1 /*
2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/classLoaderDataGraph.hpp"
27 #include "classfile/metadataOnStackMark.hpp"
28 #include "classfile/stringTable.hpp"
29 #include "code/codeCache.hpp"
30 #include "code/icBuffer.hpp"
31 #include "gc/g1/g1Allocator.inline.hpp"
32 #include "gc/g1/g1Arguments.hpp"
33 #include "gc/g1/g1BarrierSet.hpp"
34 #include "gc/g1/g1CardTableEntryClosure.hpp"
35 #include "gc/g1/g1CollectedHeap.inline.hpp"
36 #include "gc/g1/g1CollectionSet.hpp"
37 #include "gc/g1/g1CollectorState.hpp"
38 #include "gc/g1/g1ConcurrentRefine.hpp"
39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
41 #include "gc/g1/g1DirtyCardQueue.hpp"
42 #include "gc/g1/g1EvacStats.inline.hpp"
43 #include "gc/g1/g1FullCollector.hpp"
44 #include "gc/g1/g1GCPhaseTimes.hpp"
45 #include "gc/g1/g1HeapSizingPolicy.hpp"
46 #include "gc/g1/g1HeapTransition.hpp"
47 #include "gc/g1/g1HeapVerifier.hpp"
48 #include "gc/g1/g1HotCardCache.hpp"
49 #include "gc/g1/g1MemoryPool.hpp"
50 #include "gc/g1/g1OopClosures.inline.hpp"
51 #include "gc/g1/g1ParallelCleaning.hpp"
52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
53 #include "gc/g1/g1Policy.hpp"
54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
56 #include "gc/g1/g1RemSet.hpp"
57 #include "gc/g1/g1RootClosures.hpp"
58 #include "gc/g1/g1RootProcessor.hpp"
59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
60 #include "gc/g1/g1StringDedup.hpp"
61 #include "gc/g1/g1ThreadLocalData.hpp"
62 #include "gc/g1/g1Trace.hpp"
63 #include "gc/g1/g1YCTypes.hpp"
64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
65 #include "gc/g1/g1VMOperations.hpp"
66 #include "gc/g1/heapRegion.inline.hpp"
67 #include "gc/g1/heapRegionRemSet.hpp"
68 #include "gc/g1/heapRegionSet.inline.hpp"
69 #include "gc/shared/gcBehaviours.hpp"
70 #include "gc/shared/gcHeapSummary.hpp"
71 #include "gc/shared/gcId.hpp"
72 #include "gc/shared/gcLocker.hpp"
73 #include "gc/shared/gcTimer.hpp"
74 #include "gc/shared/gcTraceTime.inline.hpp"
75 #include "gc/shared/generationSpec.hpp"
76 #include "gc/shared/isGCActiveMark.hpp"
77 #include "gc/shared/locationPrinter.inline.hpp"
78 #include "gc/shared/oopStorageParState.hpp"
79 #include "gc/shared/preservedMarks.inline.hpp"
80 #include "gc/shared/suspendibleThreadSet.hpp"
81 #include "gc/shared/referenceProcessor.inline.hpp"
82 #include "gc/shared/taskqueue.inline.hpp"
83 #include "gc/shared/weakProcessor.inline.hpp"
84 #include "gc/shared/workerPolicy.hpp"
85 #include "logging/log.hpp"
86 #include "memory/allocation.hpp"
87 #include "memory/iterator.hpp"
88 #include "memory/resourceArea.hpp"
89 #include "memory/universe.hpp"
90 #include "oops/access.inline.hpp"
91 #include "oops/compressedOops.inline.hpp"
92 #include "oops/oop.inline.hpp"
93 #include "runtime/atomic.hpp"
94 #include "runtime/flags/flagSetting.hpp"
95 #include "runtime/handles.inline.hpp"
96 #include "runtime/init.hpp"
97 #include "runtime/orderAccess.hpp"
98 #include "runtime/threadSMR.hpp"
99 #include "runtime/vmThread.hpp"
100 #include "utilities/align.hpp"
101 #include "utilities/bitMap.inline.hpp"
102 #include "utilities/globalDefinitions.hpp"
103 #include "utilities/stack.inline.hpp"
104 
105 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
106 
107 // INVARIANTS/NOTES
108 //
109 // All allocation activity covered by the G1CollectedHeap interface is
110 // serialized by acquiring the HeapLock.  This happens in mem_allocate
111 // and allocate_new_tlab, which are the "entry" points to the
112 // allocation code from the rest of the JVM.  (Note that this does not
113 // apply to TLAB allocation, which is not part of this interface: it
114 // is done by clients of this interface.)
115 
116 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
117  private:
118   size_t _num_dirtied;
119   G1CollectedHeap* _g1h;
120   G1CardTable* _g1_ct;
121 
region_for_card(CardValue * card_ptr) const122   HeapRegion* region_for_card(CardValue* card_ptr) const {
123     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
124   }
125 
will_become_free(HeapRegion * hr) const126   bool will_become_free(HeapRegion* hr) const {
127     // A region will be freed by free_collection_set if the region is in the
128     // collection set and has not had an evacuation failure.
129     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
130   }
131 
132  public:
RedirtyLoggedCardTableEntryClosure(G1CollectedHeap * g1h)133   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
134     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
135 
do_card_ptr(CardValue * card_ptr,uint worker_id)136   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
137     HeapRegion* hr = region_for_card(card_ptr);
138 
139     // Should only dirty cards in regions that won't be freed.
140     if (!will_become_free(hr)) {
141       *card_ptr = G1CardTable::dirty_card_val();
142       _num_dirtied++;
143     }
144   }
145 
num_dirtied() const146   size_t num_dirtied()   const { return _num_dirtied; }
147 };
148 
149 
reset_from_card_cache(uint start_idx,size_t num_regions)150 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
151   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
152 }
153 
on_commit(uint start_idx,size_t num_regions,bool zero_filled)154 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
155   // The from card cache is not the memory that is actually committed. So we cannot
156   // take advantage of the zero_filled parameter.
157   reset_from_card_cache(start_idx, num_regions);
158 }
159 
run_task(AbstractGangTask * task)160 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
161   Ticks start = Ticks::now();
162   workers()->run_task(task, workers()->active_workers());
163   return Ticks::now() - start;
164 }
165 
new_heap_region(uint hrs_index,MemRegion mr)166 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
167                                              MemRegion mr) {
168   return new HeapRegion(hrs_index, bot(), mr);
169 }
170 
171 // Private methods.
172 
new_region(size_t word_size,HeapRegionType type,bool do_expand,uint node_index)173 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
174                                         HeapRegionType type,
175                                         bool do_expand,
176                                         uint node_index) {
177   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
178          "the only time we use this to allocate a humongous region is "
179          "when we are allocating a single humongous region");
180 
181   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
182 
183   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
184     // Currently, only attempts to allocate GC alloc regions set
185     // do_expand to true. So, we should only reach here during a
186     // safepoint. If this assumption changes we might have to
187     // reconsider the use of _expand_heap_after_alloc_failure.
188     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
189 
190     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
191                               word_size * HeapWordSize);
192 
193     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
194            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
195            word_size * HeapWordSize);
196     if (expand_single_region(node_index)) {
197       // Given that expand_single_region() succeeded in expanding the heap, and we
198       // always expand the heap by an amount aligned to the heap
199       // region size, the free list should in theory not be empty.
200       // In either case allocate_free_region() will check for NULL.
201       res = _hrm->allocate_free_region(type, node_index);
202     } else {
203       _expand_heap_after_alloc_failure = false;
204     }
205   }
206   return res;
207 }
208 
209 HeapWord*
humongous_obj_allocate_initialize_regions(uint first,uint num_regions,size_t word_size)210 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
211                                                            uint num_regions,
212                                                            size_t word_size) {
213   assert(first != G1_NO_HRM_INDEX, "pre-condition");
214   assert(is_humongous(word_size), "word_size should be humongous");
215   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
216 
217   // Index of last region in the series.
218   uint last = first + num_regions - 1;
219 
220   // We need to initialize the region(s) we just discovered. This is
221   // a bit tricky given that it can happen concurrently with
222   // refinement threads refining cards on these regions and
223   // potentially wanting to refine the BOT as they are scanning
224   // those cards (this can happen shortly after a cleanup; see CR
225   // 6991377). So we have to set up the region(s) carefully and in
226   // a specific order.
227 
228   // The word size sum of all the regions we will allocate.
229   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
230   assert(word_size <= word_size_sum, "sanity");
231 
232   // This will be the "starts humongous" region.
233   HeapRegion* first_hr = region_at(first);
234   // The header of the new object will be placed at the bottom of
235   // the first region.
236   HeapWord* new_obj = first_hr->bottom();
237   // This will be the new top of the new object.
238   HeapWord* obj_top = new_obj + word_size;
239 
240   // First, we need to zero the header of the space that we will be
241   // allocating. When we update top further down, some refinement
242   // threads might try to scan the region. By zeroing the header we
243   // ensure that any thread that will try to scan the region will
244   // come across the zero klass word and bail out.
245   //
246   // NOTE: It would not have been correct to have used
247   // CollectedHeap::fill_with_object() and make the space look like
248   // an int array. The thread that is doing the allocation will
249   // later update the object header to a potentially different array
250   // type and, for a very short period of time, the klass and length
251   // fields will be inconsistent. This could cause a refinement
252   // thread to calculate the object size incorrectly.
253   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
254 
255   // Next, pad out the unused tail of the last region with filler
256   // objects, for improved usage accounting.
257   // How many words we use for filler objects.
258   size_t word_fill_size = word_size_sum - word_size;
259 
260   // How many words memory we "waste" which cannot hold a filler object.
261   size_t words_not_fillable = 0;
262 
263   if (word_fill_size >= min_fill_size()) {
264     fill_with_objects(obj_top, word_fill_size);
265   } else if (word_fill_size > 0) {
266     // We have space to fill, but we cannot fit an object there.
267     words_not_fillable = word_fill_size;
268     word_fill_size = 0;
269   }
270 
271   // We will set up the first region as "starts humongous". This
272   // will also update the BOT covering all the regions to reflect
273   // that there is a single object that starts at the bottom of the
274   // first region.
275   first_hr->set_starts_humongous(obj_top, word_fill_size);
276   _policy->remset_tracker()->update_at_allocate(first_hr);
277   // Then, if there are any, we will set up the "continues
278   // humongous" regions.
279   HeapRegion* hr = NULL;
280   for (uint i = first + 1; i <= last; ++i) {
281     hr = region_at(i);
282     hr->set_continues_humongous(first_hr);
283     _policy->remset_tracker()->update_at_allocate(hr);
284   }
285 
286   // Up to this point no concurrent thread would have been able to
287   // do any scanning on any region in this series. All the top
288   // fields still point to bottom, so the intersection between
289   // [bottom,top] and [card_start,card_end] will be empty. Before we
290   // update the top fields, we'll do a storestore to make sure that
291   // no thread sees the update to top before the zeroing of the
292   // object header and the BOT initialization.
293   OrderAccess::storestore();
294 
295   // Now, we will update the top fields of the "continues humongous"
296   // regions except the last one.
297   for (uint i = first; i < last; ++i) {
298     hr = region_at(i);
299     hr->set_top(hr->end());
300   }
301 
302   hr = region_at(last);
303   // If we cannot fit a filler object, we must set top to the end
304   // of the humongous object, otherwise we cannot iterate the heap
305   // and the BOT will not be complete.
306   hr->set_top(hr->end() - words_not_fillable);
307 
308   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
309          "obj_top should be in last region");
310 
311   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
312 
313   assert(words_not_fillable == 0 ||
314          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
315          "Miscalculation in humongous allocation");
316 
317   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
318 
319   for (uint i = first; i <= last; ++i) {
320     hr = region_at(i);
321     _humongous_set.add(hr);
322     _hr_printer.alloc(hr);
323   }
324 
325   return new_obj;
326 }
327 
humongous_obj_size_in_regions(size_t word_size)328 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
329   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
330   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
331 }
332 
333 // If could fit into free regions w/o expansion, try.
334 // Otherwise, if can expand, do so.
335 // Otherwise, if using ex regions might help, try with ex given back.
humongous_obj_allocate(size_t word_size)336 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
337   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
338 
339   _verifier->verify_region_sets_optional();
340 
341   uint first = G1_NO_HRM_INDEX;
342   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
343 
344   if (obj_regions == 1) {
345     // Only one region to allocate, try to use a fast path by directly allocating
346     // from the free lists. Do not try to expand here, we will potentially do that
347     // later.
348     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
349     if (hr != NULL) {
350       first = hr->hrm_index();
351     }
352   } else {
353     // Policy: Try only empty regions (i.e. already committed first). Maybe we
354     // are lucky enough to find some.
355     first = _hrm->find_contiguous_only_empty(obj_regions);
356     if (first != G1_NO_HRM_INDEX) {
357       _hrm->allocate_free_regions_starting_at(first, obj_regions);
358     }
359   }
360 
361   if (first == G1_NO_HRM_INDEX) {
362     // Policy: We could not find enough regions for the humongous object in the
363     // free list. Look through the heap to find a mix of free and uncommitted regions.
364     // If so, try expansion.
365     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
366     if (first != G1_NO_HRM_INDEX) {
367       // We found something. Make sure these regions are committed, i.e. expand
368       // the heap. Alternatively we could do a defragmentation GC.
369       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
370                                     word_size * HeapWordSize);
371 
372       _hrm->expand_at(first, obj_regions, workers());
373       policy()->record_new_heap_size(num_regions());
374 
375 #ifdef ASSERT
376       for (uint i = first; i < first + obj_regions; ++i) {
377         HeapRegion* hr = region_at(i);
378         assert(hr->is_free(), "sanity");
379         assert(hr->is_empty(), "sanity");
380         assert(is_on_master_free_list(hr), "sanity");
381       }
382 #endif
383       _hrm->allocate_free_regions_starting_at(first, obj_regions);
384     } else {
385       // Policy: Potentially trigger a defragmentation GC.
386     }
387   }
388 
389   HeapWord* result = NULL;
390   if (first != G1_NO_HRM_INDEX) {
391     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
392     assert(result != NULL, "it should always return a valid result");
393 
394     // A successful humongous object allocation changes the used space
395     // information of the old generation so we need to recalculate the
396     // sizes and update the jstat counters here.
397     g1mm()->update_sizes();
398   }
399 
400   _verifier->verify_region_sets_optional();
401 
402   return result;
403 }
404 
allocate_new_tlab(size_t min_size,size_t requested_size,size_t * actual_size)405 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
406                                              size_t requested_size,
407                                              size_t* actual_size) {
408   assert_heap_not_locked_and_not_at_safepoint();
409   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
410 
411   return attempt_allocation(min_size, requested_size, actual_size);
412 }
413 
414 HeapWord*
mem_allocate(size_t word_size,bool * gc_overhead_limit_was_exceeded)415 G1CollectedHeap::mem_allocate(size_t word_size,
416                               bool*  gc_overhead_limit_was_exceeded) {
417   assert_heap_not_locked_and_not_at_safepoint();
418 
419   if (is_humongous(word_size)) {
420     return attempt_allocation_humongous(word_size);
421   }
422   size_t dummy = 0;
423   return attempt_allocation(word_size, word_size, &dummy);
424 }
425 
attempt_allocation_slow(size_t word_size)426 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
427   ResourceMark rm; // For retrieving the thread names in log messages.
428 
429   // Make sure you read the note in attempt_allocation_humongous().
430 
431   assert_heap_not_locked_and_not_at_safepoint();
432   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
433          "be called for humongous allocation requests");
434 
435   // We should only get here after the first-level allocation attempt
436   // (attempt_allocation()) failed to allocate.
437 
438   // We will loop until a) we manage to successfully perform the
439   // allocation or b) we successfully schedule a collection which
440   // fails to perform the allocation. b) is the only case when we'll
441   // return NULL.
442   HeapWord* result = NULL;
443   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
444     bool should_try_gc;
445     uint gc_count_before;
446 
447     {
448       MutexLocker x(Heap_lock);
449       result = _allocator->attempt_allocation_locked(word_size);
450       if (result != NULL) {
451         return result;
452       }
453 
454       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
455       // This is different to when only GCLocker::needs_gc() is set: try to avoid
456       // waiting because the GCLocker is active to not wait too long.
457       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
458         // No need for an ergo message here, can_expand_young_list() does this when
459         // it returns true.
460         result = _allocator->attempt_allocation_force(word_size);
461         if (result != NULL) {
462           return result;
463         }
464       }
465       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
466       // the GCLocker initiated GC has been performed and then retry. This includes
467       // the case when the GC Locker is not active but has not been performed.
468       should_try_gc = !GCLocker::needs_gc();
469       // Read the GC count while still holding the Heap_lock.
470       gc_count_before = total_collections();
471     }
472 
473     if (should_try_gc) {
474       bool succeeded;
475       result = do_collection_pause(word_size, gc_count_before, &succeeded,
476                                    GCCause::_g1_inc_collection_pause);
477       if (result != NULL) {
478         assert(succeeded, "only way to get back a non-NULL result");
479         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
480                              Thread::current()->name(), p2i(result));
481         return result;
482       }
483 
484       if (succeeded) {
485         // We successfully scheduled a collection which failed to allocate. No
486         // point in trying to allocate further. We'll just return NULL.
487         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
488                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
489         return NULL;
490       }
491       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
492                            Thread::current()->name(), word_size);
493     } else {
494       // Failed to schedule a collection.
495       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
496         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
497                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
498         return NULL;
499       }
500       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
501       // The GCLocker is either active or the GCLocker initiated
502       // GC has not yet been performed. Stall until it is and
503       // then retry the allocation.
504       GCLocker::stall_until_clear();
505       gclocker_retry_count += 1;
506     }
507 
508     // We can reach here if we were unsuccessful in scheduling a
509     // collection (because another thread beat us to it) or if we were
510     // stalled due to the GC locker. In either can we should retry the
511     // allocation attempt in case another thread successfully
512     // performed a collection and reclaimed enough space. We do the
513     // first attempt (without holding the Heap_lock) here and the
514     // follow-on attempt will be at the start of the next loop
515     // iteration (after taking the Heap_lock).
516     size_t dummy = 0;
517     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
518     if (result != NULL) {
519       return result;
520     }
521 
522     // Give a warning if we seem to be looping forever.
523     if ((QueuedAllocationWarningCount > 0) &&
524         (try_count % QueuedAllocationWarningCount == 0)) {
525       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
526                              Thread::current()->name(), try_count, word_size);
527     }
528   }
529 
530   ShouldNotReachHere();
531   return NULL;
532 }
533 
begin_archive_alloc_range(bool open)534 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
535   assert_at_safepoint_on_vm_thread();
536   if (_archive_allocator == NULL) {
537     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
538   }
539 }
540 
is_archive_alloc_too_large(size_t word_size)541 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
542   // Allocations in archive regions cannot be of a size that would be considered
543   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
544   // may be different at archive-restore time.
545   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
546 }
547 
archive_mem_allocate(size_t word_size)548 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
549   assert_at_safepoint_on_vm_thread();
550   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
551   if (is_archive_alloc_too_large(word_size)) {
552     return NULL;
553   }
554   return _archive_allocator->archive_mem_allocate(word_size);
555 }
556 
end_archive_alloc_range(GrowableArray<MemRegion> * ranges,size_t end_alignment_in_bytes)557 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
558                                               size_t end_alignment_in_bytes) {
559   assert_at_safepoint_on_vm_thread();
560   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
561 
562   // Call complete_archive to do the real work, filling in the MemRegion
563   // array with the archive regions.
564   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
565   delete _archive_allocator;
566   _archive_allocator = NULL;
567 }
568 
check_archive_addresses(MemRegion * ranges,size_t count)569 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
570   assert(ranges != NULL, "MemRegion array NULL");
571   assert(count != 0, "No MemRegions provided");
572   MemRegion reserved = _hrm->reserved();
573   for (size_t i = 0; i < count; i++) {
574     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
575       return false;
576     }
577   }
578   return true;
579 }
580 
alloc_archive_regions(MemRegion * ranges,size_t count,bool open)581 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
582                                             size_t count,
583                                             bool open) {
584   assert(!is_init_completed(), "Expect to be called at JVM init time");
585   assert(ranges != NULL, "MemRegion array NULL");
586   assert(count != 0, "No MemRegions provided");
587   MutexLocker x(Heap_lock);
588 
589   MemRegion reserved = _hrm->reserved();
590   HeapWord* prev_last_addr = NULL;
591   HeapRegion* prev_last_region = NULL;
592 
593   // Temporarily disable pretouching of heap pages. This interface is used
594   // when mmap'ing archived heap data in, so pre-touching is wasted.
595   FlagSetting fs(AlwaysPreTouch, false);
596 
597   // Enable archive object checking used by G1MarkSweep. We have to let it know
598   // about each archive range, so that objects in those ranges aren't marked.
599   G1ArchiveAllocator::enable_archive_object_check();
600 
601   // For each specified MemRegion range, allocate the corresponding G1
602   // regions and mark them as archive regions. We expect the ranges
603   // in ascending starting address order, without overlap.
604   for (size_t i = 0; i < count; i++) {
605     MemRegion curr_range = ranges[i];
606     HeapWord* start_address = curr_range.start();
607     size_t word_size = curr_range.word_size();
608     HeapWord* last_address = curr_range.last();
609     size_t commits = 0;
610 
611     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
612               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
613               p2i(start_address), p2i(last_address));
614     guarantee(start_address > prev_last_addr,
615               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
616               p2i(start_address), p2i(prev_last_addr));
617     prev_last_addr = last_address;
618 
619     // Check for ranges that start in the same G1 region in which the previous
620     // range ended, and adjust the start address so we don't try to allocate
621     // the same region again. If the current range is entirely within that
622     // region, skip it, just adjusting the recorded top.
623     HeapRegion* start_region = _hrm->addr_to_region(start_address);
624     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
625       start_address = start_region->end();
626       if (start_address > last_address) {
627         increase_used(word_size * HeapWordSize);
628         start_region->set_top(last_address + 1);
629         continue;
630       }
631       start_region->set_top(start_address);
632       curr_range = MemRegion(start_address, last_address + 1);
633       start_region = _hrm->addr_to_region(start_address);
634     }
635 
636     // Perform the actual region allocation, exiting if it fails.
637     // Then note how much new space we have allocated.
638     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
639       return false;
640     }
641     increase_used(word_size * HeapWordSize);
642     if (commits != 0) {
643       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
644                                 HeapRegion::GrainWords * HeapWordSize * commits);
645 
646     }
647 
648     // Mark each G1 region touched by the range as archive, add it to
649     // the old set, and set top.
650     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
651     HeapRegion* last_region = _hrm->addr_to_region(last_address);
652     prev_last_region = last_region;
653 
654     while (curr_region != NULL) {
655       assert(curr_region->is_empty() && !curr_region->is_pinned(),
656              "Region already in use (index %u)", curr_region->hrm_index());
657       if (open) {
658         curr_region->set_open_archive();
659       } else {
660         curr_region->set_closed_archive();
661       }
662       _hr_printer.alloc(curr_region);
663       _archive_set.add(curr_region);
664       HeapWord* top;
665       HeapRegion* next_region;
666       if (curr_region != last_region) {
667         top = curr_region->end();
668         next_region = _hrm->next_region_in_heap(curr_region);
669       } else {
670         top = last_address + 1;
671         next_region = NULL;
672       }
673       curr_region->set_top(top);
674       curr_region = next_region;
675     }
676 
677     // Notify mark-sweep of the archive
678     G1ArchiveAllocator::set_range_archive(curr_range, open);
679   }
680   return true;
681 }
682 
fill_archive_regions(MemRegion * ranges,size_t count)683 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
684   assert(!is_init_completed(), "Expect to be called at JVM init time");
685   assert(ranges != NULL, "MemRegion array NULL");
686   assert(count != 0, "No MemRegions provided");
687   MemRegion reserved = _hrm->reserved();
688   HeapWord *prev_last_addr = NULL;
689   HeapRegion* prev_last_region = NULL;
690 
691   // For each MemRegion, create filler objects, if needed, in the G1 regions
692   // that contain the address range. The address range actually within the
693   // MemRegion will not be modified. That is assumed to have been initialized
694   // elsewhere, probably via an mmap of archived heap data.
695   MutexLocker x(Heap_lock);
696   for (size_t i = 0; i < count; i++) {
697     HeapWord* start_address = ranges[i].start();
698     HeapWord* last_address = ranges[i].last();
699 
700     assert(reserved.contains(start_address) && reserved.contains(last_address),
701            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
702            p2i(start_address), p2i(last_address));
703     assert(start_address > prev_last_addr,
704            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
705            p2i(start_address), p2i(prev_last_addr));
706 
707     HeapRegion* start_region = _hrm->addr_to_region(start_address);
708     HeapRegion* last_region = _hrm->addr_to_region(last_address);
709     HeapWord* bottom_address = start_region->bottom();
710 
711     // Check for a range beginning in the same region in which the
712     // previous one ended.
713     if (start_region == prev_last_region) {
714       bottom_address = prev_last_addr + 1;
715     }
716 
717     // Verify that the regions were all marked as archive regions by
718     // alloc_archive_regions.
719     HeapRegion* curr_region = start_region;
720     while (curr_region != NULL) {
721       guarantee(curr_region->is_archive(),
722                 "Expected archive region at index %u", curr_region->hrm_index());
723       if (curr_region != last_region) {
724         curr_region = _hrm->next_region_in_heap(curr_region);
725       } else {
726         curr_region = NULL;
727       }
728     }
729 
730     prev_last_addr = last_address;
731     prev_last_region = last_region;
732 
733     // Fill the memory below the allocated range with dummy object(s),
734     // if the region bottom does not match the range start, or if the previous
735     // range ended within the same G1 region, and there is a gap.
736     if (start_address != bottom_address) {
737       size_t fill_size = pointer_delta(start_address, bottom_address);
738       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
739       increase_used(fill_size * HeapWordSize);
740     }
741   }
742 }
743 
attempt_allocation(size_t min_word_size,size_t desired_word_size,size_t * actual_word_size)744 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
745                                                      size_t desired_word_size,
746                                                      size_t* actual_word_size) {
747   assert_heap_not_locked_and_not_at_safepoint();
748   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
749          "be called for humongous allocation requests");
750 
751   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
752 
753   if (result == NULL) {
754     *actual_word_size = desired_word_size;
755     result = attempt_allocation_slow(desired_word_size);
756   }
757 
758   assert_heap_not_locked();
759   if (result != NULL) {
760     assert(*actual_word_size != 0, "Actual size must have been set here");
761     dirty_young_block(result, *actual_word_size);
762   } else {
763     *actual_word_size = 0;
764   }
765 
766   return result;
767 }
768 
dealloc_archive_regions(MemRegion * ranges,size_t count,bool is_open)769 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
770   assert(!is_init_completed(), "Expect to be called at JVM init time");
771   assert(ranges != NULL, "MemRegion array NULL");
772   assert(count != 0, "No MemRegions provided");
773   MemRegion reserved = _hrm->reserved();
774   HeapWord* prev_last_addr = NULL;
775   HeapRegion* prev_last_region = NULL;
776   size_t size_used = 0;
777   size_t uncommitted_regions = 0;
778 
779   // For each Memregion, free the G1 regions that constitute it, and
780   // notify mark-sweep that the range is no longer to be considered 'archive.'
781   MutexLocker x(Heap_lock);
782   for (size_t i = 0; i < count; i++) {
783     HeapWord* start_address = ranges[i].start();
784     HeapWord* last_address = ranges[i].last();
785 
786     assert(reserved.contains(start_address) && reserved.contains(last_address),
787            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
788            p2i(start_address), p2i(last_address));
789     assert(start_address > prev_last_addr,
790            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
791            p2i(start_address), p2i(prev_last_addr));
792     size_used += ranges[i].byte_size();
793     prev_last_addr = last_address;
794 
795     HeapRegion* start_region = _hrm->addr_to_region(start_address);
796     HeapRegion* last_region = _hrm->addr_to_region(last_address);
797 
798     // Check for ranges that start in the same G1 region in which the previous
799     // range ended, and adjust the start address so we don't try to free
800     // the same region again. If the current range is entirely within that
801     // region, skip it.
802     if (start_region == prev_last_region) {
803       start_address = start_region->end();
804       if (start_address > last_address) {
805         continue;
806       }
807       start_region = _hrm->addr_to_region(start_address);
808     }
809     prev_last_region = last_region;
810 
811     // After verifying that each region was marked as an archive region by
812     // alloc_archive_regions, set it free and empty and uncommit it.
813     HeapRegion* curr_region = start_region;
814     while (curr_region != NULL) {
815       guarantee(curr_region->is_archive(),
816                 "Expected archive region at index %u", curr_region->hrm_index());
817       uint curr_index = curr_region->hrm_index();
818       _archive_set.remove(curr_region);
819       curr_region->set_free();
820       curr_region->set_top(curr_region->bottom());
821       if (curr_region != last_region) {
822         curr_region = _hrm->next_region_in_heap(curr_region);
823       } else {
824         curr_region = NULL;
825       }
826       _hrm->shrink_at(curr_index, 1);
827       uncommitted_regions++;
828     }
829 
830     // Notify mark-sweep that this is no longer an archive range.
831     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
832   }
833 
834   if (uncommitted_regions != 0) {
835     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
836                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
837   }
838   decrease_used(size_used);
839 }
840 
materialize_archived_object(oop obj)841 oop G1CollectedHeap::materialize_archived_object(oop obj) {
842   assert(obj != NULL, "archived obj is NULL");
843   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
844 
845   // Loading an archived object makes it strongly reachable. If it is
846   // loaded during concurrent marking, it must be enqueued to the SATB
847   // queue, shading the previously white object gray.
848   G1BarrierSet::enqueue(obj);
849 
850   return obj;
851 }
852 
attempt_allocation_humongous(size_t word_size)853 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
854   ResourceMark rm; // For retrieving the thread names in log messages.
855 
856   // The structure of this method has a lot of similarities to
857   // attempt_allocation_slow(). The reason these two were not merged
858   // into a single one is that such a method would require several "if
859   // allocation is not humongous do this, otherwise do that"
860   // conditional paths which would obscure its flow. In fact, an early
861   // version of this code did use a unified method which was harder to
862   // follow and, as a result, it had subtle bugs that were hard to
863   // track down. So keeping these two methods separate allows each to
864   // be more readable. It will be good to keep these two in sync as
865   // much as possible.
866 
867   assert_heap_not_locked_and_not_at_safepoint();
868   assert(is_humongous(word_size), "attempt_allocation_humongous() "
869          "should only be called for humongous allocations");
870 
871   // Humongous objects can exhaust the heap quickly, so we should check if we
872   // need to start a marking cycle at each humongous object allocation. We do
873   // the check before we do the actual allocation. The reason for doing it
874   // before the allocation is that we avoid having to keep track of the newly
875   // allocated memory while we do a GC.
876   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
877                                            word_size)) {
878     collect(GCCause::_g1_humongous_allocation);
879   }
880 
881   // We will loop until a) we manage to successfully perform the
882   // allocation or b) we successfully schedule a collection which
883   // fails to perform the allocation. b) is the only case when we'll
884   // return NULL.
885   HeapWord* result = NULL;
886   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
887     bool should_try_gc;
888     uint gc_count_before;
889 
890 
891     {
892       MutexLocker x(Heap_lock);
893 
894       // Given that humongous objects are not allocated in young
895       // regions, we'll first try to do the allocation without doing a
896       // collection hoping that there's enough space in the heap.
897       result = humongous_obj_allocate(word_size);
898       if (result != NULL) {
899         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
900         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
901         return result;
902       }
903 
904       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
905       // the GCLocker initiated GC has been performed and then retry. This includes
906       // the case when the GC Locker is not active but has not been performed.
907       should_try_gc = !GCLocker::needs_gc();
908       // Read the GC count while still holding the Heap_lock.
909       gc_count_before = total_collections();
910     }
911 
912     if (should_try_gc) {
913       bool succeeded;
914       result = do_collection_pause(word_size, gc_count_before, &succeeded,
915                                    GCCause::_g1_humongous_allocation);
916       if (result != NULL) {
917         assert(succeeded, "only way to get back a non-NULL result");
918         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
919                              Thread::current()->name(), p2i(result));
920         return result;
921       }
922 
923       if (succeeded) {
924         // We successfully scheduled a collection which failed to allocate. No
925         // point in trying to allocate further. We'll just return NULL.
926         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
927                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
928         return NULL;
929       }
930       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
931                            Thread::current()->name(), word_size);
932     } else {
933       // Failed to schedule a collection.
934       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
935         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
936                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
937         return NULL;
938       }
939       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
940       // The GCLocker is either active or the GCLocker initiated
941       // GC has not yet been performed. Stall until it is and
942       // then retry the allocation.
943       GCLocker::stall_until_clear();
944       gclocker_retry_count += 1;
945     }
946 
947 
948     // We can reach here if we were unsuccessful in scheduling a
949     // collection (because another thread beat us to it) or if we were
950     // stalled due to the GC locker. In either can we should retry the
951     // allocation attempt in case another thread successfully
952     // performed a collection and reclaimed enough space.
953     // Humongous object allocation always needs a lock, so we wait for the retry
954     // in the next iteration of the loop, unlike for the regular iteration case.
955     // Give a warning if we seem to be looping forever.
956 
957     if ((QueuedAllocationWarningCount > 0) &&
958         (try_count % QueuedAllocationWarningCount == 0)) {
959       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
960                              Thread::current()->name(), try_count, word_size);
961     }
962   }
963 
964   ShouldNotReachHere();
965   return NULL;
966 }
967 
attempt_allocation_at_safepoint(size_t word_size,bool expect_null_mutator_alloc_region)968 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
969                                                            bool expect_null_mutator_alloc_region) {
970   assert_at_safepoint_on_vm_thread();
971   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
972          "the current alloc region was unexpectedly found to be non-NULL");
973 
974   if (!is_humongous(word_size)) {
975     return _allocator->attempt_allocation_locked(word_size);
976   } else {
977     HeapWord* result = humongous_obj_allocate(word_size);
978     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
979       collector_state()->set_initiate_conc_mark_if_possible(true);
980     }
981     return result;
982   }
983 
984   ShouldNotReachHere();
985 }
986 
987 class PostCompactionPrinterClosure: public HeapRegionClosure {
988 private:
989   G1HRPrinter* _hr_printer;
990 public:
do_heap_region(HeapRegion * hr)991   bool do_heap_region(HeapRegion* hr) {
992     assert(!hr->is_young(), "not expecting to find young regions");
993     _hr_printer->post_compaction(hr);
994     return false;
995   }
996 
PostCompactionPrinterClosure(G1HRPrinter * hr_printer)997   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
998     : _hr_printer(hr_printer) { }
999 };
1000 
print_hrm_post_compaction()1001 void G1CollectedHeap::print_hrm_post_compaction() {
1002   if (_hr_printer.is_active()) {
1003     PostCompactionPrinterClosure cl(hr_printer());
1004     heap_region_iterate(&cl);
1005   }
1006 }
1007 
abort_concurrent_cycle()1008 void G1CollectedHeap::abort_concurrent_cycle() {
1009   // If we start the compaction before the CM threads finish
1010   // scanning the root regions we might trip them over as we'll
1011   // be moving objects / updating references. So let's wait until
1012   // they are done. By telling them to abort, they should complete
1013   // early.
1014   _cm->root_regions()->abort();
1015   _cm->root_regions()->wait_until_scan_finished();
1016 
1017   // Disable discovery and empty the discovered lists
1018   // for the CM ref processor.
1019   _ref_processor_cm->disable_discovery();
1020   _ref_processor_cm->abandon_partial_discovery();
1021   _ref_processor_cm->verify_no_references_recorded();
1022 
1023   // Abandon current iterations of concurrent marking and concurrent
1024   // refinement, if any are in progress.
1025   concurrent_mark()->concurrent_cycle_abort();
1026 }
1027 
prepare_heap_for_full_collection()1028 void G1CollectedHeap::prepare_heap_for_full_collection() {
1029   // Make sure we'll choose a new allocation region afterwards.
1030   _allocator->release_mutator_alloc_regions();
1031   _allocator->abandon_gc_alloc_regions();
1032 
1033   // We may have added regions to the current incremental collection
1034   // set between the last GC or pause and now. We need to clear the
1035   // incremental collection set and then start rebuilding it afresh
1036   // after this full GC.
1037   abandon_collection_set(collection_set());
1038 
1039   tear_down_region_sets(false /* free_list_only */);
1040 
1041   hrm()->prepare_for_full_collection_start();
1042 }
1043 
verify_before_full_collection(bool explicit_gc)1044 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1045   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1046   assert_used_and_recalculate_used_equal(this);
1047   _verifier->verify_region_sets_optional();
1048   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1049   _verifier->check_bitmaps("Full GC Start");
1050 }
1051 
prepare_heap_for_mutators()1052 void G1CollectedHeap::prepare_heap_for_mutators() {
1053   hrm()->prepare_for_full_collection_end();
1054 
1055   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1056   ClassLoaderDataGraph::purge();
1057   MetaspaceUtils::verify_metrics();
1058 
1059   // Prepare heap for normal collections.
1060   assert(num_free_regions() == 0, "we should not have added any free regions");
1061   rebuild_region_sets(false /* free_list_only */);
1062   abort_refinement();
1063   resize_heap_if_necessary();
1064 
1065   // Rebuild the strong code root lists for each region
1066   rebuild_strong_code_roots();
1067 
1068   // Purge code root memory
1069   purge_code_root_memory();
1070 
1071   // Start a new incremental collection set for the next pause
1072   start_new_collection_set();
1073 
1074   _allocator->init_mutator_alloc_regions();
1075 
1076   // Post collection state updates.
1077   MetaspaceGC::compute_new_size();
1078 }
1079 
abort_refinement()1080 void G1CollectedHeap::abort_refinement() {
1081   if (_hot_card_cache->use_cache()) {
1082     _hot_card_cache->reset_hot_cache();
1083   }
1084 
1085   // Discard all remembered set updates.
1086   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1087   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1088          "DCQS should be empty");
1089 }
1090 
verify_after_full_collection()1091 void G1CollectedHeap::verify_after_full_collection() {
1092   _hrm->verify_optional();
1093   _verifier->verify_region_sets_optional();
1094   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1095   // Clear the previous marking bitmap, if needed for bitmap verification.
1096   // Note we cannot do this when we clear the next marking bitmap in
1097   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1098   // objects marked during a full GC against the previous bitmap.
1099   // But we need to clear it before calling check_bitmaps below since
1100   // the full GC has compacted objects and updated TAMS but not updated
1101   // the prev bitmap.
1102   if (G1VerifyBitmaps) {
1103     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1104     _cm->clear_prev_bitmap(workers());
1105   }
1106   // This call implicitly verifies that the next bitmap is clear after Full GC.
1107   _verifier->check_bitmaps("Full GC End");
1108 
1109   // At this point there should be no regions in the
1110   // entire heap tagged as young.
1111   assert(check_young_list_empty(), "young list should be empty at this point");
1112 
1113   // Note: since we've just done a full GC, concurrent
1114   // marking is no longer active. Therefore we need not
1115   // re-enable reference discovery for the CM ref processor.
1116   // That will be done at the start of the next marking cycle.
1117   // We also know that the STW processor should no longer
1118   // discover any new references.
1119   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1120   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1121   _ref_processor_stw->verify_no_references_recorded();
1122   _ref_processor_cm->verify_no_references_recorded();
1123 }
1124 
print_heap_after_full_collection(G1HeapTransition * heap_transition)1125 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1126   // Post collection logging.
1127   // We should do this after we potentially resize the heap so
1128   // that all the COMMIT / UNCOMMIT events are generated before
1129   // the compaction events.
1130   print_hrm_post_compaction();
1131   heap_transition->print();
1132   print_heap_after_gc();
1133   print_heap_regions();
1134 #ifdef TRACESPINNING
1135   ParallelTaskTerminator::print_termination_counts();
1136 #endif
1137 }
1138 
do_full_collection(bool explicit_gc,bool clear_all_soft_refs)1139 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1140                                          bool clear_all_soft_refs) {
1141   assert_at_safepoint_on_vm_thread();
1142 
1143   if (GCLocker::check_active_before_gc()) {
1144     // Full GC was not completed.
1145     return false;
1146   }
1147 
1148   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1149       soft_ref_policy()->should_clear_all_soft_refs();
1150 
1151   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1152   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1153 
1154   collector.prepare_collection();
1155   collector.collect();
1156   collector.complete_collection();
1157 
1158   // Full collection was successfully completed.
1159   return true;
1160 }
1161 
do_full_collection(bool clear_all_soft_refs)1162 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1163   // Currently, there is no facility in the do_full_collection(bool) API to notify
1164   // the caller that the collection did not succeed (e.g., because it was locked
1165   // out by the GC locker). So, right now, we'll ignore the return value.
1166   bool dummy = do_full_collection(true,                /* explicit_gc */
1167                                   clear_all_soft_refs);
1168 }
1169 
resize_heap_if_necessary()1170 void G1CollectedHeap::resize_heap_if_necessary() {
1171   assert_at_safepoint_on_vm_thread();
1172 
1173   // Capacity, free and used after the GC counted as full regions to
1174   // include the waste in the following calculations.
1175   const size_t capacity_after_gc = capacity();
1176   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1177 
1178   // This is enforced in arguments.cpp.
1179   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1180          "otherwise the code below doesn't make sense");
1181 
1182   // We don't have floating point command-line arguments
1183   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1184   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1185   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1186   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1187 
1188   // We have to be careful here as these two calculations can overflow
1189   // 32-bit size_t's.
1190   double used_after_gc_d = (double) used_after_gc;
1191   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1192   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1193 
1194   // Let's make sure that they are both under the max heap size, which
1195   // by default will make them fit into a size_t.
1196   double desired_capacity_upper_bound = (double) MaxHeapSize;
1197   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1198                                     desired_capacity_upper_bound);
1199   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1200                                     desired_capacity_upper_bound);
1201 
1202   // We can now safely turn them into size_t's.
1203   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1204   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1205 
1206   // This assert only makes sense here, before we adjust them
1207   // with respect to the min and max heap size.
1208   assert(minimum_desired_capacity <= maximum_desired_capacity,
1209          "minimum_desired_capacity = " SIZE_FORMAT ", "
1210          "maximum_desired_capacity = " SIZE_FORMAT,
1211          minimum_desired_capacity, maximum_desired_capacity);
1212 
1213   // Should not be greater than the heap max size. No need to adjust
1214   // it with respect to the heap min size as it's a lower bound (i.e.,
1215   // we'll try to make the capacity larger than it, not smaller).
1216   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1217   // Should not be less than the heap min size. No need to adjust it
1218   // with respect to the heap max size as it's an upper bound (i.e.,
1219   // we'll try to make the capacity smaller than it, not greater).
1220   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1221 
1222   if (capacity_after_gc < minimum_desired_capacity) {
1223     // Don't expand unless it's significant
1224     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1225 
1226     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1227                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1228                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1229                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1230 
1231     expand(expand_bytes, _workers);
1232 
1233     // No expansion, now see if we want to shrink
1234   } else if (capacity_after_gc > maximum_desired_capacity) {
1235     // Capacity too large, compute shrinking size
1236     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1237 
1238     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1239                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1240                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1241                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1242 
1243     shrink(shrink_bytes);
1244   }
1245 }
1246 
satisfy_failed_allocation_helper(size_t word_size,bool do_gc,bool clear_all_soft_refs,bool expect_null_mutator_alloc_region,bool * gc_succeeded)1247 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1248                                                             bool do_gc,
1249                                                             bool clear_all_soft_refs,
1250                                                             bool expect_null_mutator_alloc_region,
1251                                                             bool* gc_succeeded) {
1252   *gc_succeeded = true;
1253   // Let's attempt the allocation first.
1254   HeapWord* result =
1255     attempt_allocation_at_safepoint(word_size,
1256                                     expect_null_mutator_alloc_region);
1257   if (result != NULL) {
1258     return result;
1259   }
1260 
1261   // In a G1 heap, we're supposed to keep allocation from failing by
1262   // incremental pauses.  Therefore, at least for now, we'll favor
1263   // expansion over collection.  (This might change in the future if we can
1264   // do something smarter than full collection to satisfy a failed alloc.)
1265   result = expand_and_allocate(word_size);
1266   if (result != NULL) {
1267     return result;
1268   }
1269 
1270   if (do_gc) {
1271     // Expansion didn't work, we'll try to do a Full GC.
1272     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1273                                        clear_all_soft_refs);
1274   }
1275 
1276   return NULL;
1277 }
1278 
satisfy_failed_allocation(size_t word_size,bool * succeeded)1279 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1280                                                      bool* succeeded) {
1281   assert_at_safepoint_on_vm_thread();
1282 
1283   // Attempts to allocate followed by Full GC.
1284   HeapWord* result =
1285     satisfy_failed_allocation_helper(word_size,
1286                                      true,  /* do_gc */
1287                                      false, /* clear_all_soft_refs */
1288                                      false, /* expect_null_mutator_alloc_region */
1289                                      succeeded);
1290 
1291   if (result != NULL || !*succeeded) {
1292     return result;
1293   }
1294 
1295   // Attempts to allocate followed by Full GC that will collect all soft references.
1296   result = satisfy_failed_allocation_helper(word_size,
1297                                             true, /* do_gc */
1298                                             true, /* clear_all_soft_refs */
1299                                             true, /* expect_null_mutator_alloc_region */
1300                                             succeeded);
1301 
1302   if (result != NULL || !*succeeded) {
1303     return result;
1304   }
1305 
1306   // Attempts to allocate, no GC
1307   result = satisfy_failed_allocation_helper(word_size,
1308                                             false, /* do_gc */
1309                                             false, /* clear_all_soft_refs */
1310                                             true,  /* expect_null_mutator_alloc_region */
1311                                             succeeded);
1312 
1313   if (result != NULL) {
1314     return result;
1315   }
1316 
1317   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1318          "Flag should have been handled and cleared prior to this point");
1319 
1320   // What else?  We might try synchronous finalization later.  If the total
1321   // space available is large enough for the allocation, then a more
1322   // complete compaction phase than we've tried so far might be
1323   // appropriate.
1324   return NULL;
1325 }
1326 
1327 // Attempting to expand the heap sufficiently
1328 // to support an allocation of the given "word_size".  If
1329 // successful, perform the allocation and return the address of the
1330 // allocated block, or else "NULL".
1331 
expand_and_allocate(size_t word_size)1332 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1333   assert_at_safepoint_on_vm_thread();
1334 
1335   _verifier->verify_region_sets_optional();
1336 
1337   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1338   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1339                             word_size * HeapWordSize);
1340 
1341 
1342   if (expand(expand_bytes, _workers)) {
1343     _hrm->verify_optional();
1344     _verifier->verify_region_sets_optional();
1345     return attempt_allocation_at_safepoint(word_size,
1346                                            false /* expect_null_mutator_alloc_region */);
1347   }
1348   return NULL;
1349 }
1350 
expand(size_t expand_bytes,WorkGang * pretouch_workers,double * expand_time_ms)1351 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1352   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1353   aligned_expand_bytes = align_up(aligned_expand_bytes,
1354                                        HeapRegion::GrainBytes);
1355 
1356   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1357                             expand_bytes, aligned_expand_bytes);
1358 
1359   if (is_maximal_no_gc()) {
1360     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1361     return false;
1362   }
1363 
1364   double expand_heap_start_time_sec = os::elapsedTime();
1365   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1366   assert(regions_to_expand > 0, "Must expand by at least one region");
1367 
1368   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1369   if (expand_time_ms != NULL) {
1370     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1371   }
1372 
1373   if (expanded_by > 0) {
1374     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1375     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1376     policy()->record_new_heap_size(num_regions());
1377   } else {
1378     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1379 
1380     // The expansion of the virtual storage space was unsuccessful.
1381     // Let's see if it was because we ran out of swap.
1382     if (G1ExitOnExpansionFailure &&
1383         _hrm->available() >= regions_to_expand) {
1384       // We had head room...
1385       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1386     }
1387   }
1388   return regions_to_expand > 0;
1389 }
1390 
expand_single_region(uint node_index)1391 bool G1CollectedHeap::expand_single_region(uint node_index) {
1392   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1393 
1394   if (expanded_by == 0) {
1395     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1396     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1397     return false;
1398   }
1399 
1400   policy()->record_new_heap_size(num_regions());
1401   return true;
1402 }
1403 
shrink_helper(size_t shrink_bytes)1404 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1405   size_t aligned_shrink_bytes =
1406     ReservedSpace::page_align_size_down(shrink_bytes);
1407   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1408                                          HeapRegion::GrainBytes);
1409   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1410 
1411   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1412   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1413 
1414   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1415                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1416   if (num_regions_removed > 0) {
1417     policy()->record_new_heap_size(num_regions());
1418   } else {
1419     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1420   }
1421 }
1422 
shrink(size_t shrink_bytes)1423 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1424   _verifier->verify_region_sets_optional();
1425 
1426   // We should only reach here at the end of a Full GC or during Remark which
1427   // means we should not not be holding to any GC alloc regions. The method
1428   // below will make sure of that and do any remaining clean up.
1429   _allocator->abandon_gc_alloc_regions();
1430 
1431   // Instead of tearing down / rebuilding the free lists here, we
1432   // could instead use the remove_all_pending() method on free_list to
1433   // remove only the ones that we need to remove.
1434   tear_down_region_sets(true /* free_list_only */);
1435   shrink_helper(shrink_bytes);
1436   rebuild_region_sets(true /* free_list_only */);
1437 
1438   _hrm->verify_optional();
1439   _verifier->verify_region_sets_optional();
1440 }
1441 
1442 class OldRegionSetChecker : public HeapRegionSetChecker {
1443 public:
check_mt_safety()1444   void check_mt_safety() {
1445     // Master Old Set MT safety protocol:
1446     // (a) If we're at a safepoint, operations on the master old set
1447     // should be invoked:
1448     // - by the VM thread (which will serialize them), or
1449     // - by the GC workers while holding the FreeList_lock, if we're
1450     //   at a safepoint for an evacuation pause (this lock is taken
1451     //   anyway when an GC alloc region is retired so that a new one
1452     //   is allocated from the free list), or
1453     // - by the GC workers while holding the OldSets_lock, if we're at a
1454     //   safepoint for a cleanup pause.
1455     // (b) If we're not at a safepoint, operations on the master old set
1456     // should be invoked while holding the Heap_lock.
1457 
1458     if (SafepointSynchronize::is_at_safepoint()) {
1459       guarantee(Thread::current()->is_VM_thread() ||
1460                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1461                 "master old set MT safety protocol at a safepoint");
1462     } else {
1463       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1464     }
1465   }
is_correct_type(HeapRegion * hr)1466   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
get_description()1467   const char* get_description() { return "Old Regions"; }
1468 };
1469 
1470 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1471 public:
check_mt_safety()1472   void check_mt_safety() {
1473     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1474               "May only change archive regions during initialization or safepoint.");
1475   }
is_correct_type(HeapRegion * hr)1476   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
get_description()1477   const char* get_description() { return "Archive Regions"; }
1478 };
1479 
1480 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1481 public:
check_mt_safety()1482   void check_mt_safety() {
1483     // Humongous Set MT safety protocol:
1484     // (a) If we're at a safepoint, operations on the master humongous
1485     // set should be invoked by either the VM thread (which will
1486     // serialize them) or by the GC workers while holding the
1487     // OldSets_lock.
1488     // (b) If we're not at a safepoint, operations on the master
1489     // humongous set should be invoked while holding the Heap_lock.
1490 
1491     if (SafepointSynchronize::is_at_safepoint()) {
1492       guarantee(Thread::current()->is_VM_thread() ||
1493                 OldSets_lock->owned_by_self(),
1494                 "master humongous set MT safety protocol at a safepoint");
1495     } else {
1496       guarantee(Heap_lock->owned_by_self(),
1497                 "master humongous set MT safety protocol outside a safepoint");
1498     }
1499   }
is_correct_type(HeapRegion * hr)1500   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
get_description()1501   const char* get_description() { return "Humongous Regions"; }
1502 };
1503 
G1CollectedHeap()1504 G1CollectedHeap::G1CollectedHeap() :
1505   CollectedHeap(),
1506   _young_gen_sampling_thread(NULL),
1507   _workers(NULL),
1508   _card_table(NULL),
1509   _soft_ref_policy(),
1510   _old_set("Old Region Set", new OldRegionSetChecker()),
1511   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1512   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1513   _bot(NULL),
1514   _listener(),
1515   _numa(G1NUMA::create()),
1516   _hrm(NULL),
1517   _allocator(NULL),
1518   _verifier(NULL),
1519   _summary_bytes_used(0),
1520   _bytes_used_during_gc(0),
1521   _archive_allocator(NULL),
1522   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1523   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1524   _expand_heap_after_alloc_failure(true),
1525   _g1mm(NULL),
1526   _humongous_reclaim_candidates(),
1527   _has_humongous_reclaim_candidates(false),
1528   _hr_printer(),
1529   _collector_state(),
1530   _old_marking_cycles_started(0),
1531   _old_marking_cycles_completed(0),
1532   _eden(),
1533   _survivor(),
1534   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1535   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1536   _policy(G1Policy::create_policy(_gc_timer_stw)),
1537   _heap_sizing_policy(NULL),
1538   _collection_set(this, _policy),
1539   _hot_card_cache(NULL),
1540   _rem_set(NULL),
1541   _cm(NULL),
1542   _cm_thread(NULL),
1543   _cr(NULL),
1544   _task_queues(NULL),
1545   _evacuation_failed(false),
1546   _evacuation_failed_info_array(NULL),
1547   _preserved_marks_set(true /* in_c_heap */),
1548 #ifndef PRODUCT
1549   _evacuation_failure_alot_for_current_gc(false),
1550   _evacuation_failure_alot_gc_number(0),
1551   _evacuation_failure_alot_count(0),
1552 #endif
1553   _ref_processor_stw(NULL),
1554   _is_alive_closure_stw(this),
1555   _is_subject_to_discovery_stw(this),
1556   _ref_processor_cm(NULL),
1557   _is_alive_closure_cm(this),
1558   _is_subject_to_discovery_cm(this),
1559   _region_attr() {
1560 
1561   _verifier = new G1HeapVerifier(this);
1562 
1563   _allocator = new G1Allocator(this);
1564 
1565   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1566 
1567   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1568 
1569   // Override the default _filler_array_max_size so that no humongous filler
1570   // objects are created.
1571   _filler_array_max_size = _humongous_object_threshold_in_words;
1572 
1573   uint n_queues = ParallelGCThreads;
1574   _task_queues = new RefToScanQueueSet(n_queues);
1575 
1576   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1577 
1578   for (uint i = 0; i < n_queues; i++) {
1579     RefToScanQueue* q = new RefToScanQueue();
1580     q->initialize();
1581     _task_queues->register_queue(i, q);
1582     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1583   }
1584 
1585   // Initialize the G1EvacuationFailureALot counters and flags.
1586   NOT_PRODUCT(reset_evacuation_should_fail();)
1587   _gc_tracer_stw->initialize();
1588 
1589   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1590 }
1591 
actual_reserved_page_size(ReservedSpace rs)1592 static size_t actual_reserved_page_size(ReservedSpace rs) {
1593   size_t page_size = os::vm_page_size();
1594   if (UseLargePages) {
1595     // There are two ways to manage large page memory.
1596     // 1. OS supports committing large page memory.
1597     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1598     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1599     //    we reserved memory without large page.
1600     if (os::can_commit_large_page_memory() || rs.special()) {
1601       // An alignment at ReservedSpace comes from preferred page size or
1602       // heap alignment, and if the alignment came from heap alignment, it could be
1603       // larger than large pages size. So need to cap with the large page size.
1604       page_size = MIN2(rs.alignment(), os::large_page_size());
1605     }
1606   }
1607 
1608   return page_size;
1609 }
1610 
create_aux_memory_mapper(const char * description,size_t size,size_t translation_factor)1611 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1612                                                                  size_t size,
1613                                                                  size_t translation_factor) {
1614   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1615   // Allocate a new reserved space, preferring to use large pages.
1616   ReservedSpace rs(size, preferred_page_size);
1617   size_t page_size = actual_reserved_page_size(rs);
1618   G1RegionToSpaceMapper* result  =
1619     G1RegionToSpaceMapper::create_mapper(rs,
1620                                          size,
1621                                          page_size,
1622                                          HeapRegion::GrainBytes,
1623                                          translation_factor,
1624                                          mtGC);
1625 
1626   os::trace_page_sizes_for_requested_size(description,
1627                                           size,
1628                                           preferred_page_size,
1629                                           page_size,
1630                                           rs.base(),
1631                                           rs.size());
1632 
1633   return result;
1634 }
1635 
initialize_concurrent_refinement()1636 jint G1CollectedHeap::initialize_concurrent_refinement() {
1637   jint ecode = JNI_OK;
1638   _cr = G1ConcurrentRefine::create(&ecode);
1639   return ecode;
1640 }
1641 
initialize_young_gen_sampling_thread()1642 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1643   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1644   if (_young_gen_sampling_thread->osthread() == NULL) {
1645     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1646     return JNI_ENOMEM;
1647   }
1648   return JNI_OK;
1649 }
1650 
initialize()1651 jint G1CollectedHeap::initialize() {
1652 
1653   // Necessary to satisfy locking discipline assertions.
1654 
1655   MutexLocker x(Heap_lock);
1656 
1657   // While there are no constraints in the GC code that HeapWordSize
1658   // be any particular value, there are multiple other areas in the
1659   // system which believe this to be true (e.g. oop->object_size in some
1660   // cases incorrectly returns the size in wordSize units rather than
1661   // HeapWordSize).
1662   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1663 
1664   size_t init_byte_size = InitialHeapSize;
1665   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1666 
1667   // Ensure that the sizes are properly aligned.
1668   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1669   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1670   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1671 
1672   // Reserve the maximum.
1673 
1674   // When compressed oops are enabled, the preferred heap base
1675   // is calculated by subtracting the requested size from the
1676   // 32Gb boundary and using the result as the base address for
1677   // heap reservation. If the requested size is not aligned to
1678   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1679   // into the ReservedHeapSpace constructor) then the actual
1680   // base of the reserved heap may end up differing from the
1681   // address that was requested (i.e. the preferred heap base).
1682   // If this happens then we could end up using a non-optimal
1683   // compressed oops mode.
1684 
1685   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1686                                                      HeapAlignment);
1687 
1688   initialize_reserved_region(heap_rs);
1689 
1690   // Create the barrier set for the entire reserved region.
1691   G1CardTable* ct = new G1CardTable(heap_rs.region());
1692   ct->initialize();
1693   G1BarrierSet* bs = new G1BarrierSet(ct);
1694   bs->initialize();
1695   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1696   BarrierSet::set_barrier_set(bs);
1697   _card_table = ct;
1698 
1699   {
1700     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1701     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1702     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1703   }
1704 
1705   // Create the hot card cache.
1706   _hot_card_cache = new G1HotCardCache(this);
1707 
1708   // Carve out the G1 part of the heap.
1709   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1710   size_t page_size = actual_reserved_page_size(heap_rs);
1711   G1RegionToSpaceMapper* heap_storage =
1712     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1713                                               g1_rs.size(),
1714                                               page_size,
1715                                               HeapRegion::GrainBytes,
1716                                               1,
1717                                               mtJavaHeap);
1718   if(heap_storage == NULL) {
1719     vm_shutdown_during_initialization("Could not initialize G1 heap");
1720     return JNI_ERR;
1721   }
1722 
1723   os::trace_page_sizes("Heap",
1724                        MinHeapSize,
1725                        reserved_byte_size,
1726                        page_size,
1727                        heap_rs.base(),
1728                        heap_rs.size());
1729   heap_storage->set_mapping_changed_listener(&_listener);
1730 
1731   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1732   G1RegionToSpaceMapper* bot_storage =
1733     create_aux_memory_mapper("Block Offset Table",
1734                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1735                              G1BlockOffsetTable::heap_map_factor());
1736 
1737   G1RegionToSpaceMapper* cardtable_storage =
1738     create_aux_memory_mapper("Card Table",
1739                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1740                              G1CardTable::heap_map_factor());
1741 
1742   G1RegionToSpaceMapper* card_counts_storage =
1743     create_aux_memory_mapper("Card Counts Table",
1744                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1745                              G1CardCounts::heap_map_factor());
1746 
1747   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1748   G1RegionToSpaceMapper* prev_bitmap_storage =
1749     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1750   G1RegionToSpaceMapper* next_bitmap_storage =
1751     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1752 
1753   _hrm = HeapRegionManager::create_manager(this);
1754 
1755   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1756   _card_table->initialize(cardtable_storage);
1757 
1758   // Do later initialization work for concurrent refinement.
1759   _hot_card_cache->initialize(card_counts_storage);
1760 
1761   // 6843694 - ensure that the maximum region index can fit
1762   // in the remembered set structures.
1763   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1764   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1765 
1766   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1767   // start within the first card.
1768   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1769   // Also create a G1 rem set.
1770   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1771   _rem_set->initialize(max_reserved_capacity(), max_regions());
1772 
1773   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1774   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1775   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1776             "too many cards per region");
1777 
1778   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1779 
1780   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1781 
1782   {
1783     HeapWord* start = _hrm->reserved().start();
1784     HeapWord* end = _hrm->reserved().end();
1785     size_t granularity = HeapRegion::GrainBytes;
1786 
1787     _region_attr.initialize(start, end, granularity);
1788     _humongous_reclaim_candidates.initialize(start, end, granularity);
1789   }
1790 
1791   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1792                           true /* are_GC_task_threads */,
1793                           false /* are_ConcurrentGC_threads */);
1794   if (_workers == NULL) {
1795     return JNI_ENOMEM;
1796   }
1797   _workers->initialize_workers();
1798 
1799   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1800 
1801   // Create the G1ConcurrentMark data structure and thread.
1802   // (Must do this late, so that "max_regions" is defined.)
1803   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1804   if (_cm == NULL || !_cm->completed_initialization()) {
1805     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1806     return JNI_ENOMEM;
1807   }
1808   _cm_thread = _cm->cm_thread();
1809 
1810   // Now expand into the initial heap size.
1811   if (!expand(init_byte_size, _workers)) {
1812     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1813     return JNI_ENOMEM;
1814   }
1815 
1816   // Perform any initialization actions delegated to the policy.
1817   policy()->init(this, &_collection_set);
1818 
1819   jint ecode = initialize_concurrent_refinement();
1820   if (ecode != JNI_OK) {
1821     return ecode;
1822   }
1823 
1824   ecode = initialize_young_gen_sampling_thread();
1825   if (ecode != JNI_OK) {
1826     return ecode;
1827   }
1828 
1829   {
1830     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1831     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1832     dcqs.set_max_cards(concurrent_refine()->red_zone());
1833   }
1834 
1835   // Here we allocate the dummy HeapRegion that is required by the
1836   // G1AllocRegion class.
1837   HeapRegion* dummy_region = _hrm->get_dummy_region();
1838 
1839   // We'll re-use the same region whether the alloc region will
1840   // require BOT updates or not and, if it doesn't, then a non-young
1841   // region will complain that it cannot support allocations without
1842   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1843   dummy_region->set_eden();
1844   // Make sure it's full.
1845   dummy_region->set_top(dummy_region->end());
1846   G1AllocRegion::setup(this, dummy_region);
1847 
1848   _allocator->init_mutator_alloc_regions();
1849 
1850   // Do create of the monitoring and management support so that
1851   // values in the heap have been properly initialized.
1852   _g1mm = new G1MonitoringSupport(this);
1853 
1854   G1StringDedup::initialize();
1855 
1856   _preserved_marks_set.init(ParallelGCThreads);
1857 
1858   _collection_set.initialize(max_regions());
1859 
1860   return JNI_OK;
1861 }
1862 
stop()1863 void G1CollectedHeap::stop() {
1864   // Stop all concurrent threads. We do this to make sure these threads
1865   // do not continue to execute and access resources (e.g. logging)
1866   // that are destroyed during shutdown.
1867   _cr->stop();
1868   _young_gen_sampling_thread->stop();
1869   _cm_thread->stop();
1870   if (G1StringDedup::is_enabled()) {
1871     G1StringDedup::stop();
1872   }
1873 }
1874 
safepoint_synchronize_begin()1875 void G1CollectedHeap::safepoint_synchronize_begin() {
1876   SuspendibleThreadSet::synchronize();
1877 }
1878 
safepoint_synchronize_end()1879 void G1CollectedHeap::safepoint_synchronize_end() {
1880   SuspendibleThreadSet::desynchronize();
1881 }
1882 
post_initialize()1883 void G1CollectedHeap::post_initialize() {
1884   CollectedHeap::post_initialize();
1885   ref_processing_init();
1886 }
1887 
ref_processing_init()1888 void G1CollectedHeap::ref_processing_init() {
1889   // Reference processing in G1 currently works as follows:
1890   //
1891   // * There are two reference processor instances. One is
1892   //   used to record and process discovered references
1893   //   during concurrent marking; the other is used to
1894   //   record and process references during STW pauses
1895   //   (both full and incremental).
1896   // * Both ref processors need to 'span' the entire heap as
1897   //   the regions in the collection set may be dotted around.
1898   //
1899   // * For the concurrent marking ref processor:
1900   //   * Reference discovery is enabled at initial marking.
1901   //   * Reference discovery is disabled and the discovered
1902   //     references processed etc during remarking.
1903   //   * Reference discovery is MT (see below).
1904   //   * Reference discovery requires a barrier (see below).
1905   //   * Reference processing may or may not be MT
1906   //     (depending on the value of ParallelRefProcEnabled
1907   //     and ParallelGCThreads).
1908   //   * A full GC disables reference discovery by the CM
1909   //     ref processor and abandons any entries on it's
1910   //     discovered lists.
1911   //
1912   // * For the STW processor:
1913   //   * Non MT discovery is enabled at the start of a full GC.
1914   //   * Processing and enqueueing during a full GC is non-MT.
1915   //   * During a full GC, references are processed after marking.
1916   //
1917   //   * Discovery (may or may not be MT) is enabled at the start
1918   //     of an incremental evacuation pause.
1919   //   * References are processed near the end of a STW evacuation pause.
1920   //   * For both types of GC:
1921   //     * Discovery is atomic - i.e. not concurrent.
1922   //     * Reference discovery will not need a barrier.
1923 
1924   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1925 
1926   // Concurrent Mark ref processor
1927   _ref_processor_cm =
1928     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1929                            mt_processing,                                  // mt processing
1930                            ParallelGCThreads,                              // degree of mt processing
1931                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1932                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1933                            false,                                          // Reference discovery is not atomic
1934                            &_is_alive_closure_cm,                          // is alive closure
1935                            true);                                          // allow changes to number of processing threads
1936 
1937   // STW ref processor
1938   _ref_processor_stw =
1939     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1940                            mt_processing,                        // mt processing
1941                            ParallelGCThreads,                    // degree of mt processing
1942                            (ParallelGCThreads > 1),              // mt discovery
1943                            ParallelGCThreads,                    // degree of mt discovery
1944                            true,                                 // Reference discovery is atomic
1945                            &_is_alive_closure_stw,               // is alive closure
1946                            true);                                // allow changes to number of processing threads
1947 }
1948 
soft_ref_policy()1949 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1950   return &_soft_ref_policy;
1951 }
1952 
capacity() const1953 size_t G1CollectedHeap::capacity() const {
1954   return _hrm->length() * HeapRegion::GrainBytes;
1955 }
1956 
unused_committed_regions_in_bytes() const1957 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1958   return _hrm->total_free_bytes();
1959 }
1960 
iterate_hcc_closure(G1CardTableEntryClosure * cl,uint worker_id)1961 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1962   _hot_card_cache->drain(cl, worker_id);
1963 }
1964 
1965 // Computes the sum of the storage used by the various regions.
used() const1966 size_t G1CollectedHeap::used() const {
1967   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1968   if (_archive_allocator != NULL) {
1969     result += _archive_allocator->used();
1970   }
1971   return result;
1972 }
1973 
used_unlocked() const1974 size_t G1CollectedHeap::used_unlocked() const {
1975   return _summary_bytes_used;
1976 }
1977 
1978 class SumUsedClosure: public HeapRegionClosure {
1979   size_t _used;
1980 public:
SumUsedClosure()1981   SumUsedClosure() : _used(0) {}
do_heap_region(HeapRegion * r)1982   bool do_heap_region(HeapRegion* r) {
1983     _used += r->used();
1984     return false;
1985   }
result()1986   size_t result() { return _used; }
1987 };
1988 
recalculate_used() const1989 size_t G1CollectedHeap::recalculate_used() const {
1990   SumUsedClosure blk;
1991   heap_region_iterate(&blk);
1992   return blk.result();
1993 }
1994 
is_user_requested_concurrent_full_gc(GCCause::Cause cause)1995 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1996   switch (cause) {
1997     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1998     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1999     case GCCause::_wb_conc_mark:                        return true;
2000     default :                                           return false;
2001   }
2002 }
2003 
should_do_concurrent_full_gc(GCCause::Cause cause)2004 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2005   switch (cause) {
2006     case GCCause::_g1_humongous_allocation: return true;
2007     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2008     default:                                return is_user_requested_concurrent_full_gc(cause);
2009   }
2010 }
2011 
should_upgrade_to_full_gc(GCCause::Cause cause)2012 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2013   if (policy()->force_upgrade_to_full()) {
2014     return true;
2015   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2016     return false;
2017   } else if (has_regions_left_for_allocation()) {
2018     return false;
2019   } else {
2020     return true;
2021   }
2022 }
2023 
2024 #ifndef PRODUCT
allocate_dummy_regions()2025 void G1CollectedHeap::allocate_dummy_regions() {
2026   // Let's fill up most of the region
2027   size_t word_size = HeapRegion::GrainWords - 1024;
2028   // And as a result the region we'll allocate will be humongous.
2029   guarantee(is_humongous(word_size), "sanity");
2030 
2031   // _filler_array_max_size is set to humongous object threshold
2032   // but temporarily change it to use CollectedHeap::fill_with_object().
2033   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2034 
2035   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2036     // Let's use the existing mechanism for the allocation
2037     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2038     if (dummy_obj != NULL) {
2039       MemRegion mr(dummy_obj, word_size);
2040       CollectedHeap::fill_with_object(mr);
2041     } else {
2042       // If we can't allocate once, we probably cannot allocate
2043       // again. Let's get out of the loop.
2044       break;
2045     }
2046   }
2047 }
2048 #endif // !PRODUCT
2049 
increment_old_marking_cycles_started()2050 void G1CollectedHeap::increment_old_marking_cycles_started() {
2051   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2052          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2053          "Wrong marking cycle count (started: %d, completed: %d)",
2054          _old_marking_cycles_started, _old_marking_cycles_completed);
2055 
2056   _old_marking_cycles_started++;
2057 }
2058 
increment_old_marking_cycles_completed(bool concurrent)2059 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2060   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2061 
2062   // We assume that if concurrent == true, then the caller is a
2063   // concurrent thread that was joined the Suspendible Thread
2064   // Set. If there's ever a cheap way to check this, we should add an
2065   // assert here.
2066 
2067   // Given that this method is called at the end of a Full GC or of a
2068   // concurrent cycle, and those can be nested (i.e., a Full GC can
2069   // interrupt a concurrent cycle), the number of full collections
2070   // completed should be either one (in the case where there was no
2071   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2072   // behind the number of full collections started.
2073 
2074   // This is the case for the inner caller, i.e. a Full GC.
2075   assert(concurrent ||
2076          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2077          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2078          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2079          "is inconsistent with _old_marking_cycles_completed = %u",
2080          _old_marking_cycles_started, _old_marking_cycles_completed);
2081 
2082   // This is the case for the outer caller, i.e. the concurrent cycle.
2083   assert(!concurrent ||
2084          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2085          "for outer caller (concurrent cycle): "
2086          "_old_marking_cycles_started = %u "
2087          "is inconsistent with _old_marking_cycles_completed = %u",
2088          _old_marking_cycles_started, _old_marking_cycles_completed);
2089 
2090   _old_marking_cycles_completed += 1;
2091 
2092   // We need to clear the "in_progress" flag in the CM thread before
2093   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2094   // is set) so that if a waiter requests another System.gc() it doesn't
2095   // incorrectly see that a marking cycle is still in progress.
2096   if (concurrent) {
2097     _cm_thread->set_idle();
2098   }
2099 
2100   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2101   // for a full GC to finish that their wait is over.
2102   ml.notify_all();
2103 }
2104 
collect(GCCause::Cause cause)2105 void G1CollectedHeap::collect(GCCause::Cause cause) {
2106   try_collect(cause);
2107 }
2108 
2109 // Return true if (x < y) with allowance for wraparound.
gc_counter_less_than(uint x,uint y)2110 static bool gc_counter_less_than(uint x, uint y) {
2111   return (x - y) > (UINT_MAX/2);
2112 }
2113 
2114 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2115 // Macro so msg printing is format-checked.
2116 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2117   do {                                                                  \
2118     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2119     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2120       ResourceMark rm; /* For thread name. */                           \
2121       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2122       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2123                                        Thread::current()->name(),       \
2124                                        GCCause::to_string(cause));      \
2125       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2126     }                                                                   \
2127   } while (0)
2128 
2129 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2130   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2131 
try_collect_concurrently(GCCause::Cause cause,uint gc_counter,uint old_marking_started_before)2132 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2133                                                uint gc_counter,
2134                                                uint old_marking_started_before) {
2135   assert_heap_not_locked();
2136   assert(should_do_concurrent_full_gc(cause),
2137          "Non-concurrent cause %s", GCCause::to_string(cause));
2138 
2139   for (uint i = 1; true; ++i) {
2140     // Try to schedule an initial-mark evacuation pause that will
2141     // start a concurrent cycle.
2142     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2143     VM_G1TryInitiateConcMark op(gc_counter,
2144                                 cause,
2145                                 policy()->max_pause_time_ms());
2146     VMThread::execute(&op);
2147 
2148     // Request is trivially finished.
2149     if (cause == GCCause::_g1_periodic_collection) {
2150       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2151       return op.gc_succeeded();
2152     }
2153 
2154     // If VMOp skipped initiating concurrent marking cycle because
2155     // we're terminating, then we're done.
2156     if (op.terminating()) {
2157       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2158       return false;
2159     }
2160 
2161     // Lock to get consistent set of values.
2162     uint old_marking_started_after;
2163     uint old_marking_completed_after;
2164     {
2165       MutexLocker ml(Heap_lock);
2166       // Update gc_counter for retrying VMOp if needed. Captured here to be
2167       // consistent with the values we use below for termination tests.  If
2168       // a retry is needed after a possible wait, and another collection
2169       // occurs in the meantime, it will cause our retry to be skipped and
2170       // we'll recheck for termination with updated conditions from that
2171       // more recent collection.  That's what we want, rather than having
2172       // our retry possibly perform an unnecessary collection.
2173       gc_counter = total_collections();
2174       old_marking_started_after = _old_marking_cycles_started;
2175       old_marking_completed_after = _old_marking_cycles_completed;
2176     }
2177 
2178     if (!GCCause::is_user_requested_gc(cause)) {
2179       // For an "automatic" (not user-requested) collection, we just need to
2180       // ensure that progress is made.
2181       //
2182       // Request is finished if any of
2183       // (1) the VMOp successfully performed a GC,
2184       // (2) a concurrent cycle was already in progress,
2185       // (3) a new cycle was started (by this thread or some other), or
2186       // (4) a Full GC was performed.
2187       // Cases (3) and (4) are detected together by a change to
2188       // _old_marking_cycles_started.
2189       //
2190       // Note that (1) does not imply (3).  If we're still in the mixed
2191       // phase of an earlier concurrent collection, the request to make the
2192       // collection an initial-mark won't be honored.  If we don't check for
2193       // both conditions we'll spin doing back-to-back collections.
2194       if (op.gc_succeeded() ||
2195           op.cycle_already_in_progress() ||
2196           (old_marking_started_before != old_marking_started_after)) {
2197         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2198         return true;
2199       }
2200     } else {                    // User-requested GC.
2201       // For a user-requested collection, we want to ensure that a complete
2202       // full collection has been performed before returning, but without
2203       // waiting for more than needed.
2204 
2205       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2206       // new cycle was started.  That's good, because it's not clear what we
2207       // should do otherwise.  Trying again just does back to back GCs.
2208       // Can't wait for someone else to start a cycle.  And returning fails
2209       // to meet the goal of ensuring a full collection was performed.
2210       assert(!op.gc_succeeded() ||
2211              (old_marking_started_before != old_marking_started_after),
2212              "invariant: succeeded %s, started before %u, started after %u",
2213              BOOL_TO_STR(op.gc_succeeded()),
2214              old_marking_started_before, old_marking_started_after);
2215 
2216       // Request is finished if a full collection (concurrent or stw)
2217       // was started after this request and has completed, e.g.
2218       // started_before < completed_after.
2219       if (gc_counter_less_than(old_marking_started_before,
2220                                old_marking_completed_after)) {
2221         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2222         return true;
2223       }
2224 
2225       if (old_marking_started_after != old_marking_completed_after) {
2226         // If there is an in-progress cycle (possibly started by us), then
2227         // wait for that cycle to complete, e.g.
2228         // while completed_now < started_after.
2229         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2230         MonitorLocker ml(G1OldGCCount_lock);
2231         while (gc_counter_less_than(_old_marking_cycles_completed,
2232                                     old_marking_started_after)) {
2233           ml.wait();
2234         }
2235         // Request is finished if the collection we just waited for was
2236         // started after this request.
2237         if (old_marking_started_before != old_marking_started_after) {
2238           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2239           return true;
2240         }
2241       }
2242 
2243       // If VMOp was successful then it started a new cycle that the above
2244       // wait &etc should have recognized as finishing this request.  This
2245       // differs from a non-user-request, where gc_succeeded does not imply
2246       // a new cycle was started.
2247       assert(!op.gc_succeeded(), "invariant");
2248 
2249       // If VMOp failed because a cycle was already in progress, it is now
2250       // complete.  But it didn't finish this user-requested GC, so try
2251       // again.
2252       if (op.cycle_already_in_progress()) {
2253         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2254         continue;
2255       }
2256     }
2257 
2258     // Collection failed and should be retried.
2259     assert(op.transient_failure(), "invariant");
2260 
2261     // If GCLocker is active, wait until clear before retrying.
2262     if (GCLocker::is_active_and_needs_gc()) {
2263       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2264       GCLocker::stall_until_clear();
2265     }
2266 
2267     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2268   }
2269 }
2270 
try_collect(GCCause::Cause cause)2271 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2272   assert_heap_not_locked();
2273 
2274   // Lock to get consistent set of values.
2275   uint gc_count_before;
2276   uint full_gc_count_before;
2277   uint old_marking_started_before;
2278   {
2279     MutexLocker ml(Heap_lock);
2280     gc_count_before = total_collections();
2281     full_gc_count_before = total_full_collections();
2282     old_marking_started_before = _old_marking_cycles_started;
2283   }
2284 
2285   if (should_do_concurrent_full_gc(cause)) {
2286     return try_collect_concurrently(cause,
2287                                     gc_count_before,
2288                                     old_marking_started_before);
2289   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2290     // Indicate failure to be consistent with VMOp failure due to
2291     // another collection slipping in after our gc_count but before
2292     // our request is processed.
2293     return false;
2294   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2295              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2296 
2297     // Schedule a standard evacuation pause. We're setting word_size
2298     // to 0 which means that we are not requesting a post-GC allocation.
2299     VM_G1CollectForAllocation op(0,     /* word_size */
2300                                  gc_count_before,
2301                                  cause,
2302                                  policy()->max_pause_time_ms());
2303     VMThread::execute(&op);
2304     return op.gc_succeeded();
2305   } else {
2306     // Schedule a Full GC.
2307     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2308     VMThread::execute(&op);
2309     return op.gc_succeeded();
2310   }
2311 }
2312 
is_in(const void * p) const2313 bool G1CollectedHeap::is_in(const void* p) const {
2314   if (_hrm->reserved().contains(p)) {
2315     // Given that we know that p is in the reserved space,
2316     // heap_region_containing() should successfully
2317     // return the containing region.
2318     HeapRegion* hr = heap_region_containing(p);
2319     return hr->is_in(p);
2320   } else {
2321     return false;
2322   }
2323 }
2324 
2325 #ifdef ASSERT
is_in_exact(const void * p) const2326 bool G1CollectedHeap::is_in_exact(const void* p) const {
2327   bool contains = reserved_region().contains(p);
2328   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2329   if (contains && available) {
2330     return true;
2331   } else {
2332     return false;
2333   }
2334 }
2335 #endif
2336 
2337 // Iteration functions.
2338 
2339 // Iterates an ObjectClosure over all objects within a HeapRegion.
2340 
2341 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2342   ObjectClosure* _cl;
2343 public:
IterateObjectClosureRegionClosure(ObjectClosure * cl)2344   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
do_heap_region(HeapRegion * r)2345   bool do_heap_region(HeapRegion* r) {
2346     if (!r->is_continues_humongous()) {
2347       r->object_iterate(_cl);
2348     }
2349     return false;
2350   }
2351 };
2352 
object_iterate(ObjectClosure * cl)2353 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2354   IterateObjectClosureRegionClosure blk(cl);
2355   heap_region_iterate(&blk);
2356 }
2357 
keep_alive(oop obj)2358 void G1CollectedHeap::keep_alive(oop obj) {
2359   G1BarrierSet::enqueue(obj);
2360 }
2361 
heap_region_iterate(HeapRegionClosure * cl) const2362 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2363   _hrm->iterate(cl);
2364 }
2365 
heap_region_par_iterate_from_worker_offset(HeapRegionClosure * cl,HeapRegionClaimer * hrclaimer,uint worker_id) const2366 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2367                                                                  HeapRegionClaimer *hrclaimer,
2368                                                                  uint worker_id) const {
2369   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2370 }
2371 
heap_region_par_iterate_from_start(HeapRegionClosure * cl,HeapRegionClaimer * hrclaimer) const2372 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2373                                                          HeapRegionClaimer *hrclaimer) const {
2374   _hrm->par_iterate(cl, hrclaimer, 0);
2375 }
2376 
collection_set_iterate_all(HeapRegionClosure * cl)2377 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2378   _collection_set.iterate(cl);
2379 }
2380 
collection_set_par_iterate_all(HeapRegionClosure * cl,HeapRegionClaimer * hr_claimer,uint worker_id)2381 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2382   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2383 }
2384 
collection_set_iterate_increment_from(HeapRegionClosure * cl,HeapRegionClaimer * hr_claimer,uint worker_id)2385 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2386   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2387 }
2388 
block_start(const void * addr) const2389 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2390   HeapRegion* hr = heap_region_containing(addr);
2391   return hr->block_start(addr);
2392 }
2393 
block_is_obj(const HeapWord * addr) const2394 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2395   HeapRegion* hr = heap_region_containing(addr);
2396   return hr->block_is_obj(addr);
2397 }
2398 
supports_tlab_allocation() const2399 bool G1CollectedHeap::supports_tlab_allocation() const {
2400   return true;
2401 }
2402 
tlab_capacity(Thread * ignored) const2403 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2404   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2405 }
2406 
tlab_used(Thread * ignored) const2407 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2408   return _eden.length() * HeapRegion::GrainBytes;
2409 }
2410 
2411 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2412 // must be equal to the humongous object limit.
max_tlab_size() const2413 size_t G1CollectedHeap::max_tlab_size() const {
2414   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2415 }
2416 
unsafe_max_tlab_alloc(Thread * ignored) const2417 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2418   return _allocator->unsafe_max_tlab_alloc();
2419 }
2420 
max_capacity() const2421 size_t G1CollectedHeap::max_capacity() const {
2422   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2423 }
2424 
max_reserved_capacity() const2425 size_t G1CollectedHeap::max_reserved_capacity() const {
2426   return _hrm->max_length() * HeapRegion::GrainBytes;
2427 }
2428 
millis_since_last_gc()2429 jlong G1CollectedHeap::millis_since_last_gc() {
2430   // See the notes in GenCollectedHeap::millis_since_last_gc()
2431   // for more information about the implementation.
2432   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2433                   _policy->collection_pause_end_millis();
2434   if (ret_val < 0) {
2435     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2436       ". returning zero instead.", ret_val);
2437     return 0;
2438   }
2439   return ret_val;
2440 }
2441 
deduplicate_string(oop str)2442 void G1CollectedHeap::deduplicate_string(oop str) {
2443   assert(java_lang_String::is_instance(str), "invariant");
2444 
2445   if (G1StringDedup::is_enabled()) {
2446     G1StringDedup::deduplicate(str);
2447   }
2448 }
2449 
prepare_for_verify()2450 void G1CollectedHeap::prepare_for_verify() {
2451   _verifier->prepare_for_verify();
2452 }
2453 
verify(VerifyOption vo)2454 void G1CollectedHeap::verify(VerifyOption vo) {
2455   _verifier->verify(vo);
2456 }
2457 
supports_concurrent_phase_control() const2458 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2459   return true;
2460 }
2461 
request_concurrent_phase(const char * phase)2462 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2463   return _cm_thread->request_concurrent_phase(phase);
2464 }
2465 
is_heterogeneous_heap() const2466 bool G1CollectedHeap::is_heterogeneous_heap() const {
2467   return G1Arguments::is_heterogeneous_heap();
2468 }
2469 
2470 class PrintRegionClosure: public HeapRegionClosure {
2471   outputStream* _st;
2472 public:
PrintRegionClosure(outputStream * st)2473   PrintRegionClosure(outputStream* st) : _st(st) {}
do_heap_region(HeapRegion * r)2474   bool do_heap_region(HeapRegion* r) {
2475     r->print_on(_st);
2476     return false;
2477   }
2478 };
2479 
is_obj_dead_cond(const oop obj,const HeapRegion * hr,const VerifyOption vo) const2480 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2481                                        const HeapRegion* hr,
2482                                        const VerifyOption vo) const {
2483   switch (vo) {
2484   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2485   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2486   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2487   default:                            ShouldNotReachHere();
2488   }
2489   return false; // keep some compilers happy
2490 }
2491 
is_obj_dead_cond(const oop obj,const VerifyOption vo) const2492 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2493                                        const VerifyOption vo) const {
2494   switch (vo) {
2495   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2496   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2497   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2498   default:                            ShouldNotReachHere();
2499   }
2500   return false; // keep some compilers happy
2501 }
2502 
print_heap_regions() const2503 void G1CollectedHeap::print_heap_regions() const {
2504   LogTarget(Trace, gc, heap, region) lt;
2505   if (lt.is_enabled()) {
2506     LogStream ls(lt);
2507     print_regions_on(&ls);
2508   }
2509 }
2510 
print_on(outputStream * st) const2511 void G1CollectedHeap::print_on(outputStream* st) const {
2512   st->print(" %-20s", "garbage-first heap");
2513   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2514             capacity()/K, used_unlocked()/K);
2515   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2516             p2i(_hrm->reserved().start()),
2517             p2i(_hrm->reserved().end()));
2518   st->cr();
2519   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2520   uint young_regions = young_regions_count();
2521   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2522             (size_t) young_regions * HeapRegion::GrainBytes / K);
2523   uint survivor_regions = survivor_regions_count();
2524   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2525             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2526   st->cr();
2527   if (_numa->is_enabled()) {
2528     uint num_nodes = _numa->num_active_nodes();
2529     st->print("  remaining free region(s) on each NUMA node: ");
2530     const int* node_ids = _numa->node_ids();
2531     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2532       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2533     }
2534     st->cr();
2535   }
2536   MetaspaceUtils::print_on(st);
2537 }
2538 
print_regions_on(outputStream * st) const2539 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2540   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2541                "HS=humongous(starts), HC=humongous(continues), "
2542                "CS=collection set, F=free, "
2543                "OA=open archive, CA=closed archive, "
2544                "TAMS=top-at-mark-start (previous, next)");
2545   PrintRegionClosure blk(st);
2546   heap_region_iterate(&blk);
2547 }
2548 
print_extended_on(outputStream * st) const2549 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2550   print_on(st);
2551 
2552   // Print the per-region information.
2553   print_regions_on(st);
2554 }
2555 
print_on_error(outputStream * st) const2556 void G1CollectedHeap::print_on_error(outputStream* st) const {
2557   this->CollectedHeap::print_on_error(st);
2558 
2559   if (_cm != NULL) {
2560     st->cr();
2561     _cm->print_on_error(st);
2562   }
2563 }
2564 
print_gc_threads_on(outputStream * st) const2565 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2566   workers()->print_worker_threads_on(st);
2567   _cm_thread->print_on(st);
2568   st->cr();
2569   _cm->print_worker_threads_on(st);
2570   _cr->print_threads_on(st);
2571   _young_gen_sampling_thread->print_on(st);
2572   if (G1StringDedup::is_enabled()) {
2573     G1StringDedup::print_worker_threads_on(st);
2574   }
2575 }
2576 
gc_threads_do(ThreadClosure * tc) const2577 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2578   workers()->threads_do(tc);
2579   tc->do_thread(_cm_thread);
2580   _cm->threads_do(tc);
2581   _cr->threads_do(tc);
2582   tc->do_thread(_young_gen_sampling_thread);
2583   if (G1StringDedup::is_enabled()) {
2584     G1StringDedup::threads_do(tc);
2585   }
2586 }
2587 
print_tracing_info() const2588 void G1CollectedHeap::print_tracing_info() const {
2589   rem_set()->print_summary_info();
2590   concurrent_mark()->print_summary_info();
2591 }
2592 
2593 #ifndef PRODUCT
2594 // Helpful for debugging RSet issues.
2595 
2596 class PrintRSetsClosure : public HeapRegionClosure {
2597 private:
2598   const char* _msg;
2599   size_t _occupied_sum;
2600 
2601 public:
do_heap_region(HeapRegion * r)2602   bool do_heap_region(HeapRegion* r) {
2603     HeapRegionRemSet* hrrs = r->rem_set();
2604     size_t occupied = hrrs->occupied();
2605     _occupied_sum += occupied;
2606 
2607     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2608     if (occupied == 0) {
2609       tty->print_cr("  RSet is empty");
2610     } else {
2611       hrrs->print();
2612     }
2613     tty->print_cr("----------");
2614     return false;
2615   }
2616 
PrintRSetsClosure(const char * msg)2617   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2618     tty->cr();
2619     tty->print_cr("========================================");
2620     tty->print_cr("%s", msg);
2621     tty->cr();
2622   }
2623 
~PrintRSetsClosure()2624   ~PrintRSetsClosure() {
2625     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2626     tty->print_cr("========================================");
2627     tty->cr();
2628   }
2629 };
2630 
print_cset_rsets()2631 void G1CollectedHeap::print_cset_rsets() {
2632   PrintRSetsClosure cl("Printing CSet RSets");
2633   collection_set_iterate_all(&cl);
2634 }
2635 
print_all_rsets()2636 void G1CollectedHeap::print_all_rsets() {
2637   PrintRSetsClosure cl("Printing All RSets");;
2638   heap_region_iterate(&cl);
2639 }
2640 #endif // PRODUCT
2641 
print_location(outputStream * st,void * addr) const2642 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2643   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2644 }
2645 
create_g1_heap_summary()2646 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2647 
2648   size_t eden_used_bytes = _eden.used_bytes();
2649   size_t survivor_used_bytes = _survivor.used_bytes();
2650   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2651 
2652   size_t eden_capacity_bytes =
2653     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2654 
2655   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2656   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2657                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2658 }
2659 
create_g1_evac_summary(G1EvacStats * stats)2660 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2661   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2662                        stats->unused(), stats->used(), stats->region_end_waste(),
2663                        stats->regions_filled(), stats->direct_allocated(),
2664                        stats->failure_used(), stats->failure_waste());
2665 }
2666 
trace_heap(GCWhen::Type when,const GCTracer * gc_tracer)2667 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2668   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2669   gc_tracer->report_gc_heap_summary(when, heap_summary);
2670 
2671   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2672   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2673 }
2674 
heap()2675 G1CollectedHeap* G1CollectedHeap::heap() {
2676   CollectedHeap* heap = Universe::heap();
2677   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2678   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2679   return (G1CollectedHeap*)heap;
2680 }
2681 
gc_prologue(bool full)2682 void G1CollectedHeap::gc_prologue(bool full) {
2683   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2684 
2685   // This summary needs to be printed before incrementing total collections.
2686   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2687 
2688   // Update common counters.
2689   increment_total_collections(full /* full gc */);
2690   if (full || collector_state()->in_initial_mark_gc()) {
2691     increment_old_marking_cycles_started();
2692   }
2693 
2694   // Fill TLAB's and such
2695   double start = os::elapsedTime();
2696   ensure_parsability(true);
2697   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2698 }
2699 
gc_epilogue(bool full)2700 void G1CollectedHeap::gc_epilogue(bool full) {
2701   // Update common counters.
2702   if (full) {
2703     // Update the number of full collections that have been completed.
2704     increment_old_marking_cycles_completed(false /* concurrent */);
2705   }
2706 
2707   // We are at the end of the GC. Total collections has already been increased.
2708   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2709 
2710   // FIXME: what is this about?
2711   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2712   // is set.
2713 #if COMPILER2_OR_JVMCI
2714   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2715 #endif
2716 
2717   double start = os::elapsedTime();
2718   resize_all_tlabs();
2719   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2720 
2721   MemoryService::track_memory_usage();
2722   // We have just completed a GC. Update the soft reference
2723   // policy with the new heap occupancy
2724   Universe::update_heap_info_at_gc();
2725 
2726   // Print NUMA statistics.
2727   _numa->print_statistics();
2728 }
2729 
verify_numa_regions(const char * desc)2730 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2731   LogTarget(Trace, gc, heap, verify) lt;
2732 
2733   if (lt.is_enabled()) {
2734     LogStream ls(lt);
2735     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2736     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2737     heap_region_iterate(&cl);
2738   }
2739 }
2740 
do_collection_pause(size_t word_size,uint gc_count_before,bool * succeeded,GCCause::Cause gc_cause)2741 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2742                                                uint gc_count_before,
2743                                                bool* succeeded,
2744                                                GCCause::Cause gc_cause) {
2745   assert_heap_not_locked_and_not_at_safepoint();
2746   VM_G1CollectForAllocation op(word_size,
2747                                gc_count_before,
2748                                gc_cause,
2749                                policy()->max_pause_time_ms());
2750   VMThread::execute(&op);
2751 
2752   HeapWord* result = op.result();
2753   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2754   assert(result == NULL || ret_succeeded,
2755          "the result should be NULL if the VM did not succeed");
2756   *succeeded = ret_succeeded;
2757 
2758   assert_heap_not_locked();
2759   return result;
2760 }
2761 
do_concurrent_mark()2762 void G1CollectedHeap::do_concurrent_mark() {
2763   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2764   if (!_cm_thread->in_progress()) {
2765     _cm_thread->set_started();
2766     CGC_lock->notify();
2767   }
2768 }
2769 
pending_card_num()2770 size_t G1CollectedHeap::pending_card_num() {
2771   struct CountCardsClosure : public ThreadClosure {
2772     size_t _cards;
2773     CountCardsClosure() : _cards(0) {}
2774     virtual void do_thread(Thread* t) {
2775       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2776     }
2777   } count_from_threads;
2778   Threads::threads_do(&count_from_threads);
2779 
2780   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2781   dcqs.verify_num_cards();
2782 
2783   return dcqs.num_cards() + count_from_threads._cards;
2784 }
2785 
is_potential_eager_reclaim_candidate(HeapRegion * r) const2786 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2787   // We don't nominate objects with many remembered set entries, on
2788   // the assumption that such objects are likely still live.
2789   HeapRegionRemSet* rem_set = r->rem_set();
2790 
2791   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2792          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2793          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2794 }
2795 
2796 #ifndef PRODUCT
verify_region_attr_remset_update()2797 void G1CollectedHeap::verify_region_attr_remset_update() {
2798   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2799   public:
2800     virtual bool do_heap_region(HeapRegion* r) {
2801       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2802       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2803       assert(r->rem_set()->is_tracked() == needs_remset_update,
2804              "Region %u remset tracking status (%s) different to region attribute (%s)",
2805              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2806       return false;
2807     }
2808   } cl;
2809   heap_region_iterate(&cl);
2810 }
2811 #endif
2812 
2813 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2814   public:
do_heap_region(HeapRegion * hr)2815     bool do_heap_region(HeapRegion* hr) {
2816       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2817         hr->verify_rem_set();
2818       }
2819       return false;
2820     }
2821 };
2822 
num_task_queues() const2823 uint G1CollectedHeap::num_task_queues() const {
2824   return _task_queues->size();
2825 }
2826 
2827 #if TASKQUEUE_STATS
print_taskqueue_stats_hdr(outputStream * const st)2828 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2829   st->print_raw_cr("GC Task Stats");
2830   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2831   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2832 }
2833 
print_taskqueue_stats() const2834 void G1CollectedHeap::print_taskqueue_stats() const {
2835   if (!log_is_enabled(Trace, gc, task, stats)) {
2836     return;
2837   }
2838   Log(gc, task, stats) log;
2839   ResourceMark rm;
2840   LogStream ls(log.trace());
2841   outputStream* st = &ls;
2842 
2843   print_taskqueue_stats_hdr(st);
2844 
2845   TaskQueueStats totals;
2846   const uint n = num_task_queues();
2847   for (uint i = 0; i < n; ++i) {
2848     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2849     totals += task_queue(i)->stats;
2850   }
2851   st->print_raw("tot "); totals.print(st); st->cr();
2852 
2853   DEBUG_ONLY(totals.verify());
2854 }
2855 
reset_taskqueue_stats()2856 void G1CollectedHeap::reset_taskqueue_stats() {
2857   const uint n = num_task_queues();
2858   for (uint i = 0; i < n; ++i) {
2859     task_queue(i)->stats.reset();
2860   }
2861 }
2862 #endif // TASKQUEUE_STATS
2863 
wait_for_root_region_scanning()2864 void G1CollectedHeap::wait_for_root_region_scanning() {
2865   double scan_wait_start = os::elapsedTime();
2866   // We have to wait until the CM threads finish scanning the
2867   // root regions as it's the only way to ensure that all the
2868   // objects on them have been correctly scanned before we start
2869   // moving them during the GC.
2870   bool waited = _cm->root_regions()->wait_until_scan_finished();
2871   double wait_time_ms = 0.0;
2872   if (waited) {
2873     double scan_wait_end = os::elapsedTime();
2874     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2875   }
2876   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2877 }
2878 
2879 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2880 private:
2881   G1HRPrinter* _hr_printer;
2882 public:
G1PrintCollectionSetClosure(G1HRPrinter * hr_printer)2883   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2884 
do_heap_region(HeapRegion * r)2885   virtual bool do_heap_region(HeapRegion* r) {
2886     _hr_printer->cset(r);
2887     return false;
2888   }
2889 };
2890 
start_new_collection_set()2891 void G1CollectedHeap::start_new_collection_set() {
2892   double start = os::elapsedTime();
2893 
2894   collection_set()->start_incremental_building();
2895 
2896   clear_region_attr();
2897 
2898   guarantee(_eden.length() == 0, "eden should have been cleared");
2899   policy()->transfer_survivors_to_cset(survivor());
2900 
2901   // We redo the verification but now wrt to the new CSet which
2902   // has just got initialized after the previous CSet was freed.
2903   _cm->verify_no_collection_set_oops();
2904 
2905   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2906 }
2907 
calculate_collection_set(G1EvacuationInfo & evacuation_info,double target_pause_time_ms)2908 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2909 
2910   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2911   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2912                                             collection_set()->optional_region_length());
2913 
2914   _cm->verify_no_collection_set_oops();
2915 
2916   if (_hr_printer.is_active()) {
2917     G1PrintCollectionSetClosure cl(&_hr_printer);
2918     _collection_set.iterate(&cl);
2919     _collection_set.iterate_optional(&cl);
2920   }
2921 }
2922 
young_collection_verify_type() const2923 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2924   if (collector_state()->in_initial_mark_gc()) {
2925     return G1HeapVerifier::G1VerifyConcurrentStart;
2926   } else if (collector_state()->in_young_only_phase()) {
2927     return G1HeapVerifier::G1VerifyYoungNormal;
2928   } else {
2929     return G1HeapVerifier::G1VerifyMixed;
2930   }
2931 }
2932 
verify_before_young_collection(G1HeapVerifier::G1VerifyType type)2933 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2934   if (VerifyRememberedSets) {
2935     log_info(gc, verify)("[Verifying RemSets before GC]");
2936     VerifyRegionRemSetClosure v_cl;
2937     heap_region_iterate(&v_cl);
2938   }
2939   _verifier->verify_before_gc(type);
2940   _verifier->check_bitmaps("GC Start");
2941   verify_numa_regions("GC Start");
2942 }
2943 
verify_after_young_collection(G1HeapVerifier::G1VerifyType type)2944 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2945   if (VerifyRememberedSets) {
2946     log_info(gc, verify)("[Verifying RemSets after GC]");
2947     VerifyRegionRemSetClosure v_cl;
2948     heap_region_iterate(&v_cl);
2949   }
2950   _verifier->verify_after_gc(type);
2951   _verifier->check_bitmaps("GC End");
2952   verify_numa_regions("GC End");
2953 }
2954 
expand_heap_after_young_collection()2955 void G1CollectedHeap::expand_heap_after_young_collection(){
2956   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2957   if (expand_bytes > 0) {
2958     // No need for an ergo logging here,
2959     // expansion_amount() does this when it returns a value > 0.
2960     double expand_ms;
2961     if (!expand(expand_bytes, _workers, &expand_ms)) {
2962       // We failed to expand the heap. Cannot do anything about it.
2963     }
2964     phase_times()->record_expand_heap_time(expand_ms);
2965   }
2966 }
2967 
young_gc_name() const2968 const char* G1CollectedHeap::young_gc_name() const {
2969   if (collector_state()->in_initial_mark_gc()) {
2970     return "Pause Young (Concurrent Start)";
2971   } else if (collector_state()->in_young_only_phase()) {
2972     if (collector_state()->in_young_gc_before_mixed()) {
2973       return "Pause Young (Prepare Mixed)";
2974     } else {
2975       return "Pause Young (Normal)";
2976     }
2977   } else {
2978     return "Pause Young (Mixed)";
2979   }
2980 }
2981 
do_collection_pause_at_safepoint(double target_pause_time_ms)2982 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2983   assert_at_safepoint_on_vm_thread();
2984   guarantee(!is_gc_active(), "collection is not reentrant");
2985 
2986   if (GCLocker::check_active_before_gc()) {
2987     return false;
2988   }
2989 
2990   GCIdMark gc_id_mark;
2991 
2992   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2993   ResourceMark rm;
2994 
2995   policy()->note_gc_start();
2996 
2997   _gc_timer_stw->register_gc_start();
2998   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2999 
3000   wait_for_root_region_scanning();
3001 
3002   print_heap_before_gc();
3003   print_heap_regions();
3004   trace_heap_before_gc(_gc_tracer_stw);
3005 
3006   _verifier->verify_region_sets_optional();
3007   _verifier->verify_dirty_young_regions();
3008 
3009   // We should not be doing initial mark unless the conc mark thread is running
3010   if (!_cm_thread->should_terminate()) {
3011     // This call will decide whether this pause is an initial-mark
3012     // pause. If it is, in_initial_mark_gc() will return true
3013     // for the duration of this pause.
3014     policy()->decide_on_conc_mark_initiation();
3015   }
3016 
3017   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3018   assert(!collector_state()->in_initial_mark_gc() ||
3019          collector_state()->in_young_only_phase(), "sanity");
3020   // We also do not allow mixed GCs during marking.
3021   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3022 
3023   // Record whether this pause is an initial mark. When the current
3024   // thread has completed its logging output and it's safe to signal
3025   // the CM thread, the flag's value in the policy has been reset.
3026   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3027   if (should_start_conc_mark) {
3028     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3029   }
3030 
3031   // Inner scope for scope based logging, timers, and stats collection
3032   {
3033     G1EvacuationInfo evacuation_info;
3034 
3035     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3036 
3037     GCTraceCPUTime tcpu;
3038 
3039     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3040 
3041     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3042                                                             workers()->active_workers(),
3043                                                             Threads::number_of_non_daemon_threads());
3044     active_workers = workers()->update_active_workers(active_workers);
3045     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3046 
3047     G1MonitoringScope ms(g1mm(),
3048                          false /* full_gc */,
3049                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3050 
3051     G1HeapTransition heap_transition(this);
3052 
3053     {
3054       IsGCActiveMark x;
3055 
3056       gc_prologue(false);
3057 
3058       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3059       verify_before_young_collection(verify_type);
3060 
3061       {
3062         // The elapsed time induced by the start time below deliberately elides
3063         // the possible verification above.
3064         double sample_start_time_sec = os::elapsedTime();
3065 
3066         // Please see comment in g1CollectedHeap.hpp and
3067         // G1CollectedHeap::ref_processing_init() to see how
3068         // reference processing currently works in G1.
3069         _ref_processor_stw->enable_discovery();
3070 
3071         // We want to temporarily turn off discovery by the
3072         // CM ref processor, if necessary, and turn it back on
3073         // on again later if we do. Using a scoped
3074         // NoRefDiscovery object will do this.
3075         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3076 
3077         policy()->record_collection_pause_start(sample_start_time_sec);
3078 
3079         // Forget the current allocation region (we might even choose it to be part
3080         // of the collection set!).
3081         _allocator->release_mutator_alloc_regions();
3082 
3083         calculate_collection_set(evacuation_info, target_pause_time_ms);
3084 
3085         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3086         G1ParScanThreadStateSet per_thread_states(this,
3087                                                   &rdcqs,
3088                                                   workers()->active_workers(),
3089                                                   collection_set()->young_region_length(),
3090                                                   collection_set()->optional_region_length());
3091         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3092 
3093         // Actually do the work...
3094         evacuate_initial_collection_set(&per_thread_states);
3095 
3096         if (_collection_set.optional_region_length() != 0) {
3097           evacuate_optional_collection_set(&per_thread_states);
3098         }
3099         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3100 
3101         start_new_collection_set();
3102 
3103         _survivor_evac_stats.adjust_desired_plab_sz();
3104         _old_evac_stats.adjust_desired_plab_sz();
3105 
3106         if (should_start_conc_mark) {
3107           // We have to do this before we notify the CM threads that
3108           // they can start working to make sure that all the
3109           // appropriate initialization is done on the CM object.
3110           concurrent_mark()->post_initial_mark();
3111           // Note that we don't actually trigger the CM thread at
3112           // this point. We do that later when we're sure that
3113           // the current thread has completed its logging output.
3114         }
3115 
3116         allocate_dummy_regions();
3117 
3118         _allocator->init_mutator_alloc_regions();
3119 
3120         expand_heap_after_young_collection();
3121 
3122         double sample_end_time_sec = os::elapsedTime();
3123         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3124         policy()->record_collection_pause_end(pause_time_ms);
3125       }
3126 
3127       verify_after_young_collection(verify_type);
3128 
3129 #ifdef TRACESPINNING
3130       ParallelTaskTerminator::print_termination_counts();
3131 #endif
3132 
3133       gc_epilogue(false);
3134     }
3135 
3136     // Print the remainder of the GC log output.
3137     if (evacuation_failed()) {
3138       log_info(gc)("To-space exhausted");
3139     }
3140 
3141     policy()->print_phases();
3142     heap_transition.print();
3143 
3144     _hrm->verify_optional();
3145     _verifier->verify_region_sets_optional();
3146 
3147     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3148     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3149 
3150     print_heap_after_gc();
3151     print_heap_regions();
3152     trace_heap_after_gc(_gc_tracer_stw);
3153 
3154     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3155     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3156     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3157     // before any GC notifications are raised.
3158     g1mm()->update_sizes();
3159 
3160     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3161     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3162     _gc_timer_stw->register_gc_end();
3163     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3164   }
3165   // It should now be safe to tell the concurrent mark thread to start
3166   // without its logging output interfering with the logging output
3167   // that came from the pause.
3168 
3169   if (should_start_conc_mark) {
3170     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3171     // thread(s) could be running concurrently with us. Make sure that anything
3172     // after this point does not assume that we are the only GC thread running.
3173     // Note: of course, the actual marking work will not start until the safepoint
3174     // itself is released in SuspendibleThreadSet::desynchronize().
3175     do_concurrent_mark();
3176   }
3177 
3178   return true;
3179 }
3180 
remove_self_forwarding_pointers(G1RedirtyCardsQueueSet * rdcqs)3181 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3182   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3183   workers()->run_task(&rsfp_task);
3184 }
3185 
restore_after_evac_failure(G1RedirtyCardsQueueSet * rdcqs)3186 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3187   double remove_self_forwards_start = os::elapsedTime();
3188 
3189   remove_self_forwarding_pointers(rdcqs);
3190   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3191   _preserved_marks_set.restore(&task_executor);
3192 
3193   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3194 }
3195 
preserve_mark_during_evac_failure(uint worker_id,oop obj,markWord m)3196 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3197   if (!_evacuation_failed) {
3198     _evacuation_failed = true;
3199   }
3200 
3201   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3202   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3203 }
3204 
offer_termination()3205 bool G1ParEvacuateFollowersClosure::offer_termination() {
3206   EventGCPhaseParallel event;
3207   G1ParScanThreadState* const pss = par_scan_state();
3208   start_term_time();
3209   const bool res = terminator()->offer_termination();
3210   end_term_time();
3211   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3212   return res;
3213 }
3214 
do_void()3215 void G1ParEvacuateFollowersClosure::do_void() {
3216   EventGCPhaseParallel event;
3217   G1ParScanThreadState* const pss = par_scan_state();
3218   pss->trim_queue();
3219   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3220   do {
3221     EventGCPhaseParallel event;
3222     pss->steal_and_trim_queue(queues());
3223     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3224   } while (!offer_termination());
3225 }
3226 
complete_cleaning(BoolObjectClosure * is_alive,bool class_unloading_occurred)3227 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3228                                         bool class_unloading_occurred) {
3229   uint num_workers = workers()->active_workers();
3230   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3231   workers()->run_task(&unlink_task);
3232 }
3233 
3234 // Clean string dedup data structures.
3235 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3236 // record the durations of the phases. Hence the almost-copy.
3237 class G1StringDedupCleaningTask : public AbstractGangTask {
3238   BoolObjectClosure* _is_alive;
3239   OopClosure* _keep_alive;
3240   G1GCPhaseTimes* _phase_times;
3241 
3242 public:
G1StringDedupCleaningTask(BoolObjectClosure * is_alive,OopClosure * keep_alive,G1GCPhaseTimes * phase_times)3243   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3244                             OopClosure* keep_alive,
3245                             G1GCPhaseTimes* phase_times) :
3246     AbstractGangTask("Partial Cleaning Task"),
3247     _is_alive(is_alive),
3248     _keep_alive(keep_alive),
3249     _phase_times(phase_times)
3250   {
3251     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3252     StringDedup::gc_prologue(true);
3253   }
3254 
~G1StringDedupCleaningTask()3255   ~G1StringDedupCleaningTask() {
3256     StringDedup::gc_epilogue();
3257   }
3258 
work(uint worker_id)3259   void work(uint worker_id) {
3260     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3261     {
3262       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3263       StringDedupQueue::unlink_or_oops_do(&cl);
3264     }
3265     {
3266       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3267       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3268     }
3269   }
3270 };
3271 
string_dedup_cleaning(BoolObjectClosure * is_alive,OopClosure * keep_alive,G1GCPhaseTimes * phase_times)3272 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3273                                             OopClosure* keep_alive,
3274                                             G1GCPhaseTimes* phase_times) {
3275   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3276   workers()->run_task(&cl);
3277 }
3278 
3279 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3280  private:
3281   G1RedirtyCardsQueueSet* _qset;
3282   G1CollectedHeap* _g1h;
3283   BufferNode* volatile _nodes;
3284 
par_apply(RedirtyLoggedCardTableEntryClosure * cl,uint worker_id)3285   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3286     size_t buffer_size = _qset->buffer_size();
3287     BufferNode* next = Atomic::load(&_nodes);
3288     while (next != NULL) {
3289       BufferNode* node = next;
3290       next = Atomic::cmpxchg(&_nodes, node, node->next());
3291       if (next == node) {
3292         cl->apply_to_buffer(node, buffer_size, worker_id);
3293         next = node->next();
3294       }
3295     }
3296   }
3297 
3298  public:
G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet * qset,G1CollectedHeap * g1h)3299   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3300     AbstractGangTask("Redirty Cards"),
3301     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3302 
work(uint worker_id)3303   virtual void work(uint worker_id) {
3304     G1GCPhaseTimes* p = _g1h->phase_times();
3305     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3306 
3307     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3308     par_apply(&cl, worker_id);
3309 
3310     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3311   }
3312 };
3313 
redirty_logged_cards(G1RedirtyCardsQueueSet * rdcqs)3314 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3315   double redirty_logged_cards_start = os::elapsedTime();
3316 
3317   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3318   workers()->run_task(&redirty_task);
3319 
3320   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3321   dcq.merge_bufferlists(rdcqs);
3322 
3323   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3324 }
3325 
3326 // Weak Reference Processing support
3327 
do_object_b(oop p)3328 bool G1STWIsAliveClosure::do_object_b(oop p) {
3329   // An object is reachable if it is outside the collection set,
3330   // or is inside and copied.
3331   return !_g1h->is_in_cset(p) || p->is_forwarded();
3332 }
3333 
do_object_b(oop obj)3334 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3335   assert(obj != NULL, "must not be NULL");
3336   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3337   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3338   // may falsely indicate that this is not the case here: however the collection set only
3339   // contains old regions when concurrent mark is not running.
3340   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3341 }
3342 
3343 // Non Copying Keep Alive closure
3344 class G1KeepAliveClosure: public OopClosure {
3345   G1CollectedHeap*_g1h;
3346 public:
G1KeepAliveClosure(G1CollectedHeap * g1h)3347   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
do_oop(narrowOop * p)3348   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
do_oop(oop * p)3349   void do_oop(oop* p) {
3350     oop obj = *p;
3351     assert(obj != NULL, "the caller should have filtered out NULL values");
3352 
3353     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3354     if (!region_attr.is_in_cset_or_humongous()) {
3355       return;
3356     }
3357     if (region_attr.is_in_cset()) {
3358       assert( obj->is_forwarded(), "invariant" );
3359       *p = obj->forwardee();
3360     } else {
3361       assert(!obj->is_forwarded(), "invariant" );
3362       assert(region_attr.is_humongous(),
3363              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3364      _g1h->set_humongous_is_live(obj);
3365     }
3366   }
3367 };
3368 
3369 // Copying Keep Alive closure - can be called from both
3370 // serial and parallel code as long as different worker
3371 // threads utilize different G1ParScanThreadState instances
3372 // and different queues.
3373 
3374 class G1CopyingKeepAliveClosure: public OopClosure {
3375   G1CollectedHeap*         _g1h;
3376   G1ParScanThreadState*    _par_scan_state;
3377 
3378 public:
G1CopyingKeepAliveClosure(G1CollectedHeap * g1h,G1ParScanThreadState * pss)3379   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3380                             G1ParScanThreadState* pss):
3381     _g1h(g1h),
3382     _par_scan_state(pss)
3383   {}
3384 
do_oop(narrowOop * p)3385   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)3386   virtual void do_oop(      oop* p) { do_oop_work(p); }
3387 
do_oop_work(T * p)3388   template <class T> void do_oop_work(T* p) {
3389     oop obj = RawAccess<>::oop_load(p);
3390 
3391     if (_g1h->is_in_cset_or_humongous(obj)) {
3392       // If the referent object has been forwarded (either copied
3393       // to a new location or to itself in the event of an
3394       // evacuation failure) then we need to update the reference
3395       // field and, if both reference and referent are in the G1
3396       // heap, update the RSet for the referent.
3397       //
3398       // If the referent has not been forwarded then we have to keep
3399       // it alive by policy. Therefore we have copy the referent.
3400       //
3401       // When the queue is drained (after each phase of reference processing)
3402       // the object and it's followers will be copied, the reference field set
3403       // to point to the new location, and the RSet updated.
3404       _par_scan_state->push_on_queue(p);
3405     }
3406   }
3407 };
3408 
3409 // Serial drain queue closure. Called as the 'complete_gc'
3410 // closure for each discovered list in some of the
3411 // reference processing phases.
3412 
3413 class G1STWDrainQueueClosure: public VoidClosure {
3414 protected:
3415   G1CollectedHeap* _g1h;
3416   G1ParScanThreadState* _par_scan_state;
3417 
par_scan_state()3418   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3419 
3420 public:
G1STWDrainQueueClosure(G1CollectedHeap * g1h,G1ParScanThreadState * pss)3421   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3422     _g1h(g1h),
3423     _par_scan_state(pss)
3424   { }
3425 
do_void()3426   void do_void() {
3427     G1ParScanThreadState* const pss = par_scan_state();
3428     pss->trim_queue();
3429   }
3430 };
3431 
3432 // Parallel Reference Processing closures
3433 
3434 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3435 // processing during G1 evacuation pauses.
3436 
3437 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3438 private:
3439   G1CollectedHeap*          _g1h;
3440   G1ParScanThreadStateSet*  _pss;
3441   RefToScanQueueSet*        _queues;
3442   WorkGang*                 _workers;
3443 
3444 public:
G1STWRefProcTaskExecutor(G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,WorkGang * workers,RefToScanQueueSet * task_queues)3445   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3446                            G1ParScanThreadStateSet* per_thread_states,
3447                            WorkGang* workers,
3448                            RefToScanQueueSet *task_queues) :
3449     _g1h(g1h),
3450     _pss(per_thread_states),
3451     _queues(task_queues),
3452     _workers(workers)
3453   {
3454     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3455   }
3456 
3457   // Executes the given task using concurrent marking worker threads.
3458   virtual void execute(ProcessTask& task, uint ergo_workers);
3459 };
3460 
3461 // Gang task for possibly parallel reference processing
3462 
3463 class G1STWRefProcTaskProxy: public AbstractGangTask {
3464   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3465   ProcessTask&     _proc_task;
3466   G1CollectedHeap* _g1h;
3467   G1ParScanThreadStateSet* _pss;
3468   RefToScanQueueSet* _task_queues;
3469   ParallelTaskTerminator* _terminator;
3470 
3471 public:
G1STWRefProcTaskProxy(ProcessTask & proc_task,G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * task_queues,ParallelTaskTerminator * terminator)3472   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3473                         G1CollectedHeap* g1h,
3474                         G1ParScanThreadStateSet* per_thread_states,
3475                         RefToScanQueueSet *task_queues,
3476                         ParallelTaskTerminator* terminator) :
3477     AbstractGangTask("Process reference objects in parallel"),
3478     _proc_task(proc_task),
3479     _g1h(g1h),
3480     _pss(per_thread_states),
3481     _task_queues(task_queues),
3482     _terminator(terminator)
3483   {}
3484 
work(uint worker_id)3485   virtual void work(uint worker_id) {
3486     // The reference processing task executed by a single worker.
3487     ResourceMark rm;
3488     HandleMark   hm;
3489 
3490     G1STWIsAliveClosure is_alive(_g1h);
3491 
3492     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3493     pss->set_ref_discoverer(NULL);
3494 
3495     // Keep alive closure.
3496     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3497 
3498     // Complete GC closure
3499     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3500 
3501     // Call the reference processing task's work routine.
3502     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3503 
3504     // Note we cannot assert that the refs array is empty here as not all
3505     // of the processing tasks (specifically phase2 - pp2_work) execute
3506     // the complete_gc closure (which ordinarily would drain the queue) so
3507     // the queue may not be empty.
3508   }
3509 };
3510 
3511 // Driver routine for parallel reference processing.
3512 // Creates an instance of the ref processing gang
3513 // task and has the worker threads execute it.
execute(ProcessTask & proc_task,uint ergo_workers)3514 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3515   assert(_workers != NULL, "Need parallel worker threads.");
3516 
3517   assert(_workers->active_workers() >= ergo_workers,
3518          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3519          ergo_workers, _workers->active_workers());
3520   TaskTerminator terminator(ergo_workers, _queues);
3521   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3522 
3523   _workers->run_task(&proc_task_proxy, ergo_workers);
3524 }
3525 
3526 // End of weak reference support closures
3527 
process_discovered_references(G1ParScanThreadStateSet * per_thread_states)3528 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3529   double ref_proc_start = os::elapsedTime();
3530 
3531   ReferenceProcessor* rp = _ref_processor_stw;
3532   assert(rp->discovery_enabled(), "should have been enabled");
3533 
3534   // Closure to test whether a referent is alive.
3535   G1STWIsAliveClosure is_alive(this);
3536 
3537   // Even when parallel reference processing is enabled, the processing
3538   // of JNI refs is serial and performed serially by the current thread
3539   // rather than by a worker. The following PSS will be used for processing
3540   // JNI refs.
3541 
3542   // Use only a single queue for this PSS.
3543   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3544   pss->set_ref_discoverer(NULL);
3545   assert(pss->queue_is_empty(), "pre-condition");
3546 
3547   // Keep alive closure.
3548   G1CopyingKeepAliveClosure keep_alive(this, pss);
3549 
3550   // Serial Complete GC closure
3551   G1STWDrainQueueClosure drain_queue(this, pss);
3552 
3553   // Setup the soft refs policy...
3554   rp->setup_policy(false);
3555 
3556   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3557 
3558   ReferenceProcessorStats stats;
3559   if (!rp->processing_is_mt()) {
3560     // Serial reference processing...
3561     stats = rp->process_discovered_references(&is_alive,
3562                                               &keep_alive,
3563                                               &drain_queue,
3564                                               NULL,
3565                                               pt);
3566   } else {
3567     uint no_of_gc_workers = workers()->active_workers();
3568 
3569     // Parallel reference processing
3570     assert(no_of_gc_workers <= rp->max_num_queues(),
3571            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3572            no_of_gc_workers,  rp->max_num_queues());
3573 
3574     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3575     stats = rp->process_discovered_references(&is_alive,
3576                                               &keep_alive,
3577                                               &drain_queue,
3578                                               &par_task_executor,
3579                                               pt);
3580   }
3581 
3582   _gc_tracer_stw->report_gc_reference_stats(stats);
3583 
3584   // We have completed copying any necessary live referent objects.
3585   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3586 
3587   make_pending_list_reachable();
3588 
3589   assert(!rp->discovery_enabled(), "Postcondition");
3590   rp->verify_no_references_recorded();
3591 
3592   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3593   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3594 }
3595 
make_pending_list_reachable()3596 void G1CollectedHeap::make_pending_list_reachable() {
3597   if (collector_state()->in_initial_mark_gc()) {
3598     oop pll_head = Universe::reference_pending_list();
3599     if (pll_head != NULL) {
3600       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3601       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3602     }
3603   }
3604 }
3605 
merge_per_thread_state_info(G1ParScanThreadStateSet * per_thread_states)3606 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3607   Ticks start = Ticks::now();
3608   per_thread_states->flush();
3609   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3610 }
3611 
3612 class G1PrepareEvacuationTask : public AbstractGangTask {
3613   class G1PrepareRegionsClosure : public HeapRegionClosure {
3614     G1CollectedHeap* _g1h;
3615     G1PrepareEvacuationTask* _parent_task;
3616     size_t _worker_humongous_total;
3617     size_t _worker_humongous_candidates;
3618 
humongous_region_is_candidate(HeapRegion * region) const3619     bool humongous_region_is_candidate(HeapRegion* region) const {
3620       assert(region->is_starts_humongous(), "Must start a humongous object");
3621 
3622       oop obj = oop(region->bottom());
3623 
3624       // Dead objects cannot be eager reclaim candidates. Due to class
3625       // unloading it is unsafe to query their classes so we return early.
3626       if (_g1h->is_obj_dead(obj, region)) {
3627         return false;
3628       }
3629 
3630       // If we do not have a complete remembered set for the region, then we can
3631       // not be sure that we have all references to it.
3632       if (!region->rem_set()->is_complete()) {
3633         return false;
3634       }
3635       // Candidate selection must satisfy the following constraints
3636       // while concurrent marking is in progress:
3637       //
3638       // * In order to maintain SATB invariants, an object must not be
3639       // reclaimed if it was allocated before the start of marking and
3640       // has not had its references scanned.  Such an object must have
3641       // its references (including type metadata) scanned to ensure no
3642       // live objects are missed by the marking process.  Objects
3643       // allocated after the start of concurrent marking don't need to
3644       // be scanned.
3645       //
3646       // * An object must not be reclaimed if it is on the concurrent
3647       // mark stack.  Objects allocated after the start of concurrent
3648       // marking are never pushed on the mark stack.
3649       //
3650       // Nominating only objects allocated after the start of concurrent
3651       // marking is sufficient to meet both constraints.  This may miss
3652       // some objects that satisfy the constraints, but the marking data
3653       // structures don't support efficiently performing the needed
3654       // additional tests or scrubbing of the mark stack.
3655       //
3656       // However, we presently only nominate is_typeArray() objects.
3657       // A humongous object containing references induces remembered
3658       // set entries on other regions.  In order to reclaim such an
3659       // object, those remembered sets would need to be cleaned up.
3660       //
3661       // We also treat is_typeArray() objects specially, allowing them
3662       // to be reclaimed even if allocated before the start of
3663       // concurrent mark.  For this we rely on mark stack insertion to
3664       // exclude is_typeArray() objects, preventing reclaiming an object
3665       // that is in the mark stack.  We also rely on the metadata for
3666       // such objects to be built-in and so ensured to be kept live.
3667       // Frequent allocation and drop of large binary blobs is an
3668       // important use case for eager reclaim, and this special handling
3669       // may reduce needed headroom.
3670 
3671       return obj->is_typeArray() &&
3672              _g1h->is_potential_eager_reclaim_candidate(region);
3673     }
3674 
3675   public:
G1PrepareRegionsClosure(G1CollectedHeap * g1h,G1PrepareEvacuationTask * parent_task)3676     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3677       _g1h(g1h),
3678       _parent_task(parent_task),
3679       _worker_humongous_total(0),
3680       _worker_humongous_candidates(0) { }
3681 
~G1PrepareRegionsClosure()3682     ~G1PrepareRegionsClosure() {
3683       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3684       _parent_task->add_humongous_total(_worker_humongous_total);
3685     }
3686 
do_heap_region(HeapRegion * hr)3687     virtual bool do_heap_region(HeapRegion* hr) {
3688       // First prepare the region for scanning
3689       _g1h->rem_set()->prepare_region_for_scan(hr);
3690 
3691       // Now check if region is a humongous candidate
3692       if (!hr->is_starts_humongous()) {
3693         _g1h->register_region_with_region_attr(hr);
3694         return false;
3695       }
3696 
3697       uint index = hr->hrm_index();
3698       if (humongous_region_is_candidate(hr)) {
3699         _g1h->set_humongous_reclaim_candidate(index, true);
3700         _g1h->register_humongous_region_with_region_attr(index);
3701         _worker_humongous_candidates++;
3702         // We will later handle the remembered sets of these regions.
3703       } else {
3704         _g1h->set_humongous_reclaim_candidate(index, false);
3705         _g1h->register_region_with_region_attr(hr);
3706       }
3707       _worker_humongous_total++;
3708 
3709       return false;
3710     }
3711   };
3712 
3713   G1CollectedHeap* _g1h;
3714   HeapRegionClaimer _claimer;
3715   volatile size_t _humongous_total;
3716   volatile size_t _humongous_candidates;
3717 public:
G1PrepareEvacuationTask(G1CollectedHeap * g1h)3718   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3719     AbstractGangTask("Prepare Evacuation"),
3720     _g1h(g1h),
3721     _claimer(_g1h->workers()->active_workers()),
3722     _humongous_total(0),
3723     _humongous_candidates(0) { }
3724 
~G1PrepareEvacuationTask()3725   ~G1PrepareEvacuationTask() {
3726     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3727   }
3728 
work(uint worker_id)3729   void work(uint worker_id) {
3730     G1PrepareRegionsClosure cl(_g1h, this);
3731     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3732   }
3733 
add_humongous_candidates(size_t candidates)3734   void add_humongous_candidates(size_t candidates) {
3735     Atomic::add(&_humongous_candidates, candidates);
3736   }
3737 
add_humongous_total(size_t total)3738   void add_humongous_total(size_t total) {
3739     Atomic::add(&_humongous_total, total);
3740   }
3741 
humongous_candidates()3742   size_t humongous_candidates() {
3743     return _humongous_candidates;
3744   }
3745 
humongous_total()3746   size_t humongous_total() {
3747     return _humongous_total;
3748   }
3749 };
3750 
pre_evacuate_collection_set(G1EvacuationInfo & evacuation_info,G1ParScanThreadStateSet * per_thread_states)3751 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3752   _bytes_used_during_gc = 0;
3753 
3754   _expand_heap_after_alloc_failure = true;
3755   _evacuation_failed = false;
3756 
3757   // Disable the hot card cache.
3758   _hot_card_cache->reset_hot_cache_claimed_index();
3759   _hot_card_cache->set_use_cache(false);
3760 
3761   // Initialize the GC alloc regions.
3762   _allocator->init_gc_alloc_regions(evacuation_info);
3763 
3764   {
3765     Ticks start = Ticks::now();
3766     rem_set()->prepare_for_scan_heap_roots();
3767     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3768   }
3769 
3770   {
3771     G1PrepareEvacuationTask g1_prep_task(this);
3772     Tickspan task_time = run_task(&g1_prep_task);
3773 
3774     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3775                                            g1_prep_task.humongous_total(),
3776                                            g1_prep_task.humongous_candidates());
3777   }
3778 
3779   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3780   _preserved_marks_set.assert_empty();
3781 
3782 #if COMPILER2_OR_JVMCI
3783   DerivedPointerTable::clear();
3784 #endif
3785 
3786   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3787   if (collector_state()->in_initial_mark_gc()) {
3788     concurrent_mark()->pre_initial_mark();
3789 
3790     double start_clear_claimed_marks = os::elapsedTime();
3791 
3792     ClassLoaderDataGraph::clear_claimed_marks();
3793 
3794     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3795     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3796   }
3797 
3798   // Should G1EvacuationFailureALot be in effect for this GC?
3799   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3800 }
3801 
3802 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3803 protected:
3804   G1CollectedHeap* _g1h;
3805   G1ParScanThreadStateSet* _per_thread_states;
3806   RefToScanQueueSet* _task_queues;
3807   TaskTerminator _terminator;
3808   uint _num_workers;
3809 
evacuate_live_objects(G1ParScanThreadState * pss,uint worker_id,G1GCPhaseTimes::GCParPhases objcopy_phase,G1GCPhaseTimes::GCParPhases termination_phase)3810   void evacuate_live_objects(G1ParScanThreadState* pss,
3811                              uint worker_id,
3812                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3813                              G1GCPhaseTimes::GCParPhases termination_phase) {
3814     G1GCPhaseTimes* p = _g1h->phase_times();
3815 
3816     Ticks start = Ticks::now();
3817     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3818     cl.do_void();
3819 
3820     assert(pss->queue_is_empty(), "should be empty");
3821 
3822     Tickspan evac_time = (Ticks::now() - start);
3823     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3824 
3825     if (termination_phase == G1GCPhaseTimes::Termination) {
3826       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3827       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3828     } else {
3829       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3830       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3831     }
3832     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3833   }
3834 
start_work(uint worker_id)3835   virtual void start_work(uint worker_id) { }
3836 
end_work(uint worker_id)3837   virtual void end_work(uint worker_id) { }
3838 
3839   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3840 
3841   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3842 
3843 public:
G1EvacuateRegionsBaseTask(const char * name,G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * task_queues,uint num_workers)3844   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3845     AbstractGangTask(name),
3846     _g1h(G1CollectedHeap::heap()),
3847     _per_thread_states(per_thread_states),
3848     _task_queues(task_queues),
3849     _terminator(num_workers, _task_queues),
3850     _num_workers(num_workers)
3851   { }
3852 
work(uint worker_id)3853   void work(uint worker_id) {
3854     start_work(worker_id);
3855 
3856     {
3857       ResourceMark rm;
3858       HandleMark   hm;
3859 
3860       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3861       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3862 
3863       scan_roots(pss, worker_id);
3864       evacuate_live_objects(pss, worker_id);
3865     }
3866 
3867     end_work(worker_id);
3868   }
3869 };
3870 
3871 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3872   G1RootProcessor* _root_processor;
3873 
scan_roots(G1ParScanThreadState * pss,uint worker_id)3874   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3875     _root_processor->evacuate_roots(pss, worker_id);
3876     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3877     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3878   }
3879 
evacuate_live_objects(G1ParScanThreadState * pss,uint worker_id)3880   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3881     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3882   }
3883 
start_work(uint worker_id)3884   void start_work(uint worker_id) {
3885     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3886   }
3887 
end_work(uint worker_id)3888   void end_work(uint worker_id) {
3889     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3890   }
3891 
3892 public:
G1EvacuateRegionsTask(G1CollectedHeap * g1h,G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * task_queues,G1RootProcessor * root_processor,uint num_workers)3893   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3894                         G1ParScanThreadStateSet* per_thread_states,
3895                         RefToScanQueueSet* task_queues,
3896                         G1RootProcessor* root_processor,
3897                         uint num_workers) :
3898     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3899     _root_processor(root_processor)
3900   { }
3901 };
3902 
evacuate_initial_collection_set(G1ParScanThreadStateSet * per_thread_states)3903 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3904   G1GCPhaseTimes* p = phase_times();
3905 
3906   {
3907     Ticks start = Ticks::now();
3908     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3909     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3910   }
3911 
3912   Tickspan task_time;
3913   const uint num_workers = workers()->active_workers();
3914 
3915   Ticks start_processing = Ticks::now();
3916   {
3917     G1RootProcessor root_processor(this, num_workers);
3918     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3919     task_time = run_task(&g1_par_task);
3920     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3921     // To extract its code root fixup time we measure total time of this scope and
3922     // subtract from the time the WorkGang task took.
3923   }
3924   Tickspan total_processing = Ticks::now() - start_processing;
3925 
3926   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3927   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3928 }
3929 
3930 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3931 
scan_roots(G1ParScanThreadState * pss,uint worker_id)3932   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3933     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3934     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3935   }
3936 
evacuate_live_objects(G1ParScanThreadState * pss,uint worker_id)3937   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3938     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3939   }
3940 
3941 public:
G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet * per_thread_states,RefToScanQueueSet * queues,uint num_workers)3942   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3943                                 RefToScanQueueSet* queues,
3944                                 uint num_workers) :
3945     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3946   }
3947 };
3948 
evacuate_next_optional_regions(G1ParScanThreadStateSet * per_thread_states)3949 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3950   class G1MarkScope : public MarkScope { };
3951 
3952   Tickspan task_time;
3953 
3954   Ticks start_processing = Ticks::now();
3955   {
3956     G1MarkScope code_mark_scope;
3957     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3958     task_time = run_task(&task);
3959     // See comment in evacuate_collection_set() for the reason of the scope.
3960   }
3961   Tickspan total_processing = Ticks::now() - start_processing;
3962 
3963   G1GCPhaseTimes* p = phase_times();
3964   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3965 }
3966 
evacuate_optional_collection_set(G1ParScanThreadStateSet * per_thread_states)3967 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3968   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3969 
3970   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3971 
3972     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3973     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3974 
3975     if (time_left_ms < 0 ||
3976         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3977       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3978                                 _collection_set.optional_region_length(), time_left_ms);
3979       break;
3980     }
3981 
3982     {
3983       Ticks start = Ticks::now();
3984       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3985       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3986     }
3987 
3988     {
3989       Ticks start = Ticks::now();
3990       evacuate_next_optional_regions(per_thread_states);
3991       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3992     }
3993   }
3994 
3995   _collection_set.abandon_optional_collection_set(per_thread_states);
3996 }
3997 
post_evacuate_collection_set(G1EvacuationInfo & evacuation_info,G1RedirtyCardsQueueSet * rdcqs,G1ParScanThreadStateSet * per_thread_states)3998 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3999                                                    G1RedirtyCardsQueueSet* rdcqs,
4000                                                    G1ParScanThreadStateSet* per_thread_states) {
4001   G1GCPhaseTimes* p = phase_times();
4002 
4003   rem_set()->cleanup_after_scan_heap_roots();
4004 
4005   // Process any discovered reference objects - we have
4006   // to do this _before_ we retire the GC alloc regions
4007   // as we may have to copy some 'reachable' referent
4008   // objects (and their reachable sub-graphs) that were
4009   // not copied during the pause.
4010   process_discovered_references(per_thread_states);
4011 
4012   G1STWIsAliveClosure is_alive(this);
4013   G1KeepAliveClosure keep_alive(this);
4014 
4015   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4016 
4017   if (G1StringDedup::is_enabled()) {
4018     double string_dedup_time_ms = os::elapsedTime();
4019 
4020     string_dedup_cleaning(&is_alive, &keep_alive, p);
4021 
4022     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4023     p->record_string_deduplication_time(string_cleanup_time_ms);
4024   }
4025 
4026   _allocator->release_gc_alloc_regions(evacuation_info);
4027 
4028   if (evacuation_failed()) {
4029     restore_after_evac_failure(rdcqs);
4030 
4031     // Reset the G1EvacuationFailureALot counters and flags
4032     NOT_PRODUCT(reset_evacuation_should_fail();)
4033 
4034     double recalculate_used_start = os::elapsedTime();
4035     set_used(recalculate_used());
4036     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4037 
4038     if (_archive_allocator != NULL) {
4039       _archive_allocator->clear_used();
4040     }
4041     for (uint i = 0; i < ParallelGCThreads; i++) {
4042       if (_evacuation_failed_info_array[i].has_failed()) {
4043         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4044       }
4045     }
4046   } else {
4047     // The "used" of the the collection set have already been subtracted
4048     // when they were freed.  Add in the bytes used.
4049     increase_used(_bytes_used_during_gc);
4050   }
4051 
4052   _preserved_marks_set.assert_empty();
4053 
4054   merge_per_thread_state_info(per_thread_states);
4055 
4056   // Reset and re-enable the hot card cache.
4057   // Note the counts for the cards in the regions in the
4058   // collection set are reset when the collection set is freed.
4059   _hot_card_cache->reset_hot_cache();
4060   _hot_card_cache->set_use_cache(true);
4061 
4062   purge_code_root_memory();
4063 
4064   redirty_logged_cards(rdcqs);
4065 
4066   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4067 
4068   eagerly_reclaim_humongous_regions();
4069 
4070   record_obj_copy_mem_stats();
4071 
4072   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4073   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4074 
4075 #if COMPILER2_OR_JVMCI
4076   double start = os::elapsedTime();
4077   DerivedPointerTable::update_pointers();
4078   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4079 #endif
4080   policy()->print_age_table();
4081 }
4082 
record_obj_copy_mem_stats()4083 void G1CollectedHeap::record_obj_copy_mem_stats() {
4084   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4085 
4086   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4087                                                create_g1_evac_summary(&_old_evac_stats));
4088 }
4089 
free_region(HeapRegion * hr,FreeRegionList * free_list)4090 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4091   assert(!hr->is_free(), "the region should not be free");
4092   assert(!hr->is_empty(), "the region should not be empty");
4093   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4094 
4095   if (G1VerifyBitmaps) {
4096     MemRegion mr(hr->bottom(), hr->end());
4097     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4098   }
4099 
4100   // Clear the card counts for this region.
4101   // Note: we only need to do this if the region is not young
4102   // (since we don't refine cards in young regions).
4103   if (!hr->is_young()) {
4104     _hot_card_cache->reset_card_counts(hr);
4105   }
4106 
4107   // Reset region metadata to allow reuse.
4108   hr->hr_clear(true /* clear_space */);
4109   _policy->remset_tracker()->update_at_free(hr);
4110 
4111   if (free_list != NULL) {
4112     free_list->add_ordered(hr);
4113   }
4114 }
4115 
free_humongous_region(HeapRegion * hr,FreeRegionList * free_list)4116 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4117                                             FreeRegionList* free_list) {
4118   assert(hr->is_humongous(), "this is only for humongous regions");
4119   assert(free_list != NULL, "pre-condition");
4120   hr->clear_humongous();
4121   free_region(hr, free_list);
4122 }
4123 
remove_from_old_sets(const uint old_regions_removed,const uint humongous_regions_removed)4124 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4125                                            const uint humongous_regions_removed) {
4126   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4127     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4128     _old_set.bulk_remove(old_regions_removed);
4129     _humongous_set.bulk_remove(humongous_regions_removed);
4130   }
4131 
4132 }
4133 
prepend_to_freelist(FreeRegionList * list)4134 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4135   assert(list != NULL, "list can't be null");
4136   if (!list->is_empty()) {
4137     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4138     _hrm->insert_list_into_free_list(list);
4139   }
4140 }
4141 
decrement_summary_bytes(size_t bytes)4142 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4143   decrease_used(bytes);
4144 }
4145 
4146 class G1FreeCollectionSetTask : public AbstractGangTask {
4147   // Helper class to keep statistics for the collection set freeing
4148   class FreeCSetStats {
4149     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4150     size_t _after_used_bytes;    // Usage in regions failing evacuation
4151     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4152     size_t _failure_used_words;  // Live size in failed regions
4153     size_t _failure_waste_words; // Wasted size in failed regions
4154     size_t _rs_length;           // Remembered set size
4155     uint _regions_freed;         // Number of regions freed
4156   public:
FreeCSetStats()4157     FreeCSetStats() :
4158         _before_used_bytes(0),
4159         _after_used_bytes(0),
4160         _bytes_allocated_in_old_since_last_gc(0),
4161         _failure_used_words(0),
4162         _failure_waste_words(0),
4163         _rs_length(0),
4164         _regions_freed(0) { }
4165 
merge_stats(FreeCSetStats * other)4166     void merge_stats(FreeCSetStats* other) {
4167       assert(other != NULL, "invariant");
4168       _before_used_bytes += other->_before_used_bytes;
4169       _after_used_bytes += other->_after_used_bytes;
4170       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4171       _failure_used_words += other->_failure_used_words;
4172       _failure_waste_words += other->_failure_waste_words;
4173       _rs_length += other->_rs_length;
4174       _regions_freed += other->_regions_freed;
4175     }
4176 
report(G1CollectedHeap * g1h,G1EvacuationInfo * evacuation_info)4177     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4178       evacuation_info->set_regions_freed(_regions_freed);
4179       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4180 
4181       g1h->decrement_summary_bytes(_before_used_bytes);
4182       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4183 
4184       G1Policy *policy = g1h->policy();
4185       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4186       policy->record_rs_length(_rs_length);
4187       policy->cset_regions_freed();
4188     }
4189 
account_failed_region(HeapRegion * r)4190     void account_failed_region(HeapRegion* r) {
4191       size_t used_words = r->marked_bytes() / HeapWordSize;
4192       _failure_used_words += used_words;
4193       _failure_waste_words += HeapRegion::GrainWords - used_words;
4194       _after_used_bytes += r->used();
4195 
4196       // When moving a young gen region to old gen, we "allocate" that whole
4197       // region there. This is in addition to any already evacuated objects.
4198       // Notify the policy about that. Old gen regions do not cause an
4199       // additional allocation: both the objects still in the region and the
4200       // ones already moved are accounted for elsewhere.
4201       if (r->is_young()) {
4202         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4203       }
4204     }
4205 
account_evacuated_region(HeapRegion * r)4206     void account_evacuated_region(HeapRegion* r) {
4207       _before_used_bytes += r->used();
4208       _regions_freed += 1;
4209     }
4210 
account_rs_length(HeapRegion * r)4211     void account_rs_length(HeapRegion* r) {
4212       _rs_length += r->rem_set()->occupied();
4213     }
4214   };
4215 
4216   // Closure applied to all regions in the collection set.
4217   class FreeCSetClosure : public HeapRegionClosure {
4218     // Helper to send JFR events for regions.
4219     class JFREventForRegion {
4220       EventGCPhaseParallel _event;
4221     public:
JFREventForRegion(HeapRegion * region,uint worker_id)4222       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4223         _event.set_gcId(GCId::current());
4224         _event.set_gcWorkerId(worker_id);
4225         if (region->is_young()) {
4226           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4227         } else {
4228           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4229         }
4230       }
4231 
~JFREventForRegion()4232       ~JFREventForRegion() {
4233         _event.commit();
4234       }
4235     };
4236 
4237     // Helper to do timing for region work.
4238     class TimerForRegion {
4239       Tickspan& _time;
4240       Ticks     _start_time;
4241     public:
TimerForRegion(Tickspan & time)4242       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
~TimerForRegion()4243       ~TimerForRegion() {
4244         _time += Ticks::now() - _start_time;
4245       }
4246     };
4247 
4248     // FreeCSetClosure members
4249     G1CollectedHeap* _g1h;
4250     const size_t*    _surviving_young_words;
4251     uint             _worker_id;
4252     Tickspan         _young_time;
4253     Tickspan         _non_young_time;
4254     FreeCSetStats*   _stats;
4255 
assert_in_cset(HeapRegion * r)4256     void assert_in_cset(HeapRegion* r) {
4257       assert(r->young_index_in_cset() != 0 &&
4258              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4259              "Young index %u is wrong for region %u of type %s with %u young regions",
4260              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4261     }
4262 
handle_evacuated_region(HeapRegion * r)4263     void handle_evacuated_region(HeapRegion* r) {
4264       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4265       stats()->account_evacuated_region(r);
4266 
4267       // Free the region and and its remembered set.
4268       _g1h->free_region(r, NULL);
4269     }
4270 
handle_failed_region(HeapRegion * r)4271     void handle_failed_region(HeapRegion* r) {
4272       // Do some allocation statistics accounting. Regions that failed evacuation
4273       // are always made old, so there is no need to update anything in the young
4274       // gen statistics, but we need to update old gen statistics.
4275       stats()->account_failed_region(r);
4276 
4277       // Update the region state due to the failed evacuation.
4278       r->handle_evacuation_failure();
4279 
4280       // Add region to old set, need to hold lock.
4281       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4282       _g1h->old_set_add(r);
4283     }
4284 
timer_for_region(HeapRegion * r)4285     Tickspan& timer_for_region(HeapRegion* r) {
4286       return r->is_young() ? _young_time : _non_young_time;
4287     }
4288 
stats()4289     FreeCSetStats* stats() {
4290       return _stats;
4291     }
4292   public:
FreeCSetClosure(const size_t * surviving_young_words,uint worker_id,FreeCSetStats * stats)4293     FreeCSetClosure(const size_t* surviving_young_words,
4294                     uint worker_id,
4295                     FreeCSetStats* stats) :
4296         HeapRegionClosure(),
4297         _g1h(G1CollectedHeap::heap()),
4298         _surviving_young_words(surviving_young_words),
4299         _worker_id(worker_id),
4300         _young_time(),
4301         _non_young_time(),
4302         _stats(stats) { }
4303 
do_heap_region(HeapRegion * r)4304     virtual bool do_heap_region(HeapRegion* r) {
4305       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4306       JFREventForRegion event(r, _worker_id);
4307       TimerForRegion timer(timer_for_region(r));
4308 
4309       _g1h->clear_region_attr(r);
4310       stats()->account_rs_length(r);
4311 
4312       if (r->is_young()) {
4313         assert_in_cset(r);
4314         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4315       }
4316 
4317       if (r->evacuation_failed()) {
4318         handle_failed_region(r);
4319       } else {
4320         handle_evacuated_region(r);
4321       }
4322       assert(!_g1h->is_on_master_free_list(r), "sanity");
4323 
4324       return false;
4325     }
4326 
report_timing(Tickspan parallel_time)4327     void report_timing(Tickspan parallel_time) {
4328       G1GCPhaseTimes* pt = _g1h->phase_times();
4329       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4330       if (_young_time.value() > 0) {
4331         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4332       }
4333       if (_non_young_time.value() > 0) {
4334         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4335       }
4336     }
4337   };
4338 
4339   // G1FreeCollectionSetTask members
4340   G1CollectedHeap*  _g1h;
4341   G1EvacuationInfo* _evacuation_info;
4342   FreeCSetStats*    _worker_stats;
4343   HeapRegionClaimer _claimer;
4344   const size_t*     _surviving_young_words;
4345   uint              _active_workers;
4346 
worker_stats(uint worker)4347   FreeCSetStats* worker_stats(uint worker) {
4348     return &_worker_stats[worker];
4349   }
4350 
report_statistics()4351   void report_statistics() {
4352     // Merge the accounting
4353     FreeCSetStats total_stats;
4354     for (uint worker = 0; worker < _active_workers; worker++) {
4355       total_stats.merge_stats(worker_stats(worker));
4356     }
4357     total_stats.report(_g1h, _evacuation_info);
4358   }
4359 
4360 public:
G1FreeCollectionSetTask(G1EvacuationInfo * evacuation_info,const size_t * surviving_young_words,uint active_workers)4361   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4362       AbstractGangTask("G1 Free Collection Set"),
4363       _g1h(G1CollectedHeap::heap()),
4364       _evacuation_info(evacuation_info),
4365       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4366       _claimer(active_workers),
4367       _surviving_young_words(surviving_young_words),
4368       _active_workers(active_workers) {
4369     for (uint worker = 0; worker < active_workers; worker++) {
4370       ::new (&_worker_stats[worker]) FreeCSetStats();
4371     }
4372   }
4373 
~G1FreeCollectionSetTask()4374   ~G1FreeCollectionSetTask() {
4375     Ticks serial_time = Ticks::now();
4376     report_statistics();
4377     for (uint worker = 0; worker < _active_workers; worker++) {
4378       _worker_stats[worker].~FreeCSetStats();
4379     }
4380     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4381     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4382   }
4383 
work(uint worker_id)4384   virtual void work(uint worker_id) {
4385     EventGCPhaseParallel event;
4386     Ticks start = Ticks::now();
4387     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4388     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4389 
4390     // Report the total parallel time along with some more detailed metrics.
4391     cl.report_timing(Ticks::now() - start);
4392     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4393   }
4394 };
4395 
free_collection_set(G1CollectionSet * collection_set,G1EvacuationInfo & evacuation_info,const size_t * surviving_young_words)4396 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4397   _eden.clear();
4398 
4399   // The free collections set is split up in two tasks, the first
4400   // frees the collection set and records what regions are free,
4401   // and the second one rebuilds the free list. This proved to be
4402   // more efficient than adding a sorted list to another.
4403 
4404   Ticks free_cset_start_time = Ticks::now();
4405   {
4406     uint const num_cs_regions = _collection_set.region_length();
4407     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4408     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4409 
4410     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4411                         cl.name(), num_workers, num_cs_regions, num_regions());
4412     workers()->run_task(&cl, num_workers);
4413   }
4414 
4415   Ticks free_cset_end_time = Ticks::now();
4416   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4417 
4418   // Now rebuild the free region list.
4419   hrm()->rebuild_free_list(workers());
4420   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4421 
4422   collection_set->clear();
4423 }
4424 
4425 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4426  private:
4427   FreeRegionList* _free_region_list;
4428   HeapRegionSet* _proxy_set;
4429   uint _humongous_objects_reclaimed;
4430   uint _humongous_regions_reclaimed;
4431   size_t _freed_bytes;
4432  public:
4433 
G1FreeHumongousRegionClosure(FreeRegionList * free_region_list)4434   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4435     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4436   }
4437 
do_heap_region(HeapRegion * r)4438   virtual bool do_heap_region(HeapRegion* r) {
4439     if (!r->is_starts_humongous()) {
4440       return false;
4441     }
4442 
4443     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4444 
4445     oop obj = (oop)r->bottom();
4446     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4447 
4448     // The following checks whether the humongous object is live are sufficient.
4449     // The main additional check (in addition to having a reference from the roots
4450     // or the young gen) is whether the humongous object has a remembered set entry.
4451     //
4452     // A humongous object cannot be live if there is no remembered set for it
4453     // because:
4454     // - there can be no references from within humongous starts regions referencing
4455     // the object because we never allocate other objects into them.
4456     // (I.e. there are no intra-region references that may be missed by the
4457     // remembered set)
4458     // - as soon there is a remembered set entry to the humongous starts region
4459     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4460     // until the end of a concurrent mark.
4461     //
4462     // It is not required to check whether the object has been found dead by marking
4463     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4464     // all objects allocated during that time are considered live.
4465     // SATB marking is even more conservative than the remembered set.
4466     // So if at this point in the collection there is no remembered set entry,
4467     // nobody has a reference to it.
4468     // At the start of collection we flush all refinement logs, and remembered sets
4469     // are completely up-to-date wrt to references to the humongous object.
4470     //
4471     // Other implementation considerations:
4472     // - never consider object arrays at this time because they would pose
4473     // considerable effort for cleaning up the the remembered sets. This is
4474     // required because stale remembered sets might reference locations that
4475     // are currently allocated into.
4476     uint region_idx = r->hrm_index();
4477     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4478         !r->rem_set()->is_empty()) {
4479       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4480                                region_idx,
4481                                (size_t)obj->size() * HeapWordSize,
4482                                p2i(r->bottom()),
4483                                r->rem_set()->occupied(),
4484                                r->rem_set()->strong_code_roots_list_length(),
4485                                next_bitmap->is_marked(r->bottom()),
4486                                g1h->is_humongous_reclaim_candidate(region_idx),
4487                                obj->is_typeArray()
4488                               );
4489       return false;
4490     }
4491 
4492     guarantee(obj->is_typeArray(),
4493               "Only eagerly reclaiming type arrays is supported, but the object "
4494               PTR_FORMAT " is not.", p2i(r->bottom()));
4495 
4496     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4497                              region_idx,
4498                              (size_t)obj->size() * HeapWordSize,
4499                              p2i(r->bottom()),
4500                              r->rem_set()->occupied(),
4501                              r->rem_set()->strong_code_roots_list_length(),
4502                              next_bitmap->is_marked(r->bottom()),
4503                              g1h->is_humongous_reclaim_candidate(region_idx),
4504                              obj->is_typeArray()
4505                             );
4506 
4507     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4508     cm->humongous_object_eagerly_reclaimed(r);
4509     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4510            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4511            region_idx,
4512            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4513            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4514     _humongous_objects_reclaimed++;
4515     do {
4516       HeapRegion* next = g1h->next_region_in_humongous(r);
4517       _freed_bytes += r->used();
4518       r->set_containing_set(NULL);
4519       _humongous_regions_reclaimed++;
4520       g1h->free_humongous_region(r, _free_region_list);
4521       r = next;
4522     } while (r != NULL);
4523 
4524     return false;
4525   }
4526 
humongous_objects_reclaimed()4527   uint humongous_objects_reclaimed() {
4528     return _humongous_objects_reclaimed;
4529   }
4530 
humongous_regions_reclaimed()4531   uint humongous_regions_reclaimed() {
4532     return _humongous_regions_reclaimed;
4533   }
4534 
bytes_freed() const4535   size_t bytes_freed() const {
4536     return _freed_bytes;
4537   }
4538 };
4539 
eagerly_reclaim_humongous_regions()4540 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4541   assert_at_safepoint_on_vm_thread();
4542 
4543   if (!G1EagerReclaimHumongousObjects ||
4544       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4545     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4546     return;
4547   }
4548 
4549   double start_time = os::elapsedTime();
4550 
4551   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4552 
4553   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4554   heap_region_iterate(&cl);
4555 
4556   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4557 
4558   G1HRPrinter* hrp = hr_printer();
4559   if (hrp->is_active()) {
4560     FreeRegionListIterator iter(&local_cleanup_list);
4561     while (iter.more_available()) {
4562       HeapRegion* hr = iter.get_next();
4563       hrp->cleanup(hr);
4564     }
4565   }
4566 
4567   prepend_to_freelist(&local_cleanup_list);
4568   decrement_summary_bytes(cl.bytes_freed());
4569 
4570   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4571                                                        cl.humongous_objects_reclaimed());
4572 }
4573 
4574 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4575 public:
do_heap_region(HeapRegion * r)4576   virtual bool do_heap_region(HeapRegion* r) {
4577     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4578     G1CollectedHeap::heap()->clear_region_attr(r);
4579     r->clear_young_index_in_cset();
4580     return false;
4581   }
4582 };
4583 
abandon_collection_set(G1CollectionSet * collection_set)4584 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4585   G1AbandonCollectionSetClosure cl;
4586   collection_set_iterate_all(&cl);
4587 
4588   collection_set->clear();
4589   collection_set->stop_incremental_building();
4590 }
4591 
is_old_gc_alloc_region(HeapRegion * hr)4592 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4593   return _allocator->is_retained_old_region(hr);
4594 }
4595 
set_region_short_lived_locked(HeapRegion * hr)4596 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4597   _eden.add(hr);
4598   _policy->set_region_eden(hr);
4599 }
4600 
4601 #ifdef ASSERT
4602 
4603 class NoYoungRegionsClosure: public HeapRegionClosure {
4604 private:
4605   bool _success;
4606 public:
NoYoungRegionsClosure()4607   NoYoungRegionsClosure() : _success(true) { }
do_heap_region(HeapRegion * r)4608   bool do_heap_region(HeapRegion* r) {
4609     if (r->is_young()) {
4610       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4611                             p2i(r->bottom()), p2i(r->end()));
4612       _success = false;
4613     }
4614     return false;
4615   }
success()4616   bool success() { return _success; }
4617 };
4618 
check_young_list_empty()4619 bool G1CollectedHeap::check_young_list_empty() {
4620   bool ret = (young_regions_count() == 0);
4621 
4622   NoYoungRegionsClosure closure;
4623   heap_region_iterate(&closure);
4624   ret = ret && closure.success();
4625 
4626   return ret;
4627 }
4628 
4629 #endif // ASSERT
4630 
4631 class TearDownRegionSetsClosure : public HeapRegionClosure {
4632   HeapRegionSet *_old_set;
4633 
4634 public:
TearDownRegionSetsClosure(HeapRegionSet * old_set)4635   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4636 
do_heap_region(HeapRegion * r)4637   bool do_heap_region(HeapRegion* r) {
4638     if (r->is_old()) {
4639       _old_set->remove(r);
4640     } else if(r->is_young()) {
4641       r->uninstall_surv_rate_group();
4642     } else {
4643       // We ignore free regions, we'll empty the free list afterwards.
4644       // We ignore humongous and archive regions, we're not tearing down these
4645       // sets.
4646       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4647              "it cannot be another type");
4648     }
4649     return false;
4650   }
4651 
~TearDownRegionSetsClosure()4652   ~TearDownRegionSetsClosure() {
4653     assert(_old_set->is_empty(), "post-condition");
4654   }
4655 };
4656 
tear_down_region_sets(bool free_list_only)4657 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4658   assert_at_safepoint_on_vm_thread();
4659 
4660   if (!free_list_only) {
4661     TearDownRegionSetsClosure cl(&_old_set);
4662     heap_region_iterate(&cl);
4663 
4664     // Note that emptying the _young_list is postponed and instead done as
4665     // the first step when rebuilding the regions sets again. The reason for
4666     // this is that during a full GC string deduplication needs to know if
4667     // a collected region was young or old when the full GC was initiated.
4668   }
4669   _hrm->remove_all_free_regions();
4670 }
4671 
increase_used(size_t bytes)4672 void G1CollectedHeap::increase_used(size_t bytes) {
4673   _summary_bytes_used += bytes;
4674 }
4675 
decrease_used(size_t bytes)4676 void G1CollectedHeap::decrease_used(size_t bytes) {
4677   assert(_summary_bytes_used >= bytes,
4678          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4679          _summary_bytes_used, bytes);
4680   _summary_bytes_used -= bytes;
4681 }
4682 
set_used(size_t bytes)4683 void G1CollectedHeap::set_used(size_t bytes) {
4684   _summary_bytes_used = bytes;
4685 }
4686 
4687 class RebuildRegionSetsClosure : public HeapRegionClosure {
4688 private:
4689   bool _free_list_only;
4690 
4691   HeapRegionSet* _old_set;
4692   HeapRegionManager* _hrm;
4693 
4694   size_t _total_used;
4695 
4696 public:
RebuildRegionSetsClosure(bool free_list_only,HeapRegionSet * old_set,HeapRegionManager * hrm)4697   RebuildRegionSetsClosure(bool free_list_only,
4698                            HeapRegionSet* old_set,
4699                            HeapRegionManager* hrm) :
4700     _free_list_only(free_list_only),
4701     _old_set(old_set), _hrm(hrm), _total_used(0) {
4702     assert(_hrm->num_free_regions() == 0, "pre-condition");
4703     if (!free_list_only) {
4704       assert(_old_set->is_empty(), "pre-condition");
4705     }
4706   }
4707 
do_heap_region(HeapRegion * r)4708   bool do_heap_region(HeapRegion* r) {
4709     if (r->is_empty()) {
4710       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4711       // Add free regions to the free list
4712       r->set_free();
4713       _hrm->insert_into_free_list(r);
4714     } else if (!_free_list_only) {
4715       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4716 
4717       if (r->is_archive() || r->is_humongous()) {
4718         // We ignore archive and humongous regions. We left these sets unchanged.
4719       } else {
4720         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4721         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4722         r->move_to_old();
4723         _old_set->add(r);
4724       }
4725       _total_used += r->used();
4726     }
4727 
4728     return false;
4729   }
4730 
total_used()4731   size_t total_used() {
4732     return _total_used;
4733   }
4734 };
4735 
rebuild_region_sets(bool free_list_only)4736 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4737   assert_at_safepoint_on_vm_thread();
4738 
4739   if (!free_list_only) {
4740     _eden.clear();
4741     _survivor.clear();
4742   }
4743 
4744   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4745   heap_region_iterate(&cl);
4746 
4747   if (!free_list_only) {
4748     set_used(cl.total_used());
4749     if (_archive_allocator != NULL) {
4750       _archive_allocator->clear_used();
4751     }
4752   }
4753   assert_used_and_recalculate_used_equal(this);
4754 }
4755 
4756 // Methods for the mutator alloc region
4757 
new_mutator_alloc_region(size_t word_size,bool force,uint node_index)4758 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4759                                                       bool force,
4760                                                       uint node_index) {
4761   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4762   bool should_allocate = policy()->should_allocate_mutator_region();
4763   if (force || should_allocate) {
4764     HeapRegion* new_alloc_region = new_region(word_size,
4765                                               HeapRegionType::Eden,
4766                                               false /* do_expand */,
4767                                               node_index);
4768     if (new_alloc_region != NULL) {
4769       set_region_short_lived_locked(new_alloc_region);
4770       _hr_printer.alloc(new_alloc_region, !should_allocate);
4771       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4772       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4773       return new_alloc_region;
4774     }
4775   }
4776   return NULL;
4777 }
4778 
retire_mutator_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes)4779 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4780                                                   size_t allocated_bytes) {
4781   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4782   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4783 
4784   collection_set()->add_eden_region(alloc_region);
4785   increase_used(allocated_bytes);
4786   _eden.add_used_bytes(allocated_bytes);
4787   _hr_printer.retire(alloc_region);
4788 
4789   // We update the eden sizes here, when the region is retired,
4790   // instead of when it's allocated, since this is the point that its
4791   // used space has been recorded in _summary_bytes_used.
4792   g1mm()->update_eden_size();
4793 }
4794 
4795 // Methods for the GC alloc regions
4796 
has_more_regions(G1HeapRegionAttr dest)4797 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4798   if (dest.is_old()) {
4799     return true;
4800   } else {
4801     return survivor_regions_count() < policy()->max_survivor_regions();
4802   }
4803 }
4804 
new_gc_alloc_region(size_t word_size,G1HeapRegionAttr dest,uint node_index)4805 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4806   assert(FreeList_lock->owned_by_self(), "pre-condition");
4807 
4808   if (!has_more_regions(dest)) {
4809     return NULL;
4810   }
4811 
4812   HeapRegionType type;
4813   if (dest.is_young()) {
4814     type = HeapRegionType::Survivor;
4815   } else {
4816     type = HeapRegionType::Old;
4817   }
4818 
4819   HeapRegion* new_alloc_region = new_region(word_size,
4820                                             type,
4821                                             true /* do_expand */,
4822                                             node_index);
4823 
4824   if (new_alloc_region != NULL) {
4825     if (type.is_survivor()) {
4826       new_alloc_region->set_survivor();
4827       _survivor.add(new_alloc_region);
4828       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4829     } else {
4830       new_alloc_region->set_old();
4831       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4832     }
4833     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4834     register_region_with_region_attr(new_alloc_region);
4835     _hr_printer.alloc(new_alloc_region);
4836     return new_alloc_region;
4837   }
4838   return NULL;
4839 }
4840 
retire_gc_alloc_region(HeapRegion * alloc_region,size_t allocated_bytes,G1HeapRegionAttr dest)4841 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4842                                              size_t allocated_bytes,
4843                                              G1HeapRegionAttr dest) {
4844   _bytes_used_during_gc += allocated_bytes;
4845   if (dest.is_old()) {
4846     old_set_add(alloc_region);
4847   } else {
4848     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4849     _survivor.add_used_bytes(allocated_bytes);
4850   }
4851 
4852   bool const during_im = collector_state()->in_initial_mark_gc();
4853   if (during_im && allocated_bytes > 0) {
4854     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4855   }
4856   _hr_printer.retire(alloc_region);
4857 }
4858 
alloc_highest_free_region()4859 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4860   bool expanded = false;
4861   uint index = _hrm->find_highest_free(&expanded);
4862 
4863   if (index != G1_NO_HRM_INDEX) {
4864     if (expanded) {
4865       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4866                                 HeapRegion::GrainWords * HeapWordSize);
4867     }
4868     _hrm->allocate_free_regions_starting_at(index, 1);
4869     return region_at(index);
4870   }
4871   return NULL;
4872 }
4873 
4874 // Optimized nmethod scanning
4875 
4876 class RegisterNMethodOopClosure: public OopClosure {
4877   G1CollectedHeap* _g1h;
4878   nmethod* _nm;
4879 
do_oop_work(T * p)4880   template <class T> void do_oop_work(T* p) {
4881     T heap_oop = RawAccess<>::oop_load(p);
4882     if (!CompressedOops::is_null(heap_oop)) {
4883       oop obj = CompressedOops::decode_not_null(heap_oop);
4884       HeapRegion* hr = _g1h->heap_region_containing(obj);
4885       assert(!hr->is_continues_humongous(),
4886              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4887              " starting at " HR_FORMAT,
4888              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4889 
4890       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4891       hr->add_strong_code_root_locked(_nm);
4892     }
4893   }
4894 
4895 public:
RegisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)4896   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4897     _g1h(g1h), _nm(nm) {}
4898 
do_oop(oop * p)4899   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)4900   void do_oop(narrowOop* p) { do_oop_work(p); }
4901 };
4902 
4903 class UnregisterNMethodOopClosure: public OopClosure {
4904   G1CollectedHeap* _g1h;
4905   nmethod* _nm;
4906 
do_oop_work(T * p)4907   template <class T> void do_oop_work(T* p) {
4908     T heap_oop = RawAccess<>::oop_load(p);
4909     if (!CompressedOops::is_null(heap_oop)) {
4910       oop obj = CompressedOops::decode_not_null(heap_oop);
4911       HeapRegion* hr = _g1h->heap_region_containing(obj);
4912       assert(!hr->is_continues_humongous(),
4913              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4914              " starting at " HR_FORMAT,
4915              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4916 
4917       hr->remove_strong_code_root(_nm);
4918     }
4919   }
4920 
4921 public:
UnregisterNMethodOopClosure(G1CollectedHeap * g1h,nmethod * nm)4922   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4923     _g1h(g1h), _nm(nm) {}
4924 
do_oop(oop * p)4925   void do_oop(oop* p)       { do_oop_work(p); }
do_oop(narrowOop * p)4926   void do_oop(narrowOop* p) { do_oop_work(p); }
4927 };
4928 
register_nmethod(nmethod * nm)4929 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4930   guarantee(nm != NULL, "sanity");
4931   RegisterNMethodOopClosure reg_cl(this, nm);
4932   nm->oops_do(&reg_cl);
4933 }
4934 
unregister_nmethod(nmethod * nm)4935 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4936   guarantee(nm != NULL, "sanity");
4937   UnregisterNMethodOopClosure reg_cl(this, nm);
4938   nm->oops_do(&reg_cl, true);
4939 }
4940 
purge_code_root_memory()4941 void G1CollectedHeap::purge_code_root_memory() {
4942   double purge_start = os::elapsedTime();
4943   G1CodeRootSet::purge();
4944   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4945   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4946 }
4947 
4948 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4949   G1CollectedHeap* _g1h;
4950 
4951 public:
RebuildStrongCodeRootClosure(G1CollectedHeap * g1h)4952   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4953     _g1h(g1h) {}
4954 
do_code_blob(CodeBlob * cb)4955   void do_code_blob(CodeBlob* cb) {
4956     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4957     if (nm == NULL) {
4958       return;
4959     }
4960 
4961     _g1h->register_nmethod(nm);
4962   }
4963 };
4964 
rebuild_strong_code_roots()4965 void G1CollectedHeap::rebuild_strong_code_roots() {
4966   RebuildStrongCodeRootClosure blob_cl(this);
4967   CodeCache::blobs_do(&blob_cl);
4968 }
4969 
initialize_serviceability()4970 void G1CollectedHeap::initialize_serviceability() {
4971   _g1mm->initialize_serviceability();
4972 }
4973 
memory_usage()4974 MemoryUsage G1CollectedHeap::memory_usage() {
4975   return _g1mm->memory_usage();
4976 }
4977 
memory_managers()4978 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4979   return _g1mm->memory_managers();
4980 }
4981 
memory_pools()4982 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4983   return _g1mm->memory_pools();
4984 }
4985