1 /*
2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "interpreter/linkResolver.hpp"
28 #include "memory/universe.hpp"
29 #include "oops/objArrayKlass.hpp"
30 #include "opto/addnode.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/memnode.hpp"
33 #include "opto/parse.hpp"
34 #include "opto/rootnode.hpp"
35 #include "opto/runtime.hpp"
36 #include "opto/subnode.hpp"
37 #include "runtime/deoptimization.hpp"
38 #include "runtime/handles.inline.hpp"
39 
40 //=============================================================================
41 // Helper methods for _get* and _put* bytecodes
42 //=============================================================================
do_field_access(bool is_get,bool is_field)43 void Parse::do_field_access(bool is_get, bool is_field) {
44   bool will_link;
45   ciField* field = iter().get_field(will_link);
46   assert(will_link, "getfield: typeflow responsibility");
47 
48   ciInstanceKlass* field_holder = field->holder();
49 
50   if (is_field == field->is_static()) {
51     // Interpreter will throw java_lang_IncompatibleClassChangeError
52     // Check this before allowing <clinit> methods to access static fields
53     uncommon_trap(Deoptimization::Reason_unhandled,
54                   Deoptimization::Action_none);
55     return;
56   }
57 
58   // Deoptimize on putfield writes to call site target field.
59   if (!is_get && field->is_call_site_target()) {
60     uncommon_trap(Deoptimization::Reason_unhandled,
61                   Deoptimization::Action_reinterpret,
62                   NULL, "put to call site target field");
63     return;
64   }
65 
66   if (C->needs_clinit_barrier(field, method())) {
67     clinit_barrier(field_holder, method());
68     if (stopped())  return;
69   }
70 
71   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
72 
73   // Note:  We do not check for an unloaded field type here any more.
74 
75   // Generate code for the object pointer.
76   Node* obj;
77   if (is_field) {
78     int obj_depth = is_get ? 0 : field->type()->size();
79     obj = null_check(peek(obj_depth));
80     // Compile-time detect of null-exception?
81     if (stopped())  return;
82 
83 #ifdef ASSERT
84     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
85     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
86 #endif
87 
88     if (is_get) {
89       (void) pop();  // pop receiver before getting
90       do_get_xxx(obj, field, is_field);
91     } else {
92       do_put_xxx(obj, field, is_field);
93       (void) pop();  // pop receiver after putting
94     }
95   } else {
96     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
97     obj = _gvn.makecon(tip);
98     if (is_get) {
99       do_get_xxx(obj, field, is_field);
100     } else {
101       do_put_xxx(obj, field, is_field);
102     }
103   }
104 }
105 
106 
do_get_xxx(Node * obj,ciField * field,bool is_field)107 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
108   BasicType bt = field->layout_type();
109 
110   // Does this field have a constant value?  If so, just push the value.
111   if (field->is_constant() &&
112       // Keep consistent with types found by ciTypeFlow: for an
113       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
114       // speculates the field is null. The code in the rest of this
115       // method does the same. We must not bypass it and use a non
116       // null constant here.
117       (bt != T_OBJECT || field->type()->is_loaded())) {
118     // final or stable field
119     Node* con = make_constant_from_field(field, obj);
120     if (con != NULL) {
121       push_node(field->layout_type(), con);
122       return;
123     }
124   }
125 
126   ciType* field_klass = field->type();
127   bool is_vol = field->is_volatile();
128 
129   // Compute address and memory type.
130   int offset = field->offset_in_bytes();
131   const TypePtr* adr_type = C->alias_type(field)->adr_type();
132   Node *adr = basic_plus_adr(obj, obj, offset);
133 
134   // Build the resultant type of the load
135   const Type *type;
136 
137   bool must_assert_null = false;
138 
139   DecoratorSet decorators = IN_HEAP;
140   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
141 
142   bool is_obj = bt == T_OBJECT || bt == T_ARRAY;
143 
144   if (is_obj) {
145     if (!field->type()->is_loaded()) {
146       type = TypeInstPtr::BOTTOM;
147       must_assert_null = true;
148     } else if (field->is_static_constant()) {
149       // This can happen if the constant oop is non-perm.
150       ciObject* con = field->constant_value().as_object();
151       // Do not "join" in the previous type; it doesn't add value,
152       // and may yield a vacuous result if the field is of interface type.
153       if (con->is_null_object()) {
154         type = TypePtr::NULL_PTR;
155       } else {
156         type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
157       }
158       assert(type != NULL, "field singleton type must be consistent");
159     } else {
160       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
161     }
162   } else {
163     type = Type::get_const_basic_type(bt);
164   }
165 
166   Node* ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
167 
168   // Adjust Java stack
169   if (type2size[bt] == 1)
170     push(ld);
171   else
172     push_pair(ld);
173 
174   if (must_assert_null) {
175     // Do not take a trap here.  It's possible that the program
176     // will never load the field's class, and will happily see
177     // null values in this field forever.  Don't stumble into a
178     // trap for such a program, or we might get a long series
179     // of useless recompilations.  (Or, we might load a class
180     // which should not be loaded.)  If we ever see a non-null
181     // value, we will then trap and recompile.  (The trap will
182     // not need to mention the class index, since the class will
183     // already have been loaded if we ever see a non-null value.)
184     // uncommon_trap(iter().get_field_signature_index());
185     if (PrintOpto && (Verbose || WizardMode)) {
186       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
187     }
188     if (C->log() != NULL) {
189       C->log()->elem("assert_null reason='field' klass='%d'",
190                      C->log()->identify(field->type()));
191     }
192     // If there is going to be a trap, put it at the next bytecode:
193     set_bci(iter().next_bci());
194     null_assert(peek());
195     set_bci(iter().cur_bci()); // put it back
196   }
197 }
198 
do_put_xxx(Node * obj,ciField * field,bool is_field)199 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
200   bool is_vol = field->is_volatile();
201 
202   // Compute address and memory type.
203   int offset = field->offset_in_bytes();
204   const TypePtr* adr_type = C->alias_type(field)->adr_type();
205   Node* adr = basic_plus_adr(obj, obj, offset);
206   BasicType bt = field->layout_type();
207   // Value to be stored
208   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
209 
210   DecoratorSet decorators = IN_HEAP;
211   decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
212 
213   bool is_obj = bt == T_OBJECT || bt == T_ARRAY;
214 
215   // Store the value.
216   const Type* field_type;
217   if (!field->type()->is_loaded()) {
218     field_type = TypeInstPtr::BOTTOM;
219   } else {
220     if (is_obj) {
221       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
222     } else {
223       field_type = Type::BOTTOM;
224     }
225   }
226   access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
227 
228   if (is_field) {
229     // Remember we wrote a volatile field.
230     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
231     // in constructors which have such stores. See do_exits() in parse1.cpp.
232     if (is_vol) {
233       set_wrote_volatile(true);
234     }
235     set_wrote_fields(true);
236 
237     // If the field is final, the rules of Java say we are in <init> or <clinit>.
238     // Note the presence of writes to final non-static fields, so that we
239     // can insert a memory barrier later on to keep the writes from floating
240     // out of the constructor.
241     // Any method can write a @Stable field; insert memory barriers after those also.
242     if (field->is_final()) {
243       set_wrote_final(true);
244       if (AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
245         // Preserve allocation ptr to create precedent edge to it in membar
246         // generated on exit from constructor.
247         // Can't bind stable with its allocation, only record allocation for final field.
248         set_alloc_with_final(obj);
249       }
250     }
251     if (field->is_stable()) {
252       set_wrote_stable(true);
253     }
254   }
255 }
256 
257 //=============================================================================
do_anewarray()258 void Parse::do_anewarray() {
259   bool will_link;
260   ciKlass* klass = iter().get_klass(will_link);
261 
262   // Uncommon Trap when class that array contains is not loaded
263   // we need the loaded class for the rest of graph; do not
264   // initialize the container class (see Java spec)!!!
265   assert(will_link, "anewarray: typeflow responsibility");
266 
267   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
268   // Check that array_klass object is loaded
269   if (!array_klass->is_loaded()) {
270     // Generate uncommon_trap for unloaded array_class
271     uncommon_trap(Deoptimization::Reason_unloaded,
272                   Deoptimization::Action_reinterpret,
273                   array_klass);
274     return;
275   }
276 
277   kill_dead_locals();
278 
279   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
280   Node* count_val = pop();
281   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
282   push(obj);
283 }
284 
285 
do_newarray(BasicType elem_type)286 void Parse::do_newarray(BasicType elem_type) {
287   kill_dead_locals();
288 
289   Node*   count_val = pop();
290   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
291   Node*   obj = new_array(makecon(array_klass), count_val, 1);
292   // Push resultant oop onto stack
293   push(obj);
294 }
295 
296 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
297 // Also handle the degenerate 1-dimensional case of anewarray.
expand_multianewarray(ciArrayKlass * array_klass,Node ** lengths,int ndimensions,int nargs)298 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
299   Node* length = lengths[0];
300   assert(length != NULL, "");
301   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
302   if (ndimensions > 1) {
303     jint length_con = find_int_con(length, -1);
304     guarantee(length_con >= 0, "non-constant multianewarray");
305     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
306     const TypePtr* adr_type = TypeAryPtr::OOPS;
307     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
308     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
309     for (jint i = 0; i < length_con; i++) {
310       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
311       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
312       Node*    eaddr  = basic_plus_adr(array, offset);
313       access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
314     }
315   }
316   return array;
317 }
318 
do_multianewarray()319 void Parse::do_multianewarray() {
320   int ndimensions = iter().get_dimensions();
321 
322   // the m-dimensional array
323   bool will_link;
324   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
325   assert(will_link, "multianewarray: typeflow responsibility");
326 
327   // Note:  Array classes are always initialized; no is_initialized check.
328 
329   kill_dead_locals();
330 
331   // get the lengths from the stack (first dimension is on top)
332   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
333   length[ndimensions] = NULL;  // terminating null for make_runtime_call
334   int j;
335   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
336 
337   // The original expression was of this form: new T[length0][length1]...
338   // It is often the case that the lengths are small (except the last).
339   // If that happens, use the fast 1-d creator a constant number of times.
340   const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
341   int expand_count = 1;        // count of allocations in the expansion
342   int expand_fanout = 1;       // running total fanout
343   for (j = 0; j < ndimensions-1; j++) {
344     int dim_con = find_int_con(length[j], -1);
345     expand_fanout *= dim_con;
346     expand_count  += expand_fanout; // count the level-J sub-arrays
347     if (dim_con <= 0
348         || dim_con > expand_limit
349         || expand_count > expand_limit) {
350       expand_count = 0;
351       break;
352     }
353   }
354 
355   // Can use multianewarray instead of [a]newarray if only one dimension,
356   // or if all non-final dimensions are small constants.
357   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
358     Node* obj = NULL;
359     // Set the original stack and the reexecute bit for the interpreter
360     // to reexecute the multianewarray bytecode if deoptimization happens.
361     // Do it unconditionally even for one dimension multianewarray.
362     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
363     // when AllocateArray node for newarray is created.
364     { PreserveReexecuteState preexecs(this);
365       inc_sp(ndimensions);
366       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
367       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
368     } //original reexecute and sp are set back here
369     push(obj);
370     return;
371   }
372 
373   address fun = NULL;
374   switch (ndimensions) {
375   case 1: ShouldNotReachHere(); break;
376   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
377   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
378   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
379   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
380   };
381   Node* c = NULL;
382 
383   if (fun != NULL) {
384     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
385                           OptoRuntime::multianewarray_Type(ndimensions),
386                           fun, NULL, TypeRawPtr::BOTTOM,
387                           makecon(TypeKlassPtr::make(array_klass)),
388                           length[0], length[1], length[2],
389                           (ndimensions > 2) ? length[3] : NULL,
390                           (ndimensions > 3) ? length[4] : NULL);
391   } else {
392     // Create a java array for dimension sizes
393     Node* dims = NULL;
394     { PreserveReexecuteState preexecs(this);
395       inc_sp(ndimensions);
396       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
397       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
398 
399       // Fill-in it with values
400       for (j = 0; j < ndimensions; j++) {
401         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
402         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
403       }
404     }
405 
406     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
407                           OptoRuntime::multianewarrayN_Type(),
408                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
409                           makecon(TypeKlassPtr::make(array_klass)),
410                           dims);
411   }
412   make_slow_call_ex(c, env()->Throwable_klass(), false);
413 
414   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
415 
416   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
417 
418   // Improve the type:  We know it's not null, exact, and of a given length.
419   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
420   type = type->is_aryptr()->cast_to_exactness(true);
421 
422   const TypeInt* ltype = _gvn.find_int_type(length[0]);
423   if (ltype != NULL)
424     type = type->is_aryptr()->cast_to_size(ltype);
425 
426     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
427 
428   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
429   push(cast);
430 
431   // Possible improvements:
432   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
433   // - Issue CastII against length[*] values, to TypeInt::POS.
434 }
435