1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "memory/heap.hpp"
27 #include "oops/oop.inline.hpp"
28 #include "runtime/os.hpp"
29 #include "services/memTracker.hpp"
30 #include "utilities/align.hpp"
31 
header_size()32 size_t CodeHeap::header_size() {
33   return sizeof(HeapBlock);
34 }
35 
36 
37 // Implementation of Heap
38 
CodeHeap(const char * name,const int code_blob_type)39 CodeHeap::CodeHeap(const char* name, const int code_blob_type)
40   : _code_blob_type(code_blob_type) {
41   _name                         = name;
42   _number_of_committed_segments = 0;
43   _number_of_reserved_segments  = 0;
44   _segment_size                 = 0;
45   _log2_segment_size            = 0;
46   _next_segment                 = 0;
47   _freelist                     = NULL;
48   _freelist_segments            = 0;
49   _freelist_length              = 0;
50   _max_allocated_capacity       = 0;
51   _blob_count                   = 0;
52   _nmethod_count                = 0;
53   _adapter_count                = 0;
54   _full_count                   = 0;
55 }
56 
57 
58 // The segmap is marked free for that part of the heap
59 // which has not been allocated yet (beyond _next_segment).
60 // "Allocated" space in this context means there exists a
61 // HeapBlock or a FreeBlock describing this space.
62 // This method takes segment map indices as range boundaries
mark_segmap_as_free(size_t beg,size_t end)63 void CodeHeap::mark_segmap_as_free(size_t beg, size_t end) {
64   assert(             beg <  _number_of_committed_segments, "interval begin out of bounds");
65   assert(beg < end && end <= _number_of_committed_segments, "interval end   out of bounds");
66   // Don't do unpredictable things in PRODUCT build
67   if (beg < end) {
68     // setup _segmap pointers for faster indexing
69     address p = (address)_segmap.low() + beg;
70     address q = (address)_segmap.low() + end;
71     // initialize interval
72     memset(p, free_sentinel, q-p);
73   }
74 }
75 
76 // Don't get confused here.
77 // All existing blocks, no matter if they are used() or free(),
78 // have their segmap marked as used. This allows to find the
79 // block header (HeapBlock or FreeBlock) for any pointer
80 // within the allocated range (upper limit: _next_segment).
81 // This method takes segment map indices as range boundaries
mark_segmap_as_used(size_t beg,size_t end)82 void CodeHeap::mark_segmap_as_used(size_t beg, size_t end) {
83   assert(             beg <  _number_of_committed_segments, "interval begin out of bounds");
84   assert(beg < end && end <= _number_of_committed_segments, "interval end   out of bounds");
85   // Don't do unpredictable things in PRODUCT build
86   if (beg < end) {
87     // setup _segmap pointers for faster indexing
88     address p = (address)_segmap.low() + beg;
89     address q = (address)_segmap.low() + end;
90     // initialize interval
91     int i = 0;
92     while (p < q) {
93       *p++ = i++;
94       if (i == free_sentinel) i = 1;
95     }
96   }
97 }
98 
invalidate(size_t beg,size_t end,size_t hdr_size)99 void CodeHeap::invalidate(size_t beg, size_t end, size_t hdr_size) {
100 #ifndef PRODUCT
101   // Fill the given range with some bad value.
102   // length is expected to be in segment_size units.
103   // This prevents inadvertent execution of code leftover from previous use.
104   char* p = low_boundary() + segments_to_size(beg) + hdr_size;
105   memset(p, badCodeHeapNewVal, segments_to_size(end-beg)-hdr_size);
106 #endif
107 }
108 
clear(size_t beg,size_t end)109 void CodeHeap::clear(size_t beg, size_t end) {
110   mark_segmap_as_free(beg, end);
111   invalidate(beg, end, 0);
112 }
113 
clear()114 void CodeHeap::clear() {
115   _next_segment = 0;
116   clear(_next_segment, _number_of_committed_segments);
117 }
118 
119 
align_to_page_size(size_t size)120 static size_t align_to_page_size(size_t size) {
121   const size_t alignment = (size_t)os::vm_page_size();
122   assert(is_power_of_2(alignment), "no kidding ???");
123   return (size + alignment - 1) & ~(alignment - 1);
124 }
125 
126 
on_code_mapping(char * base,size_t size)127 void CodeHeap::on_code_mapping(char* base, size_t size) {
128 #ifdef LINUX
129   extern void linux_wrap_code(char* base, size_t size);
130   linux_wrap_code(base, size);
131 #endif
132 }
133 
134 
reserve(ReservedSpace rs,size_t committed_size,size_t segment_size)135 bool CodeHeap::reserve(ReservedSpace rs, size_t committed_size, size_t segment_size) {
136   assert(rs.size() >= committed_size, "reserved < committed");
137   assert(segment_size >= sizeof(FreeBlock), "segment size is too small");
138   assert(is_power_of_2(segment_size), "segment_size must be a power of 2");
139 
140   _segment_size      = segment_size;
141   _log2_segment_size = exact_log2(segment_size);
142 
143   // Reserve and initialize space for _memory.
144   size_t page_size = os::vm_page_size();
145   if (os::can_execute_large_page_memory()) {
146     const size_t min_pages = 8;
147     page_size = MIN2(os::page_size_for_region_aligned(committed_size, min_pages),
148                      os::page_size_for_region_aligned(rs.size(), min_pages));
149   }
150 
151   const size_t granularity = os::vm_allocation_granularity();
152   const size_t c_size = align_up(committed_size, page_size);
153 
154   os::trace_page_sizes(_name, committed_size, rs.size(), page_size,
155                        rs.base(), rs.size());
156   if (!_memory.initialize(rs, c_size)) {
157     return false;
158   }
159 
160   on_code_mapping(_memory.low(), _memory.committed_size());
161   _number_of_committed_segments = size_to_segments(_memory.committed_size());
162   _number_of_reserved_segments  = size_to_segments(_memory.reserved_size());
163   assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
164   const size_t reserved_segments_alignment = MAX2((size_t)os::vm_page_size(), granularity);
165   const size_t reserved_segments_size = align_up(_number_of_reserved_segments, reserved_segments_alignment);
166   const size_t committed_segments_size = align_to_page_size(_number_of_committed_segments);
167 
168   // reserve space for _segmap
169   if (!_segmap.initialize(reserved_segments_size, committed_segments_size)) {
170     return false;
171   }
172 
173   MemTracker::record_virtual_memory_type((address)_segmap.low_boundary(), mtCode);
174 
175   assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "could not commit  enough space for segment map");
176   assert(_segmap.reserved_size()  >= (size_t) _number_of_reserved_segments , "could not reserve enough space for segment map");
177   assert(_segmap.reserved_size()  >= _segmap.committed_size()     , "just checking");
178 
179   // initialize remaining instance variables, heap memory and segmap
180   clear();
181   return true;
182 }
183 
184 
expand_by(size_t size)185 bool CodeHeap::expand_by(size_t size) {
186   // expand _memory space
187   size_t dm = align_to_page_size(_memory.committed_size() + size) - _memory.committed_size();
188   if (dm > 0) {
189     // Use at least the available uncommitted space if 'size' is larger
190     if (_memory.uncommitted_size() != 0 && dm > _memory.uncommitted_size()) {
191       dm = _memory.uncommitted_size();
192     }
193     char* base = _memory.low() + _memory.committed_size();
194     if (!_memory.expand_by(dm)) return false;
195     on_code_mapping(base, dm);
196     size_t i = _number_of_committed_segments;
197     _number_of_committed_segments = size_to_segments(_memory.committed_size());
198     assert(_number_of_reserved_segments == size_to_segments(_memory.reserved_size()), "number of reserved segments should not change");
199     assert(_number_of_reserved_segments >= _number_of_committed_segments, "just checking");
200     // expand _segmap space
201     size_t ds = align_to_page_size(_number_of_committed_segments) - _segmap.committed_size();
202     if ((ds > 0) && !_segmap.expand_by(ds)) {
203       return false;
204     }
205     assert(_segmap.committed_size() >= (size_t) _number_of_committed_segments, "just checking");
206     // initialize additional space (heap memory and segmap)
207     clear(i, _number_of_committed_segments);
208   }
209   return true;
210 }
211 
212 
allocate(size_t instance_size)213 void* CodeHeap::allocate(size_t instance_size) {
214   size_t number_of_segments = size_to_segments(instance_size + header_size());
215   assert(segments_to_size(number_of_segments) >= sizeof(FreeBlock), "not enough room for FreeList");
216 
217   // First check if we can satisfy request from freelist
218   NOT_PRODUCT(verify());
219   HeapBlock* block = search_freelist(number_of_segments);
220   NOT_PRODUCT(verify());
221 
222   if (block != NULL) {
223     assert(!block->free(), "must be marked free");
224     guarantee((char*) block >= _memory.low_boundary() && (char*) block < _memory.high(),
225               "The newly allocated block " INTPTR_FORMAT " is not within the heap "
226               "starting with "  INTPTR_FORMAT " and ending with "  INTPTR_FORMAT,
227               p2i(block), p2i(_memory.low_boundary()), p2i(_memory.high()));
228     // Invalidate the additional space that FreeBlock occupies. The rest of the block should already be invalidated.
229     // This is necessary due to a dubious assert in nmethod.cpp(PcDescCache::reset_to()).
230     DEBUG_ONLY(memset((void*)block->allocated_space(), badCodeHeapNewVal, sizeof(FreeBlock) - sizeof(HeapBlock)));
231     _max_allocated_capacity = MAX2(_max_allocated_capacity, allocated_capacity());
232     _blob_count++;
233     return block->allocated_space();
234   }
235 
236   // Ensure minimum size for allocation to the heap.
237   number_of_segments = MAX2((int)CodeCacheMinBlockLength, (int)number_of_segments);
238 
239   if (_next_segment + number_of_segments <= _number_of_committed_segments) {
240     mark_segmap_as_used(_next_segment, _next_segment + number_of_segments);
241     HeapBlock* b =  block_at(_next_segment);
242     b->initialize(number_of_segments);
243     _next_segment += number_of_segments;
244     guarantee((char*) b >= _memory.low_boundary() && (char*) block < _memory.high(),
245               "The newly allocated block " INTPTR_FORMAT " is not within the heap "
246               "starting with "  INTPTR_FORMAT " and ending with " INTPTR_FORMAT,
247               p2i(b), p2i(_memory.low_boundary()), p2i(_memory.high()));
248     _max_allocated_capacity = MAX2(_max_allocated_capacity, allocated_capacity());
249     _blob_count++;
250     return b->allocated_space();
251   } else {
252     return NULL;
253   }
254 }
255 
256 // Split the given block into two at the given segment.
257 // This is helpful when a block was allocated too large
258 // to trim off the unused space at the end (interpreter).
259 // It also helps with splitting a large free block during allocation.
260 // Usage state (used or free) must be set by caller since
261 // we don't know if the resulting blocks will be used or free.
262 // split_at is the segment number (relative to segment_for(b))
263 //          where the split happens. The segment with relative
264 //          number split_at is the first segment of the split-off block.
split_block(HeapBlock * b,size_t split_at)265 HeapBlock* CodeHeap::split_block(HeapBlock *b, size_t split_at) {
266   if (b == NULL) return NULL;
267   // After the split, both blocks must have a size of at least CodeCacheMinBlockLength
268   assert((split_at >= CodeCacheMinBlockLength) && (split_at + CodeCacheMinBlockLength <= b->length()),
269          "split position(%d) out of range [0..%d]", (int)split_at, (int)b->length());
270   size_t split_segment = segment_for(b) + split_at;
271   size_t b_size        = b->length();
272   size_t newb_size     = b_size - split_at;
273 
274   HeapBlock* newb = block_at(split_segment);
275   newb->set_length(newb_size);
276   mark_segmap_as_used(segment_for(newb), segment_for(newb) + newb_size);
277   b->set_length(split_at);
278   return newb;
279 }
280 
deallocate_tail(void * p,size_t used_size)281 void CodeHeap::deallocate_tail(void* p, size_t used_size) {
282   assert(p == find_start(p), "illegal deallocation");
283   // Find start of HeapBlock
284   HeapBlock* b = (((HeapBlock *)p) - 1);
285   assert(b->allocated_space() == p, "sanity check");
286 
287   size_t actual_number_of_segments = b->length();
288   size_t used_number_of_segments   = size_to_segments(used_size + header_size());
289   size_t unused_number_of_segments = actual_number_of_segments - used_number_of_segments;
290   guarantee(used_number_of_segments <= actual_number_of_segments, "Must be!");
291 
292   HeapBlock* f = split_block(b, used_number_of_segments);
293   add_to_freelist(f);
294   NOT_PRODUCT(verify());
295 }
296 
deallocate(void * p)297 void CodeHeap::deallocate(void* p) {
298   assert(p == find_start(p), "illegal deallocation");
299   // Find start of HeapBlock
300   HeapBlock* b = (((HeapBlock *)p) - 1);
301   assert(b->allocated_space() == p, "sanity check");
302   guarantee((char*) b >= _memory.low_boundary() && (char*) b < _memory.high(),
303             "The block to be deallocated " INTPTR_FORMAT " is not within the heap "
304             "starting with "  INTPTR_FORMAT " and ending with " INTPTR_FORMAT,
305             p2i(b), p2i(_memory.low_boundary()), p2i(_memory.high()));
306   add_to_freelist(b);
307   NOT_PRODUCT(verify());
308 }
309 
310 /**
311  * Uses segment map to find the the start (header) of a nmethod. This works as follows:
312  * The memory of the code cache is divided into 'segments'. The size of a segment is
313  * determined by -XX:CodeCacheSegmentSize=XX. Allocation in the code cache can only
314  * happen at segment boundaries. A pointer in the code cache can be mapped to a segment
315  * by calling segment_for(addr). Each time memory is requested from the code cache,
316  * the segmap is updated accordingly. See the following example, which illustrates the
317  * state of code cache and the segment map: (seg -> segment, nm ->nmethod)
318  *
319  *          code cache          segmap
320  *         -----------        ---------
321  * seg 1   | nm 1    |   ->   | 0     |
322  * seg 2   | nm 1    |   ->   | 1     |
323  * ...     | nm 1    |   ->   | ..    |
324  * seg m   | nm 2    |   ->   | 0     |
325  * seg m+1 | nm 2    |   ->   | 1     |
326  * ...     | nm 2    |   ->   | 2     |
327  * ...     | nm 2    |   ->   | ..    |
328  * ...     | nm 2    |   ->   | 0xFE  |
329  * seg m+n | nm 2    |   ->   | 1     |
330  * ...     | nm 2    |   ->   |       |
331  *
332  * A value of '0' in the segmap indicates that this segment contains the beginning of
333  * an nmethod. Let's walk through a simple example: If we want to find the start of
334  * an nmethod that falls into seg 2, we read the value of the segmap[2]. The value
335  * is an offset that points to the segment that contains the start of the nmethod.
336  * Another example: If we want to get the start of nm 2, and we happen to get a pointer
337  * that points to seg m+n, we first read seg[n+m], which returns '1'. So we have to
338  * do one more read of the segmap[m+n-1] to finally get the segment header.
339  */
find_start(void * p) const340 void* CodeHeap::find_start(void* p) const {
341   if (!contains(p)) {
342     return NULL;
343   }
344   size_t seg_idx = segment_for(p);
345   address seg_map = (address)_segmap.low();
346   if (is_segment_unused(seg_map[seg_idx])) {
347     return NULL;
348   }
349   while (seg_map[seg_idx] > 0) {
350     seg_idx -= (int)seg_map[seg_idx];
351   }
352 
353   HeapBlock* h = block_at(seg_idx);
354   if (h->free()) {
355     return NULL;
356   }
357   return h->allocated_space();
358 }
359 
find_blob_unsafe(void * start) const360 CodeBlob* CodeHeap::find_blob_unsafe(void* start) const {
361   CodeBlob* result = (CodeBlob*)CodeHeap::find_start(start);
362   if (result != NULL && result->blob_contains((address)start)) {
363     return result;
364   }
365   return NULL;
366 }
367 
alignment_unit() const368 size_t CodeHeap::alignment_unit() const {
369   // this will be a power of two
370   return _segment_size;
371 }
372 
373 
alignment_offset() const374 size_t CodeHeap::alignment_offset() const {
375   // The lowest address in any allocated block will be
376   // equal to alignment_offset (mod alignment_unit).
377   return sizeof(HeapBlock) & (_segment_size - 1);
378 }
379 
380 // Returns the current block if available and used.
381 // If not, it returns the subsequent block (if available), NULL otherwise.
382 // Free blocks are merged, therefore there is at most one free block
383 // between two used ones. As a result, the subsequent block (if available) is
384 // guaranteed to be used.
next_used(HeapBlock * b) const385 void* CodeHeap::next_used(HeapBlock* b) const {
386   if (b != NULL && b->free()) b = next_block(b);
387   assert(b == NULL || !b->free(), "must be in use or at end of heap");
388   return (b == NULL) ? NULL : b->allocated_space();
389 }
390 
391 // Returns the first used HeapBlock
first_block() const392 HeapBlock* CodeHeap::first_block() const {
393   if (_next_segment > 0)
394     return block_at(0);
395   return NULL;
396 }
397 
block_start(void * q) const398 HeapBlock* CodeHeap::block_start(void* q) const {
399   HeapBlock* b = (HeapBlock*)find_start(q);
400   if (b == NULL) return NULL;
401   return b - 1;
402 }
403 
404 // Returns the next Heap block an offset into one
next_block(HeapBlock * b) const405 HeapBlock* CodeHeap::next_block(HeapBlock *b) const {
406   if (b == NULL) return NULL;
407   size_t i = segment_for(b) + b->length();
408   if (i < _next_segment)
409     return block_at(i);
410   return NULL;
411 }
412 
413 
414 // Returns current capacity
capacity() const415 size_t CodeHeap::capacity() const {
416   return _memory.committed_size();
417 }
418 
max_capacity() const419 size_t CodeHeap::max_capacity() const {
420   return _memory.reserved_size();
421 }
422 
allocated_segments() const423 int CodeHeap::allocated_segments() const {
424   return (int)_next_segment;
425 }
426 
allocated_capacity() const427 size_t CodeHeap::allocated_capacity() const {
428   // size of used heap - size on freelist
429   return segments_to_size(_next_segment - _freelist_segments);
430 }
431 
432 // Returns size of the unallocated heap block
heap_unallocated_capacity() const433 size_t CodeHeap::heap_unallocated_capacity() const {
434   // Total number of segments - number currently used
435   return segments_to_size(_number_of_reserved_segments - _next_segment);
436 }
437 
438 // Free list management
439 
following_block(FreeBlock * b)440 FreeBlock* CodeHeap::following_block(FreeBlock *b) {
441   return (FreeBlock*)(((address)b) + _segment_size * b->length());
442 }
443 
444 // Inserts block b after a
insert_after(FreeBlock * a,FreeBlock * b)445 void CodeHeap::insert_after(FreeBlock* a, FreeBlock* b) {
446   assert(a != NULL && b != NULL, "must be real pointers");
447 
448   // Link b into the list after a
449   b->set_link(a->link());
450   a->set_link(b);
451 
452   // See if we can merge blocks
453   merge_right(b); // Try to make b bigger
454   merge_right(a); // Try to make a include b
455 }
456 
457 // Try to merge this block with the following block
merge_right(FreeBlock * a)458 bool CodeHeap::merge_right(FreeBlock* a) {
459   assert(a->free(), "must be a free block");
460   if (following_block(a) == a->link()) {
461     assert(a->link() != NULL && a->link()->free(), "must be free too");
462     // Update block a to include the following block
463     a->set_length(a->length() + a->link()->length());
464     a->set_link(a->link()->link());
465     // Update find_start map
466     size_t beg = segment_for(a);
467     mark_segmap_as_used(beg, beg + a->length());
468     invalidate(beg, beg + a->length(), sizeof(FreeBlock));
469     _freelist_length--;
470     return true;
471   }
472   return false;
473 }
474 
475 
add_to_freelist(HeapBlock * a)476 void CodeHeap::add_to_freelist(HeapBlock* a) {
477   FreeBlock* b = (FreeBlock*)a;
478   size_t  bseg = segment_for(b);
479   _freelist_length++;
480 
481   _blob_count--;
482   assert(_blob_count >= 0, "sanity");
483 
484   assert(b != _freelist, "cannot be removed twice");
485 
486   // Mark as free and update free space count
487   _freelist_segments += b->length();
488   b->set_free();
489   invalidate(bseg, bseg + b->length(), sizeof(FreeBlock));
490 
491   // First element in list?
492   if (_freelist == NULL) {
493     b->set_link(NULL);
494     _freelist = b;
495     return;
496   }
497 
498   // Since the freelist is ordered (smaller addresses -> larger addresses) and the
499   // element we want to insert into the freelist has a smaller address than the first
500   // element, we can simply add 'b' as the first element and we are done.
501   if (b < _freelist) {
502     // Insert first in list
503     b->set_link(_freelist);
504     _freelist = b;
505     merge_right(_freelist);
506     return;
507   }
508 
509   // Scan for right place to put into list. List
510   // is sorted by increasing addresses
511   FreeBlock* prev = _freelist;
512   FreeBlock* cur  = _freelist->link();
513   while(cur != NULL && cur < b) {
514     assert(prev < cur, "Freelist must be ordered");
515     prev = cur;
516     cur  = cur->link();
517   }
518   assert((prev < b) && (cur == NULL || b < cur), "free-list must be ordered");
519   insert_after(prev, b);
520 }
521 
522 /**
523  * Search freelist for an entry on the list with the best fit.
524  * @return NULL, if no one was found
525  */
search_freelist(size_t length)526 HeapBlock* CodeHeap::search_freelist(size_t length) {
527   FreeBlock* found_block  = NULL;
528   FreeBlock* found_prev   = NULL;
529   size_t     found_length = _next_segment; // max it out to begin with
530 
531   HeapBlock* res  = NULL;
532   FreeBlock* prev = NULL;
533   FreeBlock* cur  = _freelist;
534 
535   length = length < CodeCacheMinBlockLength ? CodeCacheMinBlockLength : length;
536 
537   // Search for best-fitting block
538   while(cur != NULL) {
539     size_t cur_length = cur->length();
540     if (cur_length == length) {
541       // We have a perfect fit
542       found_block  = cur;
543       found_prev   = prev;
544       found_length = cur_length;
545       break;
546     } else if ((cur_length > length) && (cur_length < found_length)) {
547       // This is a new, closer fit. Remember block, its previous element, and its length
548       found_block  = cur;
549       found_prev   = prev;
550       found_length = cur_length;
551     }
552     // Next element in list
553     prev = cur;
554     cur  = cur->link();
555   }
556 
557   if (found_block == NULL) {
558     // None found
559     return NULL;
560   }
561 
562   // Exact (or at least good enough) fit. Remove from list.
563   // Don't leave anything on the freelist smaller than CodeCacheMinBlockLength.
564   if (found_length - length < CodeCacheMinBlockLength) {
565     _freelist_length--;
566     length = found_length;
567     if (found_prev == NULL) {
568       assert(_freelist == found_block, "sanity check");
569       _freelist = _freelist->link();
570     } else {
571       assert((found_prev->link() == found_block), "sanity check");
572       // Unmap element
573       found_prev->set_link(found_block->link());
574     }
575     res = found_block;
576   } else {
577     // Truncate the free block and return the truncated part
578     // as new HeapBlock. The remaining free block does not
579     // need to be updated, except for it's length. Truncating
580     // the segment map does not invalidate the leading part.
581     res = split_block(found_block, found_length - length);
582   }
583 
584   res->set_used();
585   _freelist_segments -= length;
586   return res;
587 }
588 
589 //----------------------------------------------------------------------------
590 // Non-product code
591 
592 #ifndef PRODUCT
593 
print()594 void CodeHeap::print() {
595   tty->print_cr("The Heap");
596 }
597 
verify()598 void CodeHeap::verify() {
599   if (VerifyCodeCache) {
600     size_t len = 0;
601     int count = 0;
602     for(FreeBlock* b = _freelist; b != NULL; b = b->link()) {
603       len += b->length();
604       count++;
605       // Check if we have merged all free blocks
606       assert(merge_right(b) == false, "Missed merging opportunity");
607     }
608     // Verify that freelist contains the right amount of free space
609     assert(len == _freelist_segments, "wrong freelist");
610 
611     for(HeapBlock* h = first_block(); h != NULL; h = next_block(h)) {
612       if (h->free()) count--;
613     }
614     // Verify that the freelist contains the same number of blocks
615     // than free blocks found on the full list.
616     assert(count == 0, "missing free blocks");
617 
618     //---<  all free block memory must have been invalidated  >---
619     for(FreeBlock* b = _freelist; b != NULL; b = b->link()) {
620       for (char* c = (char*)b + sizeof(FreeBlock); c < (char*)b + segments_to_size(b->length()); c++) {
621         assert(*c == (char)badCodeHeapNewVal, "FreeBlock@" PTR_FORMAT "(" PTR_FORMAT ") not invalidated @byte %d", p2i(b), b->length(), (int)(c - (char*)b));
622       }
623     }
624 
625     // Verify segment map marking.
626     // All allocated segments, no matter if in a free or used block,
627     // must be marked "in use".
628     address seg_map = (address)_segmap.low();
629     size_t  nseg    = 0;
630     for(HeapBlock* b = first_block(); b != NULL; b = next_block(b)) {
631       size_t seg1 = segment_for(b);
632       size_t segn = seg1 + b->length();
633       for (size_t i = seg1; i < segn; i++) {
634         nseg++;
635         assert(!is_segment_unused(seg_map[i]), "CodeHeap: unused segment. %d [%d..%d], %s block", (int)i, (int)seg1, (int)segn, b->free()? "free":"used");
636       }
637     }
638     assert(nseg == _next_segment, "CodeHeap: segment count mismatch. found %d, expected %d.", (int)nseg, (int)_next_segment);
639 
640     // Verify that the number of free blocks is not out of hand.
641     static int free_block_threshold = 10000;
642     if (count > free_block_threshold) {
643       warning("CodeHeap: # of free blocks > %d", free_block_threshold);
644       // Double the warning limit
645       free_block_threshold *= 2;
646     }
647   }
648 }
649 
650 #endif
651