1 /*
2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package sun.misc;
27 
28 import jdk.internal.vm.annotation.ForceInline;
29 import jdk.internal.misc.VM;
30 import jdk.internal.reflect.CallerSensitive;
31 import jdk.internal.reflect.Reflection;
32 
33 import java.lang.reflect.Field;
34 import java.util.Set;
35 
36 
37 /**
38  * A collection of methods for performing low-level, unsafe operations.
39  * Although the class and all methods are public, use of this class is
40  * limited because only trusted code can obtain instances of it.
41  *
42  * <em>Note:</em> It is the resposibility of the caller to make sure
43  * arguments are checked before methods of this class are
44  * called. While some rudimentary checks are performed on the input,
45  * the checks are best effort and when performance is an overriding
46  * priority, as when methods of this class are optimized by the
47  * runtime compiler, some or all checks (if any) may be elided. Hence,
48  * the caller must not rely on the checks and corresponding
49  * exceptions!
50  *
51  * @author John R. Rose
52  * @see #getUnsafe
53  */
54 
55 public final class Unsafe {
56 
57     static {
Reflection.registerMethodsToFilter(Unsafe.class, Set.of(R))58         Reflection.registerMethodsToFilter(Unsafe.class, Set.of("getUnsafe"));
59     }
60 
Unsafe()61     private Unsafe() {}
62 
63     private static final Unsafe theUnsafe = new Unsafe();
64     private static final jdk.internal.misc.Unsafe theInternalUnsafe = jdk.internal.misc.Unsafe.getUnsafe();
65 
66     /**
67      * Provides the caller with the capability of performing unsafe
68      * operations.
69      *
70      * <p>The returned {@code Unsafe} object should be carefully guarded
71      * by the caller, since it can be used to read and write data at arbitrary
72      * memory addresses.  It must never be passed to untrusted code.
73      *
74      * <p>Most methods in this class are very low-level, and correspond to a
75      * small number of hardware instructions (on typical machines).  Compilers
76      * are encouraged to optimize these methods accordingly.
77      *
78      * <p>Here is a suggested idiom for using unsafe operations:
79      *
80      * <pre> {@code
81      * class MyTrustedClass {
82      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
83      *   ...
84      *   private long myCountAddress = ...;
85      *   public int getCount() { return unsafe.getByte(myCountAddress); }
86      * }}</pre>
87      *
88      * (It may assist compilers to make the local variable {@code final}.)
89      *
90      * @throws  SecurityException if the class loader of the caller
91      *          class is not in the system domain in which all permissions
92      *          are granted.
93      */
94     @CallerSensitive
getUnsafe()95     public static Unsafe getUnsafe() {
96         Class<?> caller = Reflection.getCallerClass();
97         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
98             throw new SecurityException("Unsafe");
99         return theUnsafe;
100     }
101 
102     /// peek and poke operations
103     /// (compilers should optimize these to memory ops)
104 
105     // These work on object fields in the Java heap.
106     // They will not work on elements of packed arrays.
107 
108     /**
109      * Fetches a value from a given Java variable.
110      * More specifically, fetches a field or array element within the given
111      * object {@code o} at the given offset, or (if {@code o} is null)
112      * from the memory address whose numerical value is the given offset.
113      * <p>
114      * The results are undefined unless one of the following cases is true:
115      * <ul>
116      * <li>The offset was obtained from {@link #objectFieldOffset} on
117      * the {@link java.lang.reflect.Field} of some Java field and the object
118      * referred to by {@code o} is of a class compatible with that
119      * field's class.
120      *
121      * <li>The offset and object reference {@code o} (either null or
122      * non-null) were both obtained via {@link #staticFieldOffset}
123      * and {@link #staticFieldBase} (respectively) from the
124      * reflective {@link Field} representation of some Java field.
125      *
126      * <li>The object referred to by {@code o} is an array, and the offset
127      * is an integer of the form {@code B+N*S}, where {@code N} is
128      * a valid index into the array, and {@code B} and {@code S} are
129      * the values obtained by {@link #arrayBaseOffset} and {@link
130      * #arrayIndexScale} (respectively) from the array's class.  The value
131      * referred to is the {@code N}<em>th</em> element of the array.
132      *
133      * </ul>
134      * <p>
135      * If one of the above cases is true, the call references a specific Java
136      * variable (field or array element).  However, the results are undefined
137      * if that variable is not in fact of the type returned by this method.
138      * <p>
139      * This method refers to a variable by means of two parameters, and so
140      * it provides (in effect) a <em>double-register</em> addressing mode
141      * for Java variables.  When the object reference is null, this method
142      * uses its offset as an absolute address.  This is similar in operation
143      * to methods such as {@link #getInt(long)}, which provide (in effect) a
144      * <em>single-register</em> addressing mode for non-Java variables.
145      * However, because Java variables may have a different layout in memory
146      * from non-Java variables, programmers should not assume that these
147      * two addressing modes are ever equivalent.  Also, programmers should
148      * remember that offsets from the double-register addressing mode cannot
149      * be portably confused with longs used in the single-register addressing
150      * mode.
151      *
152      * @param o Java heap object in which the variable resides, if any, else
153      *        null
154      * @param offset indication of where the variable resides in a Java heap
155      *        object, if any, else a memory address locating the variable
156      *        statically
157      * @return the value fetched from the indicated Java variable
158      * @throws RuntimeException No defined exceptions are thrown, not even
159      *         {@link NullPointerException}
160      */
161     @ForceInline
getInt(Object o, long offset)162     public int getInt(Object o, long offset) {
163         return theInternalUnsafe.getInt(o, offset);
164     }
165 
166     /**
167      * Stores a value into a given Java variable.
168      * <p>
169      * The first two parameters are interpreted exactly as with
170      * {@link #getInt(Object, long)} to refer to a specific
171      * Java variable (field or array element).  The given value
172      * is stored into that variable.
173      * <p>
174      * The variable must be of the same type as the method
175      * parameter {@code x}.
176      *
177      * @param o Java heap object in which the variable resides, if any, else
178      *        null
179      * @param offset indication of where the variable resides in a Java heap
180      *        object, if any, else a memory address locating the variable
181      *        statically
182      * @param x the value to store into the indicated Java variable
183      * @throws RuntimeException No defined exceptions are thrown, not even
184      *         {@link NullPointerException}
185      */
186     @ForceInline
putInt(Object o, long offset, int x)187     public void putInt(Object o, long offset, int x) {
188         theInternalUnsafe.putInt(o, offset, x);
189     }
190 
191     /**
192      * Fetches a reference value from a given Java variable.
193      * @see #getInt(Object, long)
194      */
195     @ForceInline
getObject(Object o, long offset)196     public Object getObject(Object o, long offset) {
197         return theInternalUnsafe.getReference(o, offset);
198     }
199 
200     /**
201      * Stores a reference value into a given Java variable.
202      * <p>
203      * Unless the reference {@code x} being stored is either null
204      * or matches the field type, the results are undefined.
205      * If the reference {@code o} is non-null, card marks or
206      * other store barriers for that object (if the VM requires them)
207      * are updated.
208      * @see #putInt(Object, long, int)
209      */
210     @ForceInline
putObject(Object o, long offset, Object x)211     public void putObject(Object o, long offset, Object x) {
212         theInternalUnsafe.putReference(o, offset, x);
213     }
214 
215     /** @see #getInt(Object, long) */
216     @ForceInline
getBoolean(Object o, long offset)217     public boolean getBoolean(Object o, long offset) {
218         return theInternalUnsafe.getBoolean(o, offset);
219     }
220 
221     /** @see #putInt(Object, long, int) */
222     @ForceInline
putBoolean(Object o, long offset, boolean x)223     public void putBoolean(Object o, long offset, boolean x) {
224         theInternalUnsafe.putBoolean(o, offset, x);
225     }
226 
227     /** @see #getInt(Object, long) */
228     @ForceInline
getByte(Object o, long offset)229     public byte getByte(Object o, long offset) {
230         return theInternalUnsafe.getByte(o, offset);
231     }
232 
233     /** @see #putInt(Object, long, int) */
234     @ForceInline
putByte(Object o, long offset, byte x)235     public void putByte(Object o, long offset, byte x) {
236         theInternalUnsafe.putByte(o, offset, x);
237     }
238 
239     /** @see #getInt(Object, long) */
240     @ForceInline
getShort(Object o, long offset)241     public short getShort(Object o, long offset) {
242         return theInternalUnsafe.getShort(o, offset);
243     }
244 
245     /** @see #putInt(Object, long, int) */
246     @ForceInline
putShort(Object o, long offset, short x)247     public void putShort(Object o, long offset, short x) {
248         theInternalUnsafe.putShort(o, offset, x);
249     }
250 
251     /** @see #getInt(Object, long) */
252     @ForceInline
getChar(Object o, long offset)253     public char getChar(Object o, long offset) {
254         return theInternalUnsafe.getChar(o, offset);
255     }
256 
257     /** @see #putInt(Object, long, int) */
258     @ForceInline
putChar(Object o, long offset, char x)259     public void putChar(Object o, long offset, char x) {
260         theInternalUnsafe.putChar(o, offset, x);
261     }
262 
263     /** @see #getInt(Object, long) */
264     @ForceInline
getLong(Object o, long offset)265     public long getLong(Object o, long offset) {
266         return theInternalUnsafe.getLong(o, offset);
267     }
268 
269     /** @see #putInt(Object, long, int) */
270     @ForceInline
putLong(Object o, long offset, long x)271     public void putLong(Object o, long offset, long x) {
272         theInternalUnsafe.putLong(o, offset, x);
273     }
274 
275     /** @see #getInt(Object, long) */
276     @ForceInline
getFloat(Object o, long offset)277     public float getFloat(Object o, long offset) {
278         return theInternalUnsafe.getFloat(o, offset);
279     }
280 
281     /** @see #putInt(Object, long, int) */
282     @ForceInline
putFloat(Object o, long offset, float x)283     public void putFloat(Object o, long offset, float x) {
284         theInternalUnsafe.putFloat(o, offset, x);
285     }
286 
287     /** @see #getInt(Object, long) */
288     @ForceInline
getDouble(Object o, long offset)289     public double getDouble(Object o, long offset) {
290         return theInternalUnsafe.getDouble(o, offset);
291     }
292 
293     /** @see #putInt(Object, long, int) */
294     @ForceInline
putDouble(Object o, long offset, double x)295     public void putDouble(Object o, long offset, double x) {
296         theInternalUnsafe.putDouble(o, offset, x);
297     }
298 
299     // These work on values in the C heap.
300 
301     /**
302      * Fetches a value from a given memory address.  If the address is zero, or
303      * does not point into a block obtained from {@link #allocateMemory}, the
304      * results are undefined.
305      *
306      * @see #allocateMemory
307      */
308     @ForceInline
getByte(long address)309     public byte getByte(long address) {
310         return theInternalUnsafe.getByte(address);
311     }
312 
313     /**
314      * Stores a value into a given memory address.  If the address is zero, or
315      * does not point into a block obtained from {@link #allocateMemory}, the
316      * results are undefined.
317      *
318      * @see #getByte(long)
319      */
320     @ForceInline
putByte(long address, byte x)321     public void putByte(long address, byte x) {
322         theInternalUnsafe.putByte(address, x);
323     }
324 
325     /** @see #getByte(long) */
326     @ForceInline
getShort(long address)327     public short getShort(long address) {
328         return theInternalUnsafe.getShort(address);
329     }
330 
331     /** @see #putByte(long, byte) */
332     @ForceInline
putShort(long address, short x)333     public void putShort(long address, short x) {
334         theInternalUnsafe.putShort(address, x);
335     }
336 
337     /** @see #getByte(long) */
338     @ForceInline
getChar(long address)339     public char getChar(long address) {
340         return theInternalUnsafe.getChar(address);
341     }
342 
343     /** @see #putByte(long, byte) */
344     @ForceInline
putChar(long address, char x)345     public void putChar(long address, char x) {
346         theInternalUnsafe.putChar(address, x);
347     }
348 
349     /** @see #getByte(long) */
350     @ForceInline
getInt(long address)351     public int getInt(long address) {
352         return theInternalUnsafe.getInt(address);
353     }
354 
355     /** @see #putByte(long, byte) */
356     @ForceInline
putInt(long address, int x)357     public void putInt(long address, int x) {
358         theInternalUnsafe.putInt(address, x);
359     }
360 
361     /** @see #getByte(long) */
362     @ForceInline
getLong(long address)363     public long getLong(long address) {
364         return theInternalUnsafe.getLong(address);
365     }
366 
367     /** @see #putByte(long, byte) */
368     @ForceInline
putLong(long address, long x)369     public void putLong(long address, long x) {
370         theInternalUnsafe.putLong(address, x);
371     }
372 
373     /** @see #getByte(long) */
374     @ForceInline
getFloat(long address)375     public float getFloat(long address) {
376         return theInternalUnsafe.getFloat(address);
377     }
378 
379     /** @see #putByte(long, byte) */
380     @ForceInline
putFloat(long address, float x)381     public void putFloat(long address, float x) {
382         theInternalUnsafe.putFloat(address, x);
383     }
384 
385     /** @see #getByte(long) */
386     @ForceInline
getDouble(long address)387     public double getDouble(long address) {
388         return theInternalUnsafe.getDouble(address);
389     }
390 
391     /** @see #putByte(long, byte) */
392     @ForceInline
putDouble(long address, double x)393     public void putDouble(long address, double x) {
394         theInternalUnsafe.putDouble(address, x);
395     }
396 
397 
398     /**
399      * Fetches a native pointer from a given memory address.  If the address is
400      * zero, or does not point into a block obtained from {@link
401      * #allocateMemory}, the results are undefined.
402      *
403      * <p>If the native pointer is less than 64 bits wide, it is extended as
404      * an unsigned number to a Java long.  The pointer may be indexed by any
405      * given byte offset, simply by adding that offset (as a simple integer) to
406      * the long representing the pointer.  The number of bytes actually read
407      * from the target address may be determined by consulting {@link
408      * #addressSize}.
409      *
410      * @see #allocateMemory
411      */
412     @ForceInline
getAddress(long address)413     public long getAddress(long address) {
414         return theInternalUnsafe.getAddress(address);
415     }
416 
417     /**
418      * Stores a native pointer into a given memory address.  If the address is
419      * zero, or does not point into a block obtained from {@link
420      * #allocateMemory}, the results are undefined.
421      *
422      * <p>The number of bytes actually written at the target address may be
423      * determined by consulting {@link #addressSize}.
424      *
425      * @see #getAddress(long)
426      */
427     @ForceInline
putAddress(long address, long x)428     public void putAddress(long address, long x) {
429         theInternalUnsafe.putAddress(address, x);
430     }
431 
432 
433     /// wrappers for malloc, realloc, free:
434 
435     /**
436      * Allocates a new block of native memory, of the given size in bytes.  The
437      * contents of the memory are uninitialized; they will generally be
438      * garbage.  The resulting native pointer will never be zero, and will be
439      * aligned for all value types.  Dispose of this memory by calling {@link
440      * #freeMemory}, or resize it with {@link #reallocateMemory}.
441      *
442      * <em>Note:</em> It is the resposibility of the caller to make
443      * sure arguments are checked before the methods are called. While
444      * some rudimentary checks are performed on the input, the checks
445      * are best effort and when performance is an overriding priority,
446      * as when methods of this class are optimized by the runtime
447      * compiler, some or all checks (if any) may be elided. Hence, the
448      * caller must not rely on the checks and corresponding
449      * exceptions!
450      *
451      * @throws RuntimeException if the size is negative or too large
452      *         for the native size_t type
453      *
454      * @throws OutOfMemoryError if the allocation is refused by the system
455      *
456      * @see #getByte(long)
457      * @see #putByte(long, byte)
458      */
459     @ForceInline
allocateMemory(long bytes)460     public long allocateMemory(long bytes) {
461         return theInternalUnsafe.allocateMemory(bytes);
462     }
463 
464     /**
465      * Resizes a new block of native memory, to the given size in bytes.  The
466      * contents of the new block past the size of the old block are
467      * uninitialized; they will generally be garbage.  The resulting native
468      * pointer will be zero if and only if the requested size is zero.  The
469      * resulting native pointer will be aligned for all value types.  Dispose
470      * of this memory by calling {@link #freeMemory}, or resize it with {@link
471      * #reallocateMemory}.  The address passed to this method may be null, in
472      * which case an allocation will be performed.
473      *
474      * <em>Note:</em> It is the resposibility of the caller to make
475      * sure arguments are checked before the methods are called. While
476      * some rudimentary checks are performed on the input, the checks
477      * are best effort and when performance is an overriding priority,
478      * as when methods of this class are optimized by the runtime
479      * compiler, some or all checks (if any) may be elided. Hence, the
480      * caller must not rely on the checks and corresponding
481      * exceptions!
482      *
483      * @throws RuntimeException if the size is negative or too large
484      *         for the native size_t type
485      *
486      * @throws OutOfMemoryError if the allocation is refused by the system
487      *
488      * @see #allocateMemory
489      */
490     @ForceInline
reallocateMemory(long address, long bytes)491     public long reallocateMemory(long address, long bytes) {
492         return theInternalUnsafe.reallocateMemory(address, bytes);
493     }
494 
495     /**
496      * Sets all bytes in a given block of memory to a fixed value
497      * (usually zero).
498      *
499      * <p>This method determines a block's base address by means of two parameters,
500      * and so it provides (in effect) a <em>double-register</em> addressing mode,
501      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
502      * the offset supplies an absolute base address.
503      *
504      * <p>The stores are in coherent (atomic) units of a size determined
505      * by the address and length parameters.  If the effective address and
506      * length are all even modulo 8, the stores take place in 'long' units.
507      * If the effective address and length are (resp.) even modulo 4 or 2,
508      * the stores take place in units of 'int' or 'short'.
509      *
510      * <em>Note:</em> It is the resposibility of the caller to make
511      * sure arguments are checked before the methods are called. While
512      * some rudimentary checks are performed on the input, the checks
513      * are best effort and when performance is an overriding priority,
514      * as when methods of this class are optimized by the runtime
515      * compiler, some or all checks (if any) may be elided. Hence, the
516      * caller must not rely on the checks and corresponding
517      * exceptions!
518      *
519      * @throws RuntimeException if any of the arguments is invalid
520      *
521      * @since 1.7
522      */
523     @ForceInline
setMemory(Object o, long offset, long bytes, byte value)524     public void setMemory(Object o, long offset, long bytes, byte value) {
525         theInternalUnsafe.setMemory(o, offset, bytes, value);
526     }
527 
528     /**
529      * Sets all bytes in a given block of memory to a fixed value
530      * (usually zero).  This provides a <em>single-register</em> addressing mode,
531      * as discussed in {@link #getInt(Object,long)}.
532      *
533      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
534      */
535     @ForceInline
setMemory(long address, long bytes, byte value)536     public void setMemory(long address, long bytes, byte value) {
537         theInternalUnsafe.setMemory(address, bytes, value);
538     }
539 
540     /**
541      * Sets all bytes in a given block of memory to a copy of another
542      * block.
543      *
544      * <p>This method determines each block's base address by means of two parameters,
545      * and so it provides (in effect) a <em>double-register</em> addressing mode,
546      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
547      * the offset supplies an absolute base address.
548      *
549      * <p>The transfers are in coherent (atomic) units of a size determined
550      * by the address and length parameters.  If the effective addresses and
551      * length are all even modulo 8, the transfer takes place in 'long' units.
552      * If the effective addresses and length are (resp.) even modulo 4 or 2,
553      * the transfer takes place in units of 'int' or 'short'.
554      *
555      * <em>Note:</em> It is the resposibility of the caller to make
556      * sure arguments are checked before the methods are called. While
557      * some rudimentary checks are performed on the input, the checks
558      * are best effort and when performance is an overriding priority,
559      * as when methods of this class are optimized by the runtime
560      * compiler, some or all checks (if any) may be elided. Hence, the
561      * caller must not rely on the checks and corresponding
562      * exceptions!
563      *
564      * @throws RuntimeException if any of the arguments is invalid
565      *
566      * @since 1.7
567      */
568     @ForceInline
copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes)569     public void copyMemory(Object srcBase, long srcOffset,
570                            Object destBase, long destOffset,
571                            long bytes) {
572         theInternalUnsafe.copyMemory(srcBase, srcOffset, destBase, destOffset, bytes);
573     }
574 
575     /**
576      * Sets all bytes in a given block of memory to a copy of another
577      * block.  This provides a <em>single-register</em> addressing mode,
578      * as discussed in {@link #getInt(Object,long)}.
579      *
580      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
581      */
582     @ForceInline
copyMemory(long srcAddress, long destAddress, long bytes)583     public void copyMemory(long srcAddress, long destAddress, long bytes) {
584         theInternalUnsafe.copyMemory(srcAddress, destAddress, bytes);
585     }
586 
587     /**
588      * Disposes of a block of native memory, as obtained from {@link
589      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
590      * this method may be null, in which case no action is taken.
591      *
592      * <em>Note:</em> It is the resposibility of the caller to make
593      * sure arguments are checked before the methods are called. While
594      * some rudimentary checks are performed on the input, the checks
595      * are best effort and when performance is an overriding priority,
596      * as when methods of this class are optimized by the runtime
597      * compiler, some or all checks (if any) may be elided. Hence, the
598      * caller must not rely on the checks and corresponding
599      * exceptions!
600      *
601      * @throws RuntimeException if any of the arguments is invalid
602      *
603      * @see #allocateMemory
604      */
605     @ForceInline
freeMemory(long address)606     public void freeMemory(long address) {
607         theInternalUnsafe.freeMemory(address);
608     }
609 
610     /// random queries
611 
612     /**
613      * This constant differs from all results that will ever be returned from
614      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
615      * or {@link #arrayBaseOffset}.
616      */
617     public static final int INVALID_FIELD_OFFSET = jdk.internal.misc.Unsafe.INVALID_FIELD_OFFSET;
618 
619     /**
620      * Reports the location of a given field in the storage allocation of its
621      * class.  Do not expect to perform any sort of arithmetic on this offset;
622      * it is just a cookie which is passed to the unsafe heap memory accessors.
623      *
624      * <p>Any given field will always have the same offset and base, and no
625      * two distinct fields of the same class will ever have the same offset
626      * and base.
627      *
628      * <p>As of 1.4.1, offsets for fields are represented as long values,
629      * although the Sun JVM does not use the most significant 32 bits.
630      * However, JVM implementations which store static fields at absolute
631      * addresses can use long offsets and null base pointers to express
632      * the field locations in a form usable by {@link #getInt(Object,long)}.
633      * Therefore, code which will be ported to such JVMs on 64-bit platforms
634      * must preserve all bits of static field offsets.
635      * @see #getInt(Object, long)
636      */
637     @ForceInline
objectFieldOffset(Field f)638     public long objectFieldOffset(Field f) {
639         return theInternalUnsafe.objectFieldOffset(f);
640     }
641 
642     /**
643      * Reports the location of a given static field, in conjunction with {@link
644      * #staticFieldBase}.
645      * <p>Do not expect to perform any sort of arithmetic on this offset;
646      * it is just a cookie which is passed to the unsafe heap memory accessors.
647      *
648      * <p>Any given field will always have the same offset, and no two distinct
649      * fields of the same class will ever have the same offset.
650      *
651      * <p>As of 1.4.1, offsets for fields are represented as long values,
652      * although the Sun JVM does not use the most significant 32 bits.
653      * It is hard to imagine a JVM technology which needs more than
654      * a few bits to encode an offset within a non-array object,
655      * However, for consistency with other methods in this class,
656      * this method reports its result as a long value.
657      * @see #getInt(Object, long)
658      */
659     @ForceInline
staticFieldOffset(Field f)660     public long staticFieldOffset(Field f) {
661         return theInternalUnsafe.staticFieldOffset(f);
662     }
663 
664     /**
665      * Reports the location of a given static field, in conjunction with {@link
666      * #staticFieldOffset}.
667      * <p>Fetch the base "Object", if any, with which static fields of the
668      * given class can be accessed via methods like {@link #getInt(Object,
669      * long)}.  This value may be null.  This value may refer to an object
670      * which is a "cookie", not guaranteed to be a real Object, and it should
671      * not be used in any way except as argument to the get and put routines in
672      * this class.
673      */
674     @ForceInline
staticFieldBase(Field f)675     public Object staticFieldBase(Field f) {
676         return theInternalUnsafe.staticFieldBase(f);
677     }
678 
679     /**
680      * Detects if the given class may need to be initialized. This is often
681      * needed in conjunction with obtaining the static field base of a
682      * class.
683      * @return false only if a call to {@code ensureClassInitialized} would have no effect
684      */
685     @ForceInline
shouldBeInitialized(Class<?> c)686     public boolean shouldBeInitialized(Class<?> c) {
687         return theInternalUnsafe.shouldBeInitialized(c);
688     }
689 
690     /**
691      * Ensures the given class has been initialized. This is often
692      * needed in conjunction with obtaining the static field base of a
693      * class.
694      */
695     @ForceInline
ensureClassInitialized(Class<?> c)696     public void ensureClassInitialized(Class<?> c) {
697         theInternalUnsafe.ensureClassInitialized(c);
698     }
699 
700     /**
701      * Reports the offset of the first element in the storage allocation of a
702      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
703      * for the same class, you may use that scale factor, together with this
704      * base offset, to form new offsets to access elements of arrays of the
705      * given class.
706      *
707      * @see #getInt(Object, long)
708      * @see #putInt(Object, long, int)
709      */
710     @ForceInline
arrayBaseOffset(Class<?> arrayClass)711     public int arrayBaseOffset(Class<?> arrayClass) {
712         return theInternalUnsafe.arrayBaseOffset(arrayClass);
713     }
714 
715     /** The value of {@code arrayBaseOffset(boolean[].class)} */
716     public static final int ARRAY_BOOLEAN_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_BASE_OFFSET;
717 
718     /** The value of {@code arrayBaseOffset(byte[].class)} */
719     public static final int ARRAY_BYTE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BYTE_BASE_OFFSET;
720 
721     /** The value of {@code arrayBaseOffset(short[].class)} */
722     public static final int ARRAY_SHORT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_SHORT_BASE_OFFSET;
723 
724     /** The value of {@code arrayBaseOffset(char[].class)} */
725     public static final int ARRAY_CHAR_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_CHAR_BASE_OFFSET;
726 
727     /** The value of {@code arrayBaseOffset(int[].class)} */
728     public static final int ARRAY_INT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_INT_BASE_OFFSET;
729 
730     /** The value of {@code arrayBaseOffset(long[].class)} */
731     public static final int ARRAY_LONG_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_LONG_BASE_OFFSET;
732 
733     /** The value of {@code arrayBaseOffset(float[].class)} */
734     public static final int ARRAY_FLOAT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_FLOAT_BASE_OFFSET;
735 
736     /** The value of {@code arrayBaseOffset(double[].class)} */
737     public static final int ARRAY_DOUBLE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_BASE_OFFSET;
738 
739     /** The value of {@code arrayBaseOffset(Object[].class)} */
740     public static final int ARRAY_OBJECT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_OBJECT_BASE_OFFSET;
741 
742     /**
743      * Reports the scale factor for addressing elements in the storage
744      * allocation of a given array class.  However, arrays of "narrow" types
745      * will generally not work properly with accessors like {@link
746      * #getByte(Object, long)}, so the scale factor for such classes is reported
747      * as zero.
748      *
749      * @see #arrayBaseOffset
750      * @see #getInt(Object, long)
751      * @see #putInt(Object, long, int)
752      */
753     @ForceInline
arrayIndexScale(Class<?> arrayClass)754     public int arrayIndexScale(Class<?> arrayClass) {
755         return theInternalUnsafe.arrayIndexScale(arrayClass);
756     }
757 
758     /** The value of {@code arrayIndexScale(boolean[].class)} */
759     public static final int ARRAY_BOOLEAN_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_INDEX_SCALE;
760 
761     /** The value of {@code arrayIndexScale(byte[].class)} */
762     public static final int ARRAY_BYTE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BYTE_INDEX_SCALE;
763 
764     /** The value of {@code arrayIndexScale(short[].class)} */
765     public static final int ARRAY_SHORT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_SHORT_INDEX_SCALE;
766 
767     /** The value of {@code arrayIndexScale(char[].class)} */
768     public static final int ARRAY_CHAR_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_CHAR_INDEX_SCALE;
769 
770     /** The value of {@code arrayIndexScale(int[].class)} */
771     public static final int ARRAY_INT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_INT_INDEX_SCALE;
772 
773     /** The value of {@code arrayIndexScale(long[].class)} */
774     public static final int ARRAY_LONG_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_LONG_INDEX_SCALE;
775 
776     /** The value of {@code arrayIndexScale(float[].class)} */
777     public static final int ARRAY_FLOAT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_FLOAT_INDEX_SCALE;
778 
779     /** The value of {@code arrayIndexScale(double[].class)} */
780     public static final int ARRAY_DOUBLE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_INDEX_SCALE;
781 
782     /** The value of {@code arrayIndexScale(Object[].class)} */
783     public static final int ARRAY_OBJECT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_OBJECT_INDEX_SCALE;
784 
785     /**
786      * Reports the size in bytes of a native pointer, as stored via {@link
787      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
788      * other primitive types (as stored in native memory blocks) is determined
789      * fully by their information content.
790      */
791     @ForceInline
addressSize()792     public int addressSize() {
793         return theInternalUnsafe.addressSize();
794     }
795 
796     /** The value of {@code addressSize()} */
797     public static final int ADDRESS_SIZE = theInternalUnsafe.addressSize();
798 
799     /**
800      * Reports the size in bytes of a native memory page (whatever that is).
801      * This value will always be a power of two.
802      */
803     @ForceInline
pageSize()804     public int pageSize() {
805         return theInternalUnsafe.pageSize();
806     }
807 
808 
809     /// random trusted operations from JNI:
810 
811     /**
812      * Defines a class but does not make it known to the class loader or system dictionary.
813      * <p>
814      * For each CP entry, the corresponding CP patch must either be null or have
815      * the a format that matches its tag:
816      * <ul>
817      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
818      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
819      * <li>Class: any java.lang.Class object
820      * <li>String: any object (not just a java.lang.String)
821      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
822      * </ul>
823      * @param hostClass context for linkage, access control, protection domain, and class loader
824      * @param data      bytes of a class file
825      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
826      */
827     @ForceInline
defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches)828     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
829         return theInternalUnsafe.defineAnonymousClass(hostClass, data, cpPatches);
830     }
831 
832     /**
833      * Allocates an instance but does not run any constructor.
834      * Initializes the class if it has not yet been.
835      */
836     @ForceInline
allocateInstance(Class<?> cls)837     public Object allocateInstance(Class<?> cls)
838         throws InstantiationException {
839         return theInternalUnsafe.allocateInstance(cls);
840     }
841 
842     /** Throws the exception without telling the verifier. */
843     @ForceInline
throwException(Throwable ee)844     public void throwException(Throwable ee) {
845         theInternalUnsafe.throwException(ee);
846     }
847 
848     /**
849      * Atomically updates Java variable to {@code x} if it is currently
850      * holding {@code expected}.
851      *
852      * <p>This operation has memory semantics of a {@code volatile} read
853      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
854      *
855      * @return {@code true} if successful
856      */
857     @ForceInline
compareAndSwapObject(Object o, long offset, Object expected, Object x)858     public final boolean compareAndSwapObject(Object o, long offset,
859                                               Object expected,
860                                               Object x) {
861         return theInternalUnsafe.compareAndSetReference(o, offset, expected, x);
862     }
863 
864     /**
865      * Atomically updates Java variable to {@code x} if it is currently
866      * holding {@code expected}.
867      *
868      * <p>This operation has memory semantics of a {@code volatile} read
869      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
870      *
871      * @return {@code true} if successful
872      */
873     @ForceInline
compareAndSwapInt(Object o, long offset, int expected, int x)874     public final boolean compareAndSwapInt(Object o, long offset,
875                                            int expected,
876                                            int x) {
877         return theInternalUnsafe.compareAndSetInt(o, offset, expected, x);
878     }
879 
880     /**
881      * Atomically updates Java variable to {@code x} if it is currently
882      * holding {@code expected}.
883      *
884      * <p>This operation has memory semantics of a {@code volatile} read
885      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
886      *
887      * @return {@code true} if successful
888      */
889     @ForceInline
compareAndSwapLong(Object o, long offset, long expected, long x)890     public final boolean compareAndSwapLong(Object o, long offset,
891                                             long expected,
892                                             long x) {
893         return theInternalUnsafe.compareAndSetLong(o, offset, expected, x);
894     }
895 
896     /**
897      * Fetches a reference value from a given Java variable, with volatile
898      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
899      */
900     @ForceInline
getObjectVolatile(Object o, long offset)901     public Object getObjectVolatile(Object o, long offset) {
902         return theInternalUnsafe.getReferenceVolatile(o, offset);
903     }
904 
905     /**
906      * Stores a reference value into a given Java variable, with
907      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
908      */
909     @ForceInline
putObjectVolatile(Object o, long offset, Object x)910     public void putObjectVolatile(Object o, long offset, Object x) {
911         theInternalUnsafe.putReferenceVolatile(o, offset, x);
912     }
913 
914     /** Volatile version of {@link #getInt(Object, long)}  */
915     @ForceInline
getIntVolatile(Object o, long offset)916     public int getIntVolatile(Object o, long offset) {
917         return theInternalUnsafe.getIntVolatile(o, offset);
918     }
919 
920     /** Volatile version of {@link #putInt(Object, long, int)}  */
921     @ForceInline
putIntVolatile(Object o, long offset, int x)922     public void putIntVolatile(Object o, long offset, int x) {
923         theInternalUnsafe.putIntVolatile(o, offset, x);
924     }
925 
926     /** Volatile version of {@link #getBoolean(Object, long)}  */
927     @ForceInline
getBooleanVolatile(Object o, long offset)928     public boolean getBooleanVolatile(Object o, long offset) {
929         return theInternalUnsafe.getBooleanVolatile(o, offset);
930     }
931 
932     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
933     @ForceInline
putBooleanVolatile(Object o, long offset, boolean x)934     public void putBooleanVolatile(Object o, long offset, boolean x) {
935         theInternalUnsafe.putBooleanVolatile(o, offset, x);
936     }
937 
938     /** Volatile version of {@link #getByte(Object, long)}  */
939     @ForceInline
getByteVolatile(Object o, long offset)940     public byte getByteVolatile(Object o, long offset) {
941         return theInternalUnsafe.getByteVolatile(o, offset);
942     }
943 
944     /** Volatile version of {@link #putByte(Object, long, byte)}  */
945     @ForceInline
putByteVolatile(Object o, long offset, byte x)946     public void putByteVolatile(Object o, long offset, byte x) {
947         theInternalUnsafe.putByteVolatile(o, offset, x);
948     }
949 
950     /** Volatile version of {@link #getShort(Object, long)}  */
951     @ForceInline
getShortVolatile(Object o, long offset)952     public short getShortVolatile(Object o, long offset) {
953         return theInternalUnsafe.getShortVolatile(o, offset);
954     }
955 
956     /** Volatile version of {@link #putShort(Object, long, short)}  */
957     @ForceInline
putShortVolatile(Object o, long offset, short x)958     public void putShortVolatile(Object o, long offset, short x) {
959         theInternalUnsafe.putShortVolatile(o, offset, x);
960     }
961 
962     /** Volatile version of {@link #getChar(Object, long)}  */
963     @ForceInline
getCharVolatile(Object o, long offset)964     public char getCharVolatile(Object o, long offset) {
965         return theInternalUnsafe.getCharVolatile(o, offset);
966     }
967 
968     /** Volatile version of {@link #putChar(Object, long, char)}  */
969     @ForceInline
putCharVolatile(Object o, long offset, char x)970     public void putCharVolatile(Object o, long offset, char x) {
971         theInternalUnsafe.putCharVolatile(o, offset, x);
972     }
973 
974     /** Volatile version of {@link #getLong(Object, long)}  */
975     @ForceInline
getLongVolatile(Object o, long offset)976     public long getLongVolatile(Object o, long offset) {
977         return theInternalUnsafe.getLongVolatile(o, offset);
978     }
979 
980     /** Volatile version of {@link #putLong(Object, long, long)}  */
981     @ForceInline
putLongVolatile(Object o, long offset, long x)982     public void putLongVolatile(Object o, long offset, long x) {
983         theInternalUnsafe.putLongVolatile(o, offset, x);
984     }
985 
986     /** Volatile version of {@link #getFloat(Object, long)}  */
987     @ForceInline
getFloatVolatile(Object o, long offset)988     public float getFloatVolatile(Object o, long offset) {
989         return theInternalUnsafe.getFloatVolatile(o, offset);
990     }
991 
992     /** Volatile version of {@link #putFloat(Object, long, float)}  */
993     @ForceInline
putFloatVolatile(Object o, long offset, float x)994     public void putFloatVolatile(Object o, long offset, float x) {
995         theInternalUnsafe.putFloatVolatile(o, offset, x);
996     }
997 
998     /** Volatile version of {@link #getDouble(Object, long)}  */
999     @ForceInline
getDoubleVolatile(Object o, long offset)1000     public double getDoubleVolatile(Object o, long offset) {
1001         return theInternalUnsafe.getDoubleVolatile(o, offset);
1002     }
1003 
1004     /** Volatile version of {@link #putDouble(Object, long, double)}  */
1005     @ForceInline
putDoubleVolatile(Object o, long offset, double x)1006     public void putDoubleVolatile(Object o, long offset, double x) {
1007         theInternalUnsafe.putDoubleVolatile(o, offset, x);
1008     }
1009 
1010     /**
1011      * Version of {@link #putObjectVolatile(Object, long, Object)}
1012      * that does not guarantee immediate visibility of the store to
1013      * other threads. This method is generally only useful if the
1014      * underlying field is a Java volatile (or if an array cell, one
1015      * that is otherwise only accessed using volatile accesses).
1016      *
1017      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
1018      */
1019     @ForceInline
putOrderedObject(Object o, long offset, Object x)1020     public void putOrderedObject(Object o, long offset, Object x) {
1021         theInternalUnsafe.putReferenceRelease(o, offset, x);
1022     }
1023 
1024     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
1025     @ForceInline
putOrderedInt(Object o, long offset, int x)1026     public void putOrderedInt(Object o, long offset, int x) {
1027         theInternalUnsafe.putIntRelease(o, offset, x);
1028     }
1029 
1030     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
1031     @ForceInline
putOrderedLong(Object o, long offset, long x)1032     public void putOrderedLong(Object o, long offset, long x) {
1033         theInternalUnsafe.putLongRelease(o, offset, x);
1034     }
1035 
1036     /**
1037      * Unblocks the given thread blocked on {@code park}, or, if it is
1038      * not blocked, causes the subsequent call to {@code park} not to
1039      * block.  Note: this operation is "unsafe" solely because the
1040      * caller must somehow ensure that the thread has not been
1041      * destroyed. Nothing special is usually required to ensure this
1042      * when called from Java (in which there will ordinarily be a live
1043      * reference to the thread) but this is not nearly-automatically
1044      * so when calling from native code.
1045      *
1046      * @param thread the thread to unpark.
1047      */
1048     @ForceInline
unpark(Object thread)1049     public void unpark(Object thread) {
1050         theInternalUnsafe.unpark(thread);
1051     }
1052 
1053     /**
1054      * Blocks current thread, returning when a balancing
1055      * {@code unpark} occurs, or a balancing {@code unpark} has
1056      * already occurred, or the thread is interrupted, or, if not
1057      * absolute and time is not zero, the given time nanoseconds have
1058      * elapsed, or if absolute, the given deadline in milliseconds
1059      * since Epoch has passed, or spuriously (i.e., returning for no
1060      * "reason"). Note: This operation is in the Unsafe class only
1061      * because {@code unpark} is, so it would be strange to place it
1062      * elsewhere.
1063      */
1064     @ForceInline
park(boolean isAbsolute, long time)1065     public void park(boolean isAbsolute, long time) {
1066         theInternalUnsafe.park(isAbsolute, time);
1067     }
1068 
1069     /**
1070      * Gets the load average in the system run queue assigned
1071      * to the available processors averaged over various periods of time.
1072      * This method retrieves the given {@code nelem} samples and
1073      * assigns to the elements of the given {@code loadavg} array.
1074      * The system imposes a maximum of 3 samples, representing
1075      * averages over the last 1,  5,  and  15 minutes, respectively.
1076      *
1077      * @param loadavg an array of double of size nelems
1078      * @param nelems the number of samples to be retrieved and
1079      *        must be 1 to 3.
1080      *
1081      * @return the number of samples actually retrieved; or -1
1082      *         if the load average is unobtainable.
1083      */
1084     @ForceInline
getLoadAverage(double[] loadavg, int nelems)1085     public int getLoadAverage(double[] loadavg, int nelems) {
1086         return theInternalUnsafe.getLoadAverage(loadavg, nelems);
1087     }
1088 
1089     // The following contain CAS-based Java implementations used on
1090     // platforms not supporting native instructions
1091 
1092     /**
1093      * Atomically adds the given value to the current value of a field
1094      * or array element within the given object {@code o}
1095      * at the given {@code offset}.
1096      *
1097      * @param o object/array to update the field/element in
1098      * @param offset field/element offset
1099      * @param delta the value to add
1100      * @return the previous value
1101      * @since 1.8
1102      */
1103     @ForceInline
getAndAddInt(Object o, long offset, int delta)1104     public final int getAndAddInt(Object o, long offset, int delta) {
1105         return theInternalUnsafe.getAndAddInt(o, offset, delta);
1106     }
1107 
1108     /**
1109      * Atomically adds the given value to the current value of a field
1110      * or array element within the given object {@code o}
1111      * at the given {@code offset}.
1112      *
1113      * @param o object/array to update the field/element in
1114      * @param offset field/element offset
1115      * @param delta the value to add
1116      * @return the previous value
1117      * @since 1.8
1118      */
1119     @ForceInline
getAndAddLong(Object o, long offset, long delta)1120     public final long getAndAddLong(Object o, long offset, long delta) {
1121         return theInternalUnsafe.getAndAddLong(o, offset, delta);
1122     }
1123 
1124     /**
1125      * Atomically exchanges the given value with the current value of
1126      * a field or array element within the given object {@code o}
1127      * at the given {@code offset}.
1128      *
1129      * @param o object/array to update the field/element in
1130      * @param offset field/element offset
1131      * @param newValue new value
1132      * @return the previous value
1133      * @since 1.8
1134      */
1135     @ForceInline
getAndSetInt(Object o, long offset, int newValue)1136     public final int getAndSetInt(Object o, long offset, int newValue) {
1137         return theInternalUnsafe.getAndSetInt(o, offset, newValue);
1138     }
1139 
1140     /**
1141      * Atomically exchanges the given value with the current value of
1142      * a field or array element within the given object {@code o}
1143      * at the given {@code offset}.
1144      *
1145      * @param o object/array to update the field/element in
1146      * @param offset field/element offset
1147      * @param newValue new value
1148      * @return the previous value
1149      * @since 1.8
1150      */
1151     @ForceInline
getAndSetLong(Object o, long offset, long newValue)1152     public final long getAndSetLong(Object o, long offset, long newValue) {
1153         return theInternalUnsafe.getAndSetLong(o, offset, newValue);
1154     }
1155 
1156     /**
1157      * Atomically exchanges the given reference value with the current
1158      * reference value of a field or array element within the given
1159      * object {@code o} at the given {@code offset}.
1160      *
1161      * @param o object/array to update the field/element in
1162      * @param offset field/element offset
1163      * @param newValue new value
1164      * @return the previous value
1165      * @since 1.8
1166      */
1167     @ForceInline
getAndSetObject(Object o, long offset, Object newValue)1168     public final Object getAndSetObject(Object o, long offset, Object newValue) {
1169         return theInternalUnsafe.getAndSetReference(o, offset, newValue);
1170     }
1171 
1172 
1173     /**
1174      * Ensures that loads before the fence will not be reordered with loads and
1175      * stores after the fence; a "LoadLoad plus LoadStore barrier".
1176      *
1177      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
1178      * (an "acquire fence").
1179      *
1180      * A pure LoadLoad fence is not provided, since the addition of LoadStore
1181      * is almost always desired, and most current hardware instructions that
1182      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
1183      * @since 1.8
1184      */
1185     @ForceInline
loadFence()1186     public void loadFence() {
1187         theInternalUnsafe.loadFence();
1188     }
1189 
1190     /**
1191      * Ensures that loads and stores before the fence will not be reordered with
1192      * stores after the fence; a "StoreStore plus LoadStore barrier".
1193      *
1194      * Corresponds to C11 atomic_thread_fence(memory_order_release)
1195      * (a "release fence").
1196      *
1197      * A pure StoreStore fence is not provided, since the addition of LoadStore
1198      * is almost always desired, and most current hardware instructions that
1199      * provide a StoreStore barrier also provide a LoadStore barrier for free.
1200      * @since 1.8
1201      */
1202     @ForceInline
storeFence()1203     public void storeFence() {
1204         theInternalUnsafe.storeFence();
1205     }
1206 
1207     /**
1208      * Ensures that loads and stores before the fence will not be reordered
1209      * with loads and stores after the fence.  Implies the effects of both
1210      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
1211      * barrier.
1212      *
1213      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
1214      * @since 1.8
1215      */
1216     @ForceInline
fullFence()1217     public void fullFence() {
1218         theInternalUnsafe.fullFence();
1219     }
1220 
1221     /**
1222      * Invokes the given direct byte buffer's cleaner, if any.
1223      *
1224      * @param directBuffer a direct byte buffer
1225      * @throws NullPointerException if {@code directBuffer} is null
1226      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
1227      * or is a {@link java.nio.Buffer#slice slice}, or is a
1228      * {@link java.nio.Buffer#duplicate duplicate}
1229      * @since 9
1230      */
invokeCleaner(java.nio.ByteBuffer directBuffer)1231     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
1232         if (!directBuffer.isDirect())
1233             throw new IllegalArgumentException("buffer is non-direct");
1234 
1235         theInternalUnsafe.invokeCleaner(directBuffer);
1236     }
1237 }
1238