1 /*
2  * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "compiler/compileBroker.hpp"
27 #include "compiler/compilerOracle.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "runtime/arguments.hpp"
30 #include "runtime/handles.inline.hpp"
31 #include "runtime/safepoint.hpp"
32 #include "runtime/safepointVerifiers.hpp"
33 #include "runtime/tieredThresholdPolicy.hpp"
34 #include "code/scopeDesc.hpp"
35 #include "oops/method.inline.hpp"
36 #if INCLUDE_JVMCI
37 #include "jvmci/jvmci.hpp"
38 #endif
39 
40 #ifdef TIERED
41 
42 #include "c1/c1_Compiler.hpp"
43 #include "opto/c2compiler.hpp"
44 
45 template<CompLevel level>
call_predicate_helper(int i,int b,double scale,Method * method)46 bool TieredThresholdPolicy::call_predicate_helper(int i, int b, double scale, Method* method) {
47   double threshold_scaling;
48   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
49     scale *= threshold_scaling;
50   }
51   switch(level) {
52   case CompLevel_aot:
53     return (i >= Tier3AOTInvocationThreshold * scale) ||
54            (i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale);
55   case CompLevel_none:
56   case CompLevel_limited_profile:
57     return (i >= Tier3InvocationThreshold * scale) ||
58            (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
59   case CompLevel_full_profile:
60    return (i >= Tier4InvocationThreshold * scale) ||
61           (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
62   }
63   return true;
64 }
65 
66 template<CompLevel level>
loop_predicate_helper(int i,int b,double scale,Method * method)67 bool TieredThresholdPolicy::loop_predicate_helper(int i, int b, double scale, Method* method) {
68   double threshold_scaling;
69   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
70     scale *= threshold_scaling;
71   }
72   switch(level) {
73   case CompLevel_aot:
74     return b >= Tier3AOTBackEdgeThreshold * scale;
75   case CompLevel_none:
76   case CompLevel_limited_profile:
77     return b >= Tier3BackEdgeThreshold * scale;
78   case CompLevel_full_profile:
79     return b >= Tier4BackEdgeThreshold * scale;
80   }
81   return true;
82 }
83 
84 // Simple methods are as good being compiled with C1 as C2.
85 // Determine if a given method is such a case.
is_trivial(Method * method)86 bool TieredThresholdPolicy::is_trivial(Method* method) {
87   if (method->is_accessor() ||
88       method->is_constant_getter()) {
89     return true;
90   }
91   return false;
92 }
93 
should_compile_at_level_simple(Method * method)94 bool TieredThresholdPolicy::should_compile_at_level_simple(Method* method) {
95   if (TieredThresholdPolicy::is_trivial(method)) {
96     return true;
97   }
98 #if INCLUDE_JVMCI
99   if (UseJVMCICompiler) {
100     AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
101     if (comp != NULL && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
102       return true;
103     }
104   }
105 #endif
106   return false;
107 }
108 
comp_level(Method * method)109 CompLevel TieredThresholdPolicy::comp_level(Method* method) {
110   CompiledMethod *nm = method->code();
111   if (nm != NULL && nm->is_in_use()) {
112     return (CompLevel)nm->comp_level();
113   }
114   return CompLevel_none;
115 }
116 
print_counters(const char * prefix,const methodHandle & mh)117 void TieredThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) {
118   int invocation_count = mh->invocation_count();
119   int backedge_count = mh->backedge_count();
120   MethodData* mdh = mh->method_data();
121   int mdo_invocations = 0, mdo_backedges = 0;
122   int mdo_invocations_start = 0, mdo_backedges_start = 0;
123   if (mdh != NULL) {
124     mdo_invocations = mdh->invocation_count();
125     mdo_backedges = mdh->backedge_count();
126     mdo_invocations_start = mdh->invocation_count_start();
127     mdo_backedges_start = mdh->backedge_count_start();
128   }
129   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
130       invocation_count, backedge_count, prefix,
131       mdo_invocations, mdo_invocations_start,
132       mdo_backedges, mdo_backedges_start);
133   tty->print(" %smax levels=%d,%d", prefix,
134       mh->highest_comp_level(), mh->highest_osr_comp_level());
135 }
136 
137 // Print an event.
print_event(EventType type,const methodHandle & mh,const methodHandle & imh,int bci,CompLevel level)138 void TieredThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh,
139                                         int bci, CompLevel level) {
140   bool inlinee_event = mh() != imh();
141 
142   ttyLocker tty_lock;
143   tty->print("%lf: [", os::elapsedTime());
144 
145   switch(type) {
146   case CALL:
147     tty->print("call");
148     break;
149   case LOOP:
150     tty->print("loop");
151     break;
152   case COMPILE:
153     tty->print("compile");
154     break;
155   case REMOVE_FROM_QUEUE:
156     tty->print("remove-from-queue");
157     break;
158   case UPDATE_IN_QUEUE:
159     tty->print("update-in-queue");
160     break;
161   case REPROFILE:
162     tty->print("reprofile");
163     break;
164   case MAKE_NOT_ENTRANT:
165     tty->print("make-not-entrant");
166     break;
167   default:
168     tty->print("unknown");
169   }
170 
171   tty->print(" level=%d ", level);
172 
173   ResourceMark rm;
174   char *method_name = mh->name_and_sig_as_C_string();
175   tty->print("[%s", method_name);
176   if (inlinee_event) {
177     char *inlinee_name = imh->name_and_sig_as_C_string();
178     tty->print(" [%s]] ", inlinee_name);
179   }
180   else tty->print("] ");
181   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
182                                       CompileBroker::queue_size(CompLevel_full_optimization));
183 
184   print_specific(type, mh, imh, bci, level);
185 
186   if (type != COMPILE) {
187     print_counters("", mh);
188     if (inlinee_event) {
189       print_counters("inlinee ", imh);
190     }
191     tty->print(" compilable=");
192     bool need_comma = false;
193     if (!mh->is_not_compilable(CompLevel_full_profile)) {
194       tty->print("c1");
195       need_comma = true;
196     }
197     if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
198       if (need_comma) tty->print(",");
199       tty->print("c1-osr");
200       need_comma = true;
201     }
202     if (!mh->is_not_compilable(CompLevel_full_optimization)) {
203       if (need_comma) tty->print(",");
204       tty->print("c2");
205       need_comma = true;
206     }
207     if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
208       if (need_comma) tty->print(",");
209       tty->print("c2-osr");
210     }
211     tty->print(" status=");
212     if (mh->queued_for_compilation()) {
213       tty->print("in-queue");
214     } else tty->print("idle");
215   }
216   tty->print_cr("]");
217 }
218 
initialize()219 void TieredThresholdPolicy::initialize() {
220   int count = CICompilerCount;
221   bool c1_only = TieredStopAtLevel < CompLevel_full_optimization;
222 #ifdef _LP64
223   // Turn on ergonomic compiler count selection
224   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
225     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
226   }
227   if (CICompilerCountPerCPU) {
228     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
229     int log_cpu = log2_int(os::active_processor_count());
230     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
231     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
232     // Make sure there is enough space in the code cache to hold all the compiler buffers
233     size_t c1_size = Compiler::code_buffer_size();
234     size_t c2_size = C2Compiler::initial_code_buffer_size();
235     size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
236     int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
237     if (count > max_count) {
238       // Lower the compiler count such that all buffers fit into the code cache
239       count = MAX2(max_count, c1_only ? 1 : 2);
240     }
241     FLAG_SET_ERGO(CICompilerCount, count);
242   }
243 #else
244   // On 32-bit systems, the number of compiler threads is limited to 3.
245   // On these systems, the virtual address space available to the JVM
246   // is usually limited to 2-4 GB (the exact value depends on the platform).
247   // As the compilers (especially C2) can consume a large amount of
248   // memory, scaling the number of compiler threads with the number of
249   // available cores can result in the exhaustion of the address space
250   /// available to the VM and thus cause the VM to crash.
251   if (FLAG_IS_DEFAULT(CICompilerCount)) {
252     count = 3;
253     FLAG_SET_ERGO(CICompilerCount, count);
254   }
255 #endif
256 
257   if (c1_only) {
258     // No C2 compiler thread required
259     set_c1_count(count);
260   } else {
261     set_c1_count(MAX2(count / 3, 1));
262     set_c2_count(MAX2(count - c1_count(), 1));
263   }
264   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
265 
266   // Some inlining tuning
267 #ifdef X86
268   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
269     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
270   }
271 #endif
272 
273 #if defined SPARC || defined AARCH64
274   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
275     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
276   }
277 #endif
278 
279   set_increase_threshold_at_ratio();
280   set_start_time(os::javaTimeMillis());
281 }
282 
set_carry_if_necessary(InvocationCounter * counter)283 void TieredThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
284   if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
285     counter->set_carry_flag();
286   }
287 }
288 
289 // Set carry flags on the counters if necessary
handle_counter_overflow(Method * method)290 void TieredThresholdPolicy::handle_counter_overflow(Method* method) {
291   MethodCounters *mcs = method->method_counters();
292   if (mcs != NULL) {
293     set_carry_if_necessary(mcs->invocation_counter());
294     set_carry_if_necessary(mcs->backedge_counter());
295   }
296   MethodData* mdo = method->method_data();
297   if (mdo != NULL) {
298     set_carry_if_necessary(mdo->invocation_counter());
299     set_carry_if_necessary(mdo->backedge_counter());
300   }
301 }
302 
303 // Called with the queue locked and with at least one element
select_task(CompileQueue * compile_queue)304 CompileTask* TieredThresholdPolicy::select_task(CompileQueue* compile_queue) {
305   CompileTask *max_blocking_task = NULL;
306   CompileTask *max_task = NULL;
307   Method* max_method = NULL;
308   jlong t = os::javaTimeMillis();
309   // Iterate through the queue and find a method with a maximum rate.
310   for (CompileTask* task = compile_queue->first(); task != NULL;) {
311     CompileTask* next_task = task->next();
312     Method* method = task->method();
313     // If a method was unloaded or has been stale for some time, remove it from the queue.
314     // Blocking tasks and tasks submitted from whitebox API don't become stale
315     if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) {
316       if (!task->is_unloaded()) {
317         if (PrintTieredEvents) {
318           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
319         }
320         method->clear_queued_for_compilation();
321       }
322       compile_queue->remove_and_mark_stale(task);
323       task = next_task;
324       continue;
325     }
326     update_rate(t, method);
327     if (max_task == NULL || compare_methods(method, max_method)) {
328       // Select a method with the highest rate
329       max_task = task;
330       max_method = method;
331     }
332 
333     if (task->is_blocking()) {
334       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
335         max_blocking_task = task;
336       }
337     }
338 
339     task = next_task;
340   }
341 
342   if (max_blocking_task != NULL) {
343     // In blocking compilation mode, the CompileBroker will make
344     // compilations submitted by a JVMCI compiler thread non-blocking. These
345     // compilations should be scheduled after all blocking compilations
346     // to service non-compiler related compilations sooner and reduce the
347     // chance of such compilations timing out.
348     max_task = max_blocking_task;
349     max_method = max_task->method();
350   }
351 
352   if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
353       TieredStopAtLevel > CompLevel_full_profile &&
354       max_method != NULL && is_method_profiled(max_method)) {
355     max_task->set_comp_level(CompLevel_limited_profile);
356 
357     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
358       if (PrintTieredEvents) {
359         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
360       }
361       compile_queue->remove_and_mark_stale(max_task);
362       max_method->clear_queued_for_compilation();
363       return NULL;
364     }
365 
366     if (PrintTieredEvents) {
367       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
368     }
369   }
370 
371   return max_task;
372 }
373 
reprofile(ScopeDesc * trap_scope,bool is_osr)374 void TieredThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
375   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
376     if (PrintTieredEvents) {
377       methodHandle mh(sd->method());
378       print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
379     }
380     MethodData* mdo = sd->method()->method_data();
381     if (mdo != NULL) {
382       mdo->reset_start_counters();
383     }
384     if (sd->is_top()) break;
385   }
386 }
387 
event(const methodHandle & method,const methodHandle & inlinee,int branch_bci,int bci,CompLevel comp_level,CompiledMethod * nm,JavaThread * thread)388 nmethod* TieredThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee,
389                                       int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) {
390   if (comp_level == CompLevel_none &&
391       JvmtiExport::can_post_interpreter_events() &&
392       thread->is_interp_only_mode()) {
393     return NULL;
394   }
395   if (ReplayCompiles) {
396     // Don't trigger other compiles in testing mode
397     return NULL;
398   }
399 
400   handle_counter_overflow(method());
401   if (method() != inlinee()) {
402     handle_counter_overflow(inlinee());
403   }
404 
405   if (PrintTieredEvents) {
406     print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
407   }
408 
409   if (bci == InvocationEntryBci) {
410     method_invocation_event(method, inlinee, comp_level, nm, thread);
411   } else {
412     // method == inlinee if the event originated in the main method
413     method_back_branch_event(method, inlinee, bci, comp_level, nm, thread);
414     // Check if event led to a higher level OSR compilation
415     CompLevel expected_comp_level = comp_level;
416     if (inlinee->is_not_osr_compilable(expected_comp_level)) {
417       // It's not possble to reach the expected level so fall back to simple.
418       expected_comp_level = CompLevel_simple;
419     }
420     nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
421     assert(osr_nm == NULL || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
422     if (osr_nm != NULL) {
423       // Perform OSR with new nmethod
424       return osr_nm;
425     }
426   }
427   return NULL;
428 }
429 
430 // Check if the method can be compiled, change level if necessary
compile(const methodHandle & mh,int bci,CompLevel level,JavaThread * thread)431 void TieredThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
432   assert(level <= TieredStopAtLevel, "Invalid compilation level");
433   if (level == CompLevel_none) {
434     return;
435   }
436   if (level == CompLevel_aot) {
437     if (mh->has_aot_code()) {
438       if (PrintTieredEvents) {
439         print_event(COMPILE, mh, mh, bci, level);
440       }
441       MutexLocker ml(Compile_lock);
442       NoSafepointVerifier nsv;
443       if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
444         mh->aot_code()->make_entrant();
445         if (mh->has_compiled_code()) {
446           mh->code()->make_not_entrant();
447         }
448         Method::set_code(mh, mh->aot_code());
449       }
450     }
451     return;
452   }
453 
454   // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
455   // in the interpreter and then compile with C2 (the transition function will request that,
456   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
457   // pure C1.
458   if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
459     if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
460       compile(mh, bci, CompLevel_simple, thread);
461     }
462     return;
463   }
464   if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
465     if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
466       nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
467       if (osr_nm != NULL && osr_nm->comp_level() > CompLevel_simple) {
468         // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
469         osr_nm->make_not_entrant();
470       }
471       compile(mh, bci, CompLevel_simple, thread);
472     }
473     return;
474   }
475   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
476     return;
477   }
478   if (!CompileBroker::compilation_is_in_queue(mh)) {
479     if (PrintTieredEvents) {
480       print_event(COMPILE, mh, mh, bci, level);
481     }
482     submit_compile(mh, bci, level, thread);
483   }
484 }
485 
486 // Update the rate and submit compile
submit_compile(const methodHandle & mh,int bci,CompLevel level,JavaThread * thread)487 void TieredThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
488   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
489   update_rate(os::javaTimeMillis(), mh());
490   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
491 }
492 
493 // Print an event.
print_specific(EventType type,const methodHandle & mh,const methodHandle & imh,int bci,CompLevel level)494 void TieredThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
495                                              int bci, CompLevel level) {
496   tty->print(" rate=");
497   if (mh->prev_time() == 0) tty->print("n/a");
498   else tty->print("%f", mh->rate());
499 
500   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
501                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
502 
503 }
504 
505 // update_rate() is called from select_task() while holding a compile queue lock.
update_rate(jlong t,Method * m)506 void TieredThresholdPolicy::update_rate(jlong t, Method* m) {
507   // Skip update if counters are absent.
508   // Can't allocate them since we are holding compile queue lock.
509   if (m->method_counters() == NULL)  return;
510 
511   if (is_old(m)) {
512     // We don't remove old methods from the queue,
513     // so we can just zero the rate.
514     m->set_rate(0);
515     return;
516   }
517 
518   // We don't update the rate if we've just came out of a safepoint.
519   // delta_s is the time since last safepoint in milliseconds.
520   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
521   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
522   // How many events were there since the last time?
523   int event_count = m->invocation_count() + m->backedge_count();
524   int delta_e = event_count - m->prev_event_count();
525 
526   // We should be running for at least 1ms.
527   if (delta_s >= TieredRateUpdateMinTime) {
528     // And we must've taken the previous point at least 1ms before.
529     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
530       m->set_prev_time(t);
531       m->set_prev_event_count(event_count);
532       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
533     } else {
534       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
535         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
536         m->set_rate(0);
537       }
538     }
539   }
540 }
541 
542 // Check if this method has been stale for a given number of milliseconds.
543 // See select_task().
is_stale(jlong t,jlong timeout,Method * m)544 bool TieredThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
545   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
546   jlong delta_t = t - m->prev_time();
547   if (delta_t > timeout && delta_s > timeout) {
548     int event_count = m->invocation_count() + m->backedge_count();
549     int delta_e = event_count - m->prev_event_count();
550     // Return true if there were no events.
551     return delta_e == 0;
552   }
553   return false;
554 }
555 
556 // We don't remove old methods from the compile queue even if they have
557 // very low activity. See select_task().
is_old(Method * method)558 bool TieredThresholdPolicy::is_old(Method* method) {
559   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
560 }
561 
weight(Method * method)562 double TieredThresholdPolicy::weight(Method* method) {
563   return (double)(method->rate() + 1) *
564     (method->invocation_count() + 1) * (method->backedge_count() + 1);
565 }
566 
567 // Apply heuristics and return true if x should be compiled before y
compare_methods(Method * x,Method * y)568 bool TieredThresholdPolicy::compare_methods(Method* x, Method* y) {
569   if (x->highest_comp_level() > y->highest_comp_level()) {
570     // recompilation after deopt
571     return true;
572   } else
573     if (x->highest_comp_level() == y->highest_comp_level()) {
574       if (weight(x) > weight(y)) {
575         return true;
576       }
577     }
578   return false;
579 }
580 
581 // Is method profiled enough?
is_method_profiled(Method * method)582 bool TieredThresholdPolicy::is_method_profiled(Method* method) {
583   MethodData* mdo = method->method_data();
584   if (mdo != NULL) {
585     int i = mdo->invocation_count_delta();
586     int b = mdo->backedge_count_delta();
587     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
588   }
589   return false;
590 }
591 
threshold_scale(CompLevel level,int feedback_k)592 double TieredThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
593   double queue_size = CompileBroker::queue_size(level);
594   int comp_count = compiler_count(level);
595   double k = queue_size / (feedback_k * comp_count) + 1;
596 
597   // Increase C1 compile threshold when the code cache is filled more
598   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
599   // The main intention is to keep enough free space for C2 compiled code
600   // to achieve peak performance if the code cache is under stress.
601   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
602     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
603     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
604       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
605     }
606   }
607   return k;
608 }
609 
610 // Call and loop predicates determine whether a transition to a higher
611 // compilation level should be performed (pointers to predicate functions
612 // are passed to common()).
613 // Tier?LoadFeedback is basically a coefficient that determines of
614 // how many methods per compiler thread can be in the queue before
615 // the threshold values double.
loop_predicate(int i,int b,CompLevel cur_level,Method * method)616 bool TieredThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
617   switch(cur_level) {
618   case CompLevel_aot: {
619     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
620     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
621   }
622   case CompLevel_none:
623   case CompLevel_limited_profile: {
624     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
625     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
626   }
627   case CompLevel_full_profile: {
628     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
629     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
630   }
631   default:
632     return true;
633   }
634 }
635 
call_predicate(int i,int b,CompLevel cur_level,Method * method)636 bool TieredThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
637   switch(cur_level) {
638   case CompLevel_aot: {
639     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
640     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
641   }
642   case CompLevel_none:
643   case CompLevel_limited_profile: {
644     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
645     return call_predicate_helper<CompLevel_none>(i, b, k, method);
646   }
647   case CompLevel_full_profile: {
648     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
649     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
650   }
651   default:
652     return true;
653   }
654 }
655 
656 // Determine is a method is mature.
is_mature(Method * method)657 bool TieredThresholdPolicy::is_mature(Method* method) {
658   if (should_compile_at_level_simple(method)) return true;
659   MethodData* mdo = method->method_data();
660   if (mdo != NULL) {
661     int i = mdo->invocation_count();
662     int b = mdo->backedge_count();
663     double k = ProfileMaturityPercentage / 100.0;
664     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) ||
665            loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
666   }
667   return false;
668 }
669 
670 // If a method is old enough and is still in the interpreter we would want to
671 // start profiling without waiting for the compiled method to arrive.
672 // We also take the load on compilers into the account.
should_create_mdo(Method * method,CompLevel cur_level)673 bool TieredThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
674   if (cur_level == CompLevel_none &&
675       CompileBroker::queue_size(CompLevel_full_optimization) <=
676       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
677     int i = method->invocation_count();
678     int b = method->backedge_count();
679     double k = Tier0ProfilingStartPercentage / 100.0;
680     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
681   }
682   return false;
683 }
684 
685 // Inlining control: if we're compiling a profiled method with C1 and the callee
686 // is known to have OSRed in a C2 version, don't inline it.
should_not_inline(ciEnv * env,ciMethod * callee)687 bool TieredThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
688   CompLevel comp_level = (CompLevel)env->comp_level();
689   if (comp_level == CompLevel_full_profile ||
690       comp_level == CompLevel_limited_profile) {
691     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
692   }
693   return false;
694 }
695 
696 // Create MDO if necessary.
create_mdo(const methodHandle & mh,JavaThread * THREAD)697 void TieredThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
698   if (mh->is_native() ||
699       mh->is_abstract() ||
700       mh->is_accessor() ||
701       mh->is_constant_getter()) {
702     return;
703   }
704   if (mh->method_data() == NULL) {
705     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
706   }
707 }
708 
709 
710 /*
711  * Method states:
712  *   0 - interpreter (CompLevel_none)
713  *   1 - pure C1 (CompLevel_simple)
714  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
715  *   3 - C1 with full profiling (CompLevel_full_profile)
716  *   4 - C2 (CompLevel_full_optimization)
717  *
718  * Common state transition patterns:
719  * a. 0 -> 3 -> 4.
720  *    The most common path. But note that even in this straightforward case
721  *    profiling can start at level 0 and finish at level 3.
722  *
723  * b. 0 -> 2 -> 3 -> 4.
724  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
725  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
726  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
727  *
728  * c. 0 -> (3->2) -> 4.
729  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
730  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
731  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
732  *    without full profiling while c2 is compiling.
733  *
734  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
735  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
736  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
737  *
738  * e. 0 -> 4.
739  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
740  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
741  *    the compiled version already exists).
742  *
743  * Note that since state 0 can be reached from any other state via deoptimization different loops
744  * are possible.
745  *
746  */
747 
748 // Common transition function. Given a predicate determines if a method should transition to another level.
common(Predicate p,Method * method,CompLevel cur_level,bool disable_feedback)749 CompLevel TieredThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
750   CompLevel next_level = cur_level;
751   int i = method->invocation_count();
752   int b = method->backedge_count();
753 
754   if (should_compile_at_level_simple(method)) {
755     next_level = CompLevel_simple;
756   } else {
757     switch(cur_level) {
758       default: break;
759       case CompLevel_aot: {
760       // If we were at full profile level, would we switch to full opt?
761       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
762         next_level = CompLevel_full_optimization;
763       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
764                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
765                                (this->*p)(i, b, cur_level, method))) {
766         next_level = CompLevel_full_profile;
767       }
768     }
769     break;
770     case CompLevel_none:
771       // If we were at full profile level, would we switch to full opt?
772       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
773         next_level = CompLevel_full_optimization;
774       } else if ((this->*p)(i, b, cur_level, method)) {
775 #if INCLUDE_JVMCI
776         if (EnableJVMCI && UseJVMCICompiler) {
777           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
778           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
779           // compilation method and all potential inlinees have mature profiles (which
780           // includes type profiling). If it sees immature profiles, JVMCI's inliner
781           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
782           // exploring/inlining too many graphs). Since a rewrite of the inliner is
783           // in progress, we simply disable the dialing back heuristic for now and will
784           // revisit this decision once the new inliner is completed.
785           next_level = CompLevel_full_profile;
786         } else
787 #endif
788         {
789           // C1-generated fully profiled code is about 30% slower than the limited profile
790           // code that has only invocation and backedge counters. The observation is that
791           // if C2 queue is large enough we can spend too much time in the fully profiled code
792           // while waiting for C2 to pick the method from the queue. To alleviate this problem
793           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
794           // we choose to compile a limited profiled version and then recompile with full profiling
795           // when the load on C2 goes down.
796           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
797               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
798             next_level = CompLevel_limited_profile;
799           } else {
800             next_level = CompLevel_full_profile;
801           }
802         }
803       }
804       break;
805     case CompLevel_limited_profile:
806       if (is_method_profiled(method)) {
807         // Special case: we got here because this method was fully profiled in the interpreter.
808         next_level = CompLevel_full_optimization;
809       } else {
810         MethodData* mdo = method->method_data();
811         if (mdo != NULL) {
812           if (mdo->would_profile()) {
813             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
814                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
815                                      (this->*p)(i, b, cur_level, method))) {
816               next_level = CompLevel_full_profile;
817             }
818           } else {
819             next_level = CompLevel_full_optimization;
820           }
821         } else {
822           // If there is no MDO we need to profile
823           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
824                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
825                                    (this->*p)(i, b, cur_level, method))) {
826             next_level = CompLevel_full_profile;
827           }
828         }
829       }
830       break;
831     case CompLevel_full_profile:
832       {
833         MethodData* mdo = method->method_data();
834         if (mdo != NULL) {
835           if (mdo->would_profile()) {
836             int mdo_i = mdo->invocation_count_delta();
837             int mdo_b = mdo->backedge_count_delta();
838             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
839               next_level = CompLevel_full_optimization;
840             }
841           } else {
842             next_level = CompLevel_full_optimization;
843           }
844         }
845       }
846       break;
847     }
848   }
849   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
850 }
851 
852 // Determine if a method should be compiled with a normal entry point at a different level.
call_event(Method * method,CompLevel cur_level,JavaThread * thread)853 CompLevel TieredThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
854   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
855                              common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true));
856   CompLevel next_level = common(&TieredThresholdPolicy::call_predicate, method, cur_level);
857 
858   // If OSR method level is greater than the regular method level, the levels should be
859   // equalized by raising the regular method level in order to avoid OSRs during each
860   // invocation of the method.
861   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
862     MethodData* mdo = method->method_data();
863     guarantee(mdo != NULL, "MDO should not be NULL");
864     if (mdo->invocation_count() >= 1) {
865       next_level = CompLevel_full_optimization;
866     }
867   } else {
868     next_level = MAX2(osr_level, next_level);
869   }
870   return next_level;
871 }
872 
873 // Determine if we should do an OSR compilation of a given method.
loop_event(Method * method,CompLevel cur_level,JavaThread * thread)874 CompLevel TieredThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) {
875   CompLevel next_level = common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true);
876   if (cur_level == CompLevel_none) {
877     // If there is a live OSR method that means that we deopted to the interpreter
878     // for the transition.
879     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
880     if (osr_level > CompLevel_none) {
881       return osr_level;
882     }
883   }
884   return next_level;
885 }
886 
maybe_switch_to_aot(const methodHandle & mh,CompLevel cur_level,CompLevel next_level,JavaThread * thread)887 bool TieredThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
888   if (UseAOT) {
889     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
890       // If the current level is full profile or interpreter and we're switching to any other level,
891       // activate the AOT code back first so that we won't waste time overprofiling.
892       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
893       // Fall through for JIT compilation.
894     }
895     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
896       // If the next level is limited profile, use the aot code (if there is any),
897       // since it's essentially the same thing.
898       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
899       // Not need to JIT, we're done.
900       return true;
901     }
902   }
903   return false;
904 }
905 
906 
907 // Handle the invocation event.
method_invocation_event(const methodHandle & mh,const methodHandle & imh,CompLevel level,CompiledMethod * nm,JavaThread * thread)908 void TieredThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
909                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
910   if (should_create_mdo(mh(), level)) {
911     create_mdo(mh, thread);
912   }
913   CompLevel next_level = call_event(mh(), level, thread);
914   if (next_level != level) {
915     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
916       // No JITting necessary
917       return;
918     }
919     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
920       compile(mh, InvocationEntryBci, next_level, thread);
921     }
922   }
923 }
924 
925 // Handle the back branch event. Notice that we can compile the method
926 // with a regular entry from here.
method_back_branch_event(const methodHandle & mh,const methodHandle & imh,int bci,CompLevel level,CompiledMethod * nm,JavaThread * thread)927 void TieredThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
928                                                      int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
929   if (should_create_mdo(mh(), level)) {
930     create_mdo(mh, thread);
931   }
932   // Check if MDO should be created for the inlined method
933   if (should_create_mdo(imh(), level)) {
934     create_mdo(imh, thread);
935   }
936 
937   if (is_compilation_enabled()) {
938     CompLevel next_osr_level = loop_event(imh(), level, thread);
939     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
940     // At the very least compile the OSR version
941     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
942       compile(imh, bci, next_osr_level, thread);
943     }
944 
945     // Use loop event as an opportunity to also check if there's been
946     // enough calls.
947     CompLevel cur_level, next_level;
948     if (mh() != imh()) { // If there is an enclosing method
949       if (level == CompLevel_aot) {
950         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
951         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
952           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
953         }
954       } else {
955         // Current loop event level is not AOT
956         guarantee(nm != NULL, "Should have nmethod here");
957         cur_level = comp_level(mh());
958         next_level = call_event(mh(), cur_level, thread);
959 
960         if (max_osr_level == CompLevel_full_optimization) {
961           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
962           bool make_not_entrant = false;
963           if (nm->is_osr_method()) {
964             // This is an osr method, just make it not entrant and recompile later if needed
965             make_not_entrant = true;
966           } else {
967             if (next_level != CompLevel_full_optimization) {
968               // next_level is not full opt, so we need to recompile the
969               // enclosing method without the inlinee
970               cur_level = CompLevel_none;
971               make_not_entrant = true;
972             }
973           }
974           if (make_not_entrant) {
975             if (PrintTieredEvents) {
976               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
977               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
978             }
979             nm->make_not_entrant();
980           }
981         }
982         // Fix up next_level if necessary to avoid deopts
983         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
984           next_level = CompLevel_full_profile;
985         }
986         if (cur_level != next_level) {
987           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
988             compile(mh, InvocationEntryBci, next_level, thread);
989           }
990         }
991       }
992     } else {
993       cur_level = comp_level(mh());
994       next_level = call_event(mh(), cur_level, thread);
995       if (next_level != cur_level) {
996         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
997           compile(mh, InvocationEntryBci, next_level, thread);
998         }
999       }
1000     }
1001   }
1002 }
1003 
1004 #endif
1005