *st) const {
83   if (in(Address) == NULL)  return; // node is dead
84 #ifndef ASSERT
85   // fake the missing field
86   const TypePtr* _adr_type = NULL;
87   if (in(Address) != NULL)
88     _adr_type = in(Address)->bottom_type()->isa_ptr();
89 #endif
90   dump_adr_type(this, _adr_type, st);
91 
92   Compile* C = Compile::current();
93   if (C->alias_type(_adr_type)->is_volatile()) {
94     st->print(" Volatile!");
95   }
96   if (_unaligned_access) {
97     st->print(" unaligned");
98   }
99   if (_mismatched_access) {
100     st->print(" mismatched");
101   }
102 }
103 
dump_adr_type(const Node * mem,const TypePtr * adr_type,outputStream * st)104 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
105   st->print(" @");
106   if (adr_type == NULL) {
107     st->print("NULL");
108   } else {
109     adr_type->dump_on(st);
110     Compile* C = Compile::current();
111     Compile::AliasType* atp = NULL;
112     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
113     if (atp == NULL)
114       st->print(", idx=?\?;");
115     else if (atp->index() == Compile::AliasIdxBot)
116       st->print(", idx=Bot;");
117     else if (atp->index() == Compile::AliasIdxTop)
118       st->print(", idx=Top;");
119     else if (atp->index() == Compile::AliasIdxRaw)
120       st->print(", idx=Raw;");
121     else {
122       ciField* field = atp->field();
123       if (field) {
124         st->print(", name=");
125         field->print_name_on(st);
126       }
127       st->print(", idx=%d;", atp->index());
128     }
129   }
130 }
131 
132 extern void print_alias_types();
133 
134 #endif
135 
optimize_simple_memory_chain(Node * mchain,const TypeOopPtr * t_oop,Node * load,PhaseGVN * phase)136 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
137   assert((t_oop != NULL), "sanity");
138   bool is_instance = t_oop->is_known_instance_field();
139   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
140                              (load != NULL) && load->is_Load() &&
141                              (phase->is_IterGVN() != NULL);
142   if (!(is_instance || is_boxed_value_load))
143     return mchain;  // don't try to optimize non-instance types
144   uint instance_id = t_oop->instance_id();
145   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
146   Node *prev = NULL;
147   Node *result = mchain;
148   while (prev != result) {
149     prev = result;
150     if (result == start_mem)
151       break;  // hit one of our sentinels
152     // skip over a call which does not affect this memory slice
153     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
154       Node *proj_in = result->in(0);
155       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
156         break;  // hit one of our sentinels
157       } else if (proj_in->is_Call()) {
158         // ArrayCopyNodes processed here as well
159         CallNode *call = proj_in->as_Call();
160         if (!call->may_modify(t_oop, phase)) { // returns false for instances
161           result = call->in(TypeFunc::Memory);
162         }
163       } else if (proj_in->is_Initialize()) {
164         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
165         // Stop if this is the initialization for the object instance which
166         // contains this memory slice, otherwise skip over it.
167         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
168           break;
169         }
170         if (is_instance) {
171           result = proj_in->in(TypeFunc::Memory);
172         } else if (is_boxed_value_load) {
173           Node* klass = alloc->in(AllocateNode::KlassNode);
174           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
175           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
176             result = proj_in->in(TypeFunc::Memory); // not related allocation
177           }
178         }
179       } else if (proj_in->is_MemBar()) {
180         ArrayCopyNode* ac = NULL;
181         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
182           break;
183         }
184         result = proj_in->in(TypeFunc::Memory);
185       } else {
186         assert(false, "unexpected projection");
187       }
188     } else if (result->is_ClearArray()) {
189       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
190         // Can not bypass initialization of the instance
191         // we are looking for.
192         break;
193       }
194       // Otherwise skip it (the call updated 'result' value).
195     } else if (result->is_MergeMem()) {
196       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
197     }
198   }
199   return result;
200 }
201 
optimize_memory_chain(Node * mchain,const TypePtr * t_adr,Node * load,PhaseGVN * phase)202 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
203   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
204   if (t_oop == NULL)
205     return mchain;  // don't try to optimize non-oop types
206   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
207   bool is_instance = t_oop->is_known_instance_field();
208   PhaseIterGVN *igvn = phase->is_IterGVN();
209   if (is_instance && igvn != NULL  && result->is_Phi()) {
210     PhiNode *mphi = result->as_Phi();
211     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
212     const TypePtr *t = mphi->adr_type();
213     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
214         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
215          t->is_oopptr()->cast_to_exactness(true)
216            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
217             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
218       // clone the Phi with our address type
219       result = mphi->split_out_instance(t_adr, igvn);
220     } else {
221       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
222     }
223   }
224   return result;
225 }
226 
step_through_mergemem(PhaseGVN * phase,MergeMemNode * mmem,const TypePtr * tp,const TypePtr * adr_check,outputStream * st)227 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
228   uint alias_idx = phase->C->get_alias_index(tp);
229   Node *mem = mmem;
230 #ifdef ASSERT
231   {
232     // Check that current type is consistent with the alias index used during graph construction
233     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
234     bool consistent =  adr_check == NULL || adr_check->empty() ||
235                        phase->C->must_alias(adr_check, alias_idx );
236     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
237     if( !consistent && adr_check != NULL && !adr_check->empty() &&
238                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
239         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
240         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
241           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
242           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
243       // don't assert if it is dead code.
244       consistent = true;
245     }
246     if( !consistent ) {
247       st->print("alias_idx==%d, adr_check==", alias_idx);
248       if( adr_check == NULL ) {
249         st->print("NULL");
250       } else {
251         adr_check->dump();
252       }
253       st->cr();
254       print_alias_types();
255       assert(consistent, "adr_check must match alias idx");
256     }
257   }
258 #endif
259   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
260   // means an array I have not precisely typed yet.  Do not do any
261   // alias stuff with it any time soon.
262   const TypeOopPtr *toop = tp->isa_oopptr();
263   if( tp->base() != Type::AnyPtr &&
264       !(toop &&
265         toop->klass() != NULL &&
266         toop->klass()->is_java_lang_Object() &&
267         toop->offset() == Type::OffsetBot) ) {
268     // compress paths and change unreachable cycles to TOP
269     // If not, we can update the input infinitely along a MergeMem cycle
270     // Equivalent code in PhiNode::Ideal
271     Node* m  = phase->transform(mmem);
272     // If transformed to a MergeMem, get the desired slice
273     // Otherwise the returned node represents memory for every slice
274     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
275     // Update input if it is progress over what we have now
276   }
277   return mem;
278 }
279 
280 //--------------------------Ideal_common---------------------------------------
281 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
282 // Unhook non-raw memories from complete (macro-expanded) initializations.
Ideal_common(PhaseGVN * phase,bool can_reshape)283 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
284   // If our control input is a dead region, kill all below the region
285   Node *ctl = in(MemNode::Control);
286   if (ctl && remove_dead_region(phase, can_reshape))
287     return this;
288   ctl = in(MemNode::Control);
289   // Don't bother trying to transform a dead node
290   if (ctl && ctl->is_top())  return NodeSentinel;
291 
292   PhaseIterGVN *igvn = phase->is_IterGVN();
293   // Wait if control on the worklist.
294   if (ctl && can_reshape && igvn != NULL) {
295     Node* bol = NULL;
296     Node* cmp = NULL;
297     if (ctl->in(0)->is_If()) {
298       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
299       bol = ctl->in(0)->in(1);
300       if (bol->is_Bool())
301         cmp = ctl->in(0)->in(1)->in(1);
302     }
303     if (igvn->_worklist.member(ctl) ||
304         (bol != NULL && igvn->_worklist.member(bol)) ||
305         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
306       // This control path may be dead.
307       // Delay this memory node transformation until the control is processed.
308       phase->is_IterGVN()->_worklist.push(this);
309       return NodeSentinel; // caller will return NULL
310     }
311   }
312   // Ignore if memory is dead, or self-loop
313   Node *mem = in(MemNode::Memory);
314   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
315   assert(mem != this, "dead loop in MemNode::Ideal");
316 
317   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
318     // This memory slice may be dead.
319     // Delay this mem node transformation until the memory is processed.
320     phase->is_IterGVN()->_worklist.push(this);
321     return NodeSentinel; // caller will return NULL
322   }
323 
324   Node *address = in(MemNode::Address);
325   const Type *t_adr = phase->type(address);
326   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
327 
328   if (can_reshape && igvn != NULL &&
329       (igvn->_worklist.member(address) ||
330        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
331     // The address's base and type may change when the address is processed.
332     // Delay this mem node transformation until the address is processed.
333     phase->is_IterGVN()->_worklist.push(this);
334     return NodeSentinel; // caller will return NULL
335   }
336 
337   // Do NOT remove or optimize the next lines: ensure a new alias index
338   // is allocated for an oop pointer type before Escape Analysis.
339   // Note: C++ will not remove it since the call has side effect.
340   if (t_adr->isa_oopptr()) {
341     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
342   }
343 
344   Node* base = NULL;
345   if (address->is_AddP()) {
346     base = address->in(AddPNode::Base);
347   }
348   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
349       !t_adr->isa_rawptr()) {
350     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
351     // Skip this node optimization if its address has TOP base.
352     return NodeSentinel; // caller will return NULL
353   }
354 
355   // Avoid independent memory operations
356   Node* old_mem = mem;
357 
358   // The code which unhooks non-raw memories from complete (macro-expanded)
359   // initializations was removed. After macro-expansion all stores catched
360   // by Initialize node became raw stores and there is no information
361   // which memory slices they modify. So it is unsafe to move any memory
362   // operation above these stores. Also in most cases hooked non-raw memories
363   // were already unhooked by using information from detect_ptr_independence()
364   // and find_previous_store().
365 
366   if (mem->is_MergeMem()) {
367     MergeMemNode* mmem = mem->as_MergeMem();
368     const TypePtr *tp = t_adr->is_ptr();
369 
370     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
371   }
372 
373   if (mem != old_mem) {
374     set_req(MemNode::Memory, mem);
375     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
376       igvn->_worklist.push(old_mem);
377     }
378     if (phase->type(mem) == Type::TOP) return NodeSentinel;
379     return this;
380   }
381 
382   // let the subclass continue analyzing...
383   return NULL;
384 }
385 
386 // Helper function for proving some simple control dominations.
387 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
388 // Already assumes that 'dom' is available at 'sub', and that 'sub'
389 // is not a constant (dominated by the method's StartNode).
390 // Used by MemNode::find_previous_store to prove that the
391 // control input of a memory operation predates (dominates)
392 // an allocation it wants to look past.
all_controls_dominate(Node * dom,Node * sub)393 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
394   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
395     return false; // Conservative answer for dead code
396 
397   // Check 'dom'. Skip Proj and CatchProj nodes.
398   dom = dom->find_exact_control(dom);
399   if (dom == NULL || dom->is_top())
400     return false; // Conservative answer for dead code
401 
402   if (dom == sub) {
403     // For the case when, for example, 'sub' is Initialize and the original
404     // 'dom' is Proj node of the 'sub'.
405     return false;
406   }
407 
408   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
409     return true;
410 
411   // 'dom' dominates 'sub' if its control edge and control edges
412   // of all its inputs dominate or equal to sub's control edge.
413 
414   // Currently 'sub' is either Allocate, Initialize or Start nodes.
415   // Or Region for the check in LoadNode::Ideal();
416   // 'sub' should have sub->in(0) != NULL.
417   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
418          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
419 
420   // Get control edge of 'sub'.
421   Node* orig_sub = sub;
422   sub = sub->find_exact_control(sub->in(0));
423   if (sub == NULL || sub->is_top())
424     return false; // Conservative answer for dead code
425 
426   assert(sub->is_CFG(), "expecting control");
427 
428   if (sub == dom)
429     return true;
430 
431   if (sub->is_Start() || sub->is_Root())
432     return false;
433 
434   {
435     // Check all control edges of 'dom'.
436 
437     ResourceMark rm;
438     Arena* arena = Thread::current()->resource_area();
439     Node_List nlist(arena);
440     Unique_Node_List dom_list(arena);
441 
442     dom_list.push(dom);
443     bool only_dominating_controls = false;
444 
445     for (uint next = 0; next < dom_list.size(); next++) {
446       Node* n = dom_list.at(next);
447       if (n == orig_sub)
448         return false; // One of dom's inputs dominated by sub.
449       if (!n->is_CFG() && n->pinned()) {
450         // Check only own control edge for pinned non-control nodes.
451         n = n->find_exact_control(n->in(0));
452         if (n == NULL || n->is_top())
453           return false; // Conservative answer for dead code
454         assert(n->is_CFG(), "expecting control");
455         dom_list.push(n);
456       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
457         only_dominating_controls = true;
458       } else if (n->is_CFG()) {
459         if (n->dominates(sub, nlist))
460           only_dominating_controls = true;
461         else
462           return false;
463       } else {
464         // First, own control edge.
465         Node* m = n->find_exact_control(n->in(0));
466         if (m != NULL) {
467           if (m->is_top())
468             return false; // Conservative answer for dead code
469           dom_list.push(m);
470         }
471         // Now, the rest of edges.
472         uint cnt = n->req();
473         for (uint i = 1; i < cnt; i++) {
474           m = n->find_exact_control(n->in(i));
475           if (m == NULL || m->is_top())
476             continue;
477           dom_list.push(m);
478         }
479       }
480     }
481     return only_dominating_controls;
482   }
483 }
484 
485 //---------------------detect_ptr_independence---------------------------------
486 // Used by MemNode::find_previous_store to prove that two base
487 // pointers are never equal.
488 // The pointers are accompanied by their associated allocations,
489 // if any, which have been previously discovered by the caller.
detect_ptr_independence(Node * p1,AllocateNode * a1,Node * p2,AllocateNode * a2,PhaseTransform * phase)490 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
491                                       Node* p2, AllocateNode* a2,
492                                       PhaseTransform* phase) {
493   // Attempt to prove that these two pointers cannot be aliased.
494   // They may both manifestly be allocations, and they should differ.
495   // Or, if they are not both allocations, they can be distinct constants.
496   // Otherwise, one is an allocation and the other a pre-existing value.
497   if (a1 == NULL && a2 == NULL) {           // neither an allocation
498     return (p1 != p2) && p1->is_Con() && p2->is_Con();
499   } else if (a1 != NULL && a2 != NULL) {    // both allocations
500     return (a1 != a2);
501   } else if (a1 != NULL) {                  // one allocation a1
502     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
503     return all_controls_dominate(p2, a1);
504   } else { //(a2 != NULL)                   // one allocation a2
505     return all_controls_dominate(p1, a2);
506   }
507   return false;
508 }
509 
510 
511 // Find an arraycopy that must have set (can_see_stored_value=true) or
512 // could have set (can_see_stored_value=false) the value for this load
find_previous_arraycopy(PhaseTransform * phase,Node * ld_alloc,Node * & mem,bool can_see_stored_value) const513 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
514   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
515                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
516     Node* mb = mem->in(0);
517     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
518         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
519       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
520       if (ac->is_clonebasic()) {
521         intptr_t offset;
522         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
523         if (alloc != NULL && alloc == ld_alloc) {
524           return ac;
525         }
526       }
527     }
528   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
529     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
530 
531     if (ac->is_arraycopy_validated() ||
532         ac->is_copyof_validated() ||
533         ac->is_copyofrange_validated()) {
534       Node* ld_addp = in(MemNode::Address);
535       if (ld_addp->is_AddP()) {
536         Node* ld_base = ld_addp->in(AddPNode::Address);
537         Node* ld_offs = ld_addp->in(AddPNode::Offset);
538 
539         Node* dest = ac->in(ArrayCopyNode::Dest);
540 
541         if (dest == ld_base) {
542           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
543           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
544             return ac;
545           }
546           if (!can_see_stored_value) {
547             mem = ac->in(TypeFunc::Memory);
548           }
549         }
550       }
551     }
552   }
553   return NULL;
554 }
555 
556 // The logic for reordering loads and stores uses four steps:
557 // (a) Walk carefully past stores and initializations which we
558 //     can prove are independent of this load.
559 // (b) Observe that the next memory state makes an exact match
560 //     with self (load or store), and locate the relevant store.
561 // (c) Ensure that, if we were to wire self directly to the store,
562 //     the optimizer would fold it up somehow.
563 // (d) Do the rewiring, and return, depending on some other part of
564 //     the optimizer to fold up the load.
565 // This routine handles steps (a) and (b).  Steps (c) and (d) are
566 // specific to loads and stores, so they are handled by the callers.
567 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
568 //
find_previous_store(PhaseTransform * phase)569 Node* MemNode::find_previous_store(PhaseTransform* phase) {
570   Node*         ctrl   = in(MemNode::Control);
571   Node*         adr    = in(MemNode::Address);
572   intptr_t      offset = 0;
573   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
574   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
575 
576   if (offset == Type::OffsetBot)
577     return NULL;            // cannot unalias unless there are precise offsets
578 
579   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
580   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
581 
582   intptr_t size_in_bytes = memory_size();
583 
584   Node* mem = in(MemNode::Memory);   // start searching here...
585 
586   int cnt = 50;             // Cycle limiter
587   for (;;) {                // While we can dance past unrelated stores...
588     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
589 
590     Node* prev = mem;
591     if (mem->is_Store()) {
592       Node* st_adr = mem->in(MemNode::Address);
593       intptr_t st_offset = 0;
594       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
595       if (st_base == NULL)
596         break;              // inscrutable pointer
597 
598       // For raw accesses it's not enough to prove that constant offsets don't intersect.
599       // We need the bases to be the equal in order for the offset check to make sense.
600       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
601         break;
602       }
603 
604       if (st_offset != offset && st_offset != Type::OffsetBot) {
605         const int MAX_STORE = BytesPerLong;
606         if (st_offset >= offset + size_in_bytes ||
607             st_offset <= offset - MAX_STORE ||
608             st_offset <= offset - mem->as_Store()->memory_size()) {
609           // Success:  The offsets are provably independent.
610           // (You may ask, why not just test st_offset != offset and be done?
611           // The answer is that stores of different sizes can co-exist
612           // in the same sequence of RawMem effects.  We sometimes initialize
613           // a whole 'tile' of array elements with a single jint or jlong.)
614           mem = mem->in(MemNode::Memory);
615           continue;           // (a) advance through independent store memory
616         }
617       }
618       if (st_base != base &&
619           detect_ptr_independence(base, alloc,
620                                   st_base,
621                                   AllocateNode::Ideal_allocation(st_base, phase),
622                                   phase)) {
623         // Success:  The bases are provably independent.
624         mem = mem->in(MemNode::Memory);
625         continue;           // (a) advance through independent store memory
626       }
627 
628       // (b) At this point, if the bases or offsets do not agree, we lose,
629       // since we have not managed to prove 'this' and 'mem' independent.
630       if (st_base == base && st_offset == offset) {
631         return mem;         // let caller handle steps (c), (d)
632       }
633 
634     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
635       InitializeNode* st_init = mem->in(0)->as_Initialize();
636       AllocateNode*  st_alloc = st_init->allocation();
637       if (st_alloc == NULL)
638         break;              // something degenerated
639       bool known_identical = false;
640       bool known_independent = false;
641       if (alloc == st_alloc)
642         known_identical = true;
643       else if (alloc != NULL)
644         known_independent = true;
645       else if (all_controls_dominate(this, st_alloc))
646         known_independent = true;
647 
648       if (known_independent) {
649         // The bases are provably independent: Either they are
650         // manifestly distinct allocations, or else the control
651         // of this load dominates the store's allocation.
652         int alias_idx = phase->C->get_alias_index(adr_type());
653         if (alias_idx == Compile::AliasIdxRaw) {
654           mem = st_alloc->in(TypeFunc::Memory);
655         } else {
656           mem = st_init->memory(alias_idx);
657         }
658         continue;           // (a) advance through independent store memory
659       }
660 
661       // (b) at this point, if we are not looking at a store initializing
662       // the same allocation we are loading from, we lose.
663       if (known_identical) {
664         // From caller, can_see_stored_value will consult find_captured_store.
665         return mem;         // let caller handle steps (c), (d)
666       }
667 
668     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
669       if (prev != mem) {
670         // Found an arraycopy but it doesn't affect that load
671         continue;
672       }
673       // Found an arraycopy that may affect that load
674       return mem;
675     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
676       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
677       if (mem->is_Proj() && mem->in(0)->is_Call()) {
678         // ArrayCopyNodes processed here as well.
679         CallNode *call = mem->in(0)->as_Call();
680         if (!call->may_modify(addr_t, phase)) {
681           mem = call->in(TypeFunc::Memory);
682           continue;         // (a) advance through independent call memory
683         }
684       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
685         ArrayCopyNode* ac = NULL;
686         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
687           break;
688         }
689         mem = mem->in(0)->in(TypeFunc::Memory);
690         continue;           // (a) advance through independent MemBar memory
691       } else if (mem->is_ClearArray()) {
692         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
693           // (the call updated 'mem' value)
694           continue;         // (a) advance through independent allocation memory
695         } else {
696           // Can not bypass initialization of the instance
697           // we are looking for.
698           return mem;
699         }
700       } else if (mem->is_MergeMem()) {
701         int alias_idx = phase->C->get_alias_index(adr_type());
702         mem = mem->as_MergeMem()->memory_at(alias_idx);
703         continue;           // (a) advance through independent MergeMem memory
704       }
705     }
706 
707     // Unless there is an explicit 'continue', we must bail out here,
708     // because 'mem' is an inscrutable memory state (e.g., a call).
709     break;
710   }
711 
712   return NULL;              // bail out
713 }
714 
715 //----------------------calculate_adr_type-------------------------------------
716 // Helper function.  Notices when the given type of address hits top or bottom.
717 // Also, asserts a cross-check of the type against the expected address type.
calculate_adr_type(const Type * t,const TypePtr * cross_check)718 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
719   if (t == Type::TOP)  return NULL; // does not touch memory any more?
720   #ifdef PRODUCT
721   cross_check = NULL;
722   #else
723   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
724   #endif
725   const TypePtr* tp = t->isa_ptr();
726   if (tp == NULL) {
727     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
728     return TypePtr::BOTTOM;           // touches lots of memory
729   } else {
730     #ifdef ASSERT
731     // %%%% [phh] We don't check the alias index if cross_check is
732     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
733     if (cross_check != NULL &&
734         cross_check != TypePtr::BOTTOM &&
735         cross_check != TypeRawPtr::BOTTOM) {
736       // Recheck the alias index, to see if it has changed (due to a bug).
737       Compile* C = Compile::current();
738       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
739              "must stay in the original alias category");
740       // The type of the address must be contained in the adr_type,
741       // disregarding "null"-ness.
742       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
743       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
744       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
745              "real address must not escape from expected memory type");
746     }
747     #endif
748     return tp;
749   }
750 }
751 
752 //=============================================================================
753 // Should LoadNode::Ideal() attempt to remove control edges?
can_remove_control() const754 bool LoadNode::can_remove_control() const {
755   return true;
756 }
size_of() const757 uint LoadNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const758 uint LoadNode::cmp( const Node &n ) const
759 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
bottom_type() const760 const Type *LoadNode::bottom_type() const { return _type; }
ideal_reg() const761 uint LoadNode::ideal_reg() const {
762   return _type->ideal_reg();
763 }
764 
765 #ifndef PRODUCT
dump_spec(outputStream * st) const766 void LoadNode::dump_spec(outputStream *st) const {
767   MemNode::dump_spec(st);
768   if( !Verbose && !WizardMode ) {
769     // standard dump does this in Verbose and WizardMode
770     st->print(" #"); _type->dump_on(st);
771   }
772   if (!depends_only_on_test()) {
773     st->print(" (does not depend only on test)");
774   }
775 }
776 #endif
777 
778 #ifdef ASSERT
779 //----------------------------is_immutable_value-------------------------------
780 // Helper function to allow a raw load without control edge for some cases
is_immutable_value(Node * adr)781 bool LoadNode::is_immutable_value(Node* adr) {
782   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
783           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
784           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
785            in_bytes(JavaThread::osthread_offset())));
786 }
787 #endif
788 
789 //----------------------------LoadNode::make-----------------------------------
790 // Polymorphic factory method:
make(PhaseGVN & gvn,Node * ctl,Node * mem,Node * adr,const TypePtr * adr_type,const Type * rt,BasicType bt,MemOrd mo,ControlDependency control_dependency,bool unaligned,bool mismatched)791 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
792                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
793   Compile* C = gvn.C;
794 
795   // sanity check the alias category against the created node type
796   assert(!(adr_type->isa_oopptr() &&
797            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
798          "use LoadKlassNode instead");
799   assert(!(adr_type->isa_aryptr() &&
800            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
801          "use LoadRangeNode instead");
802   // Check control edge of raw loads
803   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
804           // oop will be recorded in oop map if load crosses safepoint
805           rt->isa_oopptr() || is_immutable_value(adr),
806           "raw memory operations should have control edge");
807   LoadNode* load = NULL;
808   switch (bt) {
809   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
810   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
811   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
812   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
813   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
814   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
815   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
816   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
817   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
818   case T_OBJECT:
819 #ifdef _LP64
820     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
821       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
822     } else
823 #endif
824     {
825       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
826       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
827     }
828     break;
829   default:
830     ShouldNotReachHere();
831     break;
832   }
833   assert(load != NULL, "LoadNode should have been created");
834   if (unaligned) {
835     load->set_unaligned_access();
836   }
837   if (mismatched) {
838     load->set_mismatched_access();
839   }
840   if (load->Opcode() == Op_LoadN) {
841     Node* ld = gvn.transform(load);
842     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
843   }
844 
845   return load;
846 }
847 
make_atomic(Node * ctl,Node * mem,Node * adr,const TypePtr * adr_type,const Type * rt,MemOrd mo,ControlDependency control_dependency,bool unaligned,bool mismatched)848 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
849                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
850   bool require_atomic = true;
851   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
852   if (unaligned) {
853     load->set_unaligned_access();
854   }
855   if (mismatched) {
856     load->set_mismatched_access();
857   }
858   return load;
859 }
860 
make_atomic(Node * ctl,Node * mem,Node * adr,const TypePtr * adr_type,const Type * rt,MemOrd mo,ControlDependency control_dependency,bool unaligned,bool mismatched)861 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
862                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
863   bool require_atomic = true;
864   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
865   if (unaligned) {
866     load->set_unaligned_access();
867   }
868   if (mismatched) {
869     load->set_mismatched_access();
870   }
871   return load;
872 }
873 
874 
875 
876 //------------------------------hash-------------------------------------------
hash() const877 uint LoadNode::hash() const {
878   // unroll addition of interesting fields
879   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
880 }
881 
skip_through_membars(Compile::AliasType * atp,const TypeInstPtr * tp,bool eliminate_boxing)882 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
883   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
884     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
885     bool is_stable_ary = FoldStableValues &&
886                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
887                          tp->isa_aryptr()->is_stable();
888 
889     return (eliminate_boxing && non_volatile) || is_stable_ary;
890   }
891 
892   return false;
893 }
894 
895 // Is the value loaded previously stored by an arraycopy? If so return
896 // a load node that reads from the source array so we may be able to
897 // optimize out the ArrayCopy node later.
can_see_arraycopy_value(Node * st,PhaseGVN * phase) const898 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
899 #if INCLUDE_ZGC
900   if (UseZGC) {
901     if (bottom_type()->make_oopptr() != NULL) {
902       return NULL;
903     }
904   }
905 #endif
906 
907   Node* ld_adr = in(MemNode::Address);
908   intptr_t ld_off = 0;
909   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
910   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
911   if (ac != NULL) {
912     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
913 
914     Node* mem = ac->in(TypeFunc::Memory);
915     Node* ctl = ac->in(0);
916     Node* src = ac->in(ArrayCopyNode::Src);
917 
918     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
919       return NULL;
920     }
921 
922     LoadNode* ld = clone()->as_Load();
923     Node* addp = in(MemNode::Address)->clone();
924     if (ac->as_ArrayCopy()->is_clonebasic()) {
925       assert(ld_alloc != NULL, "need an alloc");
926       assert(addp->is_AddP(), "address must be addp");
927       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
928       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
929       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
930       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
931       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
932       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
933     } else {
934       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
935              ac->as_ArrayCopy()->is_copyof_validated() ||
936              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
937       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
938       addp->set_req(AddPNode::Base, src);
939       addp->set_req(AddPNode::Address, src);
940 
941       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
942       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
943       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
944       uint shift  = exact_log2(type2aelembytes(ary_elem));
945 
946       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
947 #ifdef _LP64
948       diff = phase->transform(new ConvI2LNode(diff));
949 #endif
950       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
951 
952       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
953       addp->set_req(AddPNode::Offset, offset);
954     }
955     addp = phase->transform(addp);
956 #ifdef ASSERT
957     const TypePtr* adr_type = phase->type(addp)->is_ptr();
958     ld->_adr_type = adr_type;
959 #endif
960     ld->set_req(MemNode::Address, addp);
961     ld->set_req(0, ctl);
962     ld->set_req(MemNode::Memory, mem);
963     // load depends on the tests that validate the arraycopy
964     ld->_control_dependency = Pinned;
965     return ld;
966   }
967   return NULL;
968 }
969 
970 
971 //---------------------------can_see_stored_value------------------------------
972 // This routine exists to make sure this set of tests is done the same
973 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
974 // will change the graph shape in a way which makes memory alive twice at the
975 // same time (uses the Oracle model of aliasing), then some
976 // LoadXNode::Identity will fold things back to the equivalence-class model
977 // of aliasing.
can_see_stored_value(Node * st,PhaseTransform * phase) const978 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
979   Node* ld_adr = in(MemNode::Address);
980   intptr_t ld_off = 0;
981   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
982   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
983   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
984   // This is more general than load from boxing objects.
985   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
986     uint alias_idx = atp->index();
987     bool final = !atp->is_rewritable();
988     Node* result = NULL;
989     Node* current = st;
990     // Skip through chains of MemBarNodes checking the MergeMems for
991     // new states for the slice of this load.  Stop once any other
992     // kind of node is encountered.  Loads from final memory can skip
993     // through any kind of MemBar but normal loads shouldn't skip
994     // through MemBarAcquire since the could allow them to move out of
995     // a synchronized region.
996     while (current->is_Proj()) {
997       int opc = current->in(0)->Opcode();
998       if ((final && (opc == Op_MemBarAcquire ||
999                      opc == Op_MemBarAcquireLock ||
1000                      opc == Op_LoadFence)) ||
1001           opc == Op_MemBarRelease ||
1002           opc == Op_StoreFence ||
1003           opc == Op_MemBarReleaseLock ||
1004           opc == Op_MemBarStoreStore ||
1005           opc == Op_MemBarCPUOrder) {
1006         Node* mem = current->in(0)->in(TypeFunc::Memory);
1007         if (mem->is_MergeMem()) {
1008           MergeMemNode* merge = mem->as_MergeMem();
1009           Node* new_st = merge->memory_at(alias_idx);
1010           if (new_st == merge->base_memory()) {
1011             // Keep searching
1012             current = new_st;
1013             continue;
1014           }
1015           // Save the new memory state for the slice and fall through
1016           // to exit.
1017           result = new_st;
1018         }
1019       }
1020       break;
1021     }
1022     if (result != NULL) {
1023       st = result;
1024     }
1025   }
1026 
1027   // Loop around twice in the case Load -> Initialize -> Store.
1028   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1029   for (int trip = 0; trip <= 1; trip++) {
1030 
1031     if (st->is_Store()) {
1032       Node* st_adr = st->in(MemNode::Address);
1033       if (!phase->eqv(st_adr, ld_adr)) {
1034         // Try harder before giving up...  Match raw and non-raw pointers.
1035         intptr_t st_off = 0;
1036         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1037         if (alloc == NULL)       return NULL;
1038         if (alloc != ld_alloc)   return NULL;
1039         if (ld_off != st_off)    return NULL;
1040         // At this point we have proven something like this setup:
1041         //  A = Allocate(...)
1042         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1043         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1044         // (Actually, we haven't yet proven the Q's are the same.)
1045         // In other words, we are loading from a casted version of
1046         // the same pointer-and-offset that we stored to.
1047         // Thus, we are able to replace L by V.
1048       }
1049       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1050       if (store_Opcode() != st->Opcode())
1051         return NULL;
1052       return st->in(MemNode::ValueIn);
1053     }
1054 
1055     // A load from a freshly-created object always returns zero.
1056     // (This can happen after LoadNode::Ideal resets the load's memory input
1057     // to find_captured_store, which returned InitializeNode::zero_memory.)
1058     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1059         (st->in(0) == ld_alloc) &&
1060         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1061       // return a zero value for the load's basic type
1062       // (This is one of the few places where a generic PhaseTransform
1063       // can create new nodes.  Think of it as lazily manifesting
1064       // virtually pre-existing constants.)
1065       return phase->zerocon(memory_type());
1066     }
1067 
1068     // A load from an initialization barrier can match a captured store.
1069     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1070       InitializeNode* init = st->in(0)->as_Initialize();
1071       AllocateNode* alloc = init->allocation();
1072       if ((alloc != NULL) && (alloc == ld_alloc)) {
1073         // examine a captured store value
1074         st = init->find_captured_store(ld_off, memory_size(), phase);
1075         if (st != NULL) {
1076           continue;             // take one more trip around
1077         }
1078       }
1079     }
1080 
1081     // Load boxed value from result of valueOf() call is input parameter.
1082     if (this->is_Load() && ld_adr->is_AddP() &&
1083         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1084       intptr_t ignore = 0;
1085       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1086       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1087       base = bs->step_over_gc_barrier(base);
1088       if (base != NULL && base->is_Proj() &&
1089           base->as_Proj()->_con == TypeFunc::Parms &&
1090           base->in(0)->is_CallStaticJava() &&
1091           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1092         return base->in(0)->in(TypeFunc::Parms);
1093       }
1094     }
1095 
1096     break;
1097   }
1098 
1099   return NULL;
1100 }
1101 
1102 //----------------------is_instance_field_load_with_local_phi------------------
is_instance_field_load_with_local_phi(Node * ctrl)1103 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1104   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1105       in(Address)->is_AddP() ) {
1106     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1107     // Only instances and boxed values.
1108     if( t_oop != NULL &&
1109         (t_oop->is_ptr_to_boxed_value() ||
1110          t_oop->is_known_instance_field()) &&
1111         t_oop->offset() != Type::OffsetBot &&
1112         t_oop->offset() != Type::OffsetTop) {
1113       return true;
1114     }
1115   }
1116   return false;
1117 }
1118 
1119 //------------------------------Identity---------------------------------------
1120 // Loads are identity if previous store is to same address
Identity(PhaseGVN * phase)1121 Node* LoadNode::Identity(PhaseGVN* phase) {
1122   // If the previous store-maker is the right kind of Store, and the store is
1123   // to the same address, then we are equal to the value stored.
1124   Node* mem = in(Memory);
1125   Node* value = can_see_stored_value(mem, phase);
1126   if( value ) {
1127     // byte, short & char stores truncate naturally.
1128     // A load has to load the truncated value which requires
1129     // some sort of masking operation and that requires an
1130     // Ideal call instead of an Identity call.
1131     if (memory_size() < BytesPerInt) {
1132       // If the input to the store does not fit with the load's result type,
1133       // it must be truncated via an Ideal call.
1134       if (!phase->type(value)->higher_equal(phase->type(this)))
1135         return this;
1136     }
1137     // (This works even when value is a Con, but LoadNode::Value
1138     // usually runs first, producing the singleton type of the Con.)
1139     return value;
1140   }
1141 
1142   // Search for an existing data phi which was generated before for the same
1143   // instance's field to avoid infinite generation of phis in a loop.
1144   Node *region = mem->in(0);
1145   if (is_instance_field_load_with_local_phi(region)) {
1146     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1147     int this_index  = phase->C->get_alias_index(addr_t);
1148     int this_offset = addr_t->offset();
1149     int this_iid    = addr_t->instance_id();
1150     if (!addr_t->is_known_instance() &&
1151          addr_t->is_ptr_to_boxed_value()) {
1152       // Use _idx of address base (could be Phi node) for boxed values.
1153       intptr_t   ignore = 0;
1154       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1155       if (base == NULL) {
1156         return this;
1157       }
1158       this_iid = base->_idx;
1159     }
1160     const Type* this_type = bottom_type();
1161     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1162       Node* phi = region->fast_out(i);
1163       if (phi->is_Phi() && phi != mem &&
1164           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1165         return phi;
1166       }
1167     }
1168   }
1169 
1170   return this;
1171 }
1172 
1173 // Construct an equivalent unsigned load.
convert_to_unsigned_load(PhaseGVN & gvn)1174 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1175   BasicType bt = T_ILLEGAL;
1176   const Type* rt = NULL;
1177   switch (Opcode()) {
1178     case Op_LoadUB: return this;
1179     case Op_LoadUS: return this;
1180     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1181     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1182     default:
1183       assert(false, "no unsigned variant: %s", Name());
1184       return NULL;
1185   }
1186   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1187                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1188                         is_unaligned_access(), is_mismatched_access());
1189 }
1190 
1191 // Construct an equivalent signed load.
convert_to_signed_load(PhaseGVN & gvn)1192 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1193   BasicType bt = T_ILLEGAL;
1194   const Type* rt = NULL;
1195   switch (Opcode()) {
1196     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1197     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1198     case Op_LoadB: // fall through
1199     case Op_LoadS: // fall through
1200     case Op_LoadI: // fall through
1201     case Op_LoadL: return this;
1202     default:
1203       assert(false, "no signed variant: %s", Name());
1204       return NULL;
1205   }
1206   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1207                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1208                         is_unaligned_access(), is_mismatched_access());
1209 }
1210 
1211 // We're loading from an object which has autobox behaviour.
1212 // If this object is result of a valueOf call we'll have a phi
1213 // merging a newly allocated object and a load from the cache.
1214 // We want to replace this load with the original incoming
1215 // argument to the valueOf call.
eliminate_autobox(PhaseGVN * phase)1216 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1217   assert(phase->C->eliminate_boxing(), "sanity");
1218   intptr_t ignore = 0;
1219   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1220   if ((base == NULL) || base->is_Phi()) {
1221     // Push the loads from the phi that comes from valueOf up
1222     // through it to allow elimination of the loads and the recovery
1223     // of the original value. It is done in split_through_phi().
1224     return NULL;
1225   } else if (base->is_Load() ||
1226              (base->is_DecodeN() && base->in(1)->is_Load())) {
1227     // Eliminate the load of boxed value for integer types from the cache
1228     // array by deriving the value from the index into the array.
1229     // Capture the offset of the load and then reverse the computation.
1230 
1231     // Get LoadN node which loads a boxing object from 'cache' array.
1232     if (base->is_DecodeN()) {
1233       base = base->in(1);
1234     }
1235     if (!base->in(Address)->is_AddP()) {
1236       return NULL; // Complex address
1237     }
1238     AddPNode* address = base->in(Address)->as_AddP();
1239     Node* cache_base = address->in(AddPNode::Base);
1240     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1241       // Get ConP node which is static 'cache' field.
1242       cache_base = cache_base->in(1);
1243     }
1244     if ((cache_base != NULL) && cache_base->is_Con()) {
1245       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1246       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1247         Node* elements[4];
1248         int shift = exact_log2(type2aelembytes(T_OBJECT));
1249         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1250         if (count > 0 && elements[0]->is_Con() &&
1251             (count == 1 ||
1252              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1253                             elements[1]->in(2) == phase->intcon(shift)))) {
1254           ciObjArray* array = base_type->const_oop()->as_obj_array();
1255           // Fetch the box object cache[0] at the base of the array and get its value
1256           ciInstance* box = array->obj_at(0)->as_instance();
1257           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1258           assert(ik->is_box_klass(), "sanity");
1259           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1260           if (ik->nof_nonstatic_fields() == 1) {
1261             // This should be true nonstatic_field_at requires calling
1262             // nof_nonstatic_fields so check it anyway
1263             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1264             BasicType bt = c.basic_type();
1265             // Only integer types have boxing cache.
1266             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1267                    bt == T_BYTE    || bt == T_SHORT ||
1268                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1269             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1270             if (cache_low != (int)cache_low) {
1271               return NULL; // should not happen since cache is array indexed by value
1272             }
1273             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1274             if (offset != (int)offset) {
1275               return NULL; // should not happen since cache is array indexed by value
1276             }
1277            // Add up all the offsets making of the address of the load
1278             Node* result = elements[0];
1279             for (int i = 1; i < count; i++) {
1280               result = phase->transform(new AddXNode(result, elements[i]));
1281             }
1282             // Remove the constant offset from the address and then
1283             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1284             // remove the scaling of the offset to recover the original index.
1285             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1286               // Peel the shift off directly but wrap it in a dummy node
1287               // since Ideal can't return existing nodes
1288               result = new RShiftXNode(result->in(1), phase->intcon(0));
1289             } else if (result->is_Add() && result->in(2)->is_Con() &&
1290                        result->in(1)->Opcode() == Op_LShiftX &&
1291                        result->in(1)->in(2) == phase->intcon(shift)) {
1292               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1293               // but for boxing cache access we know that X<<Z will not overflow
1294               // (there is range check) so we do this optimizatrion by hand here.
1295               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1296               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1297             } else {
1298               result = new RShiftXNode(result, phase->intcon(shift));
1299             }
1300 #ifdef _LP64
1301             if (bt != T_LONG) {
1302               result = new ConvL2INode(phase->transform(result));
1303             }
1304 #else
1305             if (bt == T_LONG) {
1306               result = new ConvI2LNode(phase->transform(result));
1307             }
1308 #endif
1309             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1310             // Need to preserve unboxing load type if it is unsigned.
1311             switch(this->Opcode()) {
1312               case Op_LoadUB:
1313                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1314                 break;
1315               case Op_LoadUS:
1316                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1317                 break;
1318             }
1319             return result;
1320           }
1321         }
1322       }
1323     }
1324   }
1325   return NULL;
1326 }
1327 
stable_phi(PhiNode * phi,PhaseGVN * phase)1328 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1329   Node* region = phi->in(0);
1330   if (region == NULL) {
1331     return false; // Wait stable graph
1332   }
1333   uint cnt = phi->req();
1334   for (uint i = 1; i < cnt; i++) {
1335     Node* rc = region->in(i);
1336     if (rc == NULL || phase->type(rc) == Type::TOP)
1337       return false; // Wait stable graph
1338     Node* in = phi->in(i);
1339     if (in == NULL || phase->type(in) == Type::TOP)
1340       return false; // Wait stable graph
1341   }
1342   return true;
1343 }
1344 //------------------------------split_through_phi------------------------------
1345 // Split instance or boxed field load through Phi.
split_through_phi(PhaseGVN * phase)1346 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1347   Node* mem     = in(Memory);
1348   Node* address = in(Address);
1349   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1350 
1351   assert((t_oop != NULL) &&
1352          (t_oop->is_known_instance_field() ||
1353           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1354 
1355   Compile* C = phase->C;
1356   intptr_t ignore = 0;
1357   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1358   bool base_is_phi = (base != NULL) && base->is_Phi();
1359   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1360                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1361                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1362 
1363   if (!((mem->is_Phi() || base_is_phi) &&
1364         (load_boxed_values || t_oop->is_known_instance_field()))) {
1365     return NULL; // memory is not Phi
1366   }
1367 
1368   if (mem->is_Phi()) {
1369     if (!stable_phi(mem->as_Phi(), phase)) {
1370       return NULL; // Wait stable graph
1371     }
1372     uint cnt = mem->req();
1373     // Check for loop invariant memory.
1374     if (cnt == 3) {
1375       for (uint i = 1; i < cnt; i++) {
1376         Node* in = mem->in(i);
1377         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1378         if (m == mem) {
1379           set_req(Memory, mem->in(cnt - i));
1380           return this; // made change
1381         }
1382       }
1383     }
1384   }
1385   if (base_is_phi) {
1386     if (!stable_phi(base->as_Phi(), phase)) {
1387       return NULL; // Wait stable graph
1388     }
1389     uint cnt = base->req();
1390     // Check for loop invariant memory.
1391     if (cnt == 3) {
1392       for (uint i = 1; i < cnt; i++) {
1393         if (base->in(i) == base) {
1394           return NULL; // Wait stable graph
1395         }
1396       }
1397     }
1398   }
1399 
1400   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1401 
1402   // Split through Phi (see original code in loopopts.cpp).
1403   assert(C->have_alias_type(t_oop), "instance should have alias type");
1404 
1405   // Do nothing here if Identity will find a value
1406   // (to avoid infinite chain of value phis generation).
1407   if (!phase->eqv(this, phase->apply_identity(this)))
1408     return NULL;
1409 
1410   // Select Region to split through.
1411   Node* region;
1412   if (!base_is_phi) {
1413     assert(mem->is_Phi(), "sanity");
1414     region = mem->in(0);
1415     // Skip if the region dominates some control edge of the address.
1416     if (!MemNode::all_controls_dominate(address, region))
1417       return NULL;
1418   } else if (!mem->is_Phi()) {
1419     assert(base_is_phi, "sanity");
1420     region = base->in(0);
1421     // Skip if the region dominates some control edge of the memory.
1422     if (!MemNode::all_controls_dominate(mem, region))
1423       return NULL;
1424   } else if (base->in(0) != mem->in(0)) {
1425     assert(base_is_phi && mem->is_Phi(), "sanity");
1426     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1427       region = base->in(0);
1428     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1429       region = mem->in(0);
1430     } else {
1431       return NULL; // complex graph
1432     }
1433   } else {
1434     assert(base->in(0) == mem->in(0), "sanity");
1435     region = mem->in(0);
1436   }
1437 
1438   const Type* this_type = this->bottom_type();
1439   int this_index  = C->get_alias_index(t_oop);
1440   int this_offset = t_oop->offset();
1441   int this_iid    = t_oop->instance_id();
1442   if (!t_oop->is_known_instance() && load_boxed_values) {
1443     // Use _idx of address base for boxed values.
1444     this_iid = base->_idx;
1445   }
1446   PhaseIterGVN* igvn = phase->is_IterGVN();
1447   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1448   for (uint i = 1; i < region->req(); i++) {
1449     Node* x;
1450     Node* the_clone = NULL;
1451     if (region->in(i) == C->top()) {
1452       x = C->top();      // Dead path?  Use a dead data op
1453     } else {
1454       x = this->clone();        // Else clone up the data op
1455       the_clone = x;            // Remember for possible deletion.
1456       // Alter data node to use pre-phi inputs
1457       if (this->in(0) == region) {
1458         x->set_req(0, region->in(i));
1459       } else {
1460         x->set_req(0, NULL);
1461       }
1462       if (mem->is_Phi() && (mem->in(0) == region)) {
1463         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1464       }
1465       if (address->is_Phi() && address->in(0) == region) {
1466         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1467       }
1468       if (base_is_phi && (base->in(0) == region)) {
1469         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1470         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1471         x->set_req(Address, adr_x);
1472       }
1473     }
1474     // Check for a 'win' on some paths
1475     const Type *t = x->Value(igvn);
1476 
1477     bool singleton = t->singleton();
1478 
1479     // See comments in PhaseIdealLoop::split_thru_phi().
1480     if (singleton && t == Type::TOP) {
1481       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1482     }
1483 
1484     if (singleton) {
1485       x = igvn->makecon(t);
1486     } else {
1487       // We now call Identity to try to simplify the cloned node.
1488       // Note that some Identity methods call phase->type(this).
1489       // Make sure that the type array is big enough for
1490       // our new node, even though we may throw the node away.
1491       // (This tweaking with igvn only works because x is a new node.)
1492       igvn->set_type(x, t);
1493       // If x is a TypeNode, capture any more-precise type permanently into Node
1494       // otherwise it will be not updated during igvn->transform since
1495       // igvn->type(x) is set to x->Value() already.
1496       x->raise_bottom_type(t);
1497       Node *y = igvn->apply_identity(x);
1498       if (y != x) {
1499         x = y;
1500       } else {
1501         y = igvn->hash_find_insert(x);
1502         if (y) {
1503           x = y;
1504         } else {
1505           // Else x is a new node we are keeping
1506           // We do not need register_new_node_with_optimizer
1507           // because set_type has already been called.
1508           igvn->_worklist.push(x);
1509         }
1510       }
1511     }
1512     if (x != the_clone && the_clone != NULL) {
1513       igvn->remove_dead_node(the_clone);
1514     }
1515     phi->set_req(i, x);
1516   }
1517   // Record Phi
1518   igvn->register_new_node_with_optimizer(phi);
1519   return phi;
1520 }
1521 
1522 //------------------------------Ideal------------------------------------------
1523 // If the load is from Field memory and the pointer is non-null, it might be possible to
1524 // zero out the control input.
1525 // If the offset is constant and the base is an object allocation,
1526 // try to hook me up to the exact initializing store.
Ideal(PhaseGVN * phase,bool can_reshape)1527 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1528   Node* p = MemNode::Ideal_common(phase, can_reshape);
1529   if (p)  return (p == NodeSentinel) ? NULL : p;
1530 
1531   Node* ctrl    = in(MemNode::Control);
1532   Node* address = in(MemNode::Address);
1533   bool progress = false;
1534 
1535   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1536          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1537 
1538   // Skip up past a SafePoint control.  Cannot do this for Stores because
1539   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1540   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1541       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1542       !addr_mark ) {
1543     ctrl = ctrl->in(0);
1544     set_req(MemNode::Control,ctrl);
1545     progress = true;
1546   }
1547 
1548   intptr_t ignore = 0;
1549   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1550   if (base != NULL
1551       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1552     // Check for useless control edge in some common special cases
1553     if (in(MemNode::Control) != NULL
1554         && can_remove_control()
1555         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1556         && all_controls_dominate(base, phase->C->start())) {
1557       // A method-invariant, non-null address (constant or 'this' argument).
1558       set_req(MemNode::Control, NULL);
1559       progress = true;
1560     }
1561   }
1562 
1563   Node* mem = in(MemNode::Memory);
1564   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1565 
1566   if (can_reshape && (addr_t != NULL)) {
1567     // try to optimize our memory input
1568     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1569     if (opt_mem != mem) {
1570       set_req(MemNode::Memory, opt_mem);
1571       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1572       return this;
1573     }
1574     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1575     if ((t_oop != NULL) &&
1576         (t_oop->is_known_instance_field() ||
1577          t_oop->is_ptr_to_boxed_value())) {
1578       PhaseIterGVN *igvn = phase->is_IterGVN();
1579       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1580         // Delay this transformation until memory Phi is processed.
1581         phase->is_IterGVN()->_worklist.push(this);
1582         return NULL;
1583       }
1584       // Split instance field load through Phi.
1585       Node* result = split_through_phi(phase);
1586       if (result != NULL) return result;
1587 
1588       if (t_oop->is_ptr_to_boxed_value()) {
1589         Node* result = eliminate_autobox(phase);
1590         if (result != NULL) return result;
1591       }
1592     }
1593   }
1594 
1595   // Is there a dominating load that loads the same value?  Leave
1596   // anything that is not a load of a field/array element (like
1597   // barriers etc.) alone
1598   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1599     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1600       Node *use = mem->fast_out(i);
1601       if (use != this &&
1602           use->Opcode() == Opcode() &&
1603           use->in(0) != NULL &&
1604           use->in(0) != in(0) &&
1605           use->in(Address) == in(Address)) {
1606         Node* ctl = in(0);
1607         for (int i = 0; i < 10 && ctl != NULL; i++) {
1608           ctl = IfNode::up_one_dom(ctl);
1609           if (ctl == use->in(0)) {
1610             set_req(0, use->in(0));
1611             return this;
1612           }
1613         }
1614       }
1615     }
1616   }
1617 
1618   // Check for prior store with a different base or offset; make Load
1619   // independent.  Skip through any number of them.  Bail out if the stores
1620   // are in an endless dead cycle and report no progress.  This is a key
1621   // transform for Reflection.  However, if after skipping through the Stores
1622   // we can't then fold up against a prior store do NOT do the transform as
1623   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1624   // array memory alive twice: once for the hoisted Load and again after the
1625   // bypassed Store.  This situation only works if EVERYBODY who does
1626   // anti-dependence work knows how to bypass.  I.e. we need all
1627   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1628   // the alias index stuff.  So instead, peek through Stores and IFF we can
1629   // fold up, do so.
1630   Node* prev_mem = find_previous_store(phase);
1631   if (prev_mem != NULL) {
1632     Node* value = can_see_arraycopy_value(prev_mem, phase);
1633     if (value != NULL) {
1634       return value;
1635     }
1636   }
1637   // Steps (a), (b):  Walk past independent stores to find an exact match.
1638   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1639     // (c) See if we can fold up on the spot, but don't fold up here.
1640     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1641     // just return a prior value, which is done by Identity calls.
1642     if (can_see_stored_value(prev_mem, phase)) {
1643       // Make ready for step (d):
1644       set_req(MemNode::Memory, prev_mem);
1645       return this;
1646     }
1647   }
1648 
1649   return progress ? this : NULL;
1650 }
1651 
1652 // Helper to recognize certain Klass fields which are invariant across
1653 // some group of array types (e.g., int[] or all T[] where T < Object).
1654 const Type*
load_array_final_field(const TypeKlassPtr * tkls,ciKlass * klass) const1655 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1656                                  ciKlass* klass) const {
1657   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1658     // The field is Klass::_modifier_flags.  Return its (constant) value.
1659     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1660     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1661     return TypeInt::make(klass->modifier_flags());
1662   }
1663   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1664     // The field is Klass::_access_flags.  Return its (constant) value.
1665     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1666     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1667     return TypeInt::make(klass->access_flags());
1668   }
1669   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1670     // The field is Klass::_layout_helper.  Return its constant value if known.
1671     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1672     return TypeInt::make(klass->layout_helper());
1673   }
1674 
1675   // No match.
1676   return NULL;
1677 }
1678 
1679 //------------------------------Value-----------------------------------------
Value(PhaseGVN * phase) const1680 const Type* LoadNode::Value(PhaseGVN* phase) const {
1681   // Either input is TOP ==> the result is TOP
1682   Node* mem = in(MemNode::Memory);
1683   const Type *t1 = phase->type(mem);
1684   if (t1 == Type::TOP)  return Type::TOP;
1685   Node* adr = in(MemNode::Address);
1686   const TypePtr* tp = phase->type(adr)->isa_ptr();
1687   if (tp == NULL || tp->empty())  return Type::TOP;
1688   int off = tp->offset();
1689   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1690   Compile* C = phase->C;
1691 
1692   // Try to guess loaded type from pointer type
1693   if (tp->isa_aryptr()) {
1694     const TypeAryPtr* ary = tp->is_aryptr();
1695     const Type* t = ary->elem();
1696 
1697     // Determine whether the reference is beyond the header or not, by comparing
1698     // the offset against the offset of the start of the array's data.
1699     // Different array types begin at slightly different offsets (12 vs. 16).
1700     // We choose T_BYTE as an example base type that is least restrictive
1701     // as to alignment, which will therefore produce the smallest
1702     // possible base offset.
1703     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1704     const bool off_beyond_header = (off >= min_base_off);
1705 
1706     // Try to constant-fold a stable array element.
1707     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1708       // Make sure the reference is not into the header and the offset is constant
1709       ciObject* aobj = ary->const_oop();
1710       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1711         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1712         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1713                                                                       stable_dimension,
1714                                                                       memory_type(), is_unsigned());
1715         if (con_type != NULL) {
1716           return con_type;
1717         }
1718       }
1719     }
1720 
1721     // Don't do this for integer types. There is only potential profit if
1722     // the element type t is lower than _type; that is, for int types, if _type is
1723     // more restrictive than t.  This only happens here if one is short and the other
1724     // char (both 16 bits), and in those cases we've made an intentional decision
1725     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1726     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1727     //
1728     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1729     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1730     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1731     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1732     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1733     // In fact, that could have been the original type of p1, and p1 could have
1734     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1735     // expression (LShiftL quux 3) independently optimized to the constant 8.
1736     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1737         && (_type->isa_vect() == NULL)
1738         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1739       // t might actually be lower than _type, if _type is a unique
1740       // concrete subclass of abstract class t.
1741       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1742         const Type* jt = t->join_speculative(_type);
1743         // In any case, do not allow the join, per se, to empty out the type.
1744         if (jt->empty() && !t->empty()) {
1745           // This can happen if a interface-typed array narrows to a class type.
1746           jt = _type;
1747         }
1748 #ifdef ASSERT
1749         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1750           // The pointers in the autobox arrays are always non-null
1751           Node* base = adr->in(AddPNode::Base);
1752           if ((base != NULL) && base->is_DecodeN()) {
1753             // Get LoadN node which loads IntegerCache.cache field
1754             base = base->in(1);
1755           }
1756           if ((base != NULL) && base->is_Con()) {
1757             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1758             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1759               // It could be narrow oop
1760               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1761             }
1762           }
1763         }
1764 #endif
1765         return jt;
1766       }
1767     }
1768   } else if (tp->base() == Type::InstPtr) {
1769     assert( off != Type::OffsetBot ||
1770             // arrays can be cast to Objects
1771             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1772             // unsafe field access may not have a constant offset
1773             C->has_unsafe_access(),
1774             "Field accesses must be precise" );
1775     // For oop loads, we expect the _type to be precise.
1776 
1777     // Optimize loads from constant fields.
1778     const TypeInstPtr* tinst = tp->is_instptr();
1779     ciObject* const_oop = tinst->const_oop();
1780     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1781       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1782       if (con_type != NULL) {
1783         return con_type;
1784       }
1785     }
1786   } else if (tp->base() == Type::KlassPtr) {
1787     assert( off != Type::OffsetBot ||
1788             // arrays can be cast to Objects
1789             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1790             // also allow array-loading from the primary supertype
1791             // array during subtype checks
1792             Opcode() == Op_LoadKlass,
1793             "Field accesses must be precise" );
1794     // For klass/static loads, we expect the _type to be precise
1795   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
1796     /* With mirrors being an indirect in the Klass*
1797      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1798      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1799      *
1800      * So check the type and klass of the node before the LoadP.
1801      */
1802     Node* adr2 = adr->in(MemNode::Address);
1803     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1804     if (tkls != NULL && !StressReflectiveCode) {
1805       ciKlass* klass = tkls->klass();
1806       if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1807         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1808         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1809         return TypeInstPtr::make(klass->java_mirror());
1810       }
1811     }
1812   }
1813 
1814   const TypeKlassPtr *tkls = tp->isa_klassptr();
1815   if (tkls != NULL && !StressReflectiveCode) {
1816     ciKlass* klass = tkls->klass();
1817     if (klass->is_loaded() && tkls->klass_is_exact()) {
1818       // We are loading a field from a Klass metaobject whose identity
1819       // is known at compile time (the type is "exact" or "precise").
1820       // Check for fields we know are maintained as constants by the VM.
1821       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1822         // The field is Klass::_super_check_offset.  Return its (constant) value.
1823         // (Folds up type checking code.)
1824         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1825         return TypeInt::make(klass->super_check_offset());
1826       }
1827       // Compute index into primary_supers array
1828       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1829       // Check for overflowing; use unsigned compare to handle the negative case.
1830       if( depth < ciKlass::primary_super_limit() ) {
1831         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1832         // (Folds up type checking code.)
1833         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1834         ciKlass *ss = klass->super_of_depth(depth);
1835         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1836       }
1837       const Type* aift = load_array_final_field(tkls, klass);
1838       if (aift != NULL)  return aift;
1839     }
1840 
1841     // We can still check if we are loading from the primary_supers array at a
1842     // shallow enough depth.  Even though the klass is not exact, entries less
1843     // than or equal to its super depth are correct.
1844     if (klass->is_loaded() ) {
1845       ciType *inner = klass;
1846       while( inner->is_obj_array_klass() )
1847         inner = inner->as_obj_array_klass()->base_element_type();
1848       if( inner->is_instance_klass() &&
1849           !inner->as_instance_klass()->flags().is_interface() ) {
1850         // Compute index into primary_supers array
1851         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1852         // Check for overflowing; use unsigned compare to handle the negative case.
1853         if( depth < ciKlass::primary_super_limit() &&
1854             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1855           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1856           // (Folds up type checking code.)
1857           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1858           ciKlass *ss = klass->super_of_depth(depth);
1859           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1860         }
1861       }
1862     }
1863 
1864     // If the type is enough to determine that the thing is not an array,
1865     // we can give the layout_helper a positive interval type.
1866     // This will help short-circuit some reflective code.
1867     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1868         && !klass->is_array_klass() // not directly typed as an array
1869         && !klass->is_interface()  // specifically not Serializable & Cloneable
1870         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1871         ) {
1872       // Note:  When interfaces are reliable, we can narrow the interface
1873       // test to (klass != Serializable && klass != Cloneable).
1874       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1875       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1876       // The key property of this type is that it folds up tests
1877       // for array-ness, since it proves that the layout_helper is positive.
1878       // Thus, a generic value like the basic object layout helper works fine.
1879       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1880     }
1881   }
1882 
1883   // If we are loading from a freshly-allocated object, produce a zero,
1884   // if the load is provably beyond the header of the object.
1885   // (Also allow a variable load from a fresh array to produce zero.)
1886   const TypeOopPtr *tinst = tp->isa_oopptr();
1887   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1888   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1889   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1890     Node* value = can_see_stored_value(mem,phase);
1891     if (value != NULL && value->is_Con()) {
1892       assert(value->bottom_type()->higher_equal(_type),"sanity");
1893       return value->bottom_type();
1894     }
1895   }
1896 
1897   if (is_instance) {
1898     // If we have an instance type and our memory input is the
1899     // programs's initial memory state, there is no matching store,
1900     // so just return a zero of the appropriate type
1901     Node *mem = in(MemNode::Memory);
1902     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1903       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1904       return Type::get_zero_type(_type->basic_type());
1905     }
1906   }
1907   return _type;
1908 }
1909 
1910 //------------------------------match_edge-------------------------------------
1911 // Do we Match on this edge index or not?  Match only the address.
match_edge(uint idx) const1912 uint LoadNode::match_edge(uint idx) const {
1913   return idx == MemNode::Address;
1914 }
1915 
1916 //--------------------------LoadBNode::Ideal--------------------------------------
1917 //
1918 //  If the previous store is to the same address as this load,
1919 //  and the value stored was larger than a byte, replace this load
1920 //  with the value stored truncated to a byte.  If no truncation is
1921 //  needed, the replacement is done in LoadNode::Identity().
1922 //
Ideal(PhaseGVN * phase,bool can_reshape)1923 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1924   Node* mem = in(MemNode::Memory);
1925   Node* value = can_see_stored_value(mem,phase);
1926   if( value && !phase->type(value)->higher_equal( _type ) ) {
1927     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1928     return new RShiftINode(result, phase->intcon(24));
1929   }
1930   // Identity call will handle the case where truncation is not needed.
1931   return LoadNode::Ideal(phase, can_reshape);
1932 }
1933 
Value(PhaseGVN * phase) const1934 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1935   Node* mem = in(MemNode::Memory);
1936   Node* value = can_see_stored_value(mem,phase);
1937   if (value != NULL && value->is_Con() &&
1938       !value->bottom_type()->higher_equal(_type)) {
1939     // If the input to the store does not fit with the load's result type,
1940     // it must be truncated. We can't delay until Ideal call since
1941     // a singleton Value is needed for split_thru_phi optimization.
1942     int con = value->get_int();
1943     return TypeInt::make((con << 24) >> 24);
1944   }
1945   return LoadNode::Value(phase);
1946 }
1947 
1948 //--------------------------LoadUBNode::Ideal-------------------------------------
1949 //
1950 //  If the previous store is to the same address as this load,
1951 //  and the value stored was larger than a byte, replace this load
1952 //  with the value stored truncated to a byte.  If no truncation is
1953 //  needed, the replacement is done in LoadNode::Identity().
1954 //
Ideal(PhaseGVN * phase,bool can_reshape)1955 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1956   Node* mem = in(MemNode::Memory);
1957   Node* value = can_see_stored_value(mem, phase);
1958   if (value && !phase->type(value)->higher_equal(_type))
1959     return new AndINode(value, phase->intcon(0xFF));
1960   // Identity call will handle the case where truncation is not needed.
1961   return LoadNode::Ideal(phase, can_reshape);
1962 }
1963 
Value(PhaseGVN * phase) const1964 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1965   Node* mem = in(MemNode::Memory);
1966   Node* value = can_see_stored_value(mem,phase);
1967   if (value != NULL && value->is_Con() &&
1968       !value->bottom_type()->higher_equal(_type)) {
1969     // If the input to the store does not fit with the load's result type,
1970     // it must be truncated. We can't delay until Ideal call since
1971     // a singleton Value is needed for split_thru_phi optimization.
1972     int con = value->get_int();
1973     return TypeInt::make(con & 0xFF);
1974   }
1975   return LoadNode::Value(phase);
1976 }
1977 
1978 //--------------------------LoadUSNode::Ideal-------------------------------------
1979 //
1980 //  If the previous store is to the same address as this load,
1981 //  and the value stored was larger than a char, replace this load
1982 //  with the value stored truncated to a char.  If no truncation is
1983 //  needed, the replacement is done in LoadNode::Identity().
1984 //
Ideal(PhaseGVN * phase,bool can_reshape)1985 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1986   Node* mem = in(MemNode::Memory);
1987   Node* value = can_see_stored_value(mem,phase);
1988   if( value && !phase->type(value)->higher_equal( _type ) )
1989     return new AndINode(value,phase->intcon(0xFFFF));
1990   // Identity call will handle the case where truncation is not needed.
1991   return LoadNode::Ideal(phase, can_reshape);
1992 }
1993 
Value(PhaseGVN * phase) const1994 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1995   Node* mem = in(MemNode::Memory);
1996   Node* value = can_see_stored_value(mem,phase);
1997   if (value != NULL && value->is_Con() &&
1998       !value->bottom_type()->higher_equal(_type)) {
1999     // If the input to the store does not fit with the load's result type,
2000     // it must be truncated. We can't delay until Ideal call since
2001     // a singleton Value is needed for split_thru_phi optimization.
2002     int con = value->get_int();
2003     return TypeInt::make(con & 0xFFFF);
2004   }
2005   return LoadNode::Value(phase);
2006 }
2007 
2008 //--------------------------LoadSNode::Ideal--------------------------------------
2009 //
2010 //  If the previous store is to the same address as this load,
2011 //  and the value stored was larger than a short, replace this load
2012 //  with the value stored truncated to a short.  If no truncation is
2013 //  needed, the replacement is done in LoadNode::Identity().
2014 //
Ideal(PhaseGVN * phase,bool can_reshape)2015 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2016   Node* mem = in(MemNode::Memory);
2017   Node* value = can_see_stored_value(mem,phase);
2018   if( value && !phase->type(value)->higher_equal( _type ) ) {
2019     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2020     return new RShiftINode(result, phase->intcon(16));
2021   }
2022   // Identity call will handle the case where truncation is not needed.
2023   return LoadNode::Ideal(phase, can_reshape);
2024 }
2025 
Value(PhaseGVN * phase) const2026 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2027   Node* mem = in(MemNode::Memory);
2028   Node* value = can_see_stored_value(mem,phase);
2029   if (value != NULL && value->is_Con() &&
2030       !value->bottom_type()->higher_equal(_type)) {
2031     // If the input to the store does not fit with the load's result type,
2032     // it must be truncated. We can't delay until Ideal call since
2033     // a singleton Value is needed for split_thru_phi optimization.
2034     int con = value->get_int();
2035     return TypeInt::make((con << 16) >> 16);
2036   }
2037   return LoadNode::Value(phase);
2038 }
2039 
2040 //=============================================================================
2041 //----------------------------LoadKlassNode::make------------------------------
2042 // Polymorphic factory method:
make(PhaseGVN & gvn,Node * ctl,Node * mem,Node * adr,const TypePtr * at,const TypeKlassPtr * tk)2043 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2044   // sanity check the alias category against the created node type
2045   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2046   assert(adr_type != NULL, "expecting TypeKlassPtr");
2047 #ifdef _LP64
2048   if (adr_type->is_ptr_to_narrowklass()) {
2049     assert(UseCompressedClassPointers, "no compressed klasses");
2050     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2051     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2052   }
2053 #endif
2054   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2055   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2056 }
2057 
2058 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const2059 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2060   return klass_value_common(phase);
2061 }
2062 
2063 // In most cases, LoadKlassNode does not have the control input set. If the control
2064 // input is set, it must not be removed (by LoadNode::Ideal()).
can_remove_control() const2065 bool LoadKlassNode::can_remove_control() const {
2066   return false;
2067 }
2068 
klass_value_common(PhaseGVN * phase) const2069 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2070   // Either input is TOP ==> the result is TOP
2071   const Type *t1 = phase->type( in(MemNode::Memory) );
2072   if (t1 == Type::TOP)  return Type::TOP;
2073   Node *adr = in(MemNode::Address);
2074   const Type *t2 = phase->type( adr );
2075   if (t2 == Type::TOP)  return Type::TOP;
2076   const TypePtr *tp = t2->is_ptr();
2077   if (TypePtr::above_centerline(tp->ptr()) ||
2078       tp->ptr() == TypePtr::Null)  return Type::TOP;
2079 
2080   // Return a more precise klass, if possible
2081   const TypeInstPtr *tinst = tp->isa_instptr();
2082   if (tinst != NULL) {
2083     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2084     int offset = tinst->offset();
2085     if (ik == phase->C->env()->Class_klass()
2086         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2087             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2088       // We are loading a special hidden field from a Class mirror object,
2089       // the field which points to the VM's Klass metaobject.
2090       ciType* t = tinst->java_mirror_type();
2091       // java_mirror_type returns non-null for compile-time Class constants.
2092       if (t != NULL) {
2093         // constant oop => constant klass
2094         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2095           if (t->is_void()) {
2096             // We cannot create a void array.  Since void is a primitive type return null
2097             // klass.  Users of this result need to do a null check on the returned klass.
2098             return TypePtr::NULL_PTR;
2099           }
2100           return TypeKlassPtr::make(ciArrayKlass::make(t));
2101         }
2102         if (!t->is_klass()) {
2103           // a primitive Class (e.g., int.class) has NULL for a klass field
2104           return TypePtr::NULL_PTR;
2105         }
2106         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2107         return TypeKlassPtr::make(t->as_klass());
2108       }
2109       // non-constant mirror, so we can't tell what's going on
2110     }
2111     if( !ik->is_loaded() )
2112       return _type;             // Bail out if not loaded
2113     if (offset == oopDesc::klass_offset_in_bytes()) {
2114       if (tinst->klass_is_exact()) {
2115         return TypeKlassPtr::make(ik);
2116       }
2117       // See if we can become precise: no subklasses and no interface
2118       // (Note:  We need to support verified interfaces.)
2119       if (!ik->is_interface() && !ik->has_subklass()) {
2120         //assert(!UseExactTypes, "this code should be useless with exact types");
2121         // Add a dependence; if any subclass added we need to recompile
2122         if (!ik->is_final()) {
2123           // %%% should use stronger assert_unique_concrete_subtype instead
2124           phase->C->dependencies()->assert_leaf_type(ik);
2125         }
2126         // Return precise klass
2127         return TypeKlassPtr::make(ik);
2128       }
2129 
2130       // Return root of possible klass
2131       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2132     }
2133   }
2134 
2135   // Check for loading klass from an array
2136   const TypeAryPtr *tary = tp->isa_aryptr();
2137   if( tary != NULL ) {
2138     ciKlass *tary_klass = tary->klass();
2139     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2140         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2141       if (tary->klass_is_exact()) {
2142         return TypeKlassPtr::make(tary_klass);
2143       }
2144       ciArrayKlass *ak = tary->klass()->as_array_klass();
2145       // If the klass is an object array, we defer the question to the
2146       // array component klass.
2147       if( ak->is_obj_array_klass() ) {
2148         assert( ak->is_loaded(), "" );
2149         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2150         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2151           ciInstanceKlass* ik = base_k->as_instance_klass();
2152           // See if we can become precise: no subklasses and no interface
2153           if (!ik->is_interface() && !ik->has_subklass()) {
2154             //assert(!UseExactTypes, "this code should be useless with exact types");
2155             // Add a dependence; if any subclass added we need to recompile
2156             if (!ik->is_final()) {
2157               phase->C->dependencies()->assert_leaf_type(ik);
2158             }
2159             // Return precise array klass
2160             return TypeKlassPtr::make(ak);
2161           }
2162         }
2163         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2164       } else {                  // Found a type-array?
2165         //assert(!UseExactTypes, "this code should be useless with exact types");
2166         assert( ak->is_type_array_klass(), "" );
2167         return TypeKlassPtr::make(ak); // These are always precise
2168       }
2169     }
2170   }
2171 
2172   // Check for loading klass from an array klass
2173   const TypeKlassPtr *tkls = tp->isa_klassptr();
2174   if (tkls != NULL && !StressReflectiveCode) {
2175     ciKlass* klass = tkls->klass();
2176     if( !klass->is_loaded() )
2177       return _type;             // Bail out if not loaded
2178     if( klass->is_obj_array_klass() &&
2179         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2180       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2181       // // Always returning precise element type is incorrect,
2182       // // e.g., element type could be object and array may contain strings
2183       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2184 
2185       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2186       // according to the element type's subclassing.
2187       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2188     }
2189     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2190         tkls->offset() == in_bytes(Klass::super_offset())) {
2191       ciKlass* sup = klass->as_instance_klass()->super();
2192       // The field is Klass::_super.  Return its (constant) value.
2193       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2194       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2195     }
2196   }
2197 
2198   // Bailout case
2199   return LoadNode::Value(phase);
2200 }
2201 
2202 //------------------------------Identity---------------------------------------
2203 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2204 // Also feed through the klass in Allocate(...klass...)._klass.
Identity(PhaseGVN * phase)2205 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2206   return klass_identity_common(phase);
2207 }
2208 
klass_identity_common(PhaseGVN * phase)2209 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2210   Node* x = LoadNode::Identity(phase);
2211   if (x != this)  return x;
2212 
2213   // Take apart the address into an oop and and offset.
2214   // Return 'this' if we cannot.
2215   Node*    adr    = in(MemNode::Address);
2216   intptr_t offset = 0;
2217   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2218   if (base == NULL)     return this;
2219   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2220   if (toop == NULL)     return this;
2221 
2222   // Step over potential GC barrier for OopHandle resolve
2223   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2224   if (bs->is_gc_barrier_node(base)) {
2225     base = bs->step_over_gc_barrier(base);
2226   }
2227 
2228   // We can fetch the klass directly through an AllocateNode.
2229   // This works even if the klass is not constant (clone or newArray).
2230   if (offset == oopDesc::klass_offset_in_bytes()) {
2231     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2232     if (allocated_klass != NULL) {
2233       return allocated_klass;
2234     }
2235   }
2236 
2237   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2238   // See inline_native_Class_query for occurrences of these patterns.
2239   // Java Example:  x.getClass().isAssignableFrom(y)
2240   //
2241   // This improves reflective code, often making the Class
2242   // mirror go completely dead.  (Current exception:  Class
2243   // mirrors may appear in debug info, but we could clean them out by
2244   // introducing a new debug info operator for Klass.java_mirror).
2245 
2246   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2247       && offset == java_lang_Class::klass_offset_in_bytes()) {
2248     if (base->is_Load()) {
2249       Node* base2 = base->in(MemNode::Address);
2250       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2251         Node* adr2 = base2->in(MemNode::Address);
2252         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2253         if (tkls != NULL && !tkls->empty()
2254             && (tkls->klass()->is_instance_klass() ||
2255               tkls->klass()->is_array_klass())
2256             && adr2->is_AddP()
2257            ) {
2258           int mirror_field = in_bytes(Klass::java_mirror_offset());
2259           if (tkls->offset() == mirror_field) {
2260             return adr2->in(AddPNode::Base);
2261           }
2262         }
2263       }
2264     }
2265   }
2266 
2267   return this;
2268 }
2269 
2270 
2271 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const2272 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2273   const Type *t = klass_value_common(phase);
2274   if (t == Type::TOP)
2275     return t;
2276 
2277   return t->make_narrowklass();
2278 }
2279 
2280 //------------------------------Identity---------------------------------------
2281 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2282 // Also feed through the klass in Allocate(...klass...)._klass.
Identity(PhaseGVN * phase)2283 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2284   Node *x = klass_identity_common(phase);
2285 
2286   const Type *t = phase->type( x );
2287   if( t == Type::TOP ) return x;
2288   if( t->isa_narrowklass()) return x;
2289   assert (!t->isa_narrowoop(), "no narrow oop here");
2290 
2291   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2292 }
2293 
2294 //------------------------------Value-----------------------------------------
Value(PhaseGVN * phase) const2295 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2296   // Either input is TOP ==> the result is TOP
2297   const Type *t1 = phase->type( in(MemNode::Memory) );
2298   if( t1 == Type::TOP ) return Type::TOP;
2299   Node *adr = in(MemNode::Address);
2300   const Type *t2 = phase->type( adr );
2301   if( t2 == Type::TOP ) return Type::TOP;
2302   const TypePtr *tp = t2->is_ptr();
2303   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2304   const TypeAryPtr *tap = tp->isa_aryptr();
2305   if( !tap ) return _type;
2306   return tap->size();
2307 }
2308 
2309 //-------------------------------Ideal---------------------------------------
2310 // Feed through the length in AllocateArray(...length...)._length.
Ideal(PhaseGVN * phase,bool can_reshape)2311 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2312   Node* p = MemNode::Ideal_common(phase, can_reshape);
2313   if (p)  return (p == NodeSentinel) ? NULL : p;
2314 
2315   // Take apart the address into an oop and and offset.
2316   // Return 'this' if we cannot.
2317   Node*    adr    = in(MemNode::Address);
2318   intptr_t offset = 0;
2319   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2320   if (base == NULL)     return NULL;
2321   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2322   if (tary == NULL)     return NULL;
2323 
2324   // We can fetch the length directly through an AllocateArrayNode.
2325   // This works even if the length is not constant (clone or newArray).
2326   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2327     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2328     if (alloc != NULL) {
2329       Node* allocated_length = alloc->Ideal_length();
2330       Node* len = alloc->make_ideal_length(tary, phase);
2331       if (allocated_length != len) {
2332         // New CastII improves on this.
2333         return len;
2334       }
2335     }
2336   }
2337 
2338   return NULL;
2339 }
2340 
2341 //------------------------------Identity---------------------------------------
2342 // Feed through the length in AllocateArray(...length...)._length.
Identity(PhaseGVN * phase)2343 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2344   Node* x = LoadINode::Identity(phase);
2345   if (x != this)  return x;
2346 
2347   // Take apart the address into an oop and and offset.
2348   // Return 'this' if we cannot.
2349   Node*    adr    = in(MemNode::Address);
2350   intptr_t offset = 0;
2351   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2352   if (base == NULL)     return this;
2353   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2354   if (tary == NULL)     return this;
2355 
2356   // We can fetch the length directly through an AllocateArrayNode.
2357   // This works even if the length is not constant (clone or newArray).
2358   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2359     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2360     if (alloc != NULL) {
2361       Node* allocated_length = alloc->Ideal_length();
2362       // Do not allow make_ideal_length to allocate a CastII node.
2363       Node* len = alloc->make_ideal_length(tary, phase, false);
2364       if (allocated_length == len) {
2365         // Return allocated_length only if it would not be improved by a CastII.
2366         return allocated_length;
2367       }
2368     }
2369   }
2370 
2371   return this;
2372 
2373 }
2374 
2375 //=============================================================================
2376 //---------------------------StoreNode::make-----------------------------------
2377 // Polymorphic factory method:
make(PhaseGVN & gvn,Node * ctl,Node * mem,Node * adr,const TypePtr * adr_type,Node * val,BasicType bt,MemOrd mo)2378 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2379   assert((mo == unordered || mo == release), "unexpected");
2380   Compile* C = gvn.C;
2381   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2382          ctl != NULL, "raw memory operations should have control edge");
2383 
2384   switch (bt) {
2385   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2386   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2387   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2388   case T_CHAR:
2389   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2390   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2391   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2392   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2393   case T_METADATA:
2394   case T_ADDRESS:
2395   case T_OBJECT:
2396 #ifdef _LP64
2397     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2398       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2399       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2400     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2401                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2402                 adr->bottom_type()->isa_rawptr())) {
2403       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2404       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2405     }
2406 #endif
2407     {
2408       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2409     }
2410   default:
2411     ShouldNotReachHere();
2412     return (StoreNode*)NULL;
2413   }
2414 }
2415 
make_atomic(Node * ctl,Node * mem,Node * adr,const TypePtr * adr_type,Node * val,MemOrd mo)2416 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2417   bool require_atomic = true;
2418   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2419 }
2420 
make_atomic(Node * ctl,Node * mem,Node * adr,const TypePtr * adr_type,Node * val,MemOrd mo)2421 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2422   bool require_atomic = true;
2423   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2424 }
2425 
2426 
2427 //--------------------------bottom_type----------------------------------------
bottom_type() const2428 const Type *StoreNode::bottom_type() const {
2429   return Type::MEMORY;
2430 }
2431 
2432 //------------------------------hash-------------------------------------------
hash() const2433 uint StoreNode::hash() const {
2434   // unroll addition of interesting fields
2435   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2436 
2437   // Since they are not commoned, do not hash them:
2438   return NO_HASH;
2439 }
2440 
2441 //------------------------------Ideal------------------------------------------
2442 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2443 // When a store immediately follows a relevant allocation/initialization,
2444 // try to capture it into the initialization, or hoist it above.
Ideal(PhaseGVN * phase,bool can_reshape)2445 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2446   Node* p = MemNode::Ideal_common(phase, can_reshape);
2447   if (p)  return (p == NodeSentinel) ? NULL : p;
2448 
2449   Node* mem     = in(MemNode::Memory);
2450   Node* address = in(MemNode::Address);
2451   // Back-to-back stores to same address?  Fold em up.  Generally
2452   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2453   // since they must follow each StoreP operation.  Redundant StoreCMs
2454   // are eliminated just before matching in final_graph_reshape.
2455   {
2456     Node* st = mem;
2457     // If Store 'st' has more than one use, we cannot fold 'st' away.
2458     // For example, 'st' might be the final state at a conditional
2459     // return.  Or, 'st' might be used by some node which is live at
2460     // the same time 'st' is live, which might be unschedulable.  So,
2461     // require exactly ONE user until such time as we clone 'mem' for
2462     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2463     // true).
2464     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2465       // Looking at a dead closed cycle of memory?
2466       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2467       assert(Opcode() == st->Opcode() ||
2468              st->Opcode() == Op_StoreVector ||
2469              Opcode() == Op_StoreVector ||
2470              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2471              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2472              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2473              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2474              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2475 
2476       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2477           st->as_Store()->memory_size() <= this->memory_size()) {
2478         Node* use = st->raw_out(0);
2479         phase->igvn_rehash_node_delayed(use);
2480         if (can_reshape) {
2481           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2482         } else {
2483           // It's OK to do this in the parser, since DU info is always accurate,
2484           // and the parser always refers to nodes via SafePointNode maps.
2485           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2486         }
2487         return this;
2488       }
2489       st = st->in(MemNode::Memory);
2490     }
2491   }
2492 
2493 
2494   // Capture an unaliased, unconditional, simple store into an initializer.
2495   // Or, if it is independent of the allocation, hoist it above the allocation.
2496   if (ReduceFieldZeroing && /*can_reshape &&*/
2497       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2498     InitializeNode* init = mem->in(0)->as_Initialize();
2499     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2500     if (offset > 0) {
2501       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2502       // If the InitializeNode captured me, it made a raw copy of me,
2503       // and I need to disappear.
2504       if (moved != NULL) {
2505         // %%% hack to ensure that Ideal returns a new node:
2506         mem = MergeMemNode::make(mem);
2507         return mem;             // fold me away
2508       }
2509     }
2510   }
2511 
2512   return NULL;                  // No further progress
2513 }
2514 
2515 //------------------------------Value-----------------------------------------
Value(PhaseGVN * phase) const2516 const Type* StoreNode::Value(PhaseGVN* phase) const {
2517   // Either input is TOP ==> the result is TOP
2518   const Type *t1 = phase->type( in(MemNode::Memory) );
2519   if( t1 == Type::TOP ) return Type::TOP;
2520   const Type *t2 = phase->type( in(MemNode::Address) );
2521   if( t2 == Type::TOP ) return Type::TOP;
2522   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2523   if( t3 == Type::TOP ) return Type::TOP;
2524   return Type::MEMORY;
2525 }
2526 
2527 //------------------------------Identity---------------------------------------
2528 // Remove redundant stores:
2529 //   Store(m, p, Load(m, p)) changes to m.
2530 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
Identity(PhaseGVN * phase)2531 Node* StoreNode::Identity(PhaseGVN* phase) {
2532   Node* mem = in(MemNode::Memory);
2533   Node* adr = in(MemNode::Address);
2534   Node* val = in(MemNode::ValueIn);
2535 
2536   Node* result = this;
2537 
2538   // Load then Store?  Then the Store is useless
2539   if (val->is_Load() &&
2540       val->in(MemNode::Address)->eqv_uncast(adr) &&
2541       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2542       val->as_Load()->store_Opcode() == Opcode()) {
2543     result = mem;
2544   }
2545 
2546   // Two stores in a row of the same value?
2547   if (result == this &&
2548       mem->is_Store() &&
2549       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2550       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2551       mem->Opcode() == Opcode()) {
2552     result = mem;
2553   }
2554 
2555   // Store of zero anywhere into a freshly-allocated object?
2556   // Then the store is useless.
2557   // (It must already have been captured by the InitializeNode.)
2558   if (result == this &&
2559       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2560     // a newly allocated object is already all-zeroes everywhere
2561     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2562       result = mem;
2563     }
2564 
2565     if (result == this) {
2566       // the store may also apply to zero-bits in an earlier object
2567       Node* prev_mem = find_previous_store(phase);
2568       // Steps (a), (b):  Walk past independent stores to find an exact match.
2569       if (prev_mem != NULL) {
2570         Node* prev_val = can_see_stored_value(prev_mem, phase);
2571         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2572           // prev_val and val might differ by a cast; it would be good
2573           // to keep the more informative of the two.
2574           result = mem;
2575         }
2576       }
2577     }
2578   }
2579 
2580   if (result != this && phase->is_IterGVN() != NULL) {
2581     MemBarNode* trailing = trailing_membar();
2582     if (trailing != NULL) {
2583 #ifdef ASSERT
2584       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2585       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2586 #endif
2587       PhaseIterGVN* igvn = phase->is_IterGVN();
2588       trailing->remove(igvn);
2589     }
2590   }
2591 
2592   return result;
2593 }
2594 
2595 //------------------------------match_edge-------------------------------------
2596 // Do we Match on this edge index or not?  Match only memory & value
match_edge(uint idx) const2597 uint StoreNode::match_edge(uint idx) const {
2598   return idx == MemNode::Address || idx == MemNode::ValueIn;
2599 }
2600 
2601 //------------------------------cmp--------------------------------------------
2602 // Do not common stores up together.  They generally have to be split
2603 // back up anyways, so do not bother.
cmp(const Node & n) const2604 uint StoreNode::cmp( const Node &n ) const {
2605   return (&n == this);          // Always fail except on self
2606 }
2607 
2608 //------------------------------Ideal_masked_input-----------------------------
2609 // Check for a useless mask before a partial-word store
2610 // (StoreB ... (AndI valIn conIa) )
2611 // If (conIa & mask == mask) this simplifies to
2612 // (StoreB ... (valIn) )
Ideal_masked_input(PhaseGVN * phase,uint mask)2613 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2614   Node *val = in(MemNode::ValueIn);
2615   if( val->Opcode() == Op_AndI ) {
2616     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2617     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2618       set_req(MemNode::ValueIn, val->in(1));
2619       return this;
2620     }
2621   }
2622   return NULL;
2623 }
2624 
2625 
2626 //------------------------------Ideal_sign_extended_input----------------------
2627 // Check for useless sign-extension before a partial-word store
2628 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2629 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2630 // (StoreB ... (valIn) )
Ideal_sign_extended_input(PhaseGVN * phase,int num_bits)2631 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2632   Node *val = in(MemNode::ValueIn);
2633   if( val->Opcode() == Op_RShiftI ) {
2634     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2635     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2636       Node *shl = val->in(1);
2637       if( shl->Opcode() == Op_LShiftI ) {
2638         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2639         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2640           set_req(MemNode::ValueIn, shl->in(1));
2641           return this;
2642         }
2643       }
2644     }
2645   }
2646   return NULL;
2647 }
2648 
2649 //------------------------------value_never_loaded-----------------------------------
2650 // Determine whether there are any possible loads of the value stored.
2651 // For simplicity, we actually check if there are any loads from the
2652 // address stored to, not just for loads of the value stored by this node.
2653 //
value_never_loaded(PhaseTransform * phase) const2654 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2655   Node *adr = in(Address);
2656   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2657   if (adr_oop == NULL)
2658     return false;
2659   if (!adr_oop->is_known_instance_field())
2660     return false; // if not a distinct instance, there may be aliases of the address
2661   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2662     Node *use = adr->fast_out(i);
2663     if (use->is_Load() || use->is_LoadStore()) {
2664       return false;
2665     }
2666   }
2667   return true;
2668 }
2669 
trailing_membar() const2670 MemBarNode* StoreNode::trailing_membar() const {
2671   if (is_release()) {
2672     MemBarNode* trailing_mb = NULL;
2673     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2674       Node* u = fast_out(i);
2675       if (u->is_MemBar()) {
2676         if (u->as_MemBar()->trailing_store()) {
2677           assert(u->Opcode() == Op_MemBarVolatile, "");
2678           assert(trailing_mb == NULL, "only one");
2679           trailing_mb = u->as_MemBar();
2680 #ifdef ASSERT
2681           Node* leading = u->as_MemBar()->leading_membar();
2682           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2683           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2684           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2685 #endif
2686         } else {
2687           assert(u->as_MemBar()->standalone(), "");
2688         }
2689       }
2690     }
2691     return trailing_mb;
2692   }
2693   return NULL;
2694 }
2695 
2696 
2697 //=============================================================================
2698 //------------------------------Ideal------------------------------------------
2699 // If the store is from an AND mask that leaves the low bits untouched, then
2700 // we can skip the AND operation.  If the store is from a sign-extension
2701 // (a left shift, then right shift) we can skip both.
Ideal(PhaseGVN * phase,bool can_reshape)2702 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2703   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2704   if( progress != NULL ) return progress;
2705 
2706   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2707   if( progress != NULL ) return progress;
2708 
2709   // Finally check the default case
2710   return StoreNode::Ideal(phase, can_reshape);
2711 }
2712 
2713 //=============================================================================
2714 //------------------------------Ideal------------------------------------------
2715 // If the store is from an AND mask that leaves the low bits untouched, then
2716 // we can skip the AND operation
Ideal(PhaseGVN * phase,bool can_reshape)2717 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2718   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2719   if( progress != NULL ) return progress;
2720 
2721   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2722   if( progress != NULL ) return progress;
2723 
2724   // Finally check the default case
2725   return StoreNode::Ideal(phase, can_reshape);
2726 }
2727 
2728 //=============================================================================
2729 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)2730 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2731   // No need to card mark when storing a null ptr
2732   Node* my_store = in(MemNode::OopStore);
2733   if (my_store->is_Store()) {
2734     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2735     if( t1 == TypePtr::NULL_PTR ) {
2736       return in(MemNode::Memory);
2737     }
2738   }
2739   return this;
2740 }
2741 
2742 //=============================================================================
2743 //------------------------------Ideal---------------------------------------
Ideal(PhaseGVN * phase,bool can_reshape)2744 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2745   Node* progress = StoreNode::Ideal(phase, can_reshape);
2746   if (progress != NULL) return progress;
2747 
2748   Node* my_store = in(MemNode::OopStore);
2749   if (my_store->is_MergeMem()) {
2750     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2751     set_req(MemNode::OopStore, mem);
2752     return this;
2753   }
2754 
2755   return NULL;
2756 }
2757 
2758 //------------------------------Value-----------------------------------------
Value(PhaseGVN * phase) const2759 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2760   // Either input is TOP ==> the result is TOP
2761   const Type *t = phase->type( in(MemNode::Memory) );
2762   if( t == Type::TOP ) return Type::TOP;
2763   t = phase->type( in(MemNode::Address) );
2764   if( t == Type::TOP ) return Type::TOP;
2765   t = phase->type( in(MemNode::ValueIn) );
2766   if( t == Type::TOP ) return Type::TOP;
2767   // If extra input is TOP ==> the result is TOP
2768   t = phase->type( in(MemNode::OopStore) );
2769   if( t == Type::TOP ) return Type::TOP;
2770 
2771   return StoreNode::Value( phase );
2772 }
2773 
2774 
2775 //=============================================================================
2776 //----------------------------------SCMemProjNode------------------------------
Value(PhaseGVN * phase) const2777 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2778 {
2779   return bottom_type();
2780 }
2781 
2782 //=============================================================================
2783 //----------------------------------LoadStoreNode------------------------------
LoadStoreNode(Node * c,Node * mem,Node * adr,Node * val,const TypePtr * at,const Type * rt,uint required)2784 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2785   : Node(required),
2786     _type(rt),
2787     _adr_type(at)
2788 {
2789   init_req(MemNode::Control, c  );
2790   init_req(MemNode::Memory , mem);
2791   init_req(MemNode::Address, adr);
2792   init_req(MemNode::ValueIn, val);
2793   init_class_id(Class_LoadStore);
2794 }
2795 
ideal_reg() const2796 uint LoadStoreNode::ideal_reg() const {
2797   return _type->ideal_reg();
2798 }
2799 
result_not_used() const2800 bool LoadStoreNode::result_not_used() const {
2801   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2802     Node *x = fast_out(i);
2803     if (x->Opcode() == Op_SCMemProj) continue;
2804     return false;
2805   }
2806   return true;
2807 }
2808 
trailing_membar() const2809 MemBarNode* LoadStoreNode::trailing_membar() const {
2810   MemBarNode* trailing = NULL;
2811   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2812     Node* u = fast_out(i);
2813     if (u->is_MemBar()) {
2814       if (u->as_MemBar()->trailing_load_store()) {
2815         assert(u->Opcode() == Op_MemBarAcquire, "");
2816         assert(trailing == NULL, "only one");
2817         trailing = u->as_MemBar();
2818 #ifdef ASSERT
2819         Node* leading = trailing->leading_membar();
2820         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2821         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2822         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2823 #endif
2824       } else {
2825         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2826       }
2827     }
2828   }
2829 
2830   return trailing;
2831 }
2832 
size_of() const2833 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2834 
2835 //=============================================================================
2836 //----------------------------------LoadStoreConditionalNode--------------------
LoadStoreConditionalNode(Node * c,Node * mem,Node * adr,Node * val,Node * ex)2837 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2838   init_req(ExpectedIn, ex );
2839 }
2840 
2841 //=============================================================================
2842 //-------------------------------adr_type--------------------------------------
adr_type() const2843 const TypePtr* ClearArrayNode::adr_type() const {
2844   Node *adr = in(3);
2845   if (adr == NULL)  return NULL; // node is dead
2846   return MemNode::calculate_adr_type(adr->bottom_type());
2847 }
2848 
2849 //------------------------------match_edge-------------------------------------
2850 // Do we Match on this edge index or not?  Do not match memory
match_edge(uint idx) const2851 uint ClearArrayNode::match_edge(uint idx) const {
2852   return idx > 1;
2853 }
2854 
2855 //------------------------------Identity---------------------------------------
2856 // Clearing a zero length array does nothing
Identity(PhaseGVN * phase)2857 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2858   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2859 }
2860 
2861 //------------------------------Idealize---------------------------------------
2862 // Clearing a short array is faster with stores
Ideal(PhaseGVN * phase,bool can_reshape)2863 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2864   // Already know this is a large node, do not try to ideal it
2865   if (!IdealizeClearArrayNode || _is_large) return NULL;
2866 
2867   const int unit = BytesPerLong;
2868   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2869   if (!t)  return NULL;
2870   if (!t->is_con())  return NULL;
2871   intptr_t raw_count = t->get_con();
2872   intptr_t size = raw_count;
2873   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2874   // Clearing nothing uses the Identity call.
2875   // Negative clears are possible on dead ClearArrays
2876   // (see jck test stmt114.stmt11402.val).
2877   if (size <= 0 || size % unit != 0)  return NULL;
2878   intptr_t count = size / unit;
2879   // Length too long; communicate this to matchers and assemblers.
2880   // Assemblers are responsible to produce fast hardware clears for it.
2881   if (size > InitArrayShortSize) {
2882     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2883   }
2884   Node *mem = in(1);
2885   if( phase->type(mem)==Type::TOP ) return NULL;
2886   Node *adr = in(3);
2887   const Type* at = phase->type(adr);
2888   if( at==Type::TOP ) return NULL;
2889   const TypePtr* atp = at->isa_ptr();
2890   // adjust atp to be the correct array element address type
2891   if (atp == NULL)  atp = TypePtr::BOTTOM;
2892   else              atp = atp->add_offset(Type::OffsetBot);
2893   // Get base for derived pointer purposes
2894   if( adr->Opcode() != Op_AddP ) Unimplemented();
2895   Node *base = adr->in(1);
2896 
2897   Node *zero = phase->makecon(TypeLong::ZERO);
2898   Node *off  = phase->MakeConX(BytesPerLong);
2899   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2900   count--;
2901   while( count-- ) {
2902     mem = phase->transform(mem);
2903     adr = phase->transform(new AddPNode(base,adr,off));
2904     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2905   }
2906   return mem;
2907 }
2908 
2909 //----------------------------step_through----------------------------------
2910 // Return allocation input memory edge if it is different instance
2911 // or itself if it is the one we are looking for.
step_through(Node ** np,uint instance_id,PhaseTransform * phase)2912 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2913   Node* n = *np;
2914   assert(n->is_ClearArray(), "sanity");
2915   intptr_t offset;
2916   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2917   // This method is called only before Allocate nodes are expanded
2918   // during macro nodes expansion. Before that ClearArray nodes are
2919   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2920   // Allocate nodes are expanded) which follows allocations.
2921   assert(alloc != NULL, "should have allocation");
2922   if (alloc->_idx == instance_id) {
2923     // Can not bypass initialization of the instance we are looking for.
2924     return false;
2925   }
2926   // Otherwise skip it.
2927   InitializeNode* init = alloc->initialization();
2928   if (init != NULL)
2929     *np = init->in(TypeFunc::Memory);
2930   else
2931     *np = alloc->in(TypeFunc::Memory);
2932   return true;
2933 }
2934 
2935 //----------------------------clear_memory-------------------------------------
2936 // Generate code to initialize object storage to zero.
clear_memory(Node * ctl,Node * mem,Node * dest,intptr_t start_offset,Node * end_offset,PhaseGVN * phase)2937 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2938                                    intptr_t start_offset,
2939                                    Node* end_offset,
2940                                    PhaseGVN* phase) {
2941   intptr_t offset = start_offset;
2942 
2943   int unit = BytesPerLong;
2944   if ((offset % unit) != 0) {
2945     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2946     adr = phase->transform(adr);
2947     const TypePtr* atp = TypeRawPtr::BOTTOM;
2948     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2949     mem = phase->transform(mem);
2950     offset += BytesPerInt;
2951   }
2952   assert((offset % unit) == 0, "");
2953 
2954   // Initialize the remaining stuff, if any, with a ClearArray.
2955   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2956 }
2957 
clear_memory(Node * ctl,Node * mem,Node * dest,Node * start_offset,Node * end_offset,PhaseGVN * phase)2958 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2959                                    Node* start_offset,
2960                                    Node* end_offset,
2961                                    PhaseGVN* phase) {
2962   if (start_offset == end_offset) {
2963     // nothing to do
2964     return mem;
2965   }
2966 
2967   int unit = BytesPerLong;
2968   Node* zbase = start_offset;
2969   Node* zend  = end_offset;
2970 
2971   // Scale to the unit required by the CPU:
2972   if (!Matcher::init_array_count_is_in_bytes) {
2973     Node* shift = phase->intcon(exact_log2(unit));
2974     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2975     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2976   }
2977 
2978   // Bulk clear double-words
2979   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2980   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2981   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2982   return phase->transform(mem);
2983 }
2984 
clear_memory(Node * ctl,Node * mem,Node * dest,intptr_t start_offset,intptr_t end_offset,PhaseGVN * phase)2985 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2986                                    intptr_t start_offset,
2987                                    intptr_t end_offset,
2988                                    PhaseGVN* phase) {
2989   if (start_offset == end_offset) {
2990     // nothing to do
2991     return mem;
2992   }
2993 
2994   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2995   intptr_t done_offset = end_offset;
2996   if ((done_offset % BytesPerLong) != 0) {
2997     done_offset -= BytesPerInt;
2998   }
2999   if (done_offset > start_offset) {
3000     mem = clear_memory(ctl, mem, dest,
3001                        start_offset, phase->MakeConX(done_offset), phase);
3002   }
3003   if (done_offset < end_offset) { // emit the final 32-bit store
3004     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3005     adr = phase->transform(adr);
3006     const TypePtr* atp = TypeRawPtr::BOTTOM;
3007     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3008     mem = phase->transform(mem);
3009     done_offset += BytesPerInt;
3010   }
3011   assert(done_offset == end_offset, "");
3012   return mem;
3013 }
3014 
3015 //=============================================================================
MemBarNode(Compile * C,int alias_idx,Node * precedent)3016 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3017   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3018     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3019 #ifdef ASSERT
3020   , _pair_idx(0)
3021 #endif
3022 {
3023   init_class_id(Class_MemBar);
3024   Node* top = C->top();
3025   init_req(TypeFunc::I_O,top);
3026   init_req(TypeFunc::FramePtr,top);
3027   init_req(TypeFunc::ReturnAdr,top);
3028   if (precedent != NULL)
3029     init_req(TypeFunc::Parms, precedent);
3030 }
3031 
3032 //------------------------------cmp--------------------------------------------
hash() const3033 uint MemBarNode::hash() const { return NO_HASH; }
cmp(const Node & n) const3034 uint MemBarNode::cmp( const Node &n ) const {
3035   return (&n == this);          // Always fail except on self
3036 }
3037 
3038 //------------------------------make-------------------------------------------
make(Compile * C,int opcode,int atp,Node * pn)3039 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3040   switch (opcode) {
3041   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3042   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3043   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3044   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3045   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3046   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3047   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3048   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3049   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3050   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3051   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3052   default: ShouldNotReachHere(); return NULL;
3053   }
3054 }
3055 
remove(PhaseIterGVN * igvn)3056 void MemBarNode::remove(PhaseIterGVN *igvn) {
3057   if (outcnt() != 2) {
3058     return;
3059   }
3060   if (trailing_store() || trailing_load_store()) {
3061     MemBarNode* leading = leading_membar();
3062     if (leading != NULL) {
3063       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3064       leading->remove(igvn);
3065     }
3066   }
3067   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3068   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3069 }
3070 
3071 //------------------------------Ideal------------------------------------------
3072 // Return a node which is more "ideal" than the current node.  Strip out
3073 // control copies
Ideal(PhaseGVN * phase,bool can_reshape)3074 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3075   if (remove_dead_region(phase, can_reshape)) return this;
3076   // Don't bother trying to transform a dead node
3077   if (in(0) && in(0)->is_top()) {
3078     return NULL;
3079   }
3080 
3081 #if INCLUDE_ZGC
3082   if (UseZGC) {
3083     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3084       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3085       set_req(MemBarNode::Precedent, load_node);
3086       return this;
3087     }
3088   }
3089 #endif
3090 
3091   bool progress = false;
3092   // Eliminate volatile MemBars for scalar replaced objects.
3093   if (can_reshape && req() == (Precedent+1)) {
3094     bool eliminate = false;
3095     int opc = Opcode();
3096     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3097       // Volatile field loads and stores.
3098       Node* my_mem = in(MemBarNode::Precedent);
3099       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3100       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3101         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3102         // replace this Precedent (decodeN) with the Load instead.
3103         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3104           Node* load_node = my_mem->in(1);
3105           set_req(MemBarNode::Precedent, load_node);
3106           phase->is_IterGVN()->_worklist.push(my_mem);
3107           my_mem = load_node;
3108         } else {
3109           assert(my_mem->unique_out() == this, "sanity");
3110           del_req(Precedent);
3111           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3112           my_mem = NULL;
3113         }
3114         progress = true;
3115       }
3116       if (my_mem != NULL && my_mem->is_Mem()) {
3117         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3118         // Check for scalar replaced object reference.
3119         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3120             t_oop->offset() != Type::OffsetBot &&
3121             t_oop->offset() != Type::OffsetTop) {
3122           eliminate = true;
3123         }
3124       }
3125     } else if (opc == Op_MemBarRelease) {
3126       // Final field stores.
3127       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3128       if ((alloc != NULL) && alloc->is_Allocate() &&
3129           alloc->as_Allocate()->does_not_escape_thread()) {
3130         // The allocated object does not escape.
3131         eliminate = true;
3132       }
3133     }
3134     if (eliminate) {
3135       // Replace MemBar projections by its inputs.
3136       PhaseIterGVN* igvn = phase->is_IterGVN();
3137       remove(igvn);
3138       // Must return either the original node (now dead) or a new node
3139       // (Do not return a top here, since that would break the uniqueness of top.)
3140       return new ConINode(TypeInt::ZERO);
3141     }
3142   }
3143   return progress ? this : NULL;
3144 }
3145 
3146 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const3147 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3148   if( !in(0) ) return Type::TOP;
3149   if( phase->type(in(0)) == Type::TOP )
3150     return Type::TOP;
3151   return TypeTuple::MEMBAR;
3152 }
3153 
3154 //------------------------------match------------------------------------------
3155 // Construct projections for memory.
match(const ProjNode * proj,const Matcher * m)3156 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3157   switch (proj->_con) {
3158   case TypeFunc::Control:
3159   case TypeFunc::Memory:
3160     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3161   }
3162   ShouldNotReachHere();
3163   return NULL;
3164 }
3165 
set_store_pair(MemBarNode * leading,MemBarNode * trailing)3166 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3167   trailing->_kind = TrailingStore;
3168   leading->_kind = LeadingStore;
3169 #ifdef ASSERT
3170   trailing->_pair_idx = leading->_idx;
3171   leading->_pair_idx = leading->_idx;
3172 #endif
3173 }
3174 
set_load_store_pair(MemBarNode * leading,MemBarNode * trailing)3175 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3176   trailing->_kind = TrailingLoadStore;
3177   leading->_kind = LeadingLoadStore;
3178 #ifdef ASSERT
3179   trailing->_pair_idx = leading->_idx;
3180   leading->_pair_idx = leading->_idx;
3181 #endif
3182 }
3183 
trailing_membar() const3184 MemBarNode* MemBarNode::trailing_membar() const {
3185   ResourceMark rm;
3186   Node* trailing = (Node*)this;
3187   VectorSet seen(Thread::current()->resource_area());
3188   Node_Stack multis(0);
3189   do {
3190     Node* c = trailing;
3191     uint i = 0;
3192     do {
3193       trailing = NULL;
3194       for (; i < c->outcnt(); i++) {
3195         Node* next = c->raw_out(i);
3196         if (next != c && next->is_CFG()) {
3197           if (c->is_MultiBranch()) {
3198             if (multis.node() == c) {
3199               multis.set_index(i+1);
3200             } else {
3201               multis.push(c, i+1);
3202             }
3203           }
3204           trailing = next;
3205           break;
3206         }
3207       }
3208       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3209         break;
3210       }
3211       while (multis.size() > 0) {
3212         c = multis.node();
3213         i = multis.index();
3214         if (i < c->req()) {
3215           break;
3216         }
3217         multis.pop();
3218       }
3219     } while (multis.size() > 0);
3220   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3221 
3222   MemBarNode* mb = trailing->as_MemBar();
3223   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3224          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3225   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3226   return mb;
3227 }
3228 
leading_membar() const3229 MemBarNode* MemBarNode::leading_membar() const {
3230   ResourceMark rm;
3231   VectorSet seen(Thread::current()->resource_area());
3232   Node_Stack regions(0);
3233   Node* leading = in(0);
3234   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3235     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3236       leading = NULL;
3237       while (regions.size() > 0 && leading == NULL) {
3238         Node* r = regions.node();
3239         uint i = regions.index();
3240         if (i < r->req()) {
3241           leading = r->in(i);
3242           regions.set_index(i+1);
3243         } else {
3244           regions.pop();
3245         }
3246       }
3247       if (leading == NULL) {
3248         assert(regions.size() == 0, "all paths should have been tried");
3249         return NULL;
3250       }
3251     }
3252     if (leading->is_Region()) {
3253       regions.push(leading, 2);
3254       leading = leading->in(1);
3255     } else {
3256       leading = leading->in(0);
3257     }
3258   }
3259 #ifdef ASSERT
3260   Unique_Node_List wq;
3261   wq.push((Node*)this);
3262   uint found = 0;
3263   for (uint i = 0; i < wq.size(); i++) {
3264     Node* n = wq.at(i);
3265     if (n->is_Region()) {
3266       for (uint j = 1; j < n->req(); j++) {
3267         Node* in = n->in(j);
3268         if (in != NULL && !in->is_top()) {
3269           wq.push(in);
3270         }
3271       }
3272     } else {
3273       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3274         assert(n == leading, "consistency check failed");
3275         found++;
3276       } else {
3277         Node* in = n->in(0);
3278         if (in != NULL && !in->is_top()) {
3279           wq.push(in);
3280         }
3281       }
3282     }
3283   }
3284   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3285 #endif
3286   if (leading == NULL) {
3287     return NULL;
3288   }
3289   MemBarNode* mb = leading->as_MemBar();
3290   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3291          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3292   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3293   return mb;
3294 }
3295 
3296 //===========================InitializeNode====================================
3297 // SUMMARY:
3298 // This node acts as a memory barrier on raw memory, after some raw stores.
3299 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3300 // The Initialize can 'capture' suitably constrained stores as raw inits.
3301 // It can coalesce related raw stores into larger units (called 'tiles').
3302 // It can avoid zeroing new storage for memory units which have raw inits.
3303 // At macro-expansion, it is marked 'complete', and does not optimize further.
3304 //
3305 // EXAMPLE:
3306 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3307 //   ctl = incoming control; mem* = incoming memory
3308 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3309 // First allocate uninitialized memory and fill in the header:
3310 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3311 //   ctl := alloc.Control; mem* := alloc.Memory*
3312 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3313 // Then initialize to zero the non-header parts of the raw memory block:
3314 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3315 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3316 // After the initialize node executes, the object is ready for service:
3317 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3318 // Suppose its body is immediately initialized as {1,2}:
3319 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3320 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3321 //   mem.SLICE(#short[*]) := store2
3322 //
3323 // DETAILS:
3324 // An InitializeNode collects and isolates object initialization after
3325 // an AllocateNode and before the next possible safepoint.  As a
3326 // memory barrier (MemBarNode), it keeps critical stores from drifting
3327 // down past any safepoint or any publication of the allocation.
3328 // Before this barrier, a newly-allocated object may have uninitialized bits.
3329 // After this barrier, it may be treated as a real oop, and GC is allowed.
3330 //
3331 // The semantics of the InitializeNode include an implicit zeroing of
3332 // the new object from object header to the end of the object.
3333 // (The object header and end are determined by the AllocateNode.)
3334 //
3335 // Certain stores may be added as direct inputs to the InitializeNode.
3336 // These stores must update raw memory, and they must be to addresses
3337 // derived from the raw address produced by AllocateNode, and with
3338 // a constant offset.  They must be ordered by increasing offset.
3339 // The first one is at in(RawStores), the last at in(req()-1).
3340 // Unlike most memory operations, they are not linked in a chain,
3341 // but are displayed in parallel as users of the rawmem output of
3342 // the allocation.
3343 //
3344 // (See comments in InitializeNode::capture_store, which continue
3345 // the example given above.)
3346 //
3347 // When the associated Allocate is macro-expanded, the InitializeNode
3348 // may be rewritten to optimize collected stores.  A ClearArrayNode
3349 // may also be created at that point to represent any required zeroing.
3350 // The InitializeNode is then marked 'complete', prohibiting further
3351 // capturing of nearby memory operations.
3352 //
3353 // During macro-expansion, all captured initializations which store
3354 // constant values of 32 bits or smaller are coalesced (if advantageous)
3355 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3356 // initialized in fewer memory operations.  Memory words which are
3357 // covered by neither tiles nor non-constant stores are pre-zeroed
3358 // by explicit stores of zero.  (The code shape happens to do all
3359 // zeroing first, then all other stores, with both sequences occurring
3360 // in order of ascending offsets.)
3361 //
3362 // Alternatively, code may be inserted between an AllocateNode and its
3363 // InitializeNode, to perform arbitrary initialization of the new object.
3364 // E.g., the object copying intrinsics insert complex data transfers here.
3365 // The initialization must then be marked as 'complete' disable the
3366 // built-in zeroing semantics and the collection of initializing stores.
3367 //
3368 // While an InitializeNode is incomplete, reads from the memory state
3369 // produced by it are optimizable if they match the control edge and
3370 // new oop address associated with the allocation/initialization.
3371 // They return a stored value (if the offset matches) or else zero.
3372 // A write to the memory state, if it matches control and address,
3373 // and if it is to a constant offset, may be 'captured' by the
3374 // InitializeNode.  It is cloned as a raw memory operation and rewired
3375 // inside the initialization, to the raw oop produced by the allocation.
3376 // Operations on addresses which are provably distinct (e.g., to
3377 // other AllocateNodes) are allowed to bypass the initialization.
3378 //
3379 // The effect of all this is to consolidate object initialization
3380 // (both arrays and non-arrays, both piecewise and bulk) into a
3381 // single location, where it can be optimized as a unit.
3382 //
3383 // Only stores with an offset less than TrackedInitializationLimit words
3384 // will be considered for capture by an InitializeNode.  This puts a
3385 // reasonable limit on the complexity of optimized initializations.
3386 
3387 //---------------------------InitializeNode------------------------------------
InitializeNode(Compile * C,int adr_type,Node * rawoop)3388 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3389   : MemBarNode(C, adr_type, rawoop),
3390     _is_complete(Incomplete), _does_not_escape(false)
3391 {
3392   init_class_id(Class_Initialize);
3393 
3394   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3395   assert(in(RawAddress) == rawoop, "proper init");
3396   // Note:  allocation() can be NULL, for secondary initialization barriers
3397 }
3398 
3399 // Since this node is not matched, it will be processed by the
3400 // register allocator.  Declare that there are no constraints
3401 // on the allocation of the RawAddress edge.
in_RegMask(uint idx) const3402 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3403   // This edge should be set to top, by the set_complete.  But be conservative.
3404   if (idx == InitializeNode::RawAddress)
3405     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3406   return RegMask::Empty;
3407 }
3408 
memory(uint alias_idx)3409 Node* InitializeNode::memory(uint alias_idx) {
3410   Node* mem = in(Memory);
3411   if (mem->is_MergeMem()) {
3412     return mem->as_MergeMem()->memory_at(alias_idx);
3413   } else {
3414     // incoming raw memory is not split
3415     return mem;
3416   }
3417 }
3418 
is_non_zero()3419 bool InitializeNode::is_non_zero() {
3420   if (is_complete())  return false;
3421   remove_extra_zeroes();
3422   return (req() > RawStores);
3423 }
3424 
set_complete(PhaseGVN * phase)3425 void InitializeNode::set_complete(PhaseGVN* phase) {
3426   assert(!is_complete(), "caller responsibility");
3427   _is_complete = Complete;
3428 
3429   // After this node is complete, it contains a bunch of
3430   // raw-memory initializations.  There is no need for
3431   // it to have anything to do with non-raw memory effects.
3432   // Therefore, tell all non-raw users to re-optimize themselves,
3433   // after skipping the memory effects of this initialization.
3434   PhaseIterGVN* igvn = phase->is_IterGVN();
3435   if (igvn)  igvn->add_users_to_worklist(this);
3436 }
3437 
3438 // convenience function
3439 // return false if the init contains any stores already
maybe_set_complete(PhaseGVN * phase)3440 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3441   InitializeNode* init = initialization();
3442   if (init == NULL || init->is_complete())  return false;
3443   init->remove_extra_zeroes();
3444   // for now, if this allocation has already collected any inits, bail:
3445   if (init->is_non_zero())  return false;
3446   init->set_complete(phase);
3447   return true;
3448 }
3449 
remove_extra_zeroes()3450 void InitializeNode::remove_extra_zeroes() {
3451   if (req() == RawStores)  return;
3452   Node* zmem = zero_memory();
3453   uint fill = RawStores;
3454   for (uint i = fill; i < req(); i++) {
3455     Node* n = in(i);
3456     if (n->is_top() || n == zmem)  continue;  // skip
3457     if (fill < i)  set_req(fill, n);          // compact
3458     ++fill;
3459   }
3460   // delete any empty spaces created:
3461   while (fill < req()) {
3462     del_req(fill);
3463   }
3464 }
3465 
3466 // Helper for remembering which stores go with which offsets.
get_store_offset(Node * st,PhaseTransform * phase)3467 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3468   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3469   intptr_t offset = -1;
3470   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3471                                                phase, offset);
3472   if (base == NULL)     return -1;  // something is dead,
3473   if (offset < 0)       return -1;  //        dead, dead
3474   return offset;
3475 }
3476 
3477 // Helper for proving that an initialization expression is
3478 // "simple enough" to be folded into an object initialization.
3479 // Attempts to prove that a store's initial value 'n' can be captured
3480 // within the initialization without creating a vicious cycle, such as:
3481 //     { Foo p = new Foo(); p.next = p; }
3482 // True for constants and parameters and small combinations thereof.
detect_init_independence(Node * n,int & count)3483 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3484   if (n == NULL)      return true;   // (can this really happen?)
3485   if (n->is_Proj())   n = n->in(0);
3486   if (n == this)      return false;  // found a cycle
3487   if (n->is_Con())    return true;
3488   if (n->is_Start())  return true;   // params, etc., are OK
3489   if (n->is_Root())   return true;   // even better
3490 
3491   Node* ctl = n->in(0);
3492   if (ctl != NULL && !ctl->is_top()) {
3493     if (ctl->is_Proj())  ctl = ctl->in(0);
3494     if (ctl == this)  return false;
3495 
3496     // If we already know that the enclosing memory op is pinned right after
3497     // the init, then any control flow that the store has picked up
3498     // must have preceded the init, or else be equal to the init.
3499     // Even after loop optimizations (which might change control edges)
3500     // a store is never pinned *before* the availability of its inputs.
3501     if (!MemNode::all_controls_dominate(n, this))
3502       return false;                  // failed to prove a good control
3503   }
3504 
3505   // Check data edges for possible dependencies on 'this'.
3506   if ((count += 1) > 20)  return false;  // complexity limit
3507   for (uint i = 1; i < n->req(); i++) {
3508     Node* m = n->in(i);
3509     if (m == NULL || m == n || m->is_top())  continue;
3510     uint first_i = n->find_edge(m);
3511     if (i != first_i)  continue;  // process duplicate edge just once
3512     if (!detect_init_independence(m, count)) {
3513       return false;
3514     }
3515   }
3516 
3517   return true;
3518 }
3519 
3520 // Here are all the checks a Store must pass before it can be moved into
3521 // an initialization.  Returns zero if a check fails.
3522 // On success, returns the (constant) offset to which the store applies,
3523 // within the initialized memory.
can_capture_store(StoreNode * st,PhaseTransform * phase,bool can_reshape)3524 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3525   const int FAIL = 0;
3526   if (st->is_unaligned_access()) {
3527     return FAIL;
3528   }
3529   if (st->req() != MemNode::ValueIn + 1)
3530     return FAIL;                // an inscrutable StoreNode (card mark?)
3531   Node* ctl = st->in(MemNode::Control);
3532   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3533     return FAIL;                // must be unconditional after the initialization
3534   Node* mem = st->in(MemNode::Memory);
3535   if (!(mem->is_Proj() && mem->in(0) == this))
3536     return FAIL;                // must not be preceded by other stores
3537   Node* adr = st->in(MemNode::Address);
3538   intptr_t offset;
3539   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3540   if (alloc == NULL)
3541     return FAIL;                // inscrutable address
3542   if (alloc != allocation())
3543     return FAIL;                // wrong allocation!  (store needs to float up)
3544   Node* val = st->in(MemNode::ValueIn);
3545   int complexity_count = 0;
3546   if (!detect_init_independence(val, complexity_count))
3547     return FAIL;                // stored value must be 'simple enough'
3548 
3549   // The Store can be captured only if nothing after the allocation
3550   // and before the Store is using the memory location that the store
3551   // overwrites.
3552   bool failed = false;
3553   // If is_complete_with_arraycopy() is true the shape of the graph is
3554   // well defined and is safe so no need for extra checks.
3555   if (!is_complete_with_arraycopy()) {
3556     // We are going to look at each use of the memory state following
3557     // the allocation to make sure nothing reads the memory that the
3558     // Store writes.
3559     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3560     int alias_idx = phase->C->get_alias_index(t_adr);
3561     ResourceMark rm;
3562     Unique_Node_List mems;
3563     mems.push(mem);
3564     Node* unique_merge = NULL;
3565     for (uint next = 0; next < mems.size(); ++next) {
3566       Node *m  = mems.at(next);
3567       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3568         Node *n = m->fast_out(j);
3569         if (n->outcnt() == 0) {
3570           continue;
3571         }
3572         if (n == st) {
3573           continue;
3574         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3575           // If the control of this use is different from the control
3576           // of the Store which is right after the InitializeNode then
3577           // this node cannot be between the InitializeNode and the
3578           // Store.
3579           continue;
3580         } else if (n->is_MergeMem()) {
3581           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3582             // We can hit a MergeMemNode (that will likely go away
3583             // later) that is a direct use of the memory state
3584             // following the InitializeNode on the same slice as the
3585             // store node that we'd like to capture. We need to check
3586             // the uses of the MergeMemNode.
3587             mems.push(n);
3588           }
3589         } else if (n->is_Mem()) {
3590           Node* other_adr = n->in(MemNode::Address);
3591           if (other_adr == adr) {
3592             failed = true;
3593             break;
3594           } else {
3595             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3596             if (other_t_adr != NULL) {
3597               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3598               if (other_alias_idx == alias_idx) {
3599                 // A load from the same memory slice as the store right
3600                 // after the InitializeNode. We check the control of the
3601                 // object/array that is loaded from. If it's the same as
3602                 // the store control then we cannot capture the store.
3603                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3604                 Node* base = other_adr;
3605                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3606                 base = base->in(AddPNode::Base);
3607                 if (base != NULL) {
3608                   base = base->uncast();
3609                   if (base->is_Proj() && base->in(0) == alloc) {
3610                     failed = true;
3611                     break;
3612                   }
3613                 }
3614               }
3615             }
3616           }
3617         } else {
3618           failed = true;
3619           break;
3620         }
3621       }
3622     }
3623   }
3624   if (failed) {
3625     if (!can_reshape) {
3626       // We decided we couldn't capture the store during parsing. We
3627       // should try again during the next IGVN once the graph is
3628       // cleaner.
3629       phase->C->record_for_igvn(st);
3630     }
3631     return FAIL;
3632   }
3633 
3634   return offset;                // success
3635 }
3636 
3637 // Find the captured store in(i) which corresponds to the range
3638 // [start..start+size) in the initialized object.
3639 // If there is one, return its index i.  If there isn't, return the
3640 // negative of the index where it should be inserted.
3641 // Return 0 if the queried range overlaps an initialization boundary
3642 // or if dead code is encountered.
3643 // If size_in_bytes is zero, do not bother with overlap checks.
captured_store_insertion_point(intptr_t start,int size_in_bytes,PhaseTransform * phase)3644 int InitializeNode::captured_store_insertion_point(intptr_t start,
3645                                                    int size_in_bytes,
3646                                                    PhaseTransform* phase) {
3647   const int FAIL = 0, MAX_STORE = BytesPerLong;
3648 
3649   if (is_complete())
3650     return FAIL;                // arraycopy got here first; punt
3651 
3652   assert(allocation() != NULL, "must be present");
3653 
3654   // no negatives, no header fields:
3655   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3656 
3657   // after a certain size, we bail out on tracking all the stores:
3658   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3659   if (start >= ti_limit)  return FAIL;
3660 
3661   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3662     if (i >= limit)  return -(int)i; // not found; here is where to put it
3663 
3664     Node*    st     = in(i);
3665     intptr_t st_off = get_store_offset(st, phase);
3666     if (st_off < 0) {
3667       if (st != zero_memory()) {
3668         return FAIL;            // bail out if there is dead garbage
3669       }
3670     } else if (st_off > start) {
3671       // ...we are done, since stores are ordered
3672       if (st_off < start + size_in_bytes) {
3673         return FAIL;            // the next store overlaps
3674       }
3675       return -(int)i;           // not found; here is where to put it
3676     } else if (st_off < start) {
3677       if (size_in_bytes != 0 &&
3678           start < st_off + MAX_STORE &&
3679           start < st_off + st->as_Store()->memory_size()) {
3680         return FAIL;            // the previous store overlaps
3681       }
3682     } else {
3683       if (size_in_bytes != 0 &&
3684           st->as_Store()->memory_size() != size_in_bytes) {
3685         return FAIL;            // mismatched store size
3686       }
3687       return i;
3688     }
3689 
3690     ++i;
3691   }
3692 }
3693 
3694 // Look for a captured store which initializes at the offset 'start'
3695 // with the given size.  If there is no such store, and no other
3696 // initialization interferes, then return zero_memory (the memory
3697 // projection of the AllocateNode).
find_captured_store(intptr_t start,int size_in_bytes,PhaseTransform * phase)3698 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3699                                           PhaseTransform* phase) {
3700   assert(stores_are_sane(phase), "");
3701   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3702   if (i == 0) {
3703     return NULL;                // something is dead
3704   } else if (i < 0) {
3705     return zero_memory();       // just primordial zero bits here
3706   } else {
3707     Node* st = in(i);           // here is the store at this position
3708     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3709     return st;
3710   }
3711 }
3712 
3713 // Create, as a raw pointer, an address within my new object at 'offset'.
make_raw_address(intptr_t offset,PhaseTransform * phase)3714 Node* InitializeNode::make_raw_address(intptr_t offset,
3715                                        PhaseTransform* phase) {
3716   Node* addr = in(RawAddress);
3717   if (offset != 0) {
3718     Compile* C = phase->C;
3719     addr = phase->transform( new AddPNode(C->top(), addr,
3720                                                  phase->MakeConX(offset)) );
3721   }
3722   return addr;
3723 }
3724 
3725 // Clone the given store, converting it into a raw store
3726 // initializing a field or element of my new object.
3727 // Caller is responsible for retiring the original store,
3728 // with subsume_node or the like.
3729 //
3730 // From the example above InitializeNode::InitializeNode,
3731 // here are the old stores to be captured:
3732 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3733 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3734 //
3735 // Here is the changed code; note the extra edges on init:
3736 //   alloc = (Allocate ...)
3737 //   rawoop = alloc.RawAddress
3738 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3739 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3740 //   init = (Initialize alloc.Control alloc.Memory rawoop
3741 //                      rawstore1 rawstore2)
3742 //
capture_store(StoreNode * st,intptr_t start,PhaseTransform * phase,bool can_reshape)3743 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3744                                     PhaseTransform* phase, bool can_reshape) {
3745   assert(stores_are_sane(phase), "");
3746 
3747   if (start < 0)  return NULL;
3748   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3749 
3750   Compile* C = phase->C;
3751   int size_in_bytes = st->memory_size();
3752   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3753   if (i == 0)  return NULL;     // bail out
3754   Node* prev_mem = NULL;        // raw memory for the captured store
3755   if (i > 0) {
3756     prev_mem = in(i);           // there is a pre-existing store under this one
3757     set_req(i, C->top());       // temporarily disconnect it
3758     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3759   } else {
3760     i = -i;                     // no pre-existing store
3761     prev_mem = zero_memory();   // a slice of the newly allocated object
3762     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3763       set_req(--i, C->top());   // reuse this edge; it has been folded away
3764     else
3765       ins_req(i, C->top());     // build a new edge
3766   }
3767   Node* new_st = st->clone();
3768   new_st->set_req(MemNode::Control, in(Control));
3769   new_st->set_req(MemNode::Memory,  prev_mem);
3770   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3771   new_st = phase->transform(new_st);
3772 
3773   // At this point, new_st might have swallowed a pre-existing store
3774   // at the same offset, or perhaps new_st might have disappeared,
3775   // if it redundantly stored the same value (or zero to fresh memory).
3776 
3777   // In any case, wire it in:
3778   phase->igvn_rehash_node_delayed(this);
3779   set_req(i, new_st);
3780 
3781   // The caller may now kill the old guy.
3782   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3783   assert(check_st == new_st || check_st == NULL, "must be findable");
3784   assert(!is_complete(), "");
3785   return new_st;
3786 }
3787 
store_constant(jlong * tiles,int num_tiles,intptr_t st_off,int st_size,jlong con)3788 static bool store_constant(jlong* tiles, int num_tiles,
3789                            intptr_t st_off, int st_size,
3790                            jlong con) {
3791   if ((st_off & (st_size-1)) != 0)
3792     return false;               // strange store offset (assume size==2**N)
3793   address addr = (address)tiles + st_off;
3794   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3795   switch (st_size) {
3796   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3797   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3798   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3799   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3800   default: return false;        // strange store size (detect size!=2**N here)
3801   }
3802   return true;                  // return success to caller
3803 }
3804 
3805 // Coalesce subword constants into int constants and possibly
3806 // into long constants.  The goal, if the CPU permits,
3807 // is to initialize the object with a small number of 64-bit tiles.
3808 // Also, convert floating-point constants to bit patterns.
3809 // Non-constants are not relevant to this pass.
3810 //
3811 // In terms of the running example on InitializeNode::InitializeNode
3812 // and InitializeNode::capture_store, here is the transformation
3813 // of rawstore1 and rawstore2 into rawstore12:
3814 //   alloc = (Allocate ...)
3815 //   rawoop = alloc.RawAddress
3816 //   tile12 = 0x00010002
3817 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3818 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3819 //
3820 void
coalesce_subword_stores(intptr_t header_size,Node * size_in_bytes,PhaseGVN * phase)3821 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3822                                         Node* size_in_bytes,
3823                                         PhaseGVN* phase) {
3824   Compile* C = phase->C;
3825 
3826   assert(stores_are_sane(phase), "");
3827   // Note:  After this pass, they are not completely sane,
3828   // since there may be some overlaps.
3829 
3830   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3831 
3832   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3833   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3834   size_limit = MIN2(size_limit, ti_limit);
3835   size_limit = align_up(size_limit, BytesPerLong);
3836   int num_tiles = size_limit / BytesPerLong;
3837 
3838   // allocate space for the tile map:
3839   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3840   jlong  tiles_buf[small_len];
3841   Node*  nodes_buf[small_len];
3842   jlong  inits_buf[small_len];
3843   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3844                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3845   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3846                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3847   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3848                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3849   // tiles: exact bitwise model of all primitive constants
3850   // nodes: last constant-storing node subsumed into the tiles model
3851   // inits: which bytes (in each tile) are touched by any initializations
3852 
3853   //// Pass A: Fill in the tile model with any relevant stores.
3854 
3855   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3856   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3857   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3858   Node* zmem = zero_memory(); // initially zero memory state
3859   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3860     Node* st = in(i);
3861     intptr_t st_off = get_store_offset(st, phase);
3862 
3863     // Figure out the store's offset and constant value:
3864     if (st_off < header_size)             continue; //skip (ignore header)
3865     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3866     int st_size = st->as_Store()->memory_size();
3867     if (st_off + st_size > size_limit)    break;
3868 
3869     // Record which bytes are touched, whether by constant or not.
3870     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3871       continue;                 // skip (strange store size)
3872 
3873     const Type* val = phase->type(st->in(MemNode::ValueIn));
3874     if (!val->singleton())                continue; //skip (non-con store)
3875     BasicType type = val->basic_type();
3876 
3877     jlong con = 0;
3878     switch (type) {
3879     case T_INT:    con = val->is_int()->get_con();  break;
3880     case T_LONG:   con = val->is_long()->get_con(); break;
3881     case T_FLOAT:  con = jint_cast(val->getf());    break;
3882     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3883     default:                              continue; //skip (odd store type)
3884     }
3885 
3886     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3887         st->Opcode() == Op_StoreL) {
3888       continue;                 // This StoreL is already optimal.
3889     }
3890 
3891     // Store down the constant.
3892     store_constant(tiles, num_tiles, st_off, st_size, con);
3893 
3894     intptr_t j = st_off >> LogBytesPerLong;
3895 
3896     if (type == T_INT && st_size == BytesPerInt
3897         && (st_off & BytesPerInt) == BytesPerInt) {
3898       jlong lcon = tiles[j];
3899       if (!Matcher::isSimpleConstant64(lcon) &&
3900           st->Opcode() == Op_StoreI) {
3901         // This StoreI is already optimal by itself.
3902         jint* intcon = (jint*) &tiles[j];
3903         intcon[1] = 0;  // undo the store_constant()
3904 
3905         // If the previous store is also optimal by itself, back up and
3906         // undo the action of the previous loop iteration... if we can.
3907         // But if we can't, just let the previous half take care of itself.
3908         st = nodes[j];
3909         st_off -= BytesPerInt;
3910         con = intcon[0];
3911         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3912           assert(st_off >= header_size, "still ignoring header");
3913           assert(get_store_offset(st, phase) == st_off, "must be");
3914           assert(in(i-1) == zmem, "must be");
3915           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3916           assert(con == tcon->is_int()->get_con(), "must be");
3917           // Undo the effects of the previous loop trip, which swallowed st:
3918           intcon[0] = 0;        // undo store_constant()
3919           set_req(i-1, st);     // undo set_req(i, zmem)
3920           nodes[j] = NULL;      // undo nodes[j] = st
3921           --old_subword;        // undo ++old_subword
3922         }
3923         continue;               // This StoreI is already optimal.
3924       }
3925     }
3926 
3927     // This store is not needed.
3928     set_req(i, zmem);
3929     nodes[j] = st;              // record for the moment
3930     if (st_size < BytesPerLong) // something has changed
3931           ++old_subword;        // includes int/float, but who's counting...
3932     else  ++old_long;
3933   }
3934 
3935   if ((old_subword + old_long) == 0)
3936     return;                     // nothing more to do
3937 
3938   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3939   // Be sure to insert them before overlapping non-constant stores.
3940   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3941   for (int j = 0; j < num_tiles; j++) {
3942     jlong con  = tiles[j];
3943     jlong init = inits[j];
3944     if (con == 0)  continue;
3945     jint con0,  con1;           // split the constant, address-wise
3946     jint init0, init1;          // split the init map, address-wise
3947     { union { jlong con; jint intcon[2]; } u;
3948       u.con = con;
3949       con0  = u.intcon[0];
3950       con1  = u.intcon[1];
3951       u.con = init;
3952       init0 = u.intcon[0];
3953       init1 = u.intcon[1];
3954     }
3955 
3956     Node* old = nodes[j];
3957     assert(old != NULL, "need the prior store");
3958     intptr_t offset = (j * BytesPerLong);
3959 
3960     bool split = !Matcher::isSimpleConstant64(con);
3961 
3962     if (offset < header_size) {
3963       assert(offset + BytesPerInt >= header_size, "second int counts");
3964       assert(*(jint*)&tiles[j] == 0, "junk in header");
3965       split = true;             // only the second word counts
3966       // Example:  int a[] = { 42 ... }
3967     } else if (con0 == 0 && init0 == -1) {
3968       split = true;             // first word is covered by full inits
3969       // Example:  int a[] = { ... foo(), 42 ... }
3970     } else if (con1 == 0 && init1 == -1) {
3971       split = true;             // second word is covered by full inits
3972       // Example:  int a[] = { ... 42, foo() ... }
3973     }
3974 
3975     // Here's a case where init0 is neither 0 nor -1:
3976     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3977     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3978     // In this case the tile is not split; it is (jlong)42.
3979     // The big tile is stored down, and then the foo() value is inserted.
3980     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3981 
3982     Node* ctl = old->in(MemNode::Control);
3983     Node* adr = make_raw_address(offset, phase);
3984     const TypePtr* atp = TypeRawPtr::BOTTOM;
3985 
3986     // One or two coalesced stores to plop down.
3987     Node*    st[2];
3988     intptr_t off[2];
3989     int  nst = 0;
3990     if (!split) {
3991       ++new_long;
3992       off[nst] = offset;
3993       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3994                                   phase->longcon(con), T_LONG, MemNode::unordered);
3995     } else {
3996       // Omit either if it is a zero.
3997       if (con0 != 0) {
3998         ++new_int;
3999         off[nst]  = offset;
4000         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4001                                     phase->intcon(con0), T_INT, MemNode::unordered);
4002       }
4003       if (con1 != 0) {
4004         ++new_int;
4005         offset += BytesPerInt;
4006         adr = make_raw_address(offset, phase);
4007         off[nst]  = offset;
4008         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4009                                     phase->intcon(con1), T_INT, MemNode::unordered);
4010       }
4011     }
4012 
4013     // Insert second store first, then the first before the second.
4014     // Insert each one just before any overlapping non-constant stores.
4015     while (nst > 0) {
4016       Node* st1 = st[--nst];
4017       C->copy_node_notes_to(st1, old);
4018       st1 = phase->transform(st1);
4019       offset = off[nst];
4020       assert(offset >= header_size, "do not smash header");
4021       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4022       guarantee(ins_idx != 0, "must re-insert constant store");
4023       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4024       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4025         set_req(--ins_idx, st1);
4026       else
4027         ins_req(ins_idx, st1);
4028     }
4029   }
4030 
4031   if (PrintCompilation && WizardMode)
4032     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4033                   old_subword, old_long, new_int, new_long);
4034   if (C->log() != NULL)
4035     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4036                    old_subword, old_long, new_int, new_long);
4037 
4038   // Clean up any remaining occurrences of zmem:
4039   remove_extra_zeroes();
4040 }
4041 
4042 // Explore forward from in(start) to find the first fully initialized
4043 // word, and return its offset.  Skip groups of subword stores which
4044 // together initialize full words.  If in(start) is itself part of a
4045 // fully initialized word, return the offset of in(start).  If there
4046 // are no following full-word stores, or if something is fishy, return
4047 // a negative value.
find_next_fullword_store(uint start,PhaseGVN * phase)4048 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4049   int       int_map = 0;
4050   intptr_t  int_map_off = 0;
4051   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4052 
4053   for (uint i = start, limit = req(); i < limit; i++) {
4054     Node* st = in(i);
4055 
4056     intptr_t st_off = get_store_offset(st, phase);
4057     if (st_off < 0)  break;  // return conservative answer
4058 
4059     int st_size = st->as_Store()->memory_size();
4060     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4061       return st_off;            // we found a complete word init
4062     }
4063 
4064     // update the map:
4065 
4066     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4067     if (this_int_off != int_map_off) {
4068       // reset the map:
4069       int_map = 0;
4070       int_map_off = this_int_off;
4071     }
4072 
4073     int subword_off = st_off - this_int_off;
4074     int_map |= right_n_bits(st_size) << subword_off;
4075     if ((int_map & FULL_MAP) == FULL_MAP) {
4076       return this_int_off;      // we found a complete word init
4077     }
4078 
4079     // Did this store hit or cross the word boundary?
4080     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4081     if (next_int_off == this_int_off + BytesPerInt) {
4082       // We passed the current int, without fully initializing it.
4083       int_map_off = next_int_off;
4084       int_map >>= BytesPerInt;
4085     } else if (next_int_off > this_int_off + BytesPerInt) {
4086       // We passed the current and next int.
4087       return this_int_off + BytesPerInt;
4088     }
4089   }
4090 
4091   return -1;
4092 }
4093 
4094 
4095 // Called when the associated AllocateNode is expanded into CFG.
4096 // At this point, we may perform additional optimizations.
4097 // Linearize the stores by ascending offset, to make memory
4098 // activity as coherent as possible.
complete_stores(Node * rawctl,Node * rawmem,Node * rawptr,intptr_t header_size,Node * size_in_bytes,PhaseGVN * phase)4099 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4100                                       intptr_t header_size,
4101                                       Node* size_in_bytes,
4102                                       PhaseGVN* phase) {
4103   assert(!is_complete(), "not already complete");
4104   assert(stores_are_sane(phase), "");
4105   assert(allocation() != NULL, "must be present");
4106 
4107   remove_extra_zeroes();
4108 
4109   if (ReduceFieldZeroing || ReduceBulkZeroing)
4110     // reduce instruction count for common initialization patterns
4111     coalesce_subword_stores(header_size, size_in_bytes, phase);
4112 
4113   Node* zmem = zero_memory();   // initially zero memory state
4114   Node* inits = zmem;           // accumulating a linearized chain of inits
4115   #ifdef ASSERT
4116   intptr_t first_offset = allocation()->minimum_header_size();
4117   intptr_t last_init_off = first_offset;  // previous init offset
4118   intptr_t last_init_end = first_offset;  // previous init offset+size
4119   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4120   #endif
4121   intptr_t zeroes_done = header_size;
4122 
4123   bool do_zeroing = true;       // we might give up if inits are very sparse
4124   int  big_init_gaps = 0;       // how many large gaps have we seen?
4125 
4126   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4127   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4128 
4129   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4130     Node* st = in(i);
4131     intptr_t st_off = get_store_offset(st, phase);
4132     if (st_off < 0)
4133       break;                    // unknown junk in the inits
4134     if (st->in(MemNode::Memory) != zmem)
4135       break;                    // complicated store chains somehow in list
4136 
4137     int st_size = st->as_Store()->memory_size();
4138     intptr_t next_init_off = st_off + st_size;
4139 
4140     if (do_zeroing && zeroes_done < next_init_off) {
4141       // See if this store needs a zero before it or under it.
4142       intptr_t zeroes_needed = st_off;
4143 
4144       if (st_size < BytesPerInt) {
4145         // Look for subword stores which only partially initialize words.
4146         // If we find some, we must lay down some word-level zeroes first,
4147         // underneath the subword stores.
4148         //
4149         // Examples:
4150         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4151         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4152         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4153         //
4154         // Note:  coalesce_subword_stores may have already done this,
4155         // if it was prompted by constant non-zero subword initializers.
4156         // But this case can still arise with non-constant stores.
4157 
4158         intptr_t next_full_store = find_next_fullword_store(i, phase);
4159 
4160         // In the examples above:
4161         //   in(i)          p   q   r   s     x   y     z
4162         //   st_off        12  13  14  15    12  13    14
4163         //   st_size        1   1   1   1     1   1     1
4164         //   next_full_s.  12  16  16  16    16  16    16
4165         //   z's_done      12  16  16  16    12  16    12
4166         //   z's_needed    12  16  16  16    16  16    16
4167         //   zsize          0   0   0   0     4   0     4
4168         if (next_full_store < 0) {
4169           // Conservative tack:  Zero to end of current word.
4170           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4171         } else {
4172           // Zero to beginning of next fully initialized word.
4173           // Or, don't zero at all, if we are already in that word.
4174           assert(next_full_store >= zeroes_needed, "must go forward");
4175           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4176           zeroes_needed = next_full_store;
4177         }
4178       }
4179 
4180       if (zeroes_needed > zeroes_done) {
4181         intptr_t zsize = zeroes_needed - zeroes_done;
4182         // Do some incremental zeroing on rawmem, in parallel with inits.
4183         zeroes_done = align_down(zeroes_done, BytesPerInt);
4184         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4185                                               zeroes_done, zeroes_needed,
4186                                               phase);
4187         zeroes_done = zeroes_needed;
4188         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4189           do_zeroing = false;   // leave the hole, next time
4190       }
4191     }
4192 
4193     // Collect the store and move on:
4194     st->set_req(MemNode::Memory, inits);
4195     inits = st;                 // put it on the linearized chain
4196     set_req(i, zmem);           // unhook from previous position
4197 
4198     if (zeroes_done == st_off)
4199       zeroes_done = next_init_off;
4200 
4201     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4202 
4203     #ifdef ASSERT
4204     // Various order invariants.  Weaker than stores_are_sane because
4205     // a large constant tile can be filled in by smaller non-constant stores.
4206     assert(st_off >= last_init_off, "inits do not reverse");
4207     last_init_off = st_off;
4208     const Type* val = NULL;
4209     if (st_size >= BytesPerInt &&
4210         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4211         (int)val->basic_type() < (int)T_OBJECT) {
4212       assert(st_off >= last_tile_end, "tiles do not overlap");
4213       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4214       last_tile_end = MAX2(last_tile_end, next_init_off);
4215     } else {
4216       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4217       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4218       assert(st_off      >= last_init_end, "inits do not overlap");
4219       last_init_end = next_init_off;  // it's a non-tile
4220     }
4221     #endif //ASSERT
4222   }
4223 
4224   remove_extra_zeroes();        // clear out all the zmems left over
4225   add_req(inits);
4226 
4227   if (!(UseTLAB && ZeroTLAB)) {
4228     // If anything remains to be zeroed, zero it all now.
4229     zeroes_done = align_down(zeroes_done, BytesPerInt);
4230     // if it is the last unused 4 bytes of an instance, forget about it
4231     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4232     if (zeroes_done + BytesPerLong >= size_limit) {
4233       AllocateNode* alloc = allocation();
4234       assert(alloc != NULL, "must be present");
4235       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4236         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4237         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4238         if (zeroes_done == k->layout_helper())
4239           zeroes_done = size_limit;
4240       }
4241     }
4242     if (zeroes_done < size_limit) {
4243       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4244                                             zeroes_done, size_in_bytes, phase);
4245     }
4246   }
4247 
4248   set_complete(phase);
4249   return rawmem;
4250 }
4251 
4252 
4253 #ifdef ASSERT
stores_are_sane(PhaseTransform * phase)4254 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4255   if (is_complete())
4256     return true;                // stores could be anything at this point
4257   assert(allocation() != NULL, "must be present");
4258   intptr_t last_off = allocation()->minimum_header_size();
4259   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4260     Node* st = in(i);
4261     intptr_t st_off = get_store_offset(st, phase);
4262     if (st_off < 0)  continue;  // ignore dead garbage
4263     if (last_off > st_off) {
4264       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4265       this->dump(2);
4266       assert(false, "ascending store offsets");
4267       return false;
4268     }
4269     last_off = st_off + st->as_Store()->memory_size();
4270   }
4271   return true;
4272 }
4273 #endif //ASSERT
4274 
4275 
4276 
4277 
4278 //============================MergeMemNode=====================================
4279 //
4280 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4281 // contributing store or call operations.  Each contributor provides the memory
4282 // state for a particular "alias type" (see Compile::alias_type).  For example,
4283 // if a MergeMem has an input X for alias category #6, then any memory reference
4284 // to alias category #6 may use X as its memory state input, as an exact equivalent
4285 // to using the MergeMem as a whole.
4286 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4287 //
4288 // (Here, the <N> notation gives the index of the relevant adr_type.)
4289 //
4290 // In one special case (and more cases in the future), alias categories overlap.
4291 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4292 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4293 // it is exactly equivalent to that state W:
4294 //   MergeMem(<Bot>: W) <==> W
4295 //
4296 // Usually, the merge has more than one input.  In that case, where inputs
4297 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4298 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4299 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4300 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4301 //
4302 // A merge can take a "wide" memory state as one of its narrow inputs.
4303 // This simply means that the merge observes out only the relevant parts of
4304 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4305 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4306 //
4307 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4308 // and that memory slices "leak through":
4309 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4310 //
4311 // But, in such a cascade, repeated memory slices can "block the leak":
4312 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4313 //
4314 // In the last example, Y is not part of the combined memory state of the
4315 // outermost MergeMem.  The system must, of course, prevent unschedulable
4316 // memory states from arising, so you can be sure that the state Y is somehow
4317 // a precursor to state Y'.
4318 //
4319 //
4320 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4321 // of each MergeMemNode array are exactly the numerical alias indexes, including
4322 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4323 // Compile::alias_type (and kin) produce and manage these indexes.
4324 //
4325 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4326 // (Note that this provides quick access to the top node inside MergeMem methods,
4327 // without the need to reach out via TLS to Compile::current.)
4328 //
4329 // As a consequence of what was just described, a MergeMem that represents a full
4330 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4331 // containing all alias categories.
4332 //
4333 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4334 //
4335 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4336 // a memory state for the alias type <N>, or else the top node, meaning that
4337 // there is no particular input for that alias type.  Note that the length of
4338 // a MergeMem is variable, and may be extended at any time to accommodate new
4339 // memory states at larger alias indexes.  When merges grow, they are of course
4340 // filled with "top" in the unused in() positions.
4341 //
4342 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4343 // (Top was chosen because it works smoothly with passes like GCM.)
4344 //
4345 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4346 // the type of random VM bits like TLS references.)  Since it is always the
4347 // first non-Bot memory slice, some low-level loops use it to initialize an
4348 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4349 //
4350 //
4351 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4352 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4353 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4354 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4355 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4356 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4357 //
4358 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4359 // really that different from the other memory inputs.  An abbreviation called
4360 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4361 //
4362 //
4363 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4364 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4365 // that "emerges though" the base memory will be marked as excluding the alias types
4366 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4367 //
4368 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4369 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4370 //
4371 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4372 // (It is currently unimplemented.)  As you can see, the resulting merge is
4373 // actually a disjoint union of memory states, rather than an overlay.
4374 //
4375 
4376 //------------------------------MergeMemNode-----------------------------------
make_empty_memory()4377 Node* MergeMemNode::make_empty_memory() {
4378   Node* empty_memory = (Node*) Compile::current()->top();
4379   assert(empty_memory->is_top(), "correct sentinel identity");
4380   return empty_memory;
4381 }
4382 
MergeMemNode(Node * new_base)4383 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4384   init_class_id(Class_MergeMem);
4385   // all inputs are nullified in Node::Node(int)
4386   // set_input(0, NULL);  // no control input
4387 
4388   // Initialize the edges uniformly to top, for starters.
4389   Node* empty_mem = make_empty_memory();
4390   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4391     init_req(i,empty_mem);
4392   }
4393   assert(empty_memory() == empty_mem, "");
4394 
4395   if( new_base != NULL && new_base->is_MergeMem() ) {
4396     MergeMemNode* mdef = new_base->as_MergeMem();
4397     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4398     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4399       mms.set_memory(mms.memory2());
4400     }
4401     assert(base_memory() == mdef->base_memory(), "");
4402   } else {
4403     set_base_memory(new_base);
4404   }
4405 }
4406 
4407 // Make a new, untransformed MergeMem with the same base as 'mem'.
4408 // If mem is itself a MergeMem, populate the result with the same edges.
make(Node * mem)4409 MergeMemNode* MergeMemNode::make(Node* mem) {
4410   return new MergeMemNode(mem);
4411 }
4412 
4413 //------------------------------cmp--------------------------------------------
hash() const4414 uint MergeMemNode::hash() const { return NO_HASH; }
cmp(const Node & n) const4415 uint MergeMemNode::cmp( const Node &n ) const {
4416   return (&n == this);          // Always fail except on self
4417 }
4418 
4419 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)4420 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4421   // Identity if this merge point does not record any interesting memory
4422   // disambiguations.
4423   Node* base_mem = base_memory();
4424   Node* empty_mem = empty_memory();
4425   if (base_mem != empty_mem) {  // Memory path is not dead?
4426     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4427       Node* mem = in(i);
4428       if (mem != empty_mem && mem != base_mem) {
4429         return this;            // Many memory splits; no change
4430       }
4431     }
4432   }
4433   return base_mem;              // No memory splits; ID on the one true input
4434 }
4435 
4436 //------------------------------Ideal------------------------------------------
4437 // This method is invoked recursively on chains of MergeMem nodes
Ideal(PhaseGVN * phase,bool can_reshape)4438 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4439   // Remove chain'd MergeMems
4440   //
4441   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4442   // relative to the "in(Bot)".  Since we are patching both at the same time,
4443   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4444   // but rewrite each "in(i)" relative to the new "in(Bot)".
4445   Node *progress = NULL;
4446 
4447 
4448   Node* old_base = base_memory();
4449   Node* empty_mem = empty_memory();
4450   if (old_base == empty_mem)
4451     return NULL; // Dead memory path.
4452 
4453   MergeMemNode* old_mbase;
4454   if (old_base != NULL && old_base->is_MergeMem())
4455     old_mbase = old_base->as_MergeMem();
4456   else
4457     old_mbase = NULL;
4458   Node* new_base = old_base;
4459 
4460   // simplify stacked MergeMems in base memory
4461   if (old_mbase)  new_base = old_mbase->base_memory();
4462 
4463   // the base memory might contribute new slices beyond my req()
4464   if (old_mbase)  grow_to_match(old_mbase);
4465 
4466   // Look carefully at the base node if it is a phi.
4467   PhiNode* phi_base;
4468   if (new_base != NULL && new_base->is_Phi())
4469     phi_base = new_base->as_Phi();
4470   else
4471     phi_base = NULL;
4472 
4473   Node*    phi_reg = NULL;
4474   uint     phi_len = (uint)-1;
4475   if (phi_base != NULL && !phi_base->is_copy()) {
4476     // do not examine phi if degraded to a copy
4477     phi_reg = phi_base->region();
4478     phi_len = phi_base->req();
4479     // see if the phi is unfinished
4480     for (uint i = 1; i < phi_len; i++) {
4481       if (phi_base->in(i) == NULL) {
4482         // incomplete phi; do not look at it yet!
4483         phi_reg = NULL;
4484         phi_len = (uint)-1;
4485         break;
4486       }
4487     }
4488   }
4489 
4490   // Note:  We do not call verify_sparse on entry, because inputs
4491   // can normalize to the base_memory via subsume_node or similar
4492   // mechanisms.  This method repairs that damage.
4493 
4494   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4495 
4496   // Look at each slice.
4497   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4498     Node* old_in = in(i);
4499     // calculate the old memory value
4500     Node* old_mem = old_in;
4501     if (old_mem == empty_mem)  old_mem = old_base;
4502     assert(old_mem == memory_at(i), "");
4503 
4504     // maybe update (reslice) the old memory value
4505 
4506     // simplify stacked MergeMems
4507     Node* new_mem = old_mem;
4508     MergeMemNode* old_mmem;
4509     if (old_mem != NULL && old_mem->is_MergeMem())
4510       old_mmem = old_mem->as_MergeMem();
4511     else
4512       old_mmem = NULL;
4513     if (old_mmem == this) {
4514       // This can happen if loops break up and safepoints disappear.
4515       // A merge of BotPtr (default) with a RawPtr memory derived from a
4516       // safepoint can be rewritten to a merge of the same BotPtr with
4517       // the BotPtr phi coming into the loop.  If that phi disappears
4518       // also, we can end up with a self-loop of the mergemem.
4519       // In general, if loops degenerate and memory effects disappear,
4520       // a mergemem can be left looking at itself.  This simply means
4521       // that the mergemem's default should be used, since there is
4522       // no longer any apparent effect on this slice.
4523       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4524       //       from start.  Update the input to TOP.
4525       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4526     }
4527     else if (old_mmem != NULL) {
4528       new_mem = old_mmem->memory_at(i);
4529     }
4530     // else preceding memory was not a MergeMem
4531 
4532     // replace equivalent phis (unfortunately, they do not GVN together)
4533     if (new_mem != NULL && new_mem != new_base &&
4534         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4535       if (new_mem->is_Phi()) {
4536         PhiNode* phi_mem = new_mem->as_Phi();
4537         for (uint i = 1; i < phi_len; i++) {
4538           if (phi_base->in(i) != phi_mem->in(i)) {
4539             phi_mem = NULL;
4540             break;
4541           }
4542         }
4543         if (phi_mem != NULL) {
4544           // equivalent phi nodes; revert to the def
4545           new_mem = new_base;
4546         }
4547       }
4548     }
4549 
4550     // maybe store down a new value
4551     Node* new_in = new_mem;
4552     if (new_in == new_base)  new_in = empty_mem;
4553 
4554     if (new_in != old_in) {
4555       // Warning:  Do not combine this "if" with the previous "if"
4556       // A memory slice might have be be rewritten even if it is semantically
4557       // unchanged, if the base_memory value has changed.
4558       set_req(i, new_in);
4559       progress = this;          // Report progress
4560     }
4561   }
4562 
4563   if (new_base != old_base) {
4564     set_req(Compile::AliasIdxBot, new_base);
4565     // Don't use set_base_memory(new_base), because we need to update du.
4566     assert(base_memory() == new_base, "");
4567     progress = this;
4568   }
4569 
4570   if( base_memory() == this ) {
4571     // a self cycle indicates this memory path is dead
4572     set_req(Compile::AliasIdxBot, empty_mem);
4573   }
4574 
4575   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4576   // Recursion must occur after the self cycle check above
4577   if( base_memory()->is_MergeMem() ) {
4578     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4579     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4580     if( m != NULL &&
4581         (m->is_top() ||
4582          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4583       // propagate rollup of dead cycle to self
4584       set_req(Compile::AliasIdxBot, empty_mem);
4585     }
4586   }
4587 
4588   if( base_memory() == empty_mem ) {
4589     progress = this;
4590     // Cut inputs during Parse phase only.
4591     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4592     if( !can_reshape ) {
4593       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4594         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4595       }
4596     }
4597   }
4598 
4599   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4600     // Check if PhiNode::Ideal's "Split phis through memory merges"
4601     // transform should be attempted. Look for this->phi->this cycle.
4602     uint merge_width = req();
4603     if (merge_width > Compile::AliasIdxRaw) {
4604       PhiNode* phi = base_memory()->as_Phi();
4605       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4606         if (phi->in(i) == this) {
4607           phase->is_IterGVN()->_worklist.push(phi);
4608           break;
4609         }
4610       }
4611     }
4612   }
4613 
4614   assert(progress || verify_sparse(), "please, no dups of base");
4615   return progress;
4616 }
4617 
4618 //-------------------------set_base_memory-------------------------------------
set_base_memory(Node * new_base)4619 void MergeMemNode::set_base_memory(Node *new_base) {
4620   Node* empty_mem = empty_memory();
4621   set_req(Compile::AliasIdxBot, new_base);
4622   assert(memory_at(req()) == new_base, "must set default memory");
4623   // Clear out other occurrences of new_base:
4624   if (new_base != empty_mem) {
4625     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4626       if (in(i) == new_base)  set_req(i, empty_mem);
4627     }
4628   }
4629 }
4630 
4631 //------------------------------out_RegMask------------------------------------
out_RegMask() const4632 const RegMask &MergeMemNode::out_RegMask() const {
4633   return RegMask::Empty;
4634 }
4635 
4636 //------------------------------dump_spec--------------------------------------
4637 #ifndef PRODUCT
dump_spec(outputStream * st) const4638 void MergeMemNode::dump_spec(outputStream *st) const {
4639   st->print(" {");
4640   Node* base_mem = base_memory();
4641   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4642     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4643     if (mem == base_mem) { st->print(" -"); continue; }
4644     st->print( " N%d:", mem->_idx );
4645     Compile::current()->get_adr_type(i)->dump_on(st);
4646   }
4647   st->print(" }");
4648 }
4649 #endif // !PRODUCT
4650 
4651 
4652 #ifdef ASSERT
might_be_same(Node * a,Node * b)4653 static bool might_be_same(Node* a, Node* b) {
4654   if (a == b)  return true;
4655   if (!(a->is_Phi() || b->is_Phi()))  return false;
4656   // phis shift around during optimization
4657   return true;  // pretty stupid...
4658 }
4659 
4660 // verify a narrow slice (either incoming or outgoing)
verify_memory_slice(const MergeMemNode * m,int alias_idx,Node * n)4661 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4662   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4663   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4664   if (Node::in_dump())               return;  // muzzle asserts when printing
4665   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4666   assert(n != NULL, "");
4667   // Elide intervening MergeMem's
4668   while (n->is_MergeMem()) {
4669     n = n->as_MergeMem()->memory_at(alias_idx);
4670   }
4671   Compile* C = Compile::current();
4672   const TypePtr* n_adr_type = n->adr_type();
4673   if (n == m->empty_memory()) {
4674     // Implicit copy of base_memory()
4675   } else if (n_adr_type != TypePtr::BOTTOM) {
4676     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4677     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4678   } else {
4679     // A few places like make_runtime_call "know" that VM calls are narrow,
4680     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4681     bool expected_wide_mem = false;
4682     if (n == m->base_memory()) {
4683       expected_wide_mem = true;
4684     } else if (alias_idx == Compile::AliasIdxRaw ||
4685                n == m->memory_at(Compile::AliasIdxRaw)) {
4686       expected_wide_mem = true;
4687     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4688       // memory can "leak through" calls on channels that
4689       // are write-once.  Allow this also.
4690       expected_wide_mem = true;
4691     }
4692     assert(expected_wide_mem, "expected narrow slice replacement");
4693   }
4694 }
4695 #else // !ASSERT
4696 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4697 #endif
4698 
4699 
4700 //-----------------------------memory_at---------------------------------------
memory_at(uint alias_idx) const4701 Node* MergeMemNode::memory_at(uint alias_idx) const {
4702   assert(alias_idx >= Compile::AliasIdxRaw ||
4703          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4704          "must avoid base_memory and AliasIdxTop");
4705 
4706   // Otherwise, it is a narrow slice.
4707   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4708   Compile *C = Compile::current();
4709   if (is_empty_memory(n)) {
4710     // the array is sparse; empty slots are the "top" node
4711     n = base_memory();
4712     assert(Node::in_dump()
4713            || n == NULL || n->bottom_type() == Type::TOP
4714            || n->adr_type() == NULL // address is TOP
4715            || n->adr_type() == TypePtr::BOTTOM
4716            || n->adr_type() == TypeRawPtr::BOTTOM
4717            || Compile::current()->AliasLevel() == 0,
4718            "must be a wide memory");
4719     // AliasLevel == 0 if we are organizing the memory states manually.
4720     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4721   } else {
4722     // make sure the stored slice is sane
4723     #ifdef ASSERT
4724     if (VMError::is_error_reported() || Node::in_dump()) {
4725     } else if (might_be_same(n, base_memory())) {
4726       // Give it a pass:  It is a mostly harmless repetition of the base.
4727       // This can arise normally from node subsumption during optimization.
4728     } else {
4729       verify_memory_slice(this, alias_idx, n);
4730     }
4731     #endif
4732   }
4733   return n;
4734 }
4735 
4736 //---------------------------set_memory_at-------------------------------------
set_memory_at(uint alias_idx,Node * n)4737 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4738   verify_memory_slice(this, alias_idx, n);
4739   Node* empty_mem = empty_memory();
4740   if (n == base_memory())  n = empty_mem;  // collapse default
4741   uint need_req = alias_idx+1;
4742   if (req() < need_req) {
4743     if (n == empty_mem)  return;  // already the default, so do not grow me
4744     // grow the sparse array
4745     do {
4746       add_req(empty_mem);
4747     } while (req() < need_req);
4748   }
4749   set_req( alias_idx, n );
4750 }
4751 
4752 
4753 
4754 //--------------------------iteration_setup------------------------------------
iteration_setup(const MergeMemNode * other)4755 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4756   if (other != NULL) {
4757     grow_to_match(other);
4758     // invariant:  the finite support of mm2 is within mm->req()
4759     #ifdef ASSERT
4760     for (uint i = req(); i < other->req(); i++) {
4761       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4762     }
4763     #endif
4764   }
4765   // Replace spurious copies of base_memory by top.
4766   Node* base_mem = base_memory();
4767   if (base_mem != NULL && !base_mem->is_top()) {
4768     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4769       if (in(i) == base_mem)
4770         set_req(i, empty_memory());
4771     }
4772   }
4773 }
4774 
4775 //---------------------------grow_to_match-------------------------------------
grow_to_match(const MergeMemNode * other)4776 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4777   Node* empty_mem = empty_memory();
4778   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4779   // look for the finite support of the other memory
4780   for (uint i = other->req(); --i >= req(); ) {
4781     if (other->in(i) != empty_mem) {
4782       uint new_len = i+1;
4783       while (req() < new_len)  add_req(empty_mem);
4784       break;
4785     }
4786   }
4787 }
4788 
4789 //---------------------------verify_sparse-------------------------------------
4790 #ifndef PRODUCT
verify_sparse() const4791 bool MergeMemNode::verify_sparse() const {
4792   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4793   Node* base_mem = base_memory();
4794   // The following can happen in degenerate cases, since empty==top.
4795   if (is_empty_memory(base_mem))  return true;
4796   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4797     assert(in(i) != NULL, "sane slice");
4798     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4799   }
4800   return true;
4801 }
4802 
match_memory(Node * mem,const MergeMemNode * mm,int idx)4803 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4804   Node* n;
4805   n = mm->in(idx);
4806   if (mem == n)  return true;  // might be empty_memory()
4807   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4808   if (mem == n)  return true;
4809   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4810     if (mem == n)  return true;
4811     if (n == NULL)  break;
4812   }
4813   return false;
4814 }
4815 #endif // !PRODUCT
4816