1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "libadt/vectset.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "opto/block.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/cfgnode.hpp"
33 #include "opto/machnode.hpp"
34 #include "opto/opcodes.hpp"
35 #include "opto/phaseX.hpp"
36 #include "opto/rootnode.hpp"
37 #include "opto/runtime.hpp"
38 #include "opto/chaitin.hpp"
39 #include "runtime/deoptimization.hpp"
40 
41 // Portions of code courtesy of Clifford Click
42 
43 // Optimization - Graph Style
44 
45 // To avoid float value underflow
46 #define MIN_BLOCK_FREQUENCY 1.e-35f
47 
48 //----------------------------schedule_node_into_block-------------------------
49 // Insert node n into block b. Look for projections of n and make sure they
50 // are in b also.
schedule_node_into_block(Node * n,Block * b)51 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
52   // Set basic block of n, Add n to b,
53   map_node_to_block(n, b);
54   b->add_inst(n);
55 
56   // After Matching, nearly any old Node may have projections trailing it.
57   // These are usually machine-dependent flags.  In any case, they might
58   // float to another block below this one.  Move them up.
59   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
60     Node*  use  = n->fast_out(i);
61     if (use->is_Proj()) {
62       Block* buse = get_block_for_node(use);
63       if (buse != b) {              // In wrong block?
64         if (buse != NULL) {
65           buse->find_remove(use);   // Remove from wrong block
66         }
67         map_node_to_block(use, b);
68         b->add_inst(use);
69       }
70     }
71   }
72 }
73 
74 //----------------------------replace_block_proj_ctrl-------------------------
75 // Nodes that have is_block_proj() nodes as their control need to use
76 // the appropriate Region for their actual block as their control since
77 // the projection will be in a predecessor block.
replace_block_proj_ctrl(Node * n)78 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
79   const Node *in0 = n->in(0);
80   assert(in0 != NULL, "Only control-dependent");
81   const Node *p = in0->is_block_proj();
82   if (p != NULL && p != n) {    // Control from a block projection?
83     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
84     // Find trailing Region
85     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
86     uint j = 0;
87     if (pb->_num_succs != 1) {  // More then 1 successor?
88       // Search for successor
89       uint max = pb->number_of_nodes();
90       assert( max > 1, "" );
91       uint start = max - pb->_num_succs;
92       // Find which output path belongs to projection
93       for (j = start; j < max; j++) {
94         if( pb->get_node(j) == in0 )
95           break;
96       }
97       assert( j < max, "must find" );
98       // Change control to match head of successor basic block
99       j -= start;
100     }
101     n->set_req(0, pb->_succs[j]->head());
102   }
103 }
104 
is_dominator(Node * dom_node,Node * node)105 bool PhaseCFG::is_dominator(Node* dom_node, Node* node) {
106   assert(is_CFG(node) && is_CFG(dom_node), "node and dom_node must be CFG nodes");
107   if (dom_node == node) {
108     return true;
109   }
110   Block* d = find_block_for_node(dom_node);
111   Block* n = find_block_for_node(node);
112   assert(n != NULL && d != NULL, "blocks must exist");
113 
114   if (d == n) {
115     if (dom_node->is_block_start()) {
116       return true;
117     }
118     if (node->is_block_start()) {
119       return false;
120     }
121     if (dom_node->is_block_proj()) {
122       return false;
123     }
124     if (node->is_block_proj()) {
125       return true;
126     }
127 
128     assert(is_control_proj_or_safepoint(node), "node must be control projection or safepoint");
129     assert(is_control_proj_or_safepoint(dom_node), "dom_node must be control projection or safepoint");
130 
131     // Neither 'node' nor 'dom_node' is a block start or block projection.
132     // Check if 'dom_node' is above 'node' in the control graph.
133     if (is_dominating_control(dom_node, node)) {
134       return true;
135     }
136 
137 #ifdef ASSERT
138     // If 'dom_node' does not dominate 'node' then 'node' has to dominate 'dom_node'
139     if (!is_dominating_control(node, dom_node)) {
140       node->dump();
141       dom_node->dump();
142       assert(false, "neither dom_node nor node dominates the other");
143     }
144 #endif
145 
146     return false;
147   }
148   return d->dom_lca(n) == d;
149 }
150 
is_CFG(Node * n)151 bool PhaseCFG::is_CFG(Node* n) {
152   return n->is_block_proj() || n->is_block_start() || is_control_proj_or_safepoint(n);
153 }
154 
is_control_proj_or_safepoint(Node * n)155 bool PhaseCFG::is_control_proj_or_safepoint(Node* n) {
156   bool result = (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint) || (n->is_Proj() && n->as_Proj()->bottom_type() == Type::CONTROL);
157   assert(!result || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_SafePoint)
158           || (n->is_Proj() && n->as_Proj()->_con == 0), "If control projection, it must be projection 0");
159   return result;
160 }
161 
find_block_for_node(Node * n)162 Block* PhaseCFG::find_block_for_node(Node* n) {
163   if (n->is_block_start() || n->is_block_proj()) {
164     return get_block_for_node(n);
165   } else {
166     // Walk the control graph up if 'n' is not a block start nor a block projection. In this case 'n' must be
167     // an unmatched control projection or a not yet matched safepoint precedence edge in the middle of a block.
168     assert(is_control_proj_or_safepoint(n), "must be control projection or safepoint");
169     Node* ctrl = n->in(0);
170     while (!ctrl->is_block_start()) {
171       ctrl = ctrl->in(0);
172     }
173     return get_block_for_node(ctrl);
174   }
175 }
176 
177 // Walk up the control graph from 'n' and check if 'dom_ctrl' is found.
is_dominating_control(Node * dom_ctrl,Node * n)178 bool PhaseCFG::is_dominating_control(Node* dom_ctrl, Node* n) {
179   Node* ctrl = n->in(0);
180   while (!ctrl->is_block_start()) {
181     if (ctrl == dom_ctrl) {
182       return true;
183     }
184     ctrl = ctrl->in(0);
185   }
186   return false;
187 }
188 
189 
190 //------------------------------schedule_pinned_nodes--------------------------
191 // Set the basic block for Nodes pinned into blocks
schedule_pinned_nodes(VectorSet & visited)192 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
193   // Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
194   GrowableArray <Node*> spstack(C->live_nodes() + 8);
195   spstack.push(_root);
196   while (spstack.is_nonempty()) {
197     Node* node = spstack.pop();
198     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
199       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
200         assert(node->in(0), "pinned Node must have Control");
201         // Before setting block replace block_proj control edge
202         replace_block_proj_ctrl(node);
203         Node* input = node->in(0);
204         while (!input->is_block_start()) {
205           input = input->in(0);
206         }
207         Block* block = get_block_for_node(input); // Basic block of controlling input
208         schedule_node_into_block(node, block);
209       }
210 
211       // If the node has precedence edges (added when CastPP nodes are
212       // removed in final_graph_reshaping), fix the control of the
213       // node to cover the precedence edges and remove the
214       // dependencies.
215       Node* n = NULL;
216       for (uint i = node->len()-1; i >= node->req(); i--) {
217         Node* m = node->in(i);
218         if (m == NULL) continue;
219 
220         // Only process precedence edges that are CFG nodes. Safepoints and control projections can be in the middle of a block
221         if (is_CFG(m)) {
222           node->rm_prec(i);
223           if (n == NULL) {
224             n = m;
225           } else {
226             assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other");
227             n = is_dominator(n, m) ? m : n;
228           }
229         } else {
230           assert(node->is_Mach(), "sanity");
231           assert(node->as_Mach()->ideal_Opcode() == Op_StoreCM, "must be StoreCM node");
232         }
233       }
234       if (n != NULL) {
235         assert(node->in(0), "control should have been set");
236         assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other");
237         if (!is_dominator(n, node->in(0))) {
238           node->set_req(0, n);
239         }
240       }
241 
242       // process all inputs that are non NULL
243       for (int i = node->req()-1; i >= 0; --i) {
244         if (node->in(i) != NULL) {
245           spstack.push(node->in(i));
246         }
247       }
248     }
249   }
250 }
251 
252 #ifdef ASSERT
253 // Assert that new input b2 is dominated by all previous inputs.
254 // Check this by by seeing that it is dominated by b1, the deepest
255 // input observed until b2.
assert_dom(Block * b1,Block * b2,Node * n,const PhaseCFG * cfg)256 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
257   if (b1 == NULL)  return;
258   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
259   Block* tmp = b2;
260   while (tmp != b1 && tmp != NULL) {
261     tmp = tmp->_idom;
262   }
263   if (tmp != b1) {
264     // Detected an unschedulable graph.  Print some nice stuff and die.
265     tty->print_cr("!!! Unschedulable graph !!!");
266     for (uint j=0; j<n->len(); j++) { // For all inputs
267       Node* inn = n->in(j); // Get input
268       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
269       Block* inb = cfg->get_block_for_node(inn);
270       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
271                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
272       inn->dump();
273     }
274     tty->print("Failing node: ");
275     n->dump();
276     assert(false, "unscheduable graph");
277   }
278 }
279 #endif
280 
find_deepest_input(Node * n,const PhaseCFG * cfg)281 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
282   // Find the last input dominated by all other inputs.
283   Block* deepb           = NULL;        // Deepest block so far
284   int    deepb_dom_depth = 0;
285   for (uint k = 0; k < n->len(); k++) { // For all inputs
286     Node* inn = n->in(k);               // Get input
287     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
288     Block* inb = cfg->get_block_for_node(inn);
289     assert(inb != NULL, "must already have scheduled this input");
290     if (deepb_dom_depth < (int) inb->_dom_depth) {
291       // The new inb must be dominated by the previous deepb.
292       // The various inputs must be linearly ordered in the dom
293       // tree, or else there will not be a unique deepest block.
294       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
295       deepb = inb;                      // Save deepest block
296       deepb_dom_depth = deepb->_dom_depth;
297     }
298   }
299   assert(deepb != NULL, "must be at least one input to n");
300   return deepb;
301 }
302 
303 
304 //------------------------------schedule_early---------------------------------
305 // Find the earliest Block any instruction can be placed in.  Some instructions
306 // are pinned into Blocks.  Unpinned instructions can appear in last block in
307 // which all their inputs occur.
schedule_early(VectorSet & visited,Node_Stack & roots)308 bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) {
309   // Allocate stack with enough space to avoid frequent realloc
310   Node_Stack nstack(roots.size() + 8);
311   // _root will be processed among C->top() inputs
312   roots.push(C->top(), 0);
313   visited.set(C->top()->_idx);
314 
315   while (roots.size() != 0) {
316     // Use local variables nstack_top_n & nstack_top_i to cache values
317     // on stack's top.
318     Node* parent_node = roots.node();
319     uint  input_index = 0;
320     roots.pop();
321 
322     while (true) {
323       if (input_index == 0) {
324         // Fixup some control.  Constants without control get attached
325         // to root and nodes that use is_block_proj() nodes should be attached
326         // to the region that starts their block.
327         const Node* control_input = parent_node->in(0);
328         if (control_input != NULL) {
329           replace_block_proj_ctrl(parent_node);
330         } else {
331           // Is a constant with NO inputs?
332           if (parent_node->req() == 1) {
333             parent_node->set_req(0, _root);
334           }
335         }
336       }
337 
338       // First, visit all inputs and force them to get a block.  If an
339       // input is already in a block we quit following inputs (to avoid
340       // cycles). Instead we put that Node on a worklist to be handled
341       // later (since IT'S inputs may not have a block yet).
342 
343       // Assume all n's inputs will be processed
344       bool done = true;
345 
346       while (input_index < parent_node->len()) {
347         Node* in = parent_node->in(input_index++);
348         if (in == NULL) {
349           continue;
350         }
351 
352         int is_visited = visited.test_set(in->_idx);
353         if (!has_block(in)) {
354           if (is_visited) {
355             assert(false, "graph should be schedulable");
356             return false;
357           }
358           // Save parent node and next input's index.
359           nstack.push(parent_node, input_index);
360           // Process current input now.
361           parent_node = in;
362           input_index = 0;
363           // Not all n's inputs processed.
364           done = false;
365           break;
366         } else if (!is_visited) {
367           // Visit this guy later, using worklist
368           roots.push(in, 0);
369         }
370       }
371 
372       if (done) {
373         // All of n's inputs have been processed, complete post-processing.
374 
375         // Some instructions are pinned into a block.  These include Region,
376         // Phi, Start, Return, and other control-dependent instructions and
377         // any projections which depend on them.
378         if (!parent_node->pinned()) {
379           // Set earliest legal block.
380           Block* earliest_block = find_deepest_input(parent_node, this);
381           map_node_to_block(parent_node, earliest_block);
382         } else {
383           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
384         }
385 
386         if (nstack.is_empty()) {
387           // Finished all nodes on stack.
388           // Process next node on the worklist 'roots'.
389           break;
390         }
391         // Get saved parent node and next input's index.
392         parent_node = nstack.node();
393         input_index = nstack.index();
394         nstack.pop();
395       }
396     }
397   }
398   return true;
399 }
400 
401 //------------------------------dom_lca----------------------------------------
402 // Find least common ancestor in dominator tree
403 // LCA is a current notion of LCA, to be raised above 'this'.
404 // As a convenient boundary condition, return 'this' if LCA is NULL.
405 // Find the LCA of those two nodes.
dom_lca(Block * LCA)406 Block* Block::dom_lca(Block* LCA) {
407   if (LCA == NULL || LCA == this)  return this;
408 
409   Block* anc = this;
410   while (anc->_dom_depth > LCA->_dom_depth)
411     anc = anc->_idom;           // Walk up till anc is as high as LCA
412 
413   while (LCA->_dom_depth > anc->_dom_depth)
414     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
415 
416   while (LCA != anc) {          // Walk both up till they are the same
417     LCA = LCA->_idom;
418     anc = anc->_idom;
419   }
420 
421   return LCA;
422 }
423 
424 //--------------------------raise_LCA_above_use--------------------------------
425 // We are placing a definition, and have been given a def->use edge.
426 // The definition must dominate the use, so move the LCA upward in the
427 // dominator tree to dominate the use.  If the use is a phi, adjust
428 // the LCA only with the phi input paths which actually use this def.
raise_LCA_above_use(Block * LCA,Node * use,Node * def,const PhaseCFG * cfg)429 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
430   Block* buse = cfg->get_block_for_node(use);
431   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
432   if (!use->is_Phi())  return buse->dom_lca(LCA);
433   uint pmax = use->req();       // Number of Phi inputs
434   // Why does not this loop just break after finding the matching input to
435   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
436   // chains.  Means I cannot distinguish, from the def-use direction, which
437   // of many use-defs lead from the same use to the same def.  That is, this
438   // Phi might have several uses of the same def.  Each use appears in a
439   // different predecessor block.  But when I enter here, I cannot distinguish
440   // which use-def edge I should find the predecessor block for.  So I find
441   // them all.  Means I do a little extra work if a Phi uses the same value
442   // more than once.
443   for (uint j=1; j<pmax; j++) { // For all inputs
444     if (use->in(j) == def) {    // Found matching input?
445       Block* pred = cfg->get_block_for_node(buse->pred(j));
446       LCA = pred->dom_lca(LCA);
447     }
448   }
449   return LCA;
450 }
451 
452 //----------------------------raise_LCA_above_marks----------------------------
453 // Return a new LCA that dominates LCA and any of its marked predecessors.
454 // Search all my parents up to 'early' (exclusive), looking for predecessors
455 // which are marked with the given index.  Return the LCA (in the dom tree)
456 // of all marked blocks.  If there are none marked, return the original
457 // LCA.
raise_LCA_above_marks(Block * LCA,node_idx_t mark,Block * early,const PhaseCFG * cfg)458 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
459   Block_List worklist;
460   worklist.push(LCA);
461   while (worklist.size() > 0) {
462     Block* mid = worklist.pop();
463     if (mid == early)  continue;  // stop searching here
464 
465     // Test and set the visited bit.
466     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
467 
468     // Don't process the current LCA, otherwise the search may terminate early
469     if (mid != LCA && mid->raise_LCA_mark() == mark) {
470       // Raise the LCA.
471       LCA = mid->dom_lca(LCA);
472       if (LCA == early)  break;   // stop searching everywhere
473       assert(early->dominates(LCA), "early is high enough");
474       // Resume searching at that point, skipping intermediate levels.
475       worklist.push(LCA);
476       if (LCA == mid)
477         continue; // Don't mark as visited to avoid early termination.
478     } else {
479       // Keep searching through this block's predecessors.
480       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
481         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
482         worklist.push(mid_parent);
483       }
484     }
485     mid->set_raise_LCA_visited(mark);
486   }
487   return LCA;
488 }
489 
490 //--------------------------memory_early_block--------------------------------
491 // This is a variation of find_deepest_input, the heart of schedule_early.
492 // Find the "early" block for a load, if we considered only memory and
493 // address inputs, that is, if other data inputs were ignored.
494 //
495 // Because a subset of edges are considered, the resulting block will
496 // be earlier (at a shallower dom_depth) than the true schedule_early
497 // point of the node. We compute this earlier block as a more permissive
498 // site for anti-dependency insertion, but only if subsume_loads is enabled.
memory_early_block(Node * load,Block * early,const PhaseCFG * cfg)499 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
500   Node* base;
501   Node* index;
502   Node* store = load->in(MemNode::Memory);
503   load->as_Mach()->memory_inputs(base, index);
504 
505   assert(base != NodeSentinel && index != NodeSentinel,
506          "unexpected base/index inputs");
507 
508   Node* mem_inputs[4];
509   int mem_inputs_length = 0;
510   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
511   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
512   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
513 
514   // In the comparision below, add one to account for the control input,
515   // which may be null, but always takes up a spot in the in array.
516   if (mem_inputs_length + 1 < (int) load->req()) {
517     // This "load" has more inputs than just the memory, base and index inputs.
518     // For purposes of checking anti-dependences, we need to start
519     // from the early block of only the address portion of the instruction,
520     // and ignore other blocks that may have factored into the wider
521     // schedule_early calculation.
522     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
523 
524     Block* deepb           = NULL;        // Deepest block so far
525     int    deepb_dom_depth = 0;
526     for (int i = 0; i < mem_inputs_length; i++) {
527       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
528       if (deepb_dom_depth < (int) inb->_dom_depth) {
529         // The new inb must be dominated by the previous deepb.
530         // The various inputs must be linearly ordered in the dom
531         // tree, or else there will not be a unique deepest block.
532         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
533         deepb = inb;                      // Save deepest block
534         deepb_dom_depth = deepb->_dom_depth;
535       }
536     }
537     early = deepb;
538   }
539 
540   return early;
541 }
542 
543 //--------------------------insert_anti_dependences---------------------------
544 // A load may need to witness memory that nearby stores can overwrite.
545 // For each nearby store, either insert an "anti-dependence" edge
546 // from the load to the store, or else move LCA upward to force the
547 // load to (eventually) be scheduled in a block above the store.
548 //
549 // Do not add edges to stores on distinct control-flow paths;
550 // only add edges to stores which might interfere.
551 //
552 // Return the (updated) LCA.  There will not be any possibly interfering
553 // store between the load's "early block" and the updated LCA.
554 // Any stores in the updated LCA will have new precedence edges
555 // back to the load.  The caller is expected to schedule the load
556 // in the LCA, in which case the precedence edges will make LCM
557 // preserve anti-dependences.  The caller may also hoist the load
558 // above the LCA, if it is not the early block.
insert_anti_dependences(Block * LCA,Node * load,bool verify)559 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
560   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
561   assert(LCA != NULL, "");
562   DEBUG_ONLY(Block* LCA_orig = LCA);
563 
564   // Compute the alias index.  Loads and stores with different alias indices
565   // do not need anti-dependence edges.
566   int load_alias_idx = C->get_alias_index(load->adr_type());
567 #ifdef ASSERT
568   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
569       (PrintOpto || VerifyAliases ||
570        (PrintMiscellaneous && (WizardMode || Verbose)))) {
571     // Load nodes should not consume all of memory.
572     // Reporting a bottom type indicates a bug in adlc.
573     // If some particular type of node validly consumes all of memory,
574     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
575     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
576     load->dump(2);
577     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
578   }
579 #endif
580   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
581          "String compare is only known 'load' that does not conflict with any stores");
582   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
583          "String equals is a 'load' that does not conflict with any stores");
584   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
585          "String indexOf is a 'load' that does not conflict with any stores");
586   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOfChar),
587          "String indexOfChar is a 'load' that does not conflict with any stores");
588   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
589          "Arrays equals is a 'load' that does not conflict with any stores");
590   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_HasNegatives),
591          "HasNegatives is a 'load' that does not conflict with any stores");
592 
593   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
594     // It is impossible to spoil this load by putting stores before it,
595     // because we know that the stores will never update the value
596     // which 'load' must witness.
597     return LCA;
598   }
599 
600   node_idx_t load_index = load->_idx;
601 
602   // Note the earliest legal placement of 'load', as determined by
603   // by the unique point in the dom tree where all memory effects
604   // and other inputs are first available.  (Computed by schedule_early.)
605   // For normal loads, 'early' is the shallowest place (dom graph wise)
606   // to look for anti-deps between this load and any store.
607   Block* early = get_block_for_node(load);
608 
609   // If we are subsuming loads, compute an "early" block that only considers
610   // memory or address inputs. This block may be different than the
611   // schedule_early block in that it could be at an even shallower depth in the
612   // dominator tree, and allow for a broader discovery of anti-dependences.
613   if (C->subsume_loads()) {
614     early = memory_early_block(load, early, this);
615   }
616 
617   ResourceArea *area = Thread::current()->resource_area();
618   Node_List worklist_mem(area);     // prior memory state to store
619   Node_List worklist_store(area);   // possible-def to explore
620   Node_List worklist_visited(area); // visited mergemem nodes
621   Node_List non_early_stores(area); // all relevant stores outside of early
622   bool must_raise_LCA = false;
623 
624 #ifdef TRACK_PHI_INPUTS
625   // %%% This extra checking fails because MergeMem nodes are not GVNed.
626   // Provide "phi_inputs" to check if every input to a PhiNode is from the
627   // original memory state.  This indicates a PhiNode for which should not
628   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
629   // may be overly conservative.
630   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
631   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
632 #endif
633 
634   // 'load' uses some memory state; look for users of the same state.
635   // Recurse through MergeMem nodes to the stores that use them.
636 
637   // Each of these stores is a possible definition of memory
638   // that 'load' needs to use.  We need to force 'load'
639   // to occur before each such store.  When the store is in
640   // the same block as 'load', we insert an anti-dependence
641   // edge load->store.
642 
643   // The relevant stores "nearby" the load consist of a tree rooted
644   // at initial_mem, with internal nodes of type MergeMem.
645   // Therefore, the branches visited by the worklist are of this form:
646   //    initial_mem -> (MergeMem ->)* store
647   // The anti-dependence constraints apply only to the fringe of this tree.
648 
649   Node* initial_mem = load->in(MemNode::Memory);
650   worklist_store.push(initial_mem);
651   worklist_visited.push(initial_mem);
652   worklist_mem.push(NULL);
653   while (worklist_store.size() > 0) {
654     // Examine a nearby store to see if it might interfere with our load.
655     Node* mem   = worklist_mem.pop();
656     Node* store = worklist_store.pop();
657     uint op = store->Opcode();
658 
659     // MergeMems do not directly have anti-deps.
660     // Treat them as internal nodes in a forward tree of memory states,
661     // the leaves of which are each a 'possible-def'.
662     if (store == initial_mem    // root (exclusive) of tree we are searching
663         || op == Op_MergeMem    // internal node of tree we are searching
664         ) {
665       mem = store;   // It's not a possibly interfering store.
666       if (store == initial_mem)
667         initial_mem = NULL;  // only process initial memory once
668 
669       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
670         store = mem->fast_out(i);
671         if (store->is_MergeMem()) {
672           // Be sure we don't get into combinatorial problems.
673           // (Allow phis to be repeated; they can merge two relevant states.)
674           uint j = worklist_visited.size();
675           for (; j > 0; j--) {
676             if (worklist_visited.at(j-1) == store)  break;
677           }
678           if (j > 0)  continue; // already on work list; do not repeat
679           worklist_visited.push(store);
680         }
681         worklist_mem.push(mem);
682         worklist_store.push(store);
683       }
684       continue;
685     }
686 
687     if (op == Op_MachProj || op == Op_Catch)   continue;
688     if (store->needs_anti_dependence_check())  continue;  // not really a store
689 
690     // Compute the alias index.  Loads and stores with different alias
691     // indices do not need anti-dependence edges.  Wide MemBar's are
692     // anti-dependent on everything (except immutable memories).
693     const TypePtr* adr_type = store->adr_type();
694     if (!C->can_alias(adr_type, load_alias_idx))  continue;
695 
696     // Most slow-path runtime calls do NOT modify Java memory, but
697     // they can block and so write Raw memory.
698     if (store->is_Mach()) {
699       MachNode* mstore = store->as_Mach();
700       if (load_alias_idx != Compile::AliasIdxRaw) {
701         // Check for call into the runtime using the Java calling
702         // convention (and from there into a wrapper); it has no
703         // _method.  Can't do this optimization for Native calls because
704         // they CAN write to Java memory.
705         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
706           assert(mstore->is_MachSafePoint(), "");
707           MachSafePointNode* ms = (MachSafePointNode*) mstore;
708           assert(ms->is_MachCallJava(), "");
709           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
710           if (mcj->_method == NULL) {
711             // These runtime calls do not write to Java visible memory
712             // (other than Raw) and so do not require anti-dependence edges.
713             continue;
714           }
715         }
716         // Same for SafePoints: they read/write Raw but only read otherwise.
717         // This is basically a workaround for SafePoints only defining control
718         // instead of control + memory.
719         if (mstore->ideal_Opcode() == Op_SafePoint)
720           continue;
721 
722         // Check if the store is a membar on which the load is control dependent.
723         // Inserting an anti-dependency between that membar and the load would
724         // create a cycle that causes local scheduling to fail.
725         if (mstore->isa_MachMemBar()) {
726           Node* dom = load->find_exact_control(load->in(0));
727           while (dom != NULL && dom != dom->in(0) && dom != mstore) {
728             dom = dom->in(0);
729           }
730           if (dom == mstore) {
731             continue;
732           }
733         }
734       } else {
735         // Some raw memory, such as the load of "top" at an allocation,
736         // can be control dependent on the previous safepoint. See
737         // comments in GraphKit::allocate_heap() about control input.
738         // Inserting an anti-dep between such a safepoint and a use
739         // creates a cycle, and will cause a subsequent failure in
740         // local scheduling.  (BugId 4919904)
741         // (%%% How can a control input be a safepoint and not a projection??)
742         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
743           continue;
744       }
745     }
746 
747     // Identify a block that the current load must be above,
748     // or else observe that 'store' is all the way up in the
749     // earliest legal block for 'load'.  In the latter case,
750     // immediately insert an anti-dependence edge.
751     Block* store_block = get_block_for_node(store);
752     assert(store_block != NULL, "unused killing projections skipped above");
753 
754     if (store->is_Phi()) {
755       // Loop-phis need to raise load before input. (Other phis are treated
756       // as store below.)
757       //
758       // 'load' uses memory which is one (or more) of the Phi's inputs.
759       // It must be scheduled not before the Phi, but rather before
760       // each of the relevant Phi inputs.
761       //
762       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
763       // we mark each corresponding predecessor block and do a combined
764       // hoisting operation later (raise_LCA_above_marks).
765       //
766       // Do not assert(store_block != early, "Phi merging memory after access")
767       // PhiNode may be at start of block 'early' with backedge to 'early'
768       DEBUG_ONLY(bool found_match = false);
769       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
770         if (store->in(j) == mem) {   // Found matching input?
771           DEBUG_ONLY(found_match = true);
772           Block* pred_block = get_block_for_node(store_block->pred(j));
773           if (pred_block != early) {
774             // If any predecessor of the Phi matches the load's "early block",
775             // we do not need a precedence edge between the Phi and 'load'
776             // since the load will be forced into a block preceding the Phi.
777             pred_block->set_raise_LCA_mark(load_index);
778             assert(!LCA_orig->dominates(pred_block) ||
779                    early->dominates(pred_block), "early is high enough");
780             must_raise_LCA = true;
781           } else {
782             // anti-dependent upon PHI pinned below 'early', no edge needed
783             LCA = early;             // but can not schedule below 'early'
784           }
785         }
786       }
787       assert(found_match, "no worklist bug");
788 #ifdef TRACK_PHI_INPUTS
789 #ifdef ASSERT
790         // This assert asks about correct handling of PhiNodes, which may not
791         // have all input edges directly from 'mem'. See BugId 4621264
792         int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
793         // Increment by exactly one even if there are multiple copies of 'mem'
794         // coming into the phi, because we will run this block several times
795         // if there are several copies of 'mem'.  (That's how DU iterators work.)
796         phi_inputs.at_put(store->_idx, num_mem_inputs);
797         assert(PhiNode::Input + num_mem_inputs < store->req(),
798                "Expect at least one phi input will not be from original memory state");
799 #endif //ASSERT
800 #endif //TRACK_PHI_INPUTS
801     } else if (store_block != early) {
802       // 'store' is between the current LCA and earliest possible block.
803       // Label its block, and decide later on how to raise the LCA
804       // to include the effect on LCA of this store.
805       // If this store's block gets chosen as the raised LCA, we
806       // will find him on the non_early_stores list and stick him
807       // with a precedence edge.
808       // (But, don't bother if LCA is already raised all the way.)
809       if (LCA != early) {
810         store_block->set_raise_LCA_mark(load_index);
811         must_raise_LCA = true;
812         non_early_stores.push(store);
813       }
814     } else {
815       // Found a possibly-interfering store in the load's 'early' block.
816       // This means 'load' cannot sink at all in the dominator tree.
817       // Add an anti-dep edge, and squeeze 'load' into the highest block.
818       assert(store != load->find_exact_control(load->in(0)), "dependence cycle found");
819       if (verify) {
820         assert(store->find_edge(load) != -1, "missing precedence edge");
821       } else {
822         store->add_prec(load);
823       }
824       LCA = early;
825       // This turns off the process of gathering non_early_stores.
826     }
827   }
828   // (Worklist is now empty; all nearby stores have been visited.)
829 
830   // Finished if 'load' must be scheduled in its 'early' block.
831   // If we found any stores there, they have already been given
832   // precedence edges.
833   if (LCA == early)  return LCA;
834 
835   // We get here only if there are no possibly-interfering stores
836   // in the load's 'early' block.  Move LCA up above all predecessors
837   // which contain stores we have noted.
838   //
839   // The raised LCA block can be a home to such interfering stores,
840   // but its predecessors must not contain any such stores.
841   //
842   // The raised LCA will be a lower bound for placing the load,
843   // preventing the load from sinking past any block containing
844   // a store that may invalidate the memory state required by 'load'.
845   if (must_raise_LCA)
846     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
847   if (LCA == early)  return LCA;
848 
849   // Insert anti-dependence edges from 'load' to each store
850   // in the non-early LCA block.
851   // Mine the non_early_stores list for such stores.
852   if (LCA->raise_LCA_mark() == load_index) {
853     while (non_early_stores.size() > 0) {
854       Node* store = non_early_stores.pop();
855       Block* store_block = get_block_for_node(store);
856       if (store_block == LCA) {
857         // add anti_dependence from store to load in its own block
858         assert(store != load->find_exact_control(load->in(0)), "dependence cycle found");
859         if (verify) {
860           assert(store->find_edge(load) != -1, "missing precedence edge");
861         } else {
862           store->add_prec(load);
863         }
864       } else {
865         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
866         // Any other stores we found must be either inside the new LCA
867         // or else outside the original LCA.  In the latter case, they
868         // did not interfere with any use of 'load'.
869         assert(LCA->dominates(store_block)
870                || !LCA_orig->dominates(store_block), "no stray stores");
871       }
872     }
873   }
874 
875   // Return the highest block containing stores; any stores
876   // within that block have been given anti-dependence edges.
877   return LCA;
878 }
879 
880 // This class is used to iterate backwards over the nodes in the graph.
881 
882 class Node_Backward_Iterator {
883 
884 private:
885   Node_Backward_Iterator();
886 
887 public:
888   // Constructor for the iterator
889   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg);
890 
891   // Postincrement operator to iterate over the nodes
892   Node *next();
893 
894 private:
895   VectorSet   &_visited;
896   Node_Stack  &_stack;
897   PhaseCFG &_cfg;
898 };
899 
900 // Constructor for the Node_Backward_Iterator
Node_Backward_Iterator(Node * root,VectorSet & visited,Node_Stack & stack,PhaseCFG & cfg)901 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg)
902   : _visited(visited), _stack(stack), _cfg(cfg) {
903   // The stack should contain exactly the root
904   stack.clear();
905   stack.push(root, root->outcnt());
906 
907   // Clear the visited bits
908   visited.Clear();
909 }
910 
911 // Iterator for the Node_Backward_Iterator
next()912 Node *Node_Backward_Iterator::next() {
913 
914   // If the _stack is empty, then just return NULL: finished.
915   if ( !_stack.size() )
916     return NULL;
917 
918   // I visit unvisited not-anti-dependence users first, then anti-dependent
919   // children next. I iterate backwards to support removal of nodes.
920   // The stack holds states consisting of 3 values:
921   // current Def node, flag which indicates 1st/2nd pass, index of current out edge
922   Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1);
923   bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1);
924   uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes.
925   _stack.pop();
926 
927   // I cycle here when I am entering a deeper level of recursion.
928   // The key variable 'self' was set prior to jumping here.
929   while( 1 ) {
930 
931     _visited.set(self->_idx);
932 
933     // Now schedule all uses as late as possible.
934     const Node* src = self->is_Proj() ? self->in(0) : self;
935     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
936 
937     // Schedule all nodes in a post-order visit
938     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
939 
940     // Scan for unvisited nodes
941     while (idx > 0) {
942       // For all uses, schedule late
943       Node* n = self->raw_out(--idx); // Use
944 
945       // Skip already visited children
946       if ( _visited.test(n->_idx) )
947         continue;
948 
949       // do not traverse backward control edges
950       Node *use = n->is_Proj() ? n->in(0) : n;
951       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
952 
953       if ( use_rpo < src_rpo )
954         continue;
955 
956       // Phi nodes always precede uses in a basic block
957       if ( use_rpo == src_rpo && use->is_Phi() )
958         continue;
959 
960       unvisited = n;      // Found unvisited
961 
962       // Check for possible-anti-dependent
963       // 1st pass: No such nodes, 2nd pass: Only such nodes.
964       if (n->needs_anti_dependence_check() == iterate_anti_dep) {
965         unvisited = n;      // Found unvisited
966         break;
967       }
968     }
969 
970     // Did I find an unvisited not-anti-dependent Node?
971     if (!unvisited) {
972       if (!iterate_anti_dep) {
973         // 2nd pass: Iterate over nodes which needs_anti_dependence_check.
974         iterate_anti_dep = true;
975         idx = self->outcnt();
976         continue;
977       }
978       break;                  // All done with children; post-visit 'self'
979     }
980 
981     // Visit the unvisited Node.  Contains the obvious push to
982     // indicate I'm entering a deeper level of recursion.  I push the
983     // old state onto the _stack and set a new state and loop (recurse).
984     _stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx);
985     self = unvisited;
986     iterate_anti_dep = false;
987     idx = self->outcnt();
988   } // End recursion loop
989 
990   return self;
991 }
992 
993 //------------------------------ComputeLatenciesBackwards----------------------
994 // Compute the latency of all the instructions.
compute_latencies_backwards(VectorSet & visited,Node_Stack & stack)995 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) {
996 #ifndef PRODUCT
997   if (trace_opto_pipelining())
998     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
999 #endif
1000 
1001   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1002   Node *n;
1003 
1004   // Walk over all the nodes from last to first
1005   while ((n = iter.next())) {
1006     // Set the latency for the definitions of this instruction
1007     partial_latency_of_defs(n);
1008   }
1009 } // end ComputeLatenciesBackwards
1010 
1011 //------------------------------partial_latency_of_defs------------------------
1012 // Compute the latency impact of this node on all defs.  This computes
1013 // a number that increases as we approach the beginning of the routine.
partial_latency_of_defs(Node * n)1014 void PhaseCFG::partial_latency_of_defs(Node *n) {
1015   // Set the latency for this instruction
1016 #ifndef PRODUCT
1017   if (trace_opto_pipelining()) {
1018     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1019     dump();
1020   }
1021 #endif
1022 
1023   if (n->is_Proj()) {
1024     n = n->in(0);
1025   }
1026 
1027   if (n->is_Root()) {
1028     return;
1029   }
1030 
1031   uint nlen = n->len();
1032   uint use_latency = get_latency_for_node(n);
1033   uint use_pre_order = get_block_for_node(n)->_pre_order;
1034 
1035   for (uint j = 0; j < nlen; j++) {
1036     Node *def = n->in(j);
1037 
1038     if (!def || def == n) {
1039       continue;
1040     }
1041 
1042     // Walk backwards thru projections
1043     if (def->is_Proj()) {
1044       def = def->in(0);
1045     }
1046 
1047 #ifndef PRODUCT
1048     if (trace_opto_pipelining()) {
1049       tty->print("#    in(%2d): ", j);
1050       def->dump();
1051     }
1052 #endif
1053 
1054     // If the defining block is not known, assume it is ok
1055     Block *def_block = get_block_for_node(def);
1056     uint def_pre_order = def_block ? def_block->_pre_order : 0;
1057 
1058     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
1059       continue;
1060     }
1061 
1062     uint delta_latency = n->latency(j);
1063     uint current_latency = delta_latency + use_latency;
1064 
1065     if (get_latency_for_node(def) < current_latency) {
1066       set_latency_for_node(def, current_latency);
1067     }
1068 
1069 #ifndef PRODUCT
1070     if (trace_opto_pipelining()) {
1071       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
1072     }
1073 #endif
1074   }
1075 }
1076 
1077 //------------------------------latency_from_use-------------------------------
1078 // Compute the latency of a specific use
latency_from_use(Node * n,const Node * def,Node * use)1079 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
1080   // If self-reference, return no latency
1081   if (use == n || use->is_Root()) {
1082     return 0;
1083   }
1084 
1085   uint def_pre_order = get_block_for_node(def)->_pre_order;
1086   uint latency = 0;
1087 
1088   // If the use is not a projection, then it is simple...
1089   if (!use->is_Proj()) {
1090 #ifndef PRODUCT
1091     if (trace_opto_pipelining()) {
1092       tty->print("#    out(): ");
1093       use->dump();
1094     }
1095 #endif
1096 
1097     uint use_pre_order = get_block_for_node(use)->_pre_order;
1098 
1099     if (use_pre_order < def_pre_order)
1100       return 0;
1101 
1102     if (use_pre_order == def_pre_order && use->is_Phi())
1103       return 0;
1104 
1105     uint nlen = use->len();
1106     uint nl = get_latency_for_node(use);
1107 
1108     for ( uint j=0; j<nlen; j++ ) {
1109       if (use->in(j) == n) {
1110         // Change this if we want local latencies
1111         uint ul = use->latency(j);
1112         uint  l = ul + nl;
1113         if (latency < l) latency = l;
1114 #ifndef PRODUCT
1115         if (trace_opto_pipelining()) {
1116           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
1117                         nl, j, ul, l, latency);
1118         }
1119 #endif
1120       }
1121     }
1122   } else {
1123     // This is a projection, just grab the latency of the use(s)
1124     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1125       uint l = latency_from_use(use, def, use->fast_out(j));
1126       if (latency < l) latency = l;
1127     }
1128   }
1129 
1130   return latency;
1131 }
1132 
1133 //------------------------------latency_from_uses------------------------------
1134 // Compute the latency of this instruction relative to all of it's uses.
1135 // This computes a number that increases as we approach the beginning of the
1136 // routine.
latency_from_uses(Node * n)1137 void PhaseCFG::latency_from_uses(Node *n) {
1138   // Set the latency for this instruction
1139 #ifndef PRODUCT
1140   if (trace_opto_pipelining()) {
1141     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1142     dump();
1143   }
1144 #endif
1145   uint latency=0;
1146   const Node *def = n->is_Proj() ? n->in(0): n;
1147 
1148   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1149     uint l = latency_from_use(n, def, n->fast_out(i));
1150 
1151     if (latency < l) latency = l;
1152   }
1153 
1154   set_latency_for_node(n, latency);
1155 }
1156 
1157 //------------------------------hoist_to_cheaper_block-------------------------
1158 // Pick a block for node self, between early and LCA, that is a cheaper
1159 // alternative to LCA.
hoist_to_cheaper_block(Block * LCA,Block * early,Node * self)1160 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1161   const double delta = 1+PROB_UNLIKELY_MAG(4);
1162   Block* least       = LCA;
1163   double least_freq  = least->_freq;
1164   uint target        = get_latency_for_node(self);
1165   uint start_latency = get_latency_for_node(LCA->head());
1166   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1167   bool in_latency    = (target <= start_latency);
1168   const Block* root_block = get_block_for_node(_root);
1169 
1170   // Turn off latency scheduling if scheduling is just plain off
1171   if (!C->do_scheduling())
1172     in_latency = true;
1173 
1174   // Do not hoist (to cover latency) instructions which target a
1175   // single register.  Hoisting stretches the live range of the
1176   // single register and may force spilling.
1177   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1178   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1179     in_latency = true;
1180 
1181 #ifndef PRODUCT
1182   if (trace_opto_pipelining()) {
1183     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1184     self->dump();
1185     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1186       LCA->_pre_order,
1187       LCA->head()->_idx,
1188       start_latency,
1189       LCA->get_node(LCA->end_idx())->_idx,
1190       end_latency,
1191       least_freq);
1192   }
1193 #endif
1194 
1195   int cand_cnt = 0;  // number of candidates tried
1196 
1197   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1198   // the earliest legal location.  Capture the least execution frequency.
1199   while (LCA != early) {
1200     LCA = LCA->_idom;         // Follow up the dominator tree
1201 
1202     if (LCA == NULL) {
1203       // Bailout without retry
1204       assert(false, "graph should be schedulable");
1205       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1206       return least;
1207     }
1208 
1209     // Don't hoist machine instructions to the root basic block
1210     if (mach && LCA == root_block)
1211       break;
1212 
1213     uint start_lat = get_latency_for_node(LCA->head());
1214     uint end_idx   = LCA->end_idx();
1215     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1216     double LCA_freq = LCA->_freq;
1217 #ifndef PRODUCT
1218     if (trace_opto_pipelining()) {
1219       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1220         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1221     }
1222 #endif
1223     cand_cnt++;
1224     if (LCA_freq < least_freq              || // Better Frequency
1225         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1226          (!StressGCM                    &&    // Otherwise, choose with latency
1227           !in_latency                   &&    // No block containing latency
1228           LCA_freq < least_freq * delta &&    // No worse frequency
1229           target >= end_lat             &&    // within latency range
1230           !self->is_iteratively_computed() )  // But don't hoist IV increments
1231              // because they may end up above other uses of their phi forcing
1232              // their result register to be different from their input.
1233        ) {
1234       least = LCA;            // Found cheaper block
1235       least_freq = LCA_freq;
1236       start_latency = start_lat;
1237       end_latency = end_lat;
1238       if (target <= start_lat)
1239         in_latency = true;
1240     }
1241   }
1242 
1243 #ifndef PRODUCT
1244   if (trace_opto_pipelining()) {
1245     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1246       least->_pre_order, start_latency, least_freq);
1247   }
1248 #endif
1249 
1250   // See if the latency needs to be updated
1251   if (target < end_latency) {
1252 #ifndef PRODUCT
1253     if (trace_opto_pipelining()) {
1254       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1255     }
1256 #endif
1257     set_latency_for_node(self, end_latency);
1258     partial_latency_of_defs(self);
1259   }
1260 
1261   return least;
1262 }
1263 
1264 
1265 //------------------------------schedule_late-----------------------------------
1266 // Now schedule all codes as LATE as possible.  This is the LCA in the
1267 // dominator tree of all USES of a value.  Pick the block with the least
1268 // loop nesting depth that is lowest in the dominator tree.
1269 extern const char must_clone[];
schedule_late(VectorSet & visited,Node_Stack & stack)1270 void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) {
1271 #ifndef PRODUCT
1272   if (trace_opto_pipelining())
1273     tty->print("\n#---- schedule_late ----\n");
1274 #endif
1275 
1276   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1277   Node *self;
1278 
1279   // Walk over all the nodes from last to first
1280   while ((self = iter.next())) {
1281     Block* early = get_block_for_node(self); // Earliest legal placement
1282 
1283     if (self->is_top()) {
1284       // Top node goes in bb #2 with other constants.
1285       // It must be special-cased, because it has no out edges.
1286       early->add_inst(self);
1287       continue;
1288     }
1289 
1290     // No uses, just terminate
1291     if (self->outcnt() == 0) {
1292       assert(self->is_MachProj(), "sanity");
1293       continue;                   // Must be a dead machine projection
1294     }
1295 
1296     // If node is pinned in the block, then no scheduling can be done.
1297     if( self->pinned() )          // Pinned in block?
1298       continue;
1299 
1300     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1301     if (mach) {
1302       switch (mach->ideal_Opcode()) {
1303       case Op_CreateEx:
1304         // Don't move exception creation
1305         early->add_inst(self);
1306         continue;
1307         break;
1308       case Op_CheckCastPP: {
1309         // Don't move CheckCastPP nodes away from their input, if the input
1310         // is a rawptr (5071820).
1311         Node *def = self->in(1);
1312         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1313           early->add_inst(self);
1314 #ifdef ASSERT
1315           _raw_oops.push(def);
1316 #endif
1317           continue;
1318         }
1319         break;
1320       }
1321       default:
1322         break;
1323       }
1324     }
1325 
1326     // Gather LCA of all uses
1327     Block *LCA = NULL;
1328     {
1329       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1330         // For all uses, find LCA
1331         Node* use = self->fast_out(i);
1332         LCA = raise_LCA_above_use(LCA, use, self, this);
1333       }
1334       guarantee(LCA != NULL, "There must be a LCA");
1335     }  // (Hide defs of imax, i from rest of block.)
1336 
1337     // Place temps in the block of their use.  This isn't a
1338     // requirement for correctness but it reduces useless
1339     // interference between temps and other nodes.
1340     if (mach != NULL && mach->is_MachTemp()) {
1341       map_node_to_block(self, LCA);
1342       LCA->add_inst(self);
1343       continue;
1344     }
1345 
1346     // Check if 'self' could be anti-dependent on memory
1347     if (self->needs_anti_dependence_check()) {
1348       // Hoist LCA above possible-defs and insert anti-dependences to
1349       // defs in new LCA block.
1350       LCA = insert_anti_dependences(LCA, self);
1351     }
1352 
1353     if (early->_dom_depth > LCA->_dom_depth) {
1354       // Somehow the LCA has moved above the earliest legal point.
1355       // (One way this can happen is via memory_early_block.)
1356       if (C->subsume_loads() == true && !C->failing()) {
1357         // Retry with subsume_loads == false
1358         // If this is the first failure, the sentinel string will "stick"
1359         // to the Compile object, and the C2Compiler will see it and retry.
1360         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1361       } else {
1362         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1363         assert(false, "graph should be schedulable");
1364         C->record_method_not_compilable("late schedule failed: incorrect graph");
1365       }
1366       return;
1367     }
1368 
1369     // If there is no opportunity to hoist, then we're done.
1370     // In stress mode, try to hoist even the single operations.
1371     bool try_to_hoist = StressGCM || (LCA != early);
1372 
1373     // Must clone guys stay next to use; no hoisting allowed.
1374     // Also cannot hoist guys that alter memory or are otherwise not
1375     // allocatable (hoisting can make a value live longer, leading to
1376     // anti and output dependency problems which are normally resolved
1377     // by the register allocator giving everyone a different register).
1378     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1379       try_to_hoist = false;
1380 
1381     Block* late = NULL;
1382     if (try_to_hoist) {
1383       // Now find the block with the least execution frequency.
1384       // Start at the latest schedule and work up to the earliest schedule
1385       // in the dominator tree.  Thus the Node will dominate all its uses.
1386       late = hoist_to_cheaper_block(LCA, early, self);
1387     } else {
1388       // Just use the LCA of the uses.
1389       late = LCA;
1390     }
1391 
1392     // Put the node into target block
1393     schedule_node_into_block(self, late);
1394 
1395 #ifdef ASSERT
1396     if (self->needs_anti_dependence_check()) {
1397       // since precedence edges are only inserted when we're sure they
1398       // are needed make sure that after placement in a block we don't
1399       // need any new precedence edges.
1400       verify_anti_dependences(late, self);
1401     }
1402 #endif
1403   } // Loop until all nodes have been visited
1404 
1405 } // end ScheduleLate
1406 
1407 //------------------------------GlobalCodeMotion-------------------------------
global_code_motion()1408 void PhaseCFG::global_code_motion() {
1409   ResourceMark rm;
1410 
1411 #ifndef PRODUCT
1412   if (trace_opto_pipelining()) {
1413     tty->print("\n---- Start GlobalCodeMotion ----\n");
1414   }
1415 #endif
1416 
1417   // Initialize the node to block mapping for things on the proj_list
1418   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1419     unmap_node_from_block(_matcher.get_projection(i));
1420   }
1421 
1422   // Set the basic block for Nodes pinned into blocks
1423   Arena* arena = Thread::current()->resource_area();
1424   VectorSet visited(arena);
1425   schedule_pinned_nodes(visited);
1426 
1427   // Find the earliest Block any instruction can be placed in.  Some
1428   // instructions are pinned into Blocks.  Unpinned instructions can
1429   // appear in last block in which all their inputs occur.
1430   visited.Clear();
1431   Node_Stack stack(arena, (C->live_nodes() >> 2) + 16); // pre-grow
1432   if (!schedule_early(visited, stack)) {
1433     // Bailout without retry
1434     C->record_method_not_compilable("early schedule failed");
1435     return;
1436   }
1437 
1438   // Build Def-Use edges.
1439   // Compute the latency information (via backwards walk) for all the
1440   // instructions in the graph
1441   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1442 
1443   if (C->do_scheduling()) {
1444     compute_latencies_backwards(visited, stack);
1445   }
1446 
1447   // Now schedule all codes as LATE as possible.  This is the LCA in the
1448   // dominator tree of all USES of a value.  Pick the block with the least
1449   // loop nesting depth that is lowest in the dominator tree.
1450   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1451   schedule_late(visited, stack);
1452   if (C->failing()) {
1453     return;
1454   }
1455 
1456 #ifndef PRODUCT
1457   if (trace_opto_pipelining()) {
1458     tty->print("\n---- Detect implicit null checks ----\n");
1459   }
1460 #endif
1461 
1462   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1463   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1464   // I can generate a memory op if there is not one nearby.
1465   if (C->is_method_compilation()) {
1466     // By reversing the loop direction we get a very minor gain on mpegaudio.
1467     // Feel free to revert to a forward loop for clarity.
1468     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1469     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1470       Node* proj = _matcher._null_check_tests[i];
1471       Node* val  = _matcher._null_check_tests[i + 1];
1472       Block* block = get_block_for_node(proj);
1473       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1474       // The implicit_null_check will only perform the transformation
1475       // if the null branch is truly uncommon, *and* it leads to an
1476       // uncommon trap.  Combined with the too_many_traps guards
1477       // above, this prevents SEGV storms reported in 6366351,
1478       // by recompiling offending methods without this optimization.
1479     }
1480   }
1481 
1482   bool block_size_threshold_ok = false;
1483   intptr_t *recalc_pressure_nodes = NULL;
1484   if (OptoRegScheduling) {
1485     for (uint i = 0; i < number_of_blocks(); i++) {
1486       Block* block = get_block(i);
1487       if (block->number_of_nodes() > 10) {
1488         block_size_threshold_ok = true;
1489         break;
1490       }
1491     }
1492   }
1493 
1494   // Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
1495   // is key to enabling this feature.
1496   PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
1497   ResourceArea live_arena(mtCompiler);      // Arena for liveness
1498   ResourceMark rm_live(&live_arena);
1499   PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
1500   PhaseIFG ifg(&live_arena);
1501   if (OptoRegScheduling && block_size_threshold_ok) {
1502     regalloc.mark_ssa();
1503     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
1504     rm_live.reset_to_mark();           // Reclaim working storage
1505     IndexSet::reset_memory(C, &live_arena);
1506     uint node_size = regalloc._lrg_map.max_lrg_id();
1507     ifg.init(node_size); // Empty IFG
1508     regalloc.set_ifg(ifg);
1509     regalloc.set_live(live);
1510     regalloc.gather_lrg_masks(false);    // Collect LRG masks
1511     live.compute(node_size); // Compute liveness
1512 
1513     recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
1514     for (uint i = 0; i < node_size; i++) {
1515       recalc_pressure_nodes[i] = 0;
1516     }
1517   }
1518   _regalloc = &regalloc;
1519 
1520 #ifndef PRODUCT
1521   if (trace_opto_pipelining()) {
1522     tty->print("\n---- Start Local Scheduling ----\n");
1523   }
1524 #endif
1525 
1526   // Schedule locally.  Right now a simple topological sort.
1527   // Later, do a real latency aware scheduler.
1528   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1529   visited.Clear();
1530   for (uint i = 0; i < number_of_blocks(); i++) {
1531     Block* block = get_block(i);
1532     if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
1533       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1534         C->record_method_not_compilable("local schedule failed");
1535       }
1536       _regalloc = NULL;
1537       return;
1538     }
1539   }
1540   _regalloc = NULL;
1541 
1542   // If we inserted any instructions between a Call and his CatchNode,
1543   // clone the instructions on all paths below the Catch.
1544   for (uint i = 0; i < number_of_blocks(); i++) {
1545     Block* block = get_block(i);
1546     call_catch_cleanup(block);
1547   }
1548 
1549 #ifndef PRODUCT
1550   if (trace_opto_pipelining()) {
1551     tty->print("\n---- After GlobalCodeMotion ----\n");
1552     for (uint i = 0; i < number_of_blocks(); i++) {
1553       Block* block = get_block(i);
1554       block->dump();
1555     }
1556   }
1557 #endif
1558   // Dead.
1559   _node_latency = (GrowableArray<uint> *)((intptr_t)0xdeadbeef);
1560 }
1561 
do_global_code_motion()1562 bool PhaseCFG::do_global_code_motion() {
1563 
1564   build_dominator_tree();
1565   if (C->failing()) {
1566     return false;
1567   }
1568 
1569   NOT_PRODUCT( C->verify_graph_edges(); )
1570 
1571   estimate_block_frequency();
1572 
1573   global_code_motion();
1574 
1575   if (C->failing()) {
1576     return false;
1577   }
1578 
1579   return true;
1580 }
1581 
1582 //------------------------------Estimate_Block_Frequency-----------------------
1583 // Estimate block frequencies based on IfNode probabilities.
estimate_block_frequency()1584 void PhaseCFG::estimate_block_frequency() {
1585 
1586   // Force conditional branches leading to uncommon traps to be unlikely,
1587   // not because we get to the uncommon_trap with less relative frequency,
1588   // but because an uncommon_trap typically causes a deopt, so we only get
1589   // there once.
1590   if (C->do_freq_based_layout()) {
1591     Block_List worklist;
1592     Block* root_blk = get_block(0);
1593     for (uint i = 1; i < root_blk->num_preds(); i++) {
1594       Block *pb = get_block_for_node(root_blk->pred(i));
1595       if (pb->has_uncommon_code()) {
1596         worklist.push(pb);
1597       }
1598     }
1599     while (worklist.size() > 0) {
1600       Block* uct = worklist.pop();
1601       if (uct == get_root_block()) {
1602         continue;
1603       }
1604       for (uint i = 1; i < uct->num_preds(); i++) {
1605         Block *pb = get_block_for_node(uct->pred(i));
1606         if (pb->_num_succs == 1) {
1607           worklist.push(pb);
1608         } else if (pb->num_fall_throughs() == 2) {
1609           pb->update_uncommon_branch(uct);
1610         }
1611       }
1612     }
1613   }
1614 
1615   // Create the loop tree and calculate loop depth.
1616   _root_loop = create_loop_tree();
1617   _root_loop->compute_loop_depth(0);
1618 
1619   // Compute block frequency of each block, relative to a single loop entry.
1620   _root_loop->compute_freq();
1621 
1622   // Adjust all frequencies to be relative to a single method entry
1623   _root_loop->_freq = 1.0;
1624   _root_loop->scale_freq();
1625 
1626   // Save outmost loop frequency for LRG frequency threshold
1627   _outer_loop_frequency = _root_loop->outer_loop_freq();
1628 
1629   // force paths ending at uncommon traps to be infrequent
1630   if (!C->do_freq_based_layout()) {
1631     Block_List worklist;
1632     Block* root_blk = get_block(0);
1633     for (uint i = 1; i < root_blk->num_preds(); i++) {
1634       Block *pb = get_block_for_node(root_blk->pred(i));
1635       if (pb->has_uncommon_code()) {
1636         worklist.push(pb);
1637       }
1638     }
1639     while (worklist.size() > 0) {
1640       Block* uct = worklist.pop();
1641       uct->_freq = PROB_MIN;
1642       for (uint i = 1; i < uct->num_preds(); i++) {
1643         Block *pb = get_block_for_node(uct->pred(i));
1644         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1645           worklist.push(pb);
1646         }
1647       }
1648     }
1649   }
1650 
1651 #ifdef ASSERT
1652   for (uint i = 0; i < number_of_blocks(); i++) {
1653     Block* b = get_block(i);
1654     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1655   }
1656 #endif
1657 
1658 #ifndef PRODUCT
1659   if (PrintCFGBlockFreq) {
1660     tty->print_cr("CFG Block Frequencies");
1661     _root_loop->dump_tree();
1662     if (Verbose) {
1663       tty->print_cr("PhaseCFG dump");
1664       dump();
1665       tty->print_cr("Node dump");
1666       _root->dump(99999);
1667     }
1668   }
1669 #endif
1670 }
1671 
1672 //----------------------------create_loop_tree--------------------------------
1673 // Create a loop tree from the CFG
create_loop_tree()1674 CFGLoop* PhaseCFG::create_loop_tree() {
1675 
1676 #ifdef ASSERT
1677   assert(get_block(0) == get_root_block(), "first block should be root block");
1678   for (uint i = 0; i < number_of_blocks(); i++) {
1679     Block* block = get_block(i);
1680     // Check that _loop field are clear...we could clear them if not.
1681     assert(block->_loop == NULL, "clear _loop expected");
1682     // Sanity check that the RPO numbering is reflected in the _blocks array.
1683     // It doesn't have to be for the loop tree to be built, but if it is not,
1684     // then the blocks have been reordered since dom graph building...which
1685     // may question the RPO numbering
1686     assert(block->_rpo == i, "unexpected reverse post order number");
1687   }
1688 #endif
1689 
1690   int idct = 0;
1691   CFGLoop* root_loop = new CFGLoop(idct++);
1692 
1693   Block_List worklist;
1694 
1695   // Assign blocks to loops
1696   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1697     Block* block = get_block(i);
1698 
1699     if (block->head()->is_Loop()) {
1700       Block* loop_head = block;
1701       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1702       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1703       Block* tail = get_block_for_node(tail_n);
1704 
1705       // Defensively filter out Loop nodes for non-single-entry loops.
1706       // For all reasonable loops, the head occurs before the tail in RPO.
1707       if (i <= tail->_rpo) {
1708 
1709         // The tail and (recursive) predecessors of the tail
1710         // are made members of a new loop.
1711 
1712         assert(worklist.size() == 0, "nonempty worklist");
1713         CFGLoop* nloop = new CFGLoop(idct++);
1714         assert(loop_head->_loop == NULL, "just checking");
1715         loop_head->_loop = nloop;
1716         // Add to nloop so push_pred() will skip over inner loops
1717         nloop->add_member(loop_head);
1718         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1719 
1720         while (worklist.size() > 0) {
1721           Block* member = worklist.pop();
1722           if (member != loop_head) {
1723             for (uint j = 1; j < member->num_preds(); j++) {
1724               nloop->push_pred(member, j, worklist, this);
1725             }
1726           }
1727         }
1728       }
1729     }
1730   }
1731 
1732   // Create a member list for each loop consisting
1733   // of both blocks and (immediate child) loops.
1734   for (uint i = 0; i < number_of_blocks(); i++) {
1735     Block* block = get_block(i);
1736     CFGLoop* lp = block->_loop;
1737     if (lp == NULL) {
1738       // Not assigned to a loop. Add it to the method's pseudo loop.
1739       block->_loop = root_loop;
1740       lp = root_loop;
1741     }
1742     if (lp == root_loop || block != lp->head()) { // loop heads are already members
1743       lp->add_member(block);
1744     }
1745     if (lp != root_loop) {
1746       if (lp->parent() == NULL) {
1747         // Not a nested loop. Make it a child of the method's pseudo loop.
1748         root_loop->add_nested_loop(lp);
1749       }
1750       if (block == lp->head()) {
1751         // Add nested loop to member list of parent loop.
1752         lp->parent()->add_member(lp);
1753       }
1754     }
1755   }
1756 
1757   return root_loop;
1758 }
1759 
1760 //------------------------------push_pred--------------------------------------
push_pred(Block * blk,int i,Block_List & worklist,PhaseCFG * cfg)1761 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1762   Node* pred_n = blk->pred(i);
1763   Block* pred = cfg->get_block_for_node(pred_n);
1764   CFGLoop *pred_loop = pred->_loop;
1765   if (pred_loop == NULL) {
1766     // Filter out blocks for non-single-entry loops.
1767     // For all reasonable loops, the head occurs before the tail in RPO.
1768     if (pred->_rpo > head()->_rpo) {
1769       pred->_loop = this;
1770       worklist.push(pred);
1771     }
1772   } else if (pred_loop != this) {
1773     // Nested loop.
1774     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1775       pred_loop = pred_loop->_parent;
1776     }
1777     // Make pred's loop be a child
1778     if (pred_loop->_parent == NULL) {
1779       add_nested_loop(pred_loop);
1780       // Continue with loop entry predecessor.
1781       Block* pred_head = pred_loop->head();
1782       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1783       assert(pred_head != head(), "loop head in only one loop");
1784       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1785     } else {
1786       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1787     }
1788   }
1789 }
1790 
1791 //------------------------------add_nested_loop--------------------------------
1792 // Make cl a child of the current loop in the loop tree.
add_nested_loop(CFGLoop * cl)1793 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1794   assert(_parent == NULL, "no parent yet");
1795   assert(cl != this, "not my own parent");
1796   cl->_parent = this;
1797   CFGLoop* ch = _child;
1798   if (ch == NULL) {
1799     _child = cl;
1800   } else {
1801     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1802     ch->_sibling = cl;
1803   }
1804 }
1805 
1806 //------------------------------compute_loop_depth-----------------------------
1807 // Store the loop depth in each CFGLoop object.
1808 // Recursively walk the children to do the same for them.
compute_loop_depth(int depth)1809 void CFGLoop::compute_loop_depth(int depth) {
1810   _depth = depth;
1811   CFGLoop* ch = _child;
1812   while (ch != NULL) {
1813     ch->compute_loop_depth(depth + 1);
1814     ch = ch->_sibling;
1815   }
1816 }
1817 
1818 //------------------------------compute_freq-----------------------------------
1819 // Compute the frequency of each block and loop, relative to a single entry
1820 // into the dominating loop head.
compute_freq()1821 void CFGLoop::compute_freq() {
1822   // Bottom up traversal of loop tree (visit inner loops first.)
1823   // Set loop head frequency to 1.0, then transitively
1824   // compute frequency for all successors in the loop,
1825   // as well as for each exit edge.  Inner loops are
1826   // treated as single blocks with loop exit targets
1827   // as the successor blocks.
1828 
1829   // Nested loops first
1830   CFGLoop* ch = _child;
1831   while (ch != NULL) {
1832     ch->compute_freq();
1833     ch = ch->_sibling;
1834   }
1835   assert (_members.length() > 0, "no empty loops");
1836   Block* hd = head();
1837   hd->_freq = 1.0;
1838   for (int i = 0; i < _members.length(); i++) {
1839     CFGElement* s = _members.at(i);
1840     double freq = s->_freq;
1841     if (s->is_block()) {
1842       Block* b = s->as_Block();
1843       for (uint j = 0; j < b->_num_succs; j++) {
1844         Block* sb = b->_succs[j];
1845         update_succ_freq(sb, freq * b->succ_prob(j));
1846       }
1847     } else {
1848       CFGLoop* lp = s->as_CFGLoop();
1849       assert(lp->_parent == this, "immediate child");
1850       for (int k = 0; k < lp->_exits.length(); k++) {
1851         Block* eb = lp->_exits.at(k).get_target();
1852         double prob = lp->_exits.at(k).get_prob();
1853         update_succ_freq(eb, freq * prob);
1854       }
1855     }
1856   }
1857 
1858   // For all loops other than the outer, "method" loop,
1859   // sum and normalize the exit probability. The "method" loop
1860   // should keep the initial exit probability of 1, so that
1861   // inner blocks do not get erroneously scaled.
1862   if (_depth != 0) {
1863     // Total the exit probabilities for this loop.
1864     double exits_sum = 0.0f;
1865     for (int i = 0; i < _exits.length(); i++) {
1866       exits_sum += _exits.at(i).get_prob();
1867     }
1868 
1869     // Normalize the exit probabilities. Until now, the
1870     // probabilities estimate the possibility of exit per
1871     // a single loop iteration; afterward, they estimate
1872     // the probability of exit per loop entry.
1873     for (int i = 0; i < _exits.length(); i++) {
1874       Block* et = _exits.at(i).get_target();
1875       float new_prob = 0.0f;
1876       if (_exits.at(i).get_prob() > 0.0f) {
1877         new_prob = _exits.at(i).get_prob() / exits_sum;
1878       }
1879       BlockProbPair bpp(et, new_prob);
1880       _exits.at_put(i, bpp);
1881     }
1882 
1883     // Save the total, but guard against unreasonable probability,
1884     // as the value is used to estimate the loop trip count.
1885     // An infinite trip count would blur relative block
1886     // frequencies.
1887     if (exits_sum > 1.0f) exits_sum = 1.0;
1888     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1889     _exit_prob = exits_sum;
1890   }
1891 }
1892 
1893 //------------------------------succ_prob-------------------------------------
1894 // Determine the probability of reaching successor 'i' from the receiver block.
succ_prob(uint i)1895 float Block::succ_prob(uint i) {
1896   int eidx = end_idx();
1897   Node *n = get_node(eidx);  // Get ending Node
1898 
1899   int op = n->Opcode();
1900   if (n->is_Mach()) {
1901     if (n->is_MachNullCheck()) {
1902       // Can only reach here if called after lcm. The original Op_If is gone,
1903       // so we attempt to infer the probability from one or both of the
1904       // successor blocks.
1905       assert(_num_succs == 2, "expecting 2 successors of a null check");
1906       // If either successor has only one predecessor, then the
1907       // probability estimate can be derived using the
1908       // relative frequency of the successor and this block.
1909       if (_succs[i]->num_preds() == 2) {
1910         return _succs[i]->_freq / _freq;
1911       } else if (_succs[1-i]->num_preds() == 2) {
1912         return 1 - (_succs[1-i]->_freq / _freq);
1913       } else {
1914         // Estimate using both successor frequencies
1915         float freq = _succs[i]->_freq;
1916         return freq / (freq + _succs[1-i]->_freq);
1917       }
1918     }
1919     op = n->as_Mach()->ideal_Opcode();
1920   }
1921 
1922 
1923   // Switch on branch type
1924   switch( op ) {
1925   case Op_CountedLoopEnd:
1926   case Op_If: {
1927     assert (i < 2, "just checking");
1928     // Conditionals pass on only part of their frequency
1929     float prob  = n->as_MachIf()->_prob;
1930     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1931     // If succ[i] is the FALSE branch, invert path info
1932     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1933       return 1.0f - prob; // not taken
1934     } else {
1935       return prob; // taken
1936     }
1937   }
1938 
1939   case Op_Jump:
1940     return n->as_MachJump()->_probs[get_node(i + eidx + 1)->as_JumpProj()->_con];
1941 
1942   case Op_Catch: {
1943     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1944     if (ci->_con == CatchProjNode::fall_through_index) {
1945       // Fall-thru path gets the lion's share.
1946       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1947     } else {
1948       // Presume exceptional paths are equally unlikely
1949       return PROB_UNLIKELY_MAG(5);
1950     }
1951   }
1952 
1953   case Op_Root:
1954   case Op_Goto:
1955     // Pass frequency straight thru to target
1956     return 1.0f;
1957 
1958   case Op_NeverBranch:
1959     return 0.0f;
1960 
1961   case Op_TailCall:
1962   case Op_TailJump:
1963   case Op_Return:
1964   case Op_Halt:
1965   case Op_Rethrow:
1966     // Do not push out freq to root block
1967     return 0.0f;
1968 
1969   default:
1970     ShouldNotReachHere();
1971   }
1972 
1973   return 0.0f;
1974 }
1975 
1976 //------------------------------num_fall_throughs-----------------------------
1977 // Return the number of fall-through candidates for a block
num_fall_throughs()1978 int Block::num_fall_throughs() {
1979   int eidx = end_idx();
1980   Node *n = get_node(eidx);  // Get ending Node
1981 
1982   int op = n->Opcode();
1983   if (n->is_Mach()) {
1984     if (n->is_MachNullCheck()) {
1985       // In theory, either side can fall-thru, for simplicity sake,
1986       // let's say only the false branch can now.
1987       return 1;
1988     }
1989     op = n->as_Mach()->ideal_Opcode();
1990   }
1991 
1992   // Switch on branch type
1993   switch( op ) {
1994   case Op_CountedLoopEnd:
1995   case Op_If:
1996     return 2;
1997 
1998   case Op_Root:
1999   case Op_Goto:
2000     return 1;
2001 
2002   case Op_Catch: {
2003     for (uint i = 0; i < _num_succs; i++) {
2004       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2005       if (ci->_con == CatchProjNode::fall_through_index) {
2006         return 1;
2007       }
2008     }
2009     return 0;
2010   }
2011 
2012   case Op_Jump:
2013   case Op_NeverBranch:
2014   case Op_TailCall:
2015   case Op_TailJump:
2016   case Op_Return:
2017   case Op_Halt:
2018   case Op_Rethrow:
2019     return 0;
2020 
2021   default:
2022     ShouldNotReachHere();
2023   }
2024 
2025   return 0;
2026 }
2027 
2028 //------------------------------succ_fall_through-----------------------------
2029 // Return true if a specific successor could be fall-through target.
succ_fall_through(uint i)2030 bool Block::succ_fall_through(uint i) {
2031   int eidx = end_idx();
2032   Node *n = get_node(eidx);  // Get ending Node
2033 
2034   int op = n->Opcode();
2035   if (n->is_Mach()) {
2036     if (n->is_MachNullCheck()) {
2037       // In theory, either side can fall-thru, for simplicity sake,
2038       // let's say only the false branch can now.
2039       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
2040     }
2041     op = n->as_Mach()->ideal_Opcode();
2042   }
2043 
2044   // Switch on branch type
2045   switch( op ) {
2046   case Op_CountedLoopEnd:
2047   case Op_If:
2048   case Op_Root:
2049   case Op_Goto:
2050     return true;
2051 
2052   case Op_Catch: {
2053     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
2054     return ci->_con == CatchProjNode::fall_through_index;
2055   }
2056 
2057   case Op_Jump:
2058   case Op_NeverBranch:
2059   case Op_TailCall:
2060   case Op_TailJump:
2061   case Op_Return:
2062   case Op_Halt:
2063   case Op_Rethrow:
2064     return false;
2065 
2066   default:
2067     ShouldNotReachHere();
2068   }
2069 
2070   return false;
2071 }
2072 
2073 //------------------------------update_uncommon_branch------------------------
2074 // Update the probability of a two-branch to be uncommon
update_uncommon_branch(Block * ub)2075 void Block::update_uncommon_branch(Block* ub) {
2076   int eidx = end_idx();
2077   Node *n = get_node(eidx);  // Get ending Node
2078 
2079   int op = n->as_Mach()->ideal_Opcode();
2080 
2081   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
2082   assert(num_fall_throughs() == 2, "must be a two way branch block");
2083 
2084   // Which successor is ub?
2085   uint s;
2086   for (s = 0; s <_num_succs; s++) {
2087     if (_succs[s] == ub) break;
2088   }
2089   assert(s < 2, "uncommon successor must be found");
2090 
2091   // If ub is the true path, make the proability small, else
2092   // ub is the false path, and make the probability large
2093   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
2094 
2095   // Get existing probability
2096   float p = n->as_MachIf()->_prob;
2097 
2098   if (invert) p = 1.0 - p;
2099   if (p > PROB_MIN) {
2100     p = PROB_MIN;
2101   }
2102   if (invert) p = 1.0 - p;
2103 
2104   n->as_MachIf()->_prob = p;
2105 }
2106 
2107 //------------------------------update_succ_freq-------------------------------
2108 // Update the appropriate frequency associated with block 'b', a successor of
2109 // a block in this loop.
update_succ_freq(Block * b,double freq)2110 void CFGLoop::update_succ_freq(Block* b, double freq) {
2111   if (b->_loop == this) {
2112     if (b == head()) {
2113       // back branch within the loop
2114       // Do nothing now, the loop carried frequency will be
2115       // adjust later in scale_freq().
2116     } else {
2117       // simple branch within the loop
2118       b->_freq += freq;
2119     }
2120   } else if (!in_loop_nest(b)) {
2121     // branch is exit from this loop
2122     BlockProbPair bpp(b, freq);
2123     _exits.append(bpp);
2124   } else {
2125     // branch into nested loop
2126     CFGLoop* ch = b->_loop;
2127     ch->_freq += freq;
2128   }
2129 }
2130 
2131 //------------------------------in_loop_nest-----------------------------------
2132 // Determine if block b is in the receiver's loop nest.
in_loop_nest(Block * b)2133 bool CFGLoop::in_loop_nest(Block* b) {
2134   int depth = _depth;
2135   CFGLoop* b_loop = b->_loop;
2136   int b_depth = b_loop->_depth;
2137   if (depth == b_depth) {
2138     return true;
2139   }
2140   while (b_depth > depth) {
2141     b_loop = b_loop->_parent;
2142     b_depth = b_loop->_depth;
2143   }
2144   return b_loop == this;
2145 }
2146 
2147 //------------------------------scale_freq-------------------------------------
2148 // Scale frequency of loops and blocks by trip counts from outer loops
2149 // Do a top down traversal of loop tree (visit outer loops first.)
scale_freq()2150 void CFGLoop::scale_freq() {
2151   double loop_freq = _freq * trip_count();
2152   _freq = loop_freq;
2153   for (int i = 0; i < _members.length(); i++) {
2154     CFGElement* s = _members.at(i);
2155     double block_freq = s->_freq * loop_freq;
2156     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
2157       block_freq = MIN_BLOCK_FREQUENCY;
2158     s->_freq = block_freq;
2159   }
2160   CFGLoop* ch = _child;
2161   while (ch != NULL) {
2162     ch->scale_freq();
2163     ch = ch->_sibling;
2164   }
2165 }
2166 
2167 // Frequency of outer loop
outer_loop_freq() const2168 double CFGLoop::outer_loop_freq() const {
2169   if (_child != NULL) {
2170     return _child->_freq;
2171   }
2172   return _freq;
2173 }
2174 
2175 #ifndef PRODUCT
2176 //------------------------------dump_tree--------------------------------------
dump_tree() const2177 void CFGLoop::dump_tree() const {
2178   dump();
2179   if (_child != NULL)   _child->dump_tree();
2180   if (_sibling != NULL) _sibling->dump_tree();
2181 }
2182 
2183 //------------------------------dump-------------------------------------------
dump() const2184 void CFGLoop::dump() const {
2185   for (int i = 0; i < _depth; i++) tty->print("   ");
2186   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
2187              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2188   for (int i = 0; i < _depth; i++) tty->print("   ");
2189   tty->print("         members:");
2190   int k = 0;
2191   for (int i = 0; i < _members.length(); i++) {
2192     if (k++ >= 6) {
2193       tty->print("\n              ");
2194       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2195       k = 0;
2196     }
2197     CFGElement *s = _members.at(i);
2198     if (s->is_block()) {
2199       Block *b = s->as_Block();
2200       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2201     } else {
2202       CFGLoop* lp = s->as_CFGLoop();
2203       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2204     }
2205   }
2206   tty->print("\n");
2207   for (int i = 0; i < _depth; i++) tty->print("   ");
2208   tty->print("         exits:  ");
2209   k = 0;
2210   for (int i = 0; i < _exits.length(); i++) {
2211     if (k++ >= 7) {
2212       tty->print("\n              ");
2213       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2214       k = 0;
2215     }
2216     Block *blk = _exits.at(i).get_target();
2217     double prob = _exits.at(i).get_prob();
2218     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2219   }
2220   tty->print("\n");
2221 }
2222 #endif
2223