1 /*
2  * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_OOPS_ACCESS_HPP
26 #define SHARE_OOPS_ACCESS_HPP
27 
28 #include "memory/allocation.hpp"
29 #include "oops/accessBackend.hpp"
30 #include "oops/accessDecorators.hpp"
31 #include "oops/oopsHierarchy.hpp"
32 #include "utilities/debug.hpp"
33 #include "utilities/globalDefinitions.hpp"
34 
35 
36 // = GENERAL =
37 // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators".
38 // A decorator is an attribute or property that affects the way a memory access is performed in some way.
39 // There are different groups of decorators. Some have to do with memory ordering, others to do with,
40 // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not.
41 // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others
42 // at callsites such as whether an access is in the heap or not, and others are resolved at runtime
43 // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what
44 // decorators are available, cf. oops/accessDecorators.hpp.
45 // By pipelining handling of these decorators, the design of the Access API allows separation of concern
46 // over the different orthogonal concerns of decorators, while providing a powerful way of
47 // expressing these orthogonal semantic properties in a unified way.
48 //
49 // == OPERATIONS ==
50 // * load: Load a value from an address.
51 // * load_at: Load a value from an internal pointer relative to a base object.
52 // * store: Store a value at an address.
53 // * store_at: Store a value in an internal pointer relative to a base object.
54 // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value.
55 // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value.
56 // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value.
57 // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value.
58 // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this.
59 // * clone: Clone the contents of an object to a newly allocated object.
60 // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition.
61 //
62 // == IMPLEMENTATION ==
63 // Each access goes through the following steps in a template pipeline.
64 // There are essentially 5 steps for each access:
65 // * Step 1:   Set default decorators and decay types. This step gets rid of CV qualifiers
66 //             and sets default decorators to sensible values.
67 // * Step 2:   Reduce types. This step makes sure there is only a single T type and not
68 //             multiple types. The P type of the address and T type of the value must
69 //             match.
70 // * Step 3:   Pre-runtime dispatch. This step checks whether a runtime call can be
71 //             avoided, and in that case avoids it (calling raw accesses or
72 //             primitive accesses in a build that does not require primitive GC barriers)
73 // * Step 4:   Runtime-dispatch. This step performs a runtime dispatch to the corresponding
74 //             BarrierSet::AccessBarrier accessor that attaches GC-required barriers
75 //             to the access.
76 // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
77 //             happens for an access. The appropriate BarrierSet::AccessBarrier accessor
78 //             is resolved, then the function pointer is updated to that accessor for
79 //             future invocations.
80 // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
81 //             as the address type of an oop on the heap (is it oop* or narrowOop*) to
82 //             the appropriate type. It also splits sufficiently orthogonal accesses into
83 //             different functions, such as whether the access involves oops or primitives
84 //             and whether the access is performed on the heap or outside. Then the
85 //             appropriate BarrierSet::AccessBarrier is called to perform the access.
86 //
87 // The implementation of step 1-4 resides in in accessBackend.hpp, to allow selected
88 // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp.
89 // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to
90 // include the various GC backend .inline.hpp headers. Their implementation resides in
91 // access.inline.hpp. The accesses that are allowed through the access.hpp file
92 // must be instantiated in access.cpp using the INSTANTIATE_HPP_ACCESS macro.
93 
94 template <DecoratorSet decorators = DECORATORS_NONE>
95 class Access: public AllStatic {
96   // This function asserts that if an access gets passed in a decorator outside
97   // of the expected_decorators, then something is wrong. It additionally checks
98   // the consistency of the decorators so that supposedly disjoint decorators are indeed
99   // disjoint. For example, an access can not be both in heap and on root at the
100   // same time.
101   template <DecoratorSet expected_decorators>
102   static void verify_decorators();
103 
104   template <DecoratorSet expected_mo_decorators>
verify_primitive_decorators()105   static void verify_primitive_decorators() {
106     const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) |
107                                               IN_HEAP | IS_ARRAY;
108     verify_decorators<expected_mo_decorators | primitive_decorators>();
109   }
110 
111   template <DecoratorSet expected_mo_decorators>
verify_oop_decorators()112   static void verify_oop_decorators() {
113     const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK |
114                                         (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap
115                                         IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED;
116     verify_decorators<expected_mo_decorators | oop_decorators>();
117   }
118 
119   template <DecoratorSet expected_mo_decorators>
verify_heap_oop_decorators()120   static void verify_heap_oop_decorators() {
121     const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK |
122                                              IN_HEAP | IS_ARRAY | IS_NOT_NULL;
123     verify_decorators<expected_mo_decorators | heap_oop_decorators>();
124   }
125 
126   static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST;
127   static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST;
128   static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST;
129   static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST;
130 
131 protected:
132   template <typename T>
oop_arraycopy(arrayOop src_obj,size_t src_offset_in_bytes,const T * src_raw,arrayOop dst_obj,size_t dst_offset_in_bytes,T * dst_raw,size_t length)133   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
134                                    arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
135                                    size_t length) {
136     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
137                       AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>();
138     return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw,
139                                                                          dst_obj, dst_offset_in_bytes, dst_raw,
140                                                                          length);
141   }
142 
143   template <typename T>
arraycopy(arrayOop src_obj,size_t src_offset_in_bytes,const T * src_raw,arrayOop dst_obj,size_t dst_offset_in_bytes,T * dst_raw,size_t length)144   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw,
145                                arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
146                                size_t length) {
147     verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP |
148                       AS_DECORATOR_MASK | IS_ARRAY>();
149     AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw,
150                                           dst_obj, dst_offset_in_bytes, dst_raw,
151                                           length);
152   }
153 
154 public:
155   // Primitive heap accesses
load_at(oop base,ptrdiff_t offset)156   static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) {
157     verify_primitive_decorators<load_mo_decorators>();
158     return AccessInternal::LoadAtProxy<decorators>(base, offset);
159   }
160 
161   template <typename T>
store_at(oop base,ptrdiff_t offset,T value)162   static inline void store_at(oop base, ptrdiff_t offset, T value) {
163     verify_primitive_decorators<store_mo_decorators>();
164     AccessInternal::store_at<decorators>(base, offset, value);
165   }
166 
167   template <typename T>
atomic_cmpxchg_at(oop base,ptrdiff_t offset,T compare_value,T new_value)168   static inline T atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
169     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
170     return AccessInternal::atomic_cmpxchg_at<decorators>(base, offset, compare_value, new_value);
171   }
172 
173   template <typename T>
atomic_xchg_at(oop base,ptrdiff_t offset,T new_value)174   static inline T atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
175     verify_primitive_decorators<atomic_xchg_mo_decorators>();
176     return AccessInternal::atomic_xchg_at<decorators>(base, offset, new_value);
177   }
178 
179   // Oop heap accesses
oop_load_at(oop base,ptrdiff_t offset)180   static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) {
181     verify_heap_oop_decorators<load_mo_decorators>();
182     return AccessInternal::OopLoadAtProxy<decorators>(base, offset);
183   }
184 
185   template <typename T>
oop_store_at(oop base,ptrdiff_t offset,T value)186   static inline void oop_store_at(oop base, ptrdiff_t offset, T value) {
187     verify_heap_oop_decorators<store_mo_decorators>();
188     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
189     OopType oop_value = value;
190     AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value);
191   }
192 
193   template <typename T>
oop_atomic_cmpxchg_at(oop base,ptrdiff_t offset,T compare_value,T new_value)194   static inline T oop_atomic_cmpxchg_at(oop base, ptrdiff_t offset, T compare_value, T new_value) {
195     verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>();
196     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
197     OopType new_oop_value = new_value;
198     OopType compare_oop_value = compare_value;
199     return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, compare_oop_value, new_oop_value);
200   }
201 
202   template <typename T>
oop_atomic_xchg_at(oop base,ptrdiff_t offset,T new_value)203   static inline T oop_atomic_xchg_at(oop base, ptrdiff_t offset, T new_value) {
204     verify_heap_oop_decorators<atomic_xchg_mo_decorators>();
205     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
206     OopType new_oop_value = new_value;
207     return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, new_oop_value);
208   }
209 
210   // Clone an object from src to dst
clone(oop src,oop dst,size_t size)211   static inline void clone(oop src, oop dst, size_t size) {
212     verify_decorators<IN_HEAP>();
213     AccessInternal::clone<decorators>(src, dst, size);
214   }
215 
216   // Primitive accesses
217   template <typename P>
load(P * addr)218   static inline P load(P* addr) {
219     verify_primitive_decorators<load_mo_decorators>();
220     return AccessInternal::load<decorators, P, P>(addr);
221   }
222 
223   template <typename P, typename T>
store(P * addr,T value)224   static inline void store(P* addr, T value) {
225     verify_primitive_decorators<store_mo_decorators>();
226     AccessInternal::store<decorators>(addr, value);
227   }
228 
229   template <typename P, typename T>
atomic_cmpxchg(P * addr,T compare_value,T new_value)230   static inline T atomic_cmpxchg(P* addr, T compare_value, T new_value) {
231     verify_primitive_decorators<atomic_cmpxchg_mo_decorators>();
232     return AccessInternal::atomic_cmpxchg<decorators>(addr, compare_value, new_value);
233   }
234 
235   template <typename P, typename T>
atomic_xchg(P * addr,T new_value)236   static inline T atomic_xchg(P* addr, T new_value) {
237     verify_primitive_decorators<atomic_xchg_mo_decorators>();
238     return AccessInternal::atomic_xchg<decorators>(addr, new_value);
239   }
240 
241   // Oop accesses
242   template <typename P>
oop_load(P * addr)243   static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) {
244     verify_oop_decorators<load_mo_decorators>();
245     return AccessInternal::OopLoadProxy<P, decorators>(addr);
246   }
247 
248   template <typename P, typename T>
oop_store(P * addr,T value)249   static inline void oop_store(P* addr, T value) {
250     verify_oop_decorators<store_mo_decorators>();
251     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
252     OopType oop_value = value;
253     AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value);
254   }
255 
256   template <typename P, typename T>
oop_atomic_cmpxchg(P * addr,T compare_value,T new_value)257   static inline T oop_atomic_cmpxchg(P* addr, T compare_value, T new_value) {
258     verify_oop_decorators<atomic_cmpxchg_mo_decorators>();
259     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
260     OopType new_oop_value = new_value;
261     OopType compare_oop_value = compare_value;
262     return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(addr, compare_oop_value, new_oop_value);
263   }
264 
265   template <typename P, typename T>
oop_atomic_xchg(P * addr,T new_value)266   static inline T oop_atomic_xchg(P* addr, T new_value) {
267     verify_oop_decorators<atomic_xchg_mo_decorators>();
268     typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType;
269     OopType new_oop_value = new_value;
270     return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(addr, new_oop_value);
271   }
272 
resolve(oop obj)273   static oop resolve(oop obj) {
274     verify_decorators<DECORATORS_NONE>();
275     return AccessInternal::resolve<decorators>(obj);
276   }
277 };
278 
279 // Helper for performing raw accesses (knows only of memory ordering
280 // atomicity decorators as well as compressed oops)
281 template <DecoratorSet decorators = DECORATORS_NONE>
282 class RawAccess: public Access<AS_RAW | decorators> {};
283 
284 // Helper for performing normal accesses on the heap. These accesses
285 // may resolve an accessor on a GC barrier set
286 template <DecoratorSet decorators = DECORATORS_NONE>
287 class HeapAccess: public Access<IN_HEAP | decorators> {};
288 
289 // Helper for performing normal accesses in roots. These accesses
290 // may resolve an accessor on a GC barrier set
291 template <DecoratorSet decorators = DECORATORS_NONE>
292 class NativeAccess: public Access<IN_NATIVE | decorators> {};
293 
294 // Helper for array access.
295 template <DecoratorSet decorators = DECORATORS_NONE>
296 class ArrayAccess: public HeapAccess<IS_ARRAY | decorators> {
297   typedef HeapAccess<IS_ARRAY | decorators> AccessT;
298 public:
299   template <typename T>
arraycopy(arrayOop src_obj,size_t src_offset_in_bytes,arrayOop dst_obj,size_t dst_offset_in_bytes,size_t length)300   static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
301                                arrayOop dst_obj, size_t dst_offset_in_bytes,
302                                size_t length) {
303     AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL),
304                        dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL),
305                        length);
306   }
307 
308   template <typename T>
arraycopy_to_native(arrayOop src_obj,size_t src_offset_in_bytes,T * dst,size_t length)309   static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes,
310                                          T* dst,
311                                          size_t length) {
312     AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL),
313                        NULL, 0, dst,
314                        length);
315   }
316 
317   template <typename T>
arraycopy_from_native(const T * src,arrayOop dst_obj,size_t dst_offset_in_bytes,size_t length)318   static inline void arraycopy_from_native(const T* src,
319                                            arrayOop dst_obj, size_t dst_offset_in_bytes,
320                                            size_t length) {
321     AccessT::arraycopy(NULL, 0, src,
322                        dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL),
323                        length);
324   }
325 
oop_arraycopy(arrayOop src_obj,size_t src_offset_in_bytes,arrayOop dst_obj,size_t dst_offset_in_bytes,size_t length)326   static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes,
327                                    arrayOop dst_obj, size_t dst_offset_in_bytes,
328                                    size_t length) {
329     return AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const HeapWord*>(NULL),
330                                   dst_obj, dst_offset_in_bytes, reinterpret_cast<HeapWord*>(NULL),
331                                   length);
332   }
333 
334   template <typename T>
oop_arraycopy_raw(T * src,T * dst,size_t length)335   static inline bool oop_arraycopy_raw(T* src, T* dst, size_t length) {
336     return AccessT::oop_arraycopy(NULL, 0, src,
337                                   NULL, 0, dst,
338                                   length);
339   }
340 
341 };
342 
343 template <DecoratorSet decorators>
344 template <DecoratorSet expected_decorators>
verify_decorators()345 void Access<decorators>::verify_decorators() {
346   STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used
347   const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK;
348   STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set
349     (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 ||
350     (barrier_strength_decorators ^ AS_RAW) == 0 ||
351     (barrier_strength_decorators ^ AS_NORMAL) == 0
352   ));
353   const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK;
354   STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set
355     (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 ||
356     (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 ||
357     (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 ||
358     (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0
359   ));
360   const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK;
361   STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set
362     (memory_ordering_decorators ^ MO_UNORDERED) == 0 ||
363     (memory_ordering_decorators ^ MO_VOLATILE) == 0 ||
364     (memory_ordering_decorators ^ MO_RELAXED) == 0 ||
365     (memory_ordering_decorators ^ MO_ACQUIRE) == 0 ||
366     (memory_ordering_decorators ^ MO_RELEASE) == 0 ||
367     (memory_ordering_decorators ^ MO_SEQ_CST) == 0
368   ));
369   const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK;
370   STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set
371     (location_decorators ^ IN_NATIVE) == 0 ||
372     (location_decorators ^ IN_HEAP) == 0
373   ));
374 }
375 
376 #endif // SHARE_OOPS_ACCESS_HPP
377