1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "ci/ciReplay.hpp"
29 #include "classfile/systemDictionary.hpp"
30 #include "code/exceptionHandlerTable.hpp"
31 #include "code/nmethod.hpp"
32 #include "compiler/compileBroker.hpp"
33 #include "compiler/compileLog.hpp"
34 #include "compiler/disassembler.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/shared/barrierSet.hpp"
37 #include "gc/shared/c2/barrierSetC2.hpp"
38 #include "memory/resourceArea.hpp"
39 #include "opto/addnode.hpp"
40 #include "opto/block.hpp"
41 #include "opto/c2compiler.hpp"
42 #include "opto/callGenerator.hpp"
43 #include "opto/callnode.hpp"
44 #include "opto/castnode.hpp"
45 #include "opto/cfgnode.hpp"
46 #include "opto/chaitin.hpp"
47 #include "opto/compile.hpp"
48 #include "opto/connode.hpp"
49 #include "opto/convertnode.hpp"
50 #include "opto/divnode.hpp"
51 #include "opto/escape.hpp"
52 #include "opto/idealGraphPrinter.hpp"
53 #include "opto/loopnode.hpp"
54 #include "opto/machnode.hpp"
55 #include "opto/macro.hpp"
56 #include "opto/matcher.hpp"
57 #include "opto/mathexactnode.hpp"
58 #include "opto/memnode.hpp"
59 #include "opto/mulnode.hpp"
60 #include "opto/narrowptrnode.hpp"
61 #include "opto/node.hpp"
62 #include "opto/opcodes.hpp"
63 #include "opto/output.hpp"
64 #include "opto/parse.hpp"
65 #include "opto/phaseX.hpp"
66 #include "opto/rootnode.hpp"
67 #include "opto/runtime.hpp"
68 #include "opto/stringopts.hpp"
69 #include "opto/type.hpp"
70 #include "opto/vectornode.hpp"
71 #include "runtime/arguments.hpp"
72 #include "runtime/sharedRuntime.hpp"
73 #include "runtime/signature.hpp"
74 #include "runtime/stubRoutines.hpp"
75 #include "runtime/timer.hpp"
76 #include "utilities/align.hpp"
77 #include "utilities/copy.hpp"
78 #include "utilities/macros.hpp"
79 
80 
81 // -------------------- Compile::mach_constant_base_node -----------------------
82 // Constant table base node singleton.
mach_constant_base_node()83 MachConstantBaseNode* Compile::mach_constant_base_node() {
84   if (_mach_constant_base_node == NULL) {
85     _mach_constant_base_node = new MachConstantBaseNode();
86     _mach_constant_base_node->add_req(C->root());
87   }
88   return _mach_constant_base_node;
89 }
90 
91 
92 /// Support for intrinsics.
93 
94 // Return the index at which m must be inserted (or already exists).
95 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
96 class IntrinsicDescPair {
97  private:
98   ciMethod* _m;
99   bool _is_virtual;
100  public:
IntrinsicDescPair(ciMethod * m,bool is_virtual)101   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
compare(IntrinsicDescPair * const & key,CallGenerator * const & elt)102   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
103     ciMethod* m= elt->method();
104     ciMethod* key_m = key->_m;
105     if (key_m < m)      return -1;
106     else if (key_m > m) return 1;
107     else {
108       bool is_virtual = elt->is_virtual();
109       bool key_virtual = key->_is_virtual;
110       if (key_virtual < is_virtual)      return -1;
111       else if (key_virtual > is_virtual) return 1;
112       else                               return 0;
113     }
114   }
115 };
intrinsic_insertion_index(ciMethod * m,bool is_virtual,bool & found)116 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
117 #ifdef ASSERT
118   for (int i = 1; i < _intrinsics->length(); i++) {
119     CallGenerator* cg1 = _intrinsics->at(i-1);
120     CallGenerator* cg2 = _intrinsics->at(i);
121     assert(cg1->method() != cg2->method()
122            ? cg1->method()     < cg2->method()
123            : cg1->is_virtual() < cg2->is_virtual(),
124            "compiler intrinsics list must stay sorted");
125   }
126 #endif
127   IntrinsicDescPair pair(m, is_virtual);
128   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
129 }
130 
register_intrinsic(CallGenerator * cg)131 void Compile::register_intrinsic(CallGenerator* cg) {
132   if (_intrinsics == NULL) {
133     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
134   }
135   int len = _intrinsics->length();
136   bool found = false;
137   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
138   assert(!found, "registering twice");
139   _intrinsics->insert_before(index, cg);
140   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
141 }
142 
find_intrinsic(ciMethod * m,bool is_virtual)143 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
144   assert(m->is_loaded(), "don't try this on unloaded methods");
145   if (_intrinsics != NULL) {
146     bool found = false;
147     int index = intrinsic_insertion_index(m, is_virtual, found);
148      if (found) {
149       return _intrinsics->at(index);
150     }
151   }
152   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
153   if (m->intrinsic_id() != vmIntrinsics::_none &&
154       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
155     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
156     if (cg != NULL) {
157       // Save it for next time:
158       register_intrinsic(cg);
159       return cg;
160     } else {
161       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
162     }
163   }
164   return NULL;
165 }
166 
167 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
168 // in library_call.cpp.
169 
170 
171 #ifndef PRODUCT
172 // statistics gathering...
173 
174 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
175 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
176 
gather_intrinsic_statistics(vmIntrinsics::ID id,bool is_virtual,int flags)177 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
178   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
179   int oflags = _intrinsic_hist_flags[id];
180   assert(flags != 0, "what happened?");
181   if (is_virtual) {
182     flags |= _intrinsic_virtual;
183   }
184   bool changed = (flags != oflags);
185   if ((flags & _intrinsic_worked) != 0) {
186     juint count = (_intrinsic_hist_count[id] += 1);
187     if (count == 1) {
188       changed = true;           // first time
189     }
190     // increment the overall count also:
191     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
192   }
193   if (changed) {
194     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
195       // Something changed about the intrinsic's virtuality.
196       if ((flags & _intrinsic_virtual) != 0) {
197         // This is the first use of this intrinsic as a virtual call.
198         if (oflags != 0) {
199           // We already saw it as a non-virtual, so note both cases.
200           flags |= _intrinsic_both;
201         }
202       } else if ((oflags & _intrinsic_both) == 0) {
203         // This is the first use of this intrinsic as a non-virtual
204         flags |= _intrinsic_both;
205       }
206     }
207     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
208   }
209   // update the overall flags also:
210   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
211   return changed;
212 }
213 
format_flags(int flags,char * buf)214 static char* format_flags(int flags, char* buf) {
215   buf[0] = 0;
216   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
217   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
218   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
219   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
220   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
221   if (buf[0] == 0)  strcat(buf, ",");
222   assert(buf[0] == ',', "must be");
223   return &buf[1];
224 }
225 
print_intrinsic_statistics()226 void Compile::print_intrinsic_statistics() {
227   char flagsbuf[100];
228   ttyLocker ttyl;
229   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
230   tty->print_cr("Compiler intrinsic usage:");
231   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
232   if (total == 0)  total = 1;  // avoid div0 in case of no successes
233   #define PRINT_STAT_LINE(name, c, f) \
234     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
235   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
236     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
237     int   flags = _intrinsic_hist_flags[id];
238     juint count = _intrinsic_hist_count[id];
239     if ((flags | count) != 0) {
240       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
241     }
242   }
243   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
244   if (xtty != NULL)  xtty->tail("statistics");
245 }
246 
print_statistics()247 void Compile::print_statistics() {
248   { ttyLocker ttyl;
249     if (xtty != NULL)  xtty->head("statistics type='opto'");
250     Parse::print_statistics();
251     PhaseCCP::print_statistics();
252     PhaseRegAlloc::print_statistics();
253     Scheduling::print_statistics();
254     PhasePeephole::print_statistics();
255     PhaseIdealLoop::print_statistics();
256     if (xtty != NULL)  xtty->tail("statistics");
257   }
258   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
259     // put this under its own <statistics> element.
260     print_intrinsic_statistics();
261   }
262 }
263 #endif //PRODUCT
264 
265 // Support for bundling info
node_bundling(const Node * n)266 Bundle* Compile::node_bundling(const Node *n) {
267   assert(valid_bundle_info(n), "oob");
268   return &_node_bundling_base[n->_idx];
269 }
270 
valid_bundle_info(const Node * n)271 bool Compile::valid_bundle_info(const Node *n) {
272   return (_node_bundling_limit > n->_idx);
273 }
274 
275 
gvn_replace_by(Node * n,Node * nn)276 void Compile::gvn_replace_by(Node* n, Node* nn) {
277   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
278     Node* use = n->last_out(i);
279     bool is_in_table = initial_gvn()->hash_delete(use);
280     uint uses_found = 0;
281     for (uint j = 0; j < use->len(); j++) {
282       if (use->in(j) == n) {
283         if (j < use->req())
284           use->set_req(j, nn);
285         else
286           use->set_prec(j, nn);
287         uses_found++;
288       }
289     }
290     if (is_in_table) {
291       // reinsert into table
292       initial_gvn()->hash_find_insert(use);
293     }
294     record_for_igvn(use);
295     i -= uses_found;    // we deleted 1 or more copies of this edge
296   }
297 }
298 
299 
not_a_node(const Node * n)300 static inline bool not_a_node(const Node* n) {
301   if (n == NULL)                   return true;
302   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
303   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
304   return false;
305 }
306 
307 // Identify all nodes that are reachable from below, useful.
308 // Use breadth-first pass that records state in a Unique_Node_List,
309 // recursive traversal is slower.
identify_useful_nodes(Unique_Node_List & useful)310 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
311   int estimated_worklist_size = live_nodes();
312   useful.map( estimated_worklist_size, NULL );  // preallocate space
313 
314   // Initialize worklist
315   if (root() != NULL)     { useful.push(root()); }
316   // If 'top' is cached, declare it useful to preserve cached node
317   if( cached_top_node() ) { useful.push(cached_top_node()); }
318 
319   // Push all useful nodes onto the list, breadthfirst
320   for( uint next = 0; next < useful.size(); ++next ) {
321     assert( next < unique(), "Unique useful nodes < total nodes");
322     Node *n  = useful.at(next);
323     uint max = n->len();
324     for( uint i = 0; i < max; ++i ) {
325       Node *m = n->in(i);
326       if (not_a_node(m))  continue;
327       useful.push(m);
328     }
329   }
330 }
331 
332 // Update dead_node_list with any missing dead nodes using useful
333 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
update_dead_node_list(Unique_Node_List & useful)334 void Compile::update_dead_node_list(Unique_Node_List &useful) {
335   uint max_idx = unique();
336   VectorSet& useful_node_set = useful.member_set();
337 
338   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
339     // If node with index node_idx is not in useful set,
340     // mark it as dead in dead node list.
341     if (!useful_node_set.test(node_idx)) {
342       record_dead_node(node_idx);
343     }
344   }
345 }
346 
remove_useless_late_inlines(GrowableArray<CallGenerator * > * inlines,Unique_Node_List & useful)347 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
348   int shift = 0;
349   for (int i = 0; i < inlines->length(); i++) {
350     CallGenerator* cg = inlines->at(i);
351     CallNode* call = cg->call_node();
352     if (shift > 0) {
353       inlines->at_put(i-shift, cg);
354     }
355     if (!useful.member(call)) {
356       shift++;
357     }
358   }
359   inlines->trunc_to(inlines->length()-shift);
360 }
361 
362 // Disconnect all useless nodes by disconnecting those at the boundary.
remove_useless_nodes(Unique_Node_List & useful)363 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
364   uint next = 0;
365   while (next < useful.size()) {
366     Node *n = useful.at(next++);
367     if (n->is_SafePoint()) {
368       // We're done with a parsing phase. Replaced nodes are not valid
369       // beyond that point.
370       n->as_SafePoint()->delete_replaced_nodes();
371     }
372     // Use raw traversal of out edges since this code removes out edges
373     int max = n->outcnt();
374     for (int j = 0; j < max; ++j) {
375       Node* child = n->raw_out(j);
376       if (! useful.member(child)) {
377         assert(!child->is_top() || child != top(),
378                "If top is cached in Compile object it is in useful list");
379         // Only need to remove this out-edge to the useless node
380         n->raw_del_out(j);
381         --j;
382         --max;
383       }
384     }
385     if (n->outcnt() == 1 && n->has_special_unique_user()) {
386       record_for_igvn(n->unique_out());
387     }
388   }
389   // Remove useless macro and predicate opaq nodes
390   for (int i = C->macro_count()-1; i >= 0; i--) {
391     Node* n = C->macro_node(i);
392     if (!useful.member(n)) {
393       remove_macro_node(n);
394     }
395   }
396   // Remove useless CastII nodes with range check dependency
397   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
398     Node* cast = range_check_cast_node(i);
399     if (!useful.member(cast)) {
400       remove_range_check_cast(cast);
401     }
402   }
403   // Remove useless expensive nodes
404   for (int i = C->expensive_count()-1; i >= 0; i--) {
405     Node* n = C->expensive_node(i);
406     if (!useful.member(n)) {
407       remove_expensive_node(n);
408     }
409   }
410   // Remove useless Opaque4 nodes
411   for (int i = opaque4_count() - 1; i >= 0; i--) {
412     Node* opaq = opaque4_node(i);
413     if (!useful.member(opaq)) {
414       remove_opaque4_node(opaq);
415     }
416   }
417   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
418   bs->eliminate_useless_gc_barriers(useful, this);
419   // clean up the late inline lists
420   remove_useless_late_inlines(&_string_late_inlines, useful);
421   remove_useless_late_inlines(&_boxing_late_inlines, useful);
422   remove_useless_late_inlines(&_late_inlines, useful);
423   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
424 }
425 
426 //------------------------------frame_size_in_words-----------------------------
427 // frame_slots in units of words
frame_size_in_words() const428 int Compile::frame_size_in_words() const {
429   // shift is 0 in LP32 and 1 in LP64
430   const int shift = (LogBytesPerWord - LogBytesPerInt);
431   int words = _frame_slots >> shift;
432   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
433   return words;
434 }
435 
436 // To bang the stack of this compiled method we use the stack size
437 // that the interpreter would need in case of a deoptimization. This
438 // removes the need to bang the stack in the deoptimization blob which
439 // in turn simplifies stack overflow handling.
bang_size_in_bytes() const440 int Compile::bang_size_in_bytes() const {
441   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
442 }
443 
444 // ============================================================================
445 //------------------------------CompileWrapper---------------------------------
446 class CompileWrapper : public StackObj {
447   Compile *const _compile;
448  public:
449   CompileWrapper(Compile* compile);
450 
451   ~CompileWrapper();
452 };
453 
CompileWrapper(Compile * compile)454 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
455   // the Compile* pointer is stored in the current ciEnv:
456   ciEnv* env = compile->env();
457   assert(env == ciEnv::current(), "must already be a ciEnv active");
458   assert(env->compiler_data() == NULL, "compile already active?");
459   env->set_compiler_data(compile);
460   assert(compile == Compile::current(), "sanity");
461 
462   compile->set_type_dict(NULL);
463   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
464   compile->clone_map().set_clone_idx(0);
465   compile->set_type_last_size(0);
466   compile->set_last_tf(NULL, NULL);
467   compile->set_indexSet_arena(NULL);
468   compile->set_indexSet_free_block_list(NULL);
469   compile->init_type_arena();
470   Type::Initialize(compile);
471   _compile->set_scratch_buffer_blob(NULL);
472   _compile->begin_method();
473   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
474 }
~CompileWrapper()475 CompileWrapper::~CompileWrapper() {
476   _compile->end_method();
477   if (_compile->scratch_buffer_blob() != NULL)
478     BufferBlob::free(_compile->scratch_buffer_blob());
479   _compile->env()->set_compiler_data(NULL);
480 }
481 
482 
483 //----------------------------print_compile_messages---------------------------
print_compile_messages()484 void Compile::print_compile_messages() {
485 #ifndef PRODUCT
486   // Check if recompiling
487   if (_subsume_loads == false && PrintOpto) {
488     // Recompiling without allowing machine instructions to subsume loads
489     tty->print_cr("*********************************************************");
490     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
491     tty->print_cr("*********************************************************");
492   }
493   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
494     // Recompiling without escape analysis
495     tty->print_cr("*********************************************************");
496     tty->print_cr("** Bailout: Recompile without escape analysis          **");
497     tty->print_cr("*********************************************************");
498   }
499   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
500     // Recompiling without boxing elimination
501     tty->print_cr("*********************************************************");
502     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
503     tty->print_cr("*********************************************************");
504   }
505   if (C->directive()->BreakAtCompileOption) {
506     // Open the debugger when compiling this method.
507     tty->print("### Breaking when compiling: ");
508     method()->print_short_name();
509     tty->cr();
510     BREAKPOINT;
511   }
512 
513   if( PrintOpto ) {
514     if (is_osr_compilation()) {
515       tty->print("[OSR]%3d", _compile_id);
516     } else {
517       tty->print("%3d", _compile_id);
518     }
519   }
520 #endif
521 }
522 
523 
524 //-----------------------init_scratch_buffer_blob------------------------------
525 // Construct a temporary BufferBlob and cache it for this compile.
init_scratch_buffer_blob(int const_size)526 void Compile::init_scratch_buffer_blob(int const_size) {
527   // If there is already a scratch buffer blob allocated and the
528   // constant section is big enough, use it.  Otherwise free the
529   // current and allocate a new one.
530   BufferBlob* blob = scratch_buffer_blob();
531   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
532     // Use the current blob.
533   } else {
534     if (blob != NULL) {
535       BufferBlob::free(blob);
536     }
537 
538     ResourceMark rm;
539     _scratch_const_size = const_size;
540     int size = C2Compiler::initial_code_buffer_size(const_size);
541     blob = BufferBlob::create("Compile::scratch_buffer", size);
542     // Record the buffer blob for next time.
543     set_scratch_buffer_blob(blob);
544     // Have we run out of code space?
545     if (scratch_buffer_blob() == NULL) {
546       // Let CompilerBroker disable further compilations.
547       record_failure("Not enough space for scratch buffer in CodeCache");
548       return;
549     }
550   }
551 
552   // Initialize the relocation buffers
553   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
554   set_scratch_locs_memory(locs_buf);
555 }
556 
557 
558 //-----------------------scratch_emit_size-------------------------------------
559 // Helper function that computes size by emitting code
scratch_emit_size(const Node * n)560 uint Compile::scratch_emit_size(const Node* n) {
561   // Start scratch_emit_size section.
562   set_in_scratch_emit_size(true);
563 
564   // Emit into a trash buffer and count bytes emitted.
565   // This is a pretty expensive way to compute a size,
566   // but it works well enough if seldom used.
567   // All common fixed-size instructions are given a size
568   // method by the AD file.
569   // Note that the scratch buffer blob and locs memory are
570   // allocated at the beginning of the compile task, and
571   // may be shared by several calls to scratch_emit_size.
572   // The allocation of the scratch buffer blob is particularly
573   // expensive, since it has to grab the code cache lock.
574   BufferBlob* blob = this->scratch_buffer_blob();
575   assert(blob != NULL, "Initialize BufferBlob at start");
576   assert(blob->size() > MAX_inst_size, "sanity");
577   relocInfo* locs_buf = scratch_locs_memory();
578   address blob_begin = blob->content_begin();
579   address blob_end   = (address)locs_buf;
580   assert(blob->contains(blob_end), "sanity");
581   CodeBuffer buf(blob_begin, blob_end - blob_begin);
582   buf.initialize_consts_size(_scratch_const_size);
583   buf.initialize_stubs_size(MAX_stubs_size);
584   assert(locs_buf != NULL, "sanity");
585   int lsize = MAX_locs_size / 3;
586   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
587   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
588   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
589   // Mark as scratch buffer.
590   buf.consts()->set_scratch_emit();
591   buf.insts()->set_scratch_emit();
592   buf.stubs()->set_scratch_emit();
593 
594   // Do the emission.
595 
596   Label fakeL; // Fake label for branch instructions.
597   Label*   saveL = NULL;
598   uint save_bnum = 0;
599   bool is_branch = n->is_MachBranch();
600   if (is_branch) {
601     MacroAssembler masm(&buf);
602     masm.bind(fakeL);
603     n->as_MachBranch()->save_label(&saveL, &save_bnum);
604     n->as_MachBranch()->label_set(&fakeL, 0);
605   }
606   n->emit(buf, this->regalloc());
607 
608   // Emitting into the scratch buffer should not fail
609   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
610 
611   if (is_branch) // Restore label.
612     n->as_MachBranch()->label_set(saveL, save_bnum);
613 
614   // End scratch_emit_size section.
615   set_in_scratch_emit_size(false);
616 
617   return buf.insts_size();
618 }
619 
620 
621 // ============================================================================
622 //------------------------------Compile standard-------------------------------
debug_only(int Compile::_debug_idx=100000;)623 debug_only( int Compile::_debug_idx = 100000; )
624 
625 // Compile a method.  entry_bci is -1 for normal compilations and indicates
626 // the continuation bci for on stack replacement.
627 
628 
629 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
630                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
631                 : Phase(Compiler),
632                   _compile_id(ci_env->compile_id()),
633                   _save_argument_registers(false),
634                   _subsume_loads(subsume_loads),
635                   _do_escape_analysis(do_escape_analysis),
636                   _eliminate_boxing(eliminate_boxing),
637                   _method(target),
638                   _entry_bci(osr_bci),
639                   _stub_function(NULL),
640                   _stub_name(NULL),
641                   _stub_entry_point(NULL),
642                   _max_node_limit(MaxNodeLimit),
643                   _orig_pc_slot(0),
644                   _orig_pc_slot_offset_in_bytes(0),
645                   _inlining_progress(false),
646                   _inlining_incrementally(false),
647                   _do_cleanup(false),
648                   _has_reserved_stack_access(target->has_reserved_stack_access()),
649 #ifndef PRODUCT
650                   _trace_opto_output(directive->TraceOptoOutputOption),
651                   _print_ideal(directive->PrintIdealOption),
652 #endif
653                   _has_method_handle_invokes(false),
654                   _clinit_barrier_on_entry(false),
655                   _comp_arena(mtCompiler),
656                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
657                   _env(ci_env),
658                   _directive(directive),
659                   _log(ci_env->log()),
660                   _failure_reason(NULL),
661                   _congraph(NULL),
662 #ifndef PRODUCT
663                   _printer(IdealGraphPrinter::printer()),
664 #endif
665                   _dead_node_list(comp_arena()),
666                   _dead_node_count(0),
667                   _node_arena(mtCompiler),
668                   _old_arena(mtCompiler),
669                   _mach_constant_base_node(NULL),
670                   _Compile_types(mtCompiler),
671                   _initial_gvn(NULL),
672                   _for_igvn(NULL),
673                   _warm_calls(NULL),
674                   _late_inlines(comp_arena(), 2, 0, NULL),
675                   _string_late_inlines(comp_arena(), 2, 0, NULL),
676                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
677                   _late_inlines_pos(0),
678                   _number_of_mh_late_inlines(0),
679                   _print_inlining_stream(NULL),
680                   _print_inlining_list(NULL),
681                   _print_inlining_idx(0),
682                   _print_inlining_output(NULL),
683                   _replay_inline_data(NULL),
684                   _java_calls(0),
685                   _inner_loops(0),
686                   _interpreter_frame_size(0),
687                   _node_bundling_limit(0),
688                   _node_bundling_base(NULL),
689                   _code_buffer("Compile::Fill_buffer"),
690                   _scratch_const_size(-1),
691                   _in_scratch_emit_size(false)
692 #ifndef PRODUCT
693                   , _in_dump_cnt(0)
694 #endif
695 {
696   C = this;
697 #ifndef PRODUCT
698   if (_printer != NULL) {
699     _printer->set_compile(this);
700   }
701 #endif
702   CompileWrapper cw(this);
703 
704   if (CITimeVerbose) {
705     tty->print(" ");
706     target->holder()->name()->print();
707     tty->print(".");
708     target->print_short_name();
709     tty->print("  ");
710   }
711   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
712   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
713 
714 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
715   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
716   // We can always print a disassembly, either abstract (hex dump) or
717   // with the help of a suitable hsdis library. Thus, we should not
718   // couple print_assembly and print_opto_assembly controls.
719   // But: always print opto and regular assembly on compile command 'print'.
720   bool print_assembly = directive->PrintAssemblyOption;
721   set_print_assembly(print_opto_assembly || print_assembly);
722 #else
723   set_print_assembly(false); // must initialize.
724 #endif
725 
726 #ifndef PRODUCT
727   set_parsed_irreducible_loop(false);
728 
729   if (directive->ReplayInlineOption) {
730     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
731   }
732 #endif
733   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
734   set_print_intrinsics(directive->PrintIntrinsicsOption);
735   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
736 
737   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
738     // Make sure the method being compiled gets its own MDO,
739     // so we can at least track the decompile_count().
740     // Need MDO to record RTM code generation state.
741     method()->ensure_method_data();
742   }
743 
744   Init(::AliasLevel);
745 
746 
747   print_compile_messages();
748 
749   _ilt = InlineTree::build_inline_tree_root();
750 
751   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
752   assert(num_alias_types() >= AliasIdxRaw, "");
753 
754 #define MINIMUM_NODE_HASH  1023
755   // Node list that Iterative GVN will start with
756   Unique_Node_List for_igvn(comp_arena());
757   set_for_igvn(&for_igvn);
758 
759   // GVN that will be run immediately on new nodes
760   uint estimated_size = method()->code_size()*4+64;
761   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
762   PhaseGVN gvn(node_arena(), estimated_size);
763   set_initial_gvn(&gvn);
764 
765   print_inlining_init();
766   { // Scope for timing the parser
767     TracePhase tp("parse", &timers[_t_parser]);
768 
769     // Put top into the hash table ASAP.
770     initial_gvn()->transform_no_reclaim(top());
771 
772     // Set up tf(), start(), and find a CallGenerator.
773     CallGenerator* cg = NULL;
774     if (is_osr_compilation()) {
775       const TypeTuple *domain = StartOSRNode::osr_domain();
776       const TypeTuple *range = TypeTuple::make_range(method()->signature());
777       init_tf(TypeFunc::make(domain, range));
778       StartNode* s = new StartOSRNode(root(), domain);
779       initial_gvn()->set_type_bottom(s);
780       init_start(s);
781       cg = CallGenerator::for_osr(method(), entry_bci());
782     } else {
783       // Normal case.
784       init_tf(TypeFunc::make(method()));
785       StartNode* s = new StartNode(root(), tf()->domain());
786       initial_gvn()->set_type_bottom(s);
787       init_start(s);
788       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
789         // With java.lang.ref.reference.get() we must go through the
790         // intrinsic - even when get() is the root
791         // method of the compile - so that, if necessary, the value in
792         // the referent field of the reference object gets recorded by
793         // the pre-barrier code.
794         cg = find_intrinsic(method(), false);
795       }
796       if (cg == NULL) {
797         float past_uses = method()->interpreter_invocation_count();
798         float expected_uses = past_uses;
799         cg = CallGenerator::for_inline(method(), expected_uses);
800       }
801     }
802     if (failing())  return;
803     if (cg == NULL) {
804       record_method_not_compilable("cannot parse method");
805       return;
806     }
807     JVMState* jvms = build_start_state(start(), tf());
808     if ((jvms = cg->generate(jvms)) == NULL) {
809       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
810         record_method_not_compilable("method parse failed");
811       }
812       return;
813     }
814     GraphKit kit(jvms);
815 
816     if (!kit.stopped()) {
817       // Accept return values, and transfer control we know not where.
818       // This is done by a special, unique ReturnNode bound to root.
819       return_values(kit.jvms());
820     }
821 
822     if (kit.has_exceptions()) {
823       // Any exceptions that escape from this call must be rethrown
824       // to whatever caller is dynamically above us on the stack.
825       // This is done by a special, unique RethrowNode bound to root.
826       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
827     }
828 
829     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
830 
831     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
832       inline_string_calls(true);
833     }
834 
835     if (failing())  return;
836 
837     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
838 
839     // Remove clutter produced by parsing.
840     if (!failing()) {
841       ResourceMark rm;
842       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
843     }
844   }
845 
846   // Note:  Large methods are capped off in do_one_bytecode().
847   if (failing())  return;
848 
849   // After parsing, node notes are no longer automagic.
850   // They must be propagated by register_new_node_with_optimizer(),
851   // clone(), or the like.
852   set_default_node_notes(NULL);
853 
854   for (;;) {
855     int successes = Inline_Warm();
856     if (failing())  return;
857     if (successes == 0)  break;
858   }
859 
860   // Drain the list.
861   Finish_Warm();
862 #ifndef PRODUCT
863   if (_printer && _printer->should_print(1)) {
864     _printer->print_inlining();
865   }
866 #endif
867 
868   if (failing())  return;
869   NOT_PRODUCT( verify_graph_edges(); )
870 
871   // Now optimize
872   Optimize();
873   if (failing())  return;
874   NOT_PRODUCT( verify_graph_edges(); )
875 
876 #ifndef PRODUCT
877   if (print_ideal()) {
878     ttyLocker ttyl;  // keep the following output all in one block
879     // This output goes directly to the tty, not the compiler log.
880     // To enable tools to match it up with the compilation activity,
881     // be sure to tag this tty output with the compile ID.
882     if (xtty != NULL) {
883       xtty->head("ideal compile_id='%d'%s", compile_id(),
884                  is_osr_compilation()    ? " compile_kind='osr'" :
885                  "");
886     }
887     root()->dump(9999);
888     if (xtty != NULL) {
889       xtty->tail("ideal");
890     }
891   }
892 #endif
893 
894 #ifdef ASSERT
895   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
896   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
897 #endif
898 
899   // Dump compilation data to replay it.
900   if (directive->DumpReplayOption) {
901     env()->dump_replay_data(_compile_id);
902   }
903   if (directive->DumpInlineOption && (ilt() != NULL)) {
904     env()->dump_inline_data(_compile_id);
905   }
906 
907   // Now that we know the size of all the monitors we can add a fixed slot
908   // for the original deopt pc.
909 
910   _orig_pc_slot =  fixed_slots();
911   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
912   set_fixed_slots(next_slot);
913 
914   // Compute when to use implicit null checks. Used by matching trap based
915   // nodes and NullCheck optimization.
916   set_allowed_deopt_reasons();
917 
918   // Now generate code
919   Code_Gen();
920   if (failing())  return;
921 
922   // Check if we want to skip execution of all compiled code.
923   {
924 #ifndef PRODUCT
925     if (OptoNoExecute) {
926       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
927       return;
928     }
929 #endif
930     TracePhase tp("install_code", &timers[_t_registerMethod]);
931 
932     if (is_osr_compilation()) {
933       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
934       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
935     } else {
936       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
937       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
938     }
939 
940     env()->register_method(_method, _entry_bci,
941                            &_code_offsets,
942                            _orig_pc_slot_offset_in_bytes,
943                            code_buffer(),
944                            frame_size_in_words(), _oop_map_set,
945                            &_handler_table, &_inc_table,
946                            compiler,
947                            has_unsafe_access(),
948                            SharedRuntime::is_wide_vector(max_vector_size()),
949                            rtm_state()
950                            );
951 
952     if (log() != NULL) // Print code cache state into compiler log
953       log()->code_cache_state();
954   }
955 }
956 
957 //------------------------------Compile----------------------------------------
958 // Compile a runtime stub
Compile(ciEnv * ci_env,TypeFunc_generator generator,address stub_function,const char * stub_name,int is_fancy_jump,bool pass_tls,bool save_arg_registers,bool return_pc,DirectiveSet * directive)959 Compile::Compile( ciEnv* ci_env,
960                   TypeFunc_generator generator,
961                   address stub_function,
962                   const char *stub_name,
963                   int is_fancy_jump,
964                   bool pass_tls,
965                   bool save_arg_registers,
966                   bool return_pc,
967                   DirectiveSet* directive)
968   : Phase(Compiler),
969     _compile_id(0),
970     _save_argument_registers(save_arg_registers),
971     _subsume_loads(true),
972     _do_escape_analysis(false),
973     _eliminate_boxing(false),
974     _method(NULL),
975     _entry_bci(InvocationEntryBci),
976     _stub_function(stub_function),
977     _stub_name(stub_name),
978     _stub_entry_point(NULL),
979     _max_node_limit(MaxNodeLimit),
980     _orig_pc_slot(0),
981     _orig_pc_slot_offset_in_bytes(0),
982     _inlining_progress(false),
983     _inlining_incrementally(false),
984     _has_reserved_stack_access(false),
985 #ifndef PRODUCT
986     _trace_opto_output(directive->TraceOptoOutputOption),
987     _print_ideal(directive->PrintIdealOption),
988 #endif
989     _has_method_handle_invokes(false),
990     _clinit_barrier_on_entry(false),
991     _comp_arena(mtCompiler),
992     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
993     _env(ci_env),
994     _directive(directive),
995     _log(ci_env->log()),
996     _failure_reason(NULL),
997     _congraph(NULL),
998 #ifndef PRODUCT
999     _printer(NULL),
1000 #endif
1001     _dead_node_list(comp_arena()),
1002     _dead_node_count(0),
1003     _node_arena(mtCompiler),
1004     _old_arena(mtCompiler),
1005     _mach_constant_base_node(NULL),
1006     _Compile_types(mtCompiler),
1007     _initial_gvn(NULL),
1008     _for_igvn(NULL),
1009     _warm_calls(NULL),
1010     _number_of_mh_late_inlines(0),
1011     _print_inlining_stream(NULL),
1012     _print_inlining_list(NULL),
1013     _print_inlining_idx(0),
1014     _print_inlining_output(NULL),
1015     _replay_inline_data(NULL),
1016     _java_calls(0),
1017     _inner_loops(0),
1018     _interpreter_frame_size(0),
1019     _node_bundling_limit(0),
1020     _node_bundling_base(NULL),
1021     _code_buffer("Compile::Fill_buffer"),
1022 #ifndef PRODUCT
1023     _in_dump_cnt(0),
1024 #endif
1025     _allowed_reasons(0) {
1026   C = this;
1027 
1028   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1029   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1030 
1031 #ifndef PRODUCT
1032   set_print_assembly(PrintFrameConverterAssembly);
1033   set_parsed_irreducible_loop(false);
1034 #else
1035   set_print_assembly(false); // Must initialize.
1036 #endif
1037   set_has_irreducible_loop(false); // no loops
1038 
1039   CompileWrapper cw(this);
1040   Init(/*AliasLevel=*/ 0);
1041   init_tf((*generator)());
1042 
1043   {
1044     // The following is a dummy for the sake of GraphKit::gen_stub
1045     Unique_Node_List for_igvn(comp_arena());
1046     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1047     PhaseGVN gvn(Thread::current()->resource_area(),255);
1048     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1049     gvn.transform_no_reclaim(top());
1050 
1051     GraphKit kit;
1052     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1053   }
1054 
1055   NOT_PRODUCT( verify_graph_edges(); )
1056   Code_Gen();
1057   if (failing())  return;
1058 
1059 
1060   // Entry point will be accessed using compile->stub_entry_point();
1061   if (code_buffer() == NULL) {
1062     Matcher::soft_match_failure();
1063   } else {
1064     if (PrintAssembly && (WizardMode || Verbose))
1065       tty->print_cr("### Stub::%s", stub_name);
1066 
1067     if (!failing()) {
1068       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1069 
1070       // Make the NMethod
1071       // For now we mark the frame as never safe for profile stackwalking
1072       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1073                                                       code_buffer(),
1074                                                       CodeOffsets::frame_never_safe,
1075                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1076                                                       frame_size_in_words(),
1077                                                       _oop_map_set,
1078                                                       save_arg_registers);
1079       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1080 
1081       _stub_entry_point = rs->entry_point();
1082     }
1083   }
1084 }
1085 
1086 //------------------------------Init-------------------------------------------
1087 // Prepare for a single compilation
Init(int aliaslevel)1088 void Compile::Init(int aliaslevel) {
1089   _unique  = 0;
1090   _regalloc = NULL;
1091 
1092   _tf      = NULL;  // filled in later
1093   _top     = NULL;  // cached later
1094   _matcher = NULL;  // filled in later
1095   _cfg     = NULL;  // filled in later
1096 
1097   set_24_bit_selection_and_mode(Use24BitFP, false);
1098 
1099   _node_note_array = NULL;
1100   _default_node_notes = NULL;
1101   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1102 
1103   _immutable_memory = NULL; // filled in at first inquiry
1104 
1105   // Globally visible Nodes
1106   // First set TOP to NULL to give safe behavior during creation of RootNode
1107   set_cached_top_node(NULL);
1108   set_root(new RootNode());
1109   // Now that you have a Root to point to, create the real TOP
1110   set_cached_top_node( new ConNode(Type::TOP) );
1111   set_recent_alloc(NULL, NULL);
1112 
1113   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1114   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1115   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1116   env()->set_dependencies(new Dependencies(env()));
1117 
1118   _fixed_slots = 0;
1119   set_has_split_ifs(false);
1120   set_has_loops(has_method() && method()->has_loops()); // first approximation
1121   set_has_stringbuilder(false);
1122   set_has_boxed_value(false);
1123   _trap_can_recompile = false;  // no traps emitted yet
1124   _major_progress = true; // start out assuming good things will happen
1125   set_has_unsafe_access(false);
1126   set_max_vector_size(0);
1127   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1128   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1129   set_decompile_count(0);
1130 
1131   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1132   _loop_opts_cnt = LoopOptsCount;
1133   set_do_inlining(Inline);
1134   set_max_inline_size(MaxInlineSize);
1135   set_freq_inline_size(FreqInlineSize);
1136   set_do_scheduling(OptoScheduling);
1137   set_do_count_invocations(false);
1138   set_do_method_data_update(false);
1139 
1140   set_do_vector_loop(false);
1141 
1142   if (AllowVectorizeOnDemand) {
1143     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1144       set_do_vector_loop(true);
1145       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1146     } else if (has_method() && method()->name() != 0 &&
1147                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1148       set_do_vector_loop(true);
1149     }
1150   }
1151   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1152   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1153 
1154   set_age_code(has_method() && method()->profile_aging());
1155   set_rtm_state(NoRTM); // No RTM lock eliding by default
1156   _max_node_limit = _directive->MaxNodeLimitOption;
1157 
1158 #if INCLUDE_RTM_OPT
1159   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1160     int rtm_state = method()->method_data()->rtm_state();
1161     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1162       // Don't generate RTM lock eliding code.
1163       set_rtm_state(NoRTM);
1164     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1165       // Generate RTM lock eliding code without abort ratio calculation code.
1166       set_rtm_state(UseRTM);
1167     } else if (UseRTMDeopt) {
1168       // Generate RTM lock eliding code and include abort ratio calculation
1169       // code if UseRTMDeopt is on.
1170       set_rtm_state(ProfileRTM);
1171     }
1172   }
1173 #endif
1174   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1175     set_clinit_barrier_on_entry(true);
1176   }
1177   if (debug_info()->recording_non_safepoints()) {
1178     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1179                         (comp_arena(), 8, 0, NULL));
1180     set_default_node_notes(Node_Notes::make(this));
1181   }
1182 
1183   // // -- Initialize types before each compile --
1184   // // Update cached type information
1185   // if( _method && _method->constants() )
1186   //   Type::update_loaded_types(_method, _method->constants());
1187 
1188   // Init alias_type map.
1189   if (!_do_escape_analysis && aliaslevel == 3)
1190     aliaslevel = 2;  // No unique types without escape analysis
1191   _AliasLevel = aliaslevel;
1192   const int grow_ats = 16;
1193   _max_alias_types = grow_ats;
1194   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1195   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1196   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1197   {
1198     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1199   }
1200   // Initialize the first few types.
1201   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1202   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1203   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1204   _num_alias_types = AliasIdxRaw+1;
1205   // Zero out the alias type cache.
1206   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1207   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1208   probe_alias_cache(NULL)->_index = AliasIdxTop;
1209 
1210   _intrinsics = NULL;
1211   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1212   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1213   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1214   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1215   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1216   register_library_intrinsics();
1217 }
1218 
1219 //---------------------------init_start----------------------------------------
1220 // Install the StartNode on this compile object.
init_start(StartNode * s)1221 void Compile::init_start(StartNode* s) {
1222   if (failing())
1223     return; // already failing
1224   assert(s == start(), "");
1225 }
1226 
1227 /**
1228  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1229  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1230  * the ideal graph.
1231  */
start() const1232 StartNode* Compile::start() const {
1233   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1234   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1235     Node* start = root()->fast_out(i);
1236     if (start->is_Start()) {
1237       return start->as_Start();
1238     }
1239   }
1240   fatal("Did not find Start node!");
1241   return NULL;
1242 }
1243 
1244 //-------------------------------immutable_memory-------------------------------------
1245 // Access immutable memory
immutable_memory()1246 Node* Compile::immutable_memory() {
1247   if (_immutable_memory != NULL) {
1248     return _immutable_memory;
1249   }
1250   StartNode* s = start();
1251   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1252     Node *p = s->fast_out(i);
1253     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1254       _immutable_memory = p;
1255       return _immutable_memory;
1256     }
1257   }
1258   ShouldNotReachHere();
1259   return NULL;
1260 }
1261 
1262 //----------------------set_cached_top_node------------------------------------
1263 // Install the cached top node, and make sure Node::is_top works correctly.
set_cached_top_node(Node * tn)1264 void Compile::set_cached_top_node(Node* tn) {
1265   if (tn != NULL)  verify_top(tn);
1266   Node* old_top = _top;
1267   _top = tn;
1268   // Calling Node::setup_is_top allows the nodes the chance to adjust
1269   // their _out arrays.
1270   if (_top != NULL)     _top->setup_is_top();
1271   if (old_top != NULL)  old_top->setup_is_top();
1272   assert(_top == NULL || top()->is_top(), "");
1273 }
1274 
1275 #ifdef ASSERT
count_live_nodes_by_graph_walk()1276 uint Compile::count_live_nodes_by_graph_walk() {
1277   Unique_Node_List useful(comp_arena());
1278   // Get useful node list by walking the graph.
1279   identify_useful_nodes(useful);
1280   return useful.size();
1281 }
1282 
print_missing_nodes()1283 void Compile::print_missing_nodes() {
1284 
1285   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1286   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1287     return;
1288   }
1289 
1290   // This is an expensive function. It is executed only when the user
1291   // specifies VerifyIdealNodeCount option or otherwise knows the
1292   // additional work that needs to be done to identify reachable nodes
1293   // by walking the flow graph and find the missing ones using
1294   // _dead_node_list.
1295 
1296   Unique_Node_List useful(comp_arena());
1297   // Get useful node list by walking the graph.
1298   identify_useful_nodes(useful);
1299 
1300   uint l_nodes = C->live_nodes();
1301   uint l_nodes_by_walk = useful.size();
1302 
1303   if (l_nodes != l_nodes_by_walk) {
1304     if (_log != NULL) {
1305       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1306       _log->stamp();
1307       _log->end_head();
1308     }
1309     VectorSet& useful_member_set = useful.member_set();
1310     int last_idx = l_nodes_by_walk;
1311     for (int i = 0; i < last_idx; i++) {
1312       if (useful_member_set.test(i)) {
1313         if (_dead_node_list.test(i)) {
1314           if (_log != NULL) {
1315             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1316           }
1317           if (PrintIdealNodeCount) {
1318             // Print the log message to tty
1319               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1320               useful.at(i)->dump();
1321           }
1322         }
1323       }
1324       else if (! _dead_node_list.test(i)) {
1325         if (_log != NULL) {
1326           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1327         }
1328         if (PrintIdealNodeCount) {
1329           // Print the log message to tty
1330           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1331         }
1332       }
1333     }
1334     if (_log != NULL) {
1335       _log->tail("mismatched_nodes");
1336     }
1337   }
1338 }
record_modified_node(Node * n)1339 void Compile::record_modified_node(Node* n) {
1340   if (_modified_nodes != NULL && !_inlining_incrementally &&
1341       n->outcnt() != 0 && !n->is_Con()) {
1342     _modified_nodes->push(n);
1343   }
1344 }
1345 
remove_modified_node(Node * n)1346 void Compile::remove_modified_node(Node* n) {
1347   if (_modified_nodes != NULL) {
1348     _modified_nodes->remove(n);
1349   }
1350 }
1351 #endif
1352 
1353 #ifndef PRODUCT
verify_top(Node * tn) const1354 void Compile::verify_top(Node* tn) const {
1355   if (tn != NULL) {
1356     assert(tn->is_Con(), "top node must be a constant");
1357     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1358     assert(tn->in(0) != NULL, "must have live top node");
1359   }
1360 }
1361 #endif
1362 
1363 
1364 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1365 
grow_node_notes(GrowableArray<Node_Notes * > * arr,int grow_by)1366 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1367   guarantee(arr != NULL, "");
1368   int num_blocks = arr->length();
1369   if (grow_by < num_blocks)  grow_by = num_blocks;
1370   int num_notes = grow_by * _node_notes_block_size;
1371   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1372   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1373   while (num_notes > 0) {
1374     arr->append(notes);
1375     notes     += _node_notes_block_size;
1376     num_notes -= _node_notes_block_size;
1377   }
1378   assert(num_notes == 0, "exact multiple, please");
1379 }
1380 
copy_node_notes_to(Node * dest,Node * source)1381 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1382   if (source == NULL || dest == NULL)  return false;
1383 
1384   if (dest->is_Con())
1385     return false;               // Do not push debug info onto constants.
1386 
1387 #ifdef ASSERT
1388   // Leave a bread crumb trail pointing to the original node:
1389   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1390     dest->set_debug_orig(source);
1391   }
1392 #endif
1393 
1394   if (node_note_array() == NULL)
1395     return false;               // Not collecting any notes now.
1396 
1397   // This is a copy onto a pre-existing node, which may already have notes.
1398   // If both nodes have notes, do not overwrite any pre-existing notes.
1399   Node_Notes* source_notes = node_notes_at(source->_idx);
1400   if (source_notes == NULL || source_notes->is_clear())  return false;
1401   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1402   if (dest_notes == NULL || dest_notes->is_clear()) {
1403     return set_node_notes_at(dest->_idx, source_notes);
1404   }
1405 
1406   Node_Notes merged_notes = (*source_notes);
1407   // The order of operations here ensures that dest notes will win...
1408   merged_notes.update_from(dest_notes);
1409   return set_node_notes_at(dest->_idx, &merged_notes);
1410 }
1411 
1412 
1413 //--------------------------allow_range_check_smearing-------------------------
1414 // Gating condition for coalescing similar range checks.
1415 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1416 // single covering check that is at least as strong as any of them.
1417 // If the optimization succeeds, the simplified (strengthened) range check
1418 // will always succeed.  If it fails, we will deopt, and then give up
1419 // on the optimization.
allow_range_check_smearing() const1420 bool Compile::allow_range_check_smearing() const {
1421   // If this method has already thrown a range-check,
1422   // assume it was because we already tried range smearing
1423   // and it failed.
1424   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1425   return !already_trapped;
1426 }
1427 
1428 
1429 //------------------------------flatten_alias_type-----------------------------
flatten_alias_type(const TypePtr * tj) const1430 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1431   int offset = tj->offset();
1432   TypePtr::PTR ptr = tj->ptr();
1433 
1434   // Known instance (scalarizable allocation) alias only with itself.
1435   bool is_known_inst = tj->isa_oopptr() != NULL &&
1436                        tj->is_oopptr()->is_known_instance();
1437 
1438   // Process weird unsafe references.
1439   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1440     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1441     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1442     tj = TypeOopPtr::BOTTOM;
1443     ptr = tj->ptr();
1444     offset = tj->offset();
1445   }
1446 
1447   // Array pointers need some flattening
1448   const TypeAryPtr *ta = tj->isa_aryptr();
1449   if (ta && ta->is_stable()) {
1450     // Erase stability property for alias analysis.
1451     tj = ta = ta->cast_to_stable(false);
1452   }
1453   if( ta && is_known_inst ) {
1454     if ( offset != Type::OffsetBot &&
1455          offset > arrayOopDesc::length_offset_in_bytes() ) {
1456       offset = Type::OffsetBot; // Flatten constant access into array body only
1457       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1458     }
1459   } else if( ta && _AliasLevel >= 2 ) {
1460     // For arrays indexed by constant indices, we flatten the alias
1461     // space to include all of the array body.  Only the header, klass
1462     // and array length can be accessed un-aliased.
1463     if( offset != Type::OffsetBot ) {
1464       if( ta->const_oop() ) { // MethodData* or Method*
1465         offset = Type::OffsetBot;   // Flatten constant access into array body
1466         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1467       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1468         // range is OK as-is.
1469         tj = ta = TypeAryPtr::RANGE;
1470       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1471         tj = TypeInstPtr::KLASS; // all klass loads look alike
1472         ta = TypeAryPtr::RANGE; // generic ignored junk
1473         ptr = TypePtr::BotPTR;
1474       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1475         tj = TypeInstPtr::MARK;
1476         ta = TypeAryPtr::RANGE; // generic ignored junk
1477         ptr = TypePtr::BotPTR;
1478       } else {                  // Random constant offset into array body
1479         offset = Type::OffsetBot;   // Flatten constant access into array body
1480         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1481       }
1482     }
1483     // Arrays of fixed size alias with arrays of unknown size.
1484     if (ta->size() != TypeInt::POS) {
1485       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1486       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1487     }
1488     // Arrays of known objects become arrays of unknown objects.
1489     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1490       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1491       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1492     }
1493     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1494       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1495       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1496     }
1497     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1498     // cannot be distinguished by bytecode alone.
1499     if (ta->elem() == TypeInt::BOOL) {
1500       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1501       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1502       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1503     }
1504     // During the 2nd round of IterGVN, NotNull castings are removed.
1505     // Make sure the Bottom and NotNull variants alias the same.
1506     // Also, make sure exact and non-exact variants alias the same.
1507     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1508       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1509     }
1510   }
1511 
1512   // Oop pointers need some flattening
1513   const TypeInstPtr *to = tj->isa_instptr();
1514   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1515     ciInstanceKlass *k = to->klass()->as_instance_klass();
1516     if( ptr == TypePtr::Constant ) {
1517       if (to->klass() != ciEnv::current()->Class_klass() ||
1518           offset < k->size_helper() * wordSize) {
1519         // No constant oop pointers (such as Strings); they alias with
1520         // unknown strings.
1521         assert(!is_known_inst, "not scalarizable allocation");
1522         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1523       }
1524     } else if( is_known_inst ) {
1525       tj = to; // Keep NotNull and klass_is_exact for instance type
1526     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1527       // During the 2nd round of IterGVN, NotNull castings are removed.
1528       // Make sure the Bottom and NotNull variants alias the same.
1529       // Also, make sure exact and non-exact variants alias the same.
1530       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1531     }
1532     if (to->speculative() != NULL) {
1533       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1534     }
1535     // Canonicalize the holder of this field
1536     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1537       // First handle header references such as a LoadKlassNode, even if the
1538       // object's klass is unloaded at compile time (4965979).
1539       if (!is_known_inst) { // Do it only for non-instance types
1540         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1541       }
1542     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1543       // Static fields are in the space above the normal instance
1544       // fields in the java.lang.Class instance.
1545       if (to->klass() != ciEnv::current()->Class_klass()) {
1546         to = NULL;
1547         tj = TypeOopPtr::BOTTOM;
1548         offset = tj->offset();
1549       }
1550     } else {
1551       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1552       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1553         if( is_known_inst ) {
1554           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1555         } else {
1556           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1557         }
1558       }
1559     }
1560   }
1561 
1562   // Klass pointers to object array klasses need some flattening
1563   const TypeKlassPtr *tk = tj->isa_klassptr();
1564   if( tk ) {
1565     // If we are referencing a field within a Klass, we need
1566     // to assume the worst case of an Object.  Both exact and
1567     // inexact types must flatten to the same alias class so
1568     // use NotNull as the PTR.
1569     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1570 
1571       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1572                                    TypeKlassPtr::OBJECT->klass(),
1573                                    offset);
1574     }
1575 
1576     ciKlass* klass = tk->klass();
1577     if( klass->is_obj_array_klass() ) {
1578       ciKlass* k = TypeAryPtr::OOPS->klass();
1579       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1580         k = TypeInstPtr::BOTTOM->klass();
1581       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1582     }
1583 
1584     // Check for precise loads from the primary supertype array and force them
1585     // to the supertype cache alias index.  Check for generic array loads from
1586     // the primary supertype array and also force them to the supertype cache
1587     // alias index.  Since the same load can reach both, we need to merge
1588     // these 2 disparate memories into the same alias class.  Since the
1589     // primary supertype array is read-only, there's no chance of confusion
1590     // where we bypass an array load and an array store.
1591     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1592     if (offset == Type::OffsetBot ||
1593         (offset >= primary_supers_offset &&
1594          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1595         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1596       offset = in_bytes(Klass::secondary_super_cache_offset());
1597       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1598     }
1599   }
1600 
1601   // Flatten all Raw pointers together.
1602   if (tj->base() == Type::RawPtr)
1603     tj = TypeRawPtr::BOTTOM;
1604 
1605   if (tj->base() == Type::AnyPtr)
1606     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1607 
1608   // Flatten all to bottom for now
1609   switch( _AliasLevel ) {
1610   case 0:
1611     tj = TypePtr::BOTTOM;
1612     break;
1613   case 1:                       // Flatten to: oop, static, field or array
1614     switch (tj->base()) {
1615     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1616     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1617     case Type::AryPtr:   // do not distinguish arrays at all
1618     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1619     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1620     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1621     default: ShouldNotReachHere();
1622     }
1623     break;
1624   case 2:                       // No collapsing at level 2; keep all splits
1625   case 3:                       // No collapsing at level 3; keep all splits
1626     break;
1627   default:
1628     Unimplemented();
1629   }
1630 
1631   offset = tj->offset();
1632   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1633 
1634   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1635           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1636           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1637           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1638           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1639           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1640           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1641           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1642   assert( tj->ptr() != TypePtr::TopPTR &&
1643           tj->ptr() != TypePtr::AnyNull &&
1644           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1645 //    assert( tj->ptr() != TypePtr::Constant ||
1646 //            tj->base() == Type::RawPtr ||
1647 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1648 
1649   return tj;
1650 }
1651 
Init(int i,const TypePtr * at)1652 void Compile::AliasType::Init(int i, const TypePtr* at) {
1653   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1654   _index = i;
1655   _adr_type = at;
1656   _field = NULL;
1657   _element = NULL;
1658   _is_rewritable = true; // default
1659   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1660   if (atoop != NULL && atoop->is_known_instance()) {
1661     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1662     _general_index = Compile::current()->get_alias_index(gt);
1663   } else {
1664     _general_index = 0;
1665   }
1666 }
1667 
basic_type() const1668 BasicType Compile::AliasType::basic_type() const {
1669   if (element() != NULL) {
1670     const Type* element = adr_type()->is_aryptr()->elem();
1671     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1672   } if (field() != NULL) {
1673     return field()->layout_type();
1674   } else {
1675     return T_ILLEGAL; // unknown
1676   }
1677 }
1678 
1679 //---------------------------------print_on------------------------------------
1680 #ifndef PRODUCT
print_on(outputStream * st)1681 void Compile::AliasType::print_on(outputStream* st) {
1682   if (index() < 10)
1683         st->print("@ <%d> ", index());
1684   else  st->print("@ <%d>",  index());
1685   st->print(is_rewritable() ? "   " : " RO");
1686   int offset = adr_type()->offset();
1687   if (offset == Type::OffsetBot)
1688         st->print(" +any");
1689   else  st->print(" +%-3d", offset);
1690   st->print(" in ");
1691   adr_type()->dump_on(st);
1692   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1693   if (field() != NULL && tjp) {
1694     if (tjp->klass()  != field()->holder() ||
1695         tjp->offset() != field()->offset_in_bytes()) {
1696       st->print(" != ");
1697       field()->print();
1698       st->print(" ***");
1699     }
1700   }
1701 }
1702 
print_alias_types()1703 void print_alias_types() {
1704   Compile* C = Compile::current();
1705   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1706   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1707     C->alias_type(idx)->print_on(tty);
1708     tty->cr();
1709   }
1710 }
1711 #endif
1712 
1713 
1714 //----------------------------probe_alias_cache--------------------------------
probe_alias_cache(const TypePtr * adr_type)1715 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1716   intptr_t key = (intptr_t) adr_type;
1717   key ^= key >> logAliasCacheSize;
1718   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1719 }
1720 
1721 
1722 //-----------------------------grow_alias_types--------------------------------
grow_alias_types()1723 void Compile::grow_alias_types() {
1724   const int old_ats  = _max_alias_types; // how many before?
1725   const int new_ats  = old_ats;          // how many more?
1726   const int grow_ats = old_ats+new_ats;  // how many now?
1727   _max_alias_types = grow_ats;
1728   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1729   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1730   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1731   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1732 }
1733 
1734 
1735 //--------------------------------find_alias_type------------------------------
find_alias_type(const TypePtr * adr_type,bool no_create,ciField * original_field)1736 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1737   if (_AliasLevel == 0)
1738     return alias_type(AliasIdxBot);
1739 
1740   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1741   if (ace->_adr_type == adr_type) {
1742     return alias_type(ace->_index);
1743   }
1744 
1745   // Handle special cases.
1746   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1747   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1748 
1749   // Do it the slow way.
1750   const TypePtr* flat = flatten_alias_type(adr_type);
1751 
1752 #ifdef ASSERT
1753   {
1754     ResourceMark rm;
1755     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1756            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1757     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1758            Type::str(adr_type));
1759     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1760       const TypeOopPtr* foop = flat->is_oopptr();
1761       // Scalarizable allocations have exact klass always.
1762       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1763       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1764       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1765              Type::str(foop), Type::str(xoop));
1766     }
1767   }
1768 #endif
1769 
1770   int idx = AliasIdxTop;
1771   for (int i = 0; i < num_alias_types(); i++) {
1772     if (alias_type(i)->adr_type() == flat) {
1773       idx = i;
1774       break;
1775     }
1776   }
1777 
1778   if (idx == AliasIdxTop) {
1779     if (no_create)  return NULL;
1780     // Grow the array if necessary.
1781     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1782     // Add a new alias type.
1783     idx = _num_alias_types++;
1784     _alias_types[idx]->Init(idx, flat);
1785     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1786     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1787     if (flat->isa_instptr()) {
1788       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1789           && flat->is_instptr()->klass() == env()->Class_klass())
1790         alias_type(idx)->set_rewritable(false);
1791     }
1792     if (flat->isa_aryptr()) {
1793 #ifdef ASSERT
1794       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1795       // (T_BYTE has the weakest alignment and size restrictions...)
1796       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1797 #endif
1798       if (flat->offset() == TypePtr::OffsetBot) {
1799         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1800       }
1801     }
1802     if (flat->isa_klassptr()) {
1803       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1804         alias_type(idx)->set_rewritable(false);
1805       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1806         alias_type(idx)->set_rewritable(false);
1807       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1808         alias_type(idx)->set_rewritable(false);
1809       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1810         alias_type(idx)->set_rewritable(false);
1811     }
1812     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1813     // but the base pointer type is not distinctive enough to identify
1814     // references into JavaThread.)
1815 
1816     // Check for final fields.
1817     const TypeInstPtr* tinst = flat->isa_instptr();
1818     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1819       ciField* field;
1820       if (tinst->const_oop() != NULL &&
1821           tinst->klass() == ciEnv::current()->Class_klass() &&
1822           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1823         // static field
1824         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1825         field = k->get_field_by_offset(tinst->offset(), true);
1826       } else {
1827         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1828         field = k->get_field_by_offset(tinst->offset(), false);
1829       }
1830       assert(field == NULL ||
1831              original_field == NULL ||
1832              (field->holder() == original_field->holder() &&
1833               field->offset() == original_field->offset() &&
1834               field->is_static() == original_field->is_static()), "wrong field?");
1835       // Set field() and is_rewritable() attributes.
1836       if (field != NULL)  alias_type(idx)->set_field(field);
1837     }
1838   }
1839 
1840   // Fill the cache for next time.
1841   ace->_adr_type = adr_type;
1842   ace->_index    = idx;
1843   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1844 
1845   // Might as well try to fill the cache for the flattened version, too.
1846   AliasCacheEntry* face = probe_alias_cache(flat);
1847   if (face->_adr_type == NULL) {
1848     face->_adr_type = flat;
1849     face->_index    = idx;
1850     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1851   }
1852 
1853   return alias_type(idx);
1854 }
1855 
1856 
alias_type(ciField * field)1857 Compile::AliasType* Compile::alias_type(ciField* field) {
1858   const TypeOopPtr* t;
1859   if (field->is_static())
1860     t = TypeInstPtr::make(field->holder()->java_mirror());
1861   else
1862     t = TypeOopPtr::make_from_klass_raw(field->holder());
1863   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1864   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1865   return atp;
1866 }
1867 
1868 
1869 //------------------------------have_alias_type--------------------------------
have_alias_type(const TypePtr * adr_type)1870 bool Compile::have_alias_type(const TypePtr* adr_type) {
1871   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1872   if (ace->_adr_type == adr_type) {
1873     return true;
1874   }
1875 
1876   // Handle special cases.
1877   if (adr_type == NULL)             return true;
1878   if (adr_type == TypePtr::BOTTOM)  return true;
1879 
1880   return find_alias_type(adr_type, true, NULL) != NULL;
1881 }
1882 
1883 //-----------------------------must_alias--------------------------------------
1884 // True if all values of the given address type are in the given alias category.
must_alias(const TypePtr * adr_type,int alias_idx)1885 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1886   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1887   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1888   if (alias_idx == AliasIdxTop)         return false; // the empty category
1889   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1890 
1891   // the only remaining possible overlap is identity
1892   int adr_idx = get_alias_index(adr_type);
1893   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1894   assert(adr_idx == alias_idx ||
1895          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1896           && adr_type                       != TypeOopPtr::BOTTOM),
1897          "should not be testing for overlap with an unsafe pointer");
1898   return adr_idx == alias_idx;
1899 }
1900 
1901 //------------------------------can_alias--------------------------------------
1902 // True if any values of the given address type are in the given alias category.
can_alias(const TypePtr * adr_type,int alias_idx)1903 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1904   if (alias_idx == AliasIdxTop)         return false; // the empty category
1905   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1906   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1907   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1908 
1909   // the only remaining possible overlap is identity
1910   int adr_idx = get_alias_index(adr_type);
1911   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1912   return adr_idx == alias_idx;
1913 }
1914 
1915 
1916 
1917 //---------------------------pop_warm_call-------------------------------------
pop_warm_call()1918 WarmCallInfo* Compile::pop_warm_call() {
1919   WarmCallInfo* wci = _warm_calls;
1920   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1921   return wci;
1922 }
1923 
1924 //----------------------------Inline_Warm--------------------------------------
Inline_Warm()1925 int Compile::Inline_Warm() {
1926   // If there is room, try to inline some more warm call sites.
1927   // %%% Do a graph index compaction pass when we think we're out of space?
1928   if (!InlineWarmCalls)  return 0;
1929 
1930   int calls_made_hot = 0;
1931   int room_to_grow   = NodeCountInliningCutoff - unique();
1932   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1933   int amount_grown   = 0;
1934   WarmCallInfo* call;
1935   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1936     int est_size = (int)call->size();
1937     if (est_size > (room_to_grow - amount_grown)) {
1938       // This one won't fit anyway.  Get rid of it.
1939       call->make_cold();
1940       continue;
1941     }
1942     call->make_hot();
1943     calls_made_hot++;
1944     amount_grown   += est_size;
1945     amount_to_grow -= est_size;
1946   }
1947 
1948   if (calls_made_hot > 0)  set_major_progress();
1949   return calls_made_hot;
1950 }
1951 
1952 
1953 //----------------------------Finish_Warm--------------------------------------
Finish_Warm()1954 void Compile::Finish_Warm() {
1955   if (!InlineWarmCalls)  return;
1956   if (failing())  return;
1957   if (warm_calls() == NULL)  return;
1958 
1959   // Clean up loose ends, if we are out of space for inlining.
1960   WarmCallInfo* call;
1961   while ((call = pop_warm_call()) != NULL) {
1962     call->make_cold();
1963   }
1964 }
1965 
1966 //---------------------cleanup_loop_predicates-----------------------
1967 // Remove the opaque nodes that protect the predicates so that all unused
1968 // checks and uncommon_traps will be eliminated from the ideal graph
cleanup_loop_predicates(PhaseIterGVN & igvn)1969 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1970   if (predicate_count()==0) return;
1971   for (int i = predicate_count(); i > 0; i--) {
1972     Node * n = predicate_opaque1_node(i-1);
1973     assert(n->Opcode() == Op_Opaque1, "must be");
1974     igvn.replace_node(n, n->in(1));
1975   }
1976   assert(predicate_count()==0, "should be clean!");
1977 }
1978 
add_range_check_cast(Node * n)1979 void Compile::add_range_check_cast(Node* n) {
1980   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1981   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1982   _range_check_casts->append(n);
1983 }
1984 
1985 // Remove all range check dependent CastIINodes.
remove_range_check_casts(PhaseIterGVN & igvn)1986 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1987   for (int i = range_check_cast_count(); i > 0; i--) {
1988     Node* cast = range_check_cast_node(i-1);
1989     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1990     igvn.replace_node(cast, cast->in(1));
1991   }
1992   assert(range_check_cast_count() == 0, "should be empty");
1993 }
1994 
add_opaque4_node(Node * n)1995 void Compile::add_opaque4_node(Node* n) {
1996   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1997   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1998   _opaque4_nodes->append(n);
1999 }
2000 
2001 // Remove all Opaque4 nodes.
remove_opaque4_nodes(PhaseIterGVN & igvn)2002 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2003   for (int i = opaque4_count(); i > 0; i--) {
2004     Node* opaq = opaque4_node(i-1);
2005     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2006     igvn.replace_node(opaq, opaq->in(2));
2007   }
2008   assert(opaque4_count() == 0, "should be empty");
2009 }
2010 
2011 // StringOpts and late inlining of string methods
inline_string_calls(bool parse_time)2012 void Compile::inline_string_calls(bool parse_time) {
2013   {
2014     // remove useless nodes to make the usage analysis simpler
2015     ResourceMark rm;
2016     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2017   }
2018 
2019   {
2020     ResourceMark rm;
2021     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2022     PhaseStringOpts pso(initial_gvn(), for_igvn());
2023     print_method(PHASE_AFTER_STRINGOPTS, 3);
2024   }
2025 
2026   // now inline anything that we skipped the first time around
2027   if (!parse_time) {
2028     _late_inlines_pos = _late_inlines.length();
2029   }
2030 
2031   while (_string_late_inlines.length() > 0) {
2032     CallGenerator* cg = _string_late_inlines.pop();
2033     cg->do_late_inline();
2034     if (failing())  return;
2035   }
2036   _string_late_inlines.trunc_to(0);
2037 }
2038 
2039 // Late inlining of boxing methods
inline_boxing_calls(PhaseIterGVN & igvn)2040 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2041   if (_boxing_late_inlines.length() > 0) {
2042     assert(has_boxed_value(), "inconsistent");
2043 
2044     PhaseGVN* gvn = initial_gvn();
2045     set_inlining_incrementally(true);
2046 
2047     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2048     for_igvn()->clear();
2049     gvn->replace_with(&igvn);
2050 
2051     _late_inlines_pos = _late_inlines.length();
2052 
2053     while (_boxing_late_inlines.length() > 0) {
2054       CallGenerator* cg = _boxing_late_inlines.pop();
2055       cg->do_late_inline();
2056       if (failing())  return;
2057     }
2058     _boxing_late_inlines.trunc_to(0);
2059 
2060     inline_incrementally_cleanup(igvn);
2061 
2062     set_inlining_incrementally(false);
2063   }
2064 }
2065 
inline_incrementally_one()2066 bool Compile::inline_incrementally_one() {
2067   assert(IncrementalInline, "incremental inlining should be on");
2068 
2069   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2070   set_inlining_progress(false);
2071   set_do_cleanup(false);
2072   int i = 0;
2073   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2074     CallGenerator* cg = _late_inlines.at(i);
2075     _late_inlines_pos = i+1;
2076     cg->do_late_inline();
2077     if (failing())  return false;
2078   }
2079   int j = 0;
2080   for (; i < _late_inlines.length(); i++, j++) {
2081     _late_inlines.at_put(j, _late_inlines.at(i));
2082   }
2083   _late_inlines.trunc_to(j);
2084   assert(inlining_progress() || _late_inlines.length() == 0, "");
2085 
2086   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2087 
2088   set_inlining_progress(false);
2089   set_do_cleanup(false);
2090   return (_late_inlines.length() > 0) && !needs_cleanup;
2091 }
2092 
inline_incrementally_cleanup(PhaseIterGVN & igvn)2093 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2094   {
2095     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2096     ResourceMark rm;
2097     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2098   }
2099   {
2100     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2101     igvn = PhaseIterGVN(initial_gvn());
2102     igvn.optimize();
2103   }
2104 }
2105 
2106 // Perform incremental inlining until bound on number of live nodes is reached
inline_incrementally(PhaseIterGVN & igvn)2107 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2108   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2109 
2110   set_inlining_incrementally(true);
2111   uint low_live_nodes = 0;
2112 
2113   while (_late_inlines.length() > 0) {
2114     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2115       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2116         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2117         // PhaseIdealLoop is expensive so we only try it once we are
2118         // out of live nodes and we only try it again if the previous
2119         // helped got the number of nodes down significantly
2120         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2121         if (failing())  return;
2122         low_live_nodes = live_nodes();
2123         _major_progress = true;
2124       }
2125 
2126       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2127         break; // finish
2128       }
2129     }
2130 
2131     for_igvn()->clear();
2132     initial_gvn()->replace_with(&igvn);
2133 
2134     while (inline_incrementally_one()) {
2135       assert(!failing(), "inconsistent");
2136     }
2137 
2138     if (failing())  return;
2139 
2140     inline_incrementally_cleanup(igvn);
2141 
2142     if (failing())  return;
2143   }
2144   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2145 
2146   if (_string_late_inlines.length() > 0) {
2147     assert(has_stringbuilder(), "inconsistent");
2148     for_igvn()->clear();
2149     initial_gvn()->replace_with(&igvn);
2150 
2151     inline_string_calls(false);
2152 
2153     if (failing())  return;
2154 
2155     inline_incrementally_cleanup(igvn);
2156   }
2157 
2158   set_inlining_incrementally(false);
2159 }
2160 
2161 
optimize_loops(PhaseIterGVN & igvn,LoopOptsMode mode)2162 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2163   if(_loop_opts_cnt > 0) {
2164     debug_only( int cnt = 0; );
2165     while(major_progress() && (_loop_opts_cnt > 0)) {
2166       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2167       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2168       PhaseIdealLoop::optimize(igvn, mode);
2169       _loop_opts_cnt--;
2170       if (failing())  return false;
2171       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2172     }
2173   }
2174   return true;
2175 }
2176 
2177 // Remove edges from "root" to each SafePoint at a backward branch.
2178 // They were inserted during parsing (see add_safepoint()) to make
2179 // infinite loops without calls or exceptions visible to root, i.e.,
2180 // useful.
remove_root_to_sfpts_edges(PhaseIterGVN & igvn)2181 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2182   Node *r = root();
2183   if (r != NULL) {
2184     for (uint i = r->req(); i < r->len(); ++i) {
2185       Node *n = r->in(i);
2186       if (n != NULL && n->is_SafePoint()) {
2187         r->rm_prec(i);
2188         if (n->outcnt() == 0) {
2189           igvn.remove_dead_node(n);
2190         }
2191         --i;
2192       }
2193     }
2194   }
2195 }
2196 
2197 //------------------------------Optimize---------------------------------------
2198 // Given a graph, optimize it.
Optimize()2199 void Compile::Optimize() {
2200   TracePhase tp("optimizer", &timers[_t_optimizer]);
2201 
2202 #ifndef PRODUCT
2203   if (_directive->BreakAtCompileOption) {
2204     BREAKPOINT;
2205   }
2206 
2207 #endif
2208 
2209   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2210 #ifdef ASSERT
2211   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2212 #endif
2213 
2214   ResourceMark rm;
2215 
2216   print_inlining_reinit();
2217 
2218   NOT_PRODUCT( verify_graph_edges(); )
2219 
2220   print_method(PHASE_AFTER_PARSING);
2221 
2222  {
2223   // Iterative Global Value Numbering, including ideal transforms
2224   // Initialize IterGVN with types and values from parse-time GVN
2225   PhaseIterGVN igvn(initial_gvn());
2226 #ifdef ASSERT
2227   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2228 #endif
2229   {
2230     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2231     igvn.optimize();
2232   }
2233 
2234   if (failing())  return;
2235 
2236   print_method(PHASE_ITER_GVN1, 2);
2237 
2238   inline_incrementally(igvn);
2239 
2240   print_method(PHASE_INCREMENTAL_INLINE, 2);
2241 
2242   if (failing())  return;
2243 
2244   if (eliminate_boxing()) {
2245     // Inline valueOf() methods now.
2246     inline_boxing_calls(igvn);
2247 
2248     if (AlwaysIncrementalInline) {
2249       inline_incrementally(igvn);
2250     }
2251 
2252     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2253 
2254     if (failing())  return;
2255   }
2256 
2257   // Now that all inlining is over, cut edge from root to loop
2258   // safepoints
2259   remove_root_to_sfpts_edges(igvn);
2260 
2261   // Remove the speculative part of types and clean up the graph from
2262   // the extra CastPP nodes whose only purpose is to carry them. Do
2263   // that early so that optimizations are not disrupted by the extra
2264   // CastPP nodes.
2265   remove_speculative_types(igvn);
2266 
2267   // No more new expensive nodes will be added to the list from here
2268   // so keep only the actual candidates for optimizations.
2269   cleanup_expensive_nodes(igvn);
2270 
2271   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2272     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2273     initial_gvn()->replace_with(&igvn);
2274     for_igvn()->clear();
2275     Unique_Node_List new_worklist(C->comp_arena());
2276     {
2277       ResourceMark rm;
2278       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2279     }
2280     set_for_igvn(&new_worklist);
2281     igvn = PhaseIterGVN(initial_gvn());
2282     igvn.optimize();
2283   }
2284 
2285   // Perform escape analysis
2286   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2287     if (has_loops()) {
2288       // Cleanup graph (remove dead nodes).
2289       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2290       PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2291       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2292       if (failing())  return;
2293     }
2294     ConnectionGraph::do_analysis(this, &igvn);
2295 
2296     if (failing())  return;
2297 
2298     // Optimize out fields loads from scalar replaceable allocations.
2299     igvn.optimize();
2300     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2301 
2302     if (failing())  return;
2303 
2304     if (congraph() != NULL && macro_count() > 0) {
2305       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2306       PhaseMacroExpand mexp(igvn);
2307       mexp.eliminate_macro_nodes();
2308       igvn.set_delay_transform(false);
2309 
2310       igvn.optimize();
2311       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2312 
2313       if (failing())  return;
2314     }
2315   }
2316 
2317   // Loop transforms on the ideal graph.  Range Check Elimination,
2318   // peeling, unrolling, etc.
2319 
2320   // Set loop opts counter
2321   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2322     {
2323       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2324       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2325       _loop_opts_cnt--;
2326       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2327       if (failing())  return;
2328     }
2329     // Loop opts pass if partial peeling occurred in previous pass
2330     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2331       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2332       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2333       _loop_opts_cnt--;
2334       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2335       if (failing())  return;
2336     }
2337     // Loop opts pass for loop-unrolling before CCP
2338     if(major_progress() && (_loop_opts_cnt > 0)) {
2339       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2340       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2341       _loop_opts_cnt--;
2342       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2343     }
2344     if (!failing()) {
2345       // Verify that last round of loop opts produced a valid graph
2346       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2347       PhaseIdealLoop::verify(igvn);
2348     }
2349   }
2350   if (failing())  return;
2351 
2352   // Conditional Constant Propagation;
2353   PhaseCCP ccp( &igvn );
2354   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2355   {
2356     TracePhase tp("ccp", &timers[_t_ccp]);
2357     ccp.do_transform();
2358   }
2359   print_method(PHASE_CPP1, 2);
2360 
2361   assert( true, "Break here to ccp.dump_old2new_map()");
2362 
2363   // Iterative Global Value Numbering, including ideal transforms
2364   {
2365     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2366     igvn = ccp;
2367     igvn.optimize();
2368   }
2369   print_method(PHASE_ITER_GVN2, 2);
2370 
2371   if (failing())  return;
2372 
2373   // Loop transforms on the ideal graph.  Range Check Elimination,
2374   // peeling, unrolling, etc.
2375   if (!optimize_loops(igvn, LoopOptsDefault)) {
2376     return;
2377   }
2378 
2379   if (failing())  return;
2380 
2381   // Ensure that major progress is now clear
2382   C->clear_major_progress();
2383 
2384   {
2385     // Verify that all previous optimizations produced a valid graph
2386     // at least to this point, even if no loop optimizations were done.
2387     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2388     PhaseIdealLoop::verify(igvn);
2389   }
2390 
2391   if (range_check_cast_count() > 0) {
2392     // No more loop optimizations. Remove all range check dependent CastIINodes.
2393     C->remove_range_check_casts(igvn);
2394     igvn.optimize();
2395   }
2396 
2397 #ifdef ASSERT
2398   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2399 #endif
2400 
2401   {
2402     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2403     PhaseMacroExpand  mex(igvn);
2404     if (mex.expand_macro_nodes()) {
2405       assert(failing(), "must bail out w/ explicit message");
2406       return;
2407     }
2408     print_method(PHASE_MACRO_EXPANSION, 2);
2409   }
2410 
2411   {
2412     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2413     if (bs->expand_barriers(this, igvn)) {
2414       assert(failing(), "must bail out w/ explicit message");
2415       return;
2416     }
2417     print_method(PHASE_BARRIER_EXPANSION, 2);
2418   }
2419 
2420   if (opaque4_count() > 0) {
2421     C->remove_opaque4_nodes(igvn);
2422     igvn.optimize();
2423   }
2424 
2425   DEBUG_ONLY( _modified_nodes = NULL; )
2426  } // (End scope of igvn; run destructor if necessary for asserts.)
2427 
2428  process_print_inlining();
2429  // A method with only infinite loops has no edges entering loops from root
2430  {
2431    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2432    if (final_graph_reshaping()) {
2433      assert(failing(), "must bail out w/ explicit message");
2434      return;
2435    }
2436  }
2437 
2438  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2439 }
2440 
2441 
2442 //------------------------------Code_Gen---------------------------------------
2443 // Given a graph, generate code for it
Code_Gen()2444 void Compile::Code_Gen() {
2445   if (failing()) {
2446     return;
2447   }
2448 
2449   // Perform instruction selection.  You might think we could reclaim Matcher
2450   // memory PDQ, but actually the Matcher is used in generating spill code.
2451   // Internals of the Matcher (including some VectorSets) must remain live
2452   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2453   // set a bit in reclaimed memory.
2454 
2455   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2456   // nodes.  Mapping is only valid at the root of each matched subtree.
2457   NOT_PRODUCT( verify_graph_edges(); )
2458 
2459   Matcher matcher;
2460   _matcher = &matcher;
2461   {
2462     TracePhase tp("matcher", &timers[_t_matcher]);
2463     matcher.match();
2464     if (failing()) {
2465       return;
2466     }
2467   }
2468 
2469   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2470   // nodes.  Mapping is only valid at the root of each matched subtree.
2471   NOT_PRODUCT( verify_graph_edges(); )
2472 
2473   // If you have too many nodes, or if matching has failed, bail out
2474   check_node_count(0, "out of nodes matching instructions");
2475   if (failing()) {
2476     return;
2477   }
2478 
2479   print_method(PHASE_MATCHING, 2);
2480 
2481   // Build a proper-looking CFG
2482   PhaseCFG cfg(node_arena(), root(), matcher);
2483   _cfg = &cfg;
2484   {
2485     TracePhase tp("scheduler", &timers[_t_scheduler]);
2486     bool success = cfg.do_global_code_motion();
2487     if (!success) {
2488       return;
2489     }
2490 
2491     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2492     NOT_PRODUCT( verify_graph_edges(); )
2493     debug_only( cfg.verify(); )
2494   }
2495 
2496   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2497   _regalloc = &regalloc;
2498   {
2499     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2500     // Perform register allocation.  After Chaitin, use-def chains are
2501     // no longer accurate (at spill code) and so must be ignored.
2502     // Node->LRG->reg mappings are still accurate.
2503     _regalloc->Register_Allocate();
2504 
2505     // Bail out if the allocator builds too many nodes
2506     if (failing()) {
2507       return;
2508     }
2509   }
2510 
2511   // Prior to register allocation we kept empty basic blocks in case the
2512   // the allocator needed a place to spill.  After register allocation we
2513   // are not adding any new instructions.  If any basic block is empty, we
2514   // can now safely remove it.
2515   {
2516     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2517     cfg.remove_empty_blocks();
2518     if (do_freq_based_layout()) {
2519       PhaseBlockLayout layout(cfg);
2520     } else {
2521       cfg.set_loop_alignment();
2522     }
2523     cfg.fixup_flow();
2524   }
2525 
2526   // Apply peephole optimizations
2527   if( OptoPeephole ) {
2528     TracePhase tp("peephole", &timers[_t_peephole]);
2529     PhasePeephole peep( _regalloc, cfg);
2530     peep.do_transform();
2531   }
2532 
2533   // Do late expand if CPU requires this.
2534   if (Matcher::require_postalloc_expand) {
2535     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2536     cfg.postalloc_expand(_regalloc);
2537   }
2538 
2539   // Convert Nodes to instruction bits in a buffer
2540   {
2541     TraceTime tp("output", &timers[_t_output], CITime);
2542     Output();
2543   }
2544 
2545   print_method(PHASE_FINAL_CODE);
2546 
2547   // He's dead, Jim.
2548   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2549   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2550 }
2551 
2552 
2553 //------------------------------dump_asm---------------------------------------
2554 // Dump formatted assembly
2555 #if defined(SUPPORT_OPTO_ASSEMBLY)
dump_asm_on(outputStream * st,int * pcs,uint pc_limit)2556 void Compile::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
2557 
2558   int pc_digits = 3; // #chars required for pc
2559   int sb_chars  = 3; // #chars for "start bundle" indicator
2560   int tab_size  = 8;
2561   if (pcs != NULL) {
2562     int max_pc = 0;
2563     for (uint i = 0; i < pc_limit; i++) {
2564       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
2565     }
2566     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
2567   }
2568   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
2569 
2570   bool cut_short = false;
2571   st->print_cr("#");
2572   st->print("#  ");  _tf->dump_on(st);  st->cr();
2573   st->print_cr("#");
2574 
2575   // For all blocks
2576   int pc = 0x0;                 // Program counter
2577   char starts_bundle = ' ';
2578   _regalloc->dump_frame();
2579 
2580   Node *n = NULL;
2581   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2582     if (VMThread::should_terminate()) {
2583       cut_short = true;
2584       break;
2585     }
2586     Block* block = _cfg->get_block(i);
2587     if (block->is_connector() && !Verbose) {
2588       continue;
2589     }
2590     n = block->head();
2591     if ((pcs != NULL) && (n->_idx < pc_limit)) {
2592       pc = pcs[n->_idx];
2593       st->print("%*.*x", pc_digits, pc_digits, pc);
2594     }
2595     st->fill_to(prefix_len);
2596     block->dump_head(_cfg, st);
2597     if (block->is_connector()) {
2598       st->fill_to(prefix_len);
2599       st->print_cr("# Empty connector block");
2600     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2601       st->fill_to(prefix_len);
2602       st->print_cr("# Block is sole successor of call");
2603     }
2604 
2605     // For all instructions
2606     Node *delay = NULL;
2607     for (uint j = 0; j < block->number_of_nodes(); j++) {
2608       if (VMThread::should_terminate()) {
2609         cut_short = true;
2610         break;
2611       }
2612       n = block->get_node(j);
2613       if (valid_bundle_info(n)) {
2614         Bundle* bundle = node_bundling(n);
2615         if (bundle->used_in_unconditional_delay()) {
2616           delay = n;
2617           continue;
2618         }
2619         if (bundle->starts_bundle()) {
2620           starts_bundle = '+';
2621         }
2622       }
2623 
2624       if (WizardMode) {
2625         n->dump();
2626       }
2627 
2628       if( !n->is_Region() &&    // Dont print in the Assembly
2629           !n->is_Phi() &&       // a few noisely useless nodes
2630           !n->is_Proj() &&
2631           !n->is_MachTemp() &&
2632           !n->is_SafePointScalarObject() &&
2633           !n->is_Catch() &&     // Would be nice to print exception table targets
2634           !n->is_MergeMem() &&  // Not very interesting
2635           !n->is_top() &&       // Debug info table constants
2636           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2637           ) {
2638         if ((pcs != NULL) && (n->_idx < pc_limit)) {
2639           pc = pcs[n->_idx];
2640           st->print("%*.*x", pc_digits, pc_digits, pc);
2641         } else {
2642           st->fill_to(pc_digits);
2643         }
2644         st->print(" %c ", starts_bundle);
2645         starts_bundle = ' ';
2646         st->fill_to(prefix_len);
2647         n->format(_regalloc, st);
2648         st->cr();
2649       }
2650 
2651       // If we have an instruction with a delay slot, and have seen a delay,
2652       // then back up and print it
2653       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2654         // Coverity finding - Explicit null dereferenced.
2655         guarantee(delay != NULL, "no unconditional delay instruction");
2656         if (WizardMode) delay->dump();
2657 
2658         if (node_bundling(delay)->starts_bundle())
2659           starts_bundle = '+';
2660         if ((pcs != NULL) && (n->_idx < pc_limit)) {
2661           pc = pcs[n->_idx];
2662           st->print("%*.*x", pc_digits, pc_digits, pc);
2663         } else {
2664           st->fill_to(pc_digits);
2665         }
2666         st->print(" %c ", starts_bundle);
2667         starts_bundle = ' ';
2668         st->fill_to(prefix_len);
2669         delay->format(_regalloc, st);
2670         st->cr();
2671         delay = NULL;
2672       }
2673 
2674       // Dump the exception table as well
2675       if( n->is_Catch() && (Verbose || WizardMode) ) {
2676         // Print the exception table for this offset
2677         _handler_table.print_subtable_for(pc);
2678       }
2679       st->bol(); // Make sure we start on a new line
2680     }
2681     st->cr(); // one empty line between blocks
2682     assert(cut_short || delay == NULL, "no unconditional delay branch");
2683   } // End of per-block dump
2684 
2685   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
2686 }
2687 #endif
2688 
2689 //------------------------------Final_Reshape_Counts---------------------------
2690 // This class defines counters to help identify when a method
2691 // may/must be executed using hardware with only 24-bit precision.
2692 struct Final_Reshape_Counts : public StackObj {
2693   int  _call_count;             // count non-inlined 'common' calls
2694   int  _float_count;            // count float ops requiring 24-bit precision
2695   int  _double_count;           // count double ops requiring more precision
2696   int  _java_call_count;        // count non-inlined 'java' calls
2697   int  _inner_loop_count;       // count loops which need alignment
2698   VectorSet _visited;           // Visitation flags
2699   Node_List _tests;             // Set of IfNodes & PCTableNodes
2700 
Final_Reshape_CountsFinal_Reshape_Counts2701   Final_Reshape_Counts() :
2702     _call_count(0), _float_count(0), _double_count(0),
2703     _java_call_count(0), _inner_loop_count(0),
2704     _visited( Thread::current()->resource_area() ) { }
2705 
inc_call_countFinal_Reshape_Counts2706   void inc_call_count  () { _call_count  ++; }
inc_float_countFinal_Reshape_Counts2707   void inc_float_count () { _float_count ++; }
inc_double_countFinal_Reshape_Counts2708   void inc_double_count() { _double_count++; }
inc_java_call_countFinal_Reshape_Counts2709   void inc_java_call_count() { _java_call_count++; }
inc_inner_loop_countFinal_Reshape_Counts2710   void inc_inner_loop_count() { _inner_loop_count++; }
2711 
get_call_countFinal_Reshape_Counts2712   int  get_call_count  () const { return _call_count  ; }
get_float_countFinal_Reshape_Counts2713   int  get_float_count () const { return _float_count ; }
get_double_countFinal_Reshape_Counts2714   int  get_double_count() const { return _double_count; }
get_java_call_countFinal_Reshape_Counts2715   int  get_java_call_count() const { return _java_call_count; }
get_inner_loop_countFinal_Reshape_Counts2716   int  get_inner_loop_count() const { return _inner_loop_count; }
2717 };
2718 
2719 #ifdef ASSERT
oop_offset_is_sane(const TypeInstPtr * tp)2720 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2721   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2722   // Make sure the offset goes inside the instance layout.
2723   return k->contains_field_offset(tp->offset());
2724   // Note that OffsetBot and OffsetTop are very negative.
2725 }
2726 #endif
2727 
2728 // Eliminate trivially redundant StoreCMs and accumulate their
2729 // precedence edges.
eliminate_redundant_card_marks(Node * n)2730 void Compile::eliminate_redundant_card_marks(Node* n) {
2731   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2732   if (n->in(MemNode::Address)->outcnt() > 1) {
2733     // There are multiple users of the same address so it might be
2734     // possible to eliminate some of the StoreCMs
2735     Node* mem = n->in(MemNode::Memory);
2736     Node* adr = n->in(MemNode::Address);
2737     Node* val = n->in(MemNode::ValueIn);
2738     Node* prev = n;
2739     bool done = false;
2740     // Walk the chain of StoreCMs eliminating ones that match.  As
2741     // long as it's a chain of single users then the optimization is
2742     // safe.  Eliminating partially redundant StoreCMs would require
2743     // cloning copies down the other paths.
2744     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2745       if (adr == mem->in(MemNode::Address) &&
2746           val == mem->in(MemNode::ValueIn)) {
2747         // redundant StoreCM
2748         if (mem->req() > MemNode::OopStore) {
2749           // Hasn't been processed by this code yet.
2750           n->add_prec(mem->in(MemNode::OopStore));
2751         } else {
2752           // Already converted to precedence edge
2753           for (uint i = mem->req(); i < mem->len(); i++) {
2754             // Accumulate any precedence edges
2755             if (mem->in(i) != NULL) {
2756               n->add_prec(mem->in(i));
2757             }
2758           }
2759           // Everything above this point has been processed.
2760           done = true;
2761         }
2762         // Eliminate the previous StoreCM
2763         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2764         assert(mem->outcnt() == 0, "should be dead");
2765         mem->disconnect_inputs(NULL, this);
2766       } else {
2767         prev = mem;
2768       }
2769       mem = prev->in(MemNode::Memory);
2770     }
2771   }
2772 }
2773 
2774 //------------------------------final_graph_reshaping_impl----------------------
2775 // Implement items 1-5 from final_graph_reshaping below.
final_graph_reshaping_impl(Node * n,Final_Reshape_Counts & frc)2776 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2777 
2778   if ( n->outcnt() == 0 ) return; // dead node
2779   uint nop = n->Opcode();
2780 
2781   // Check for 2-input instruction with "last use" on right input.
2782   // Swap to left input.  Implements item (2).
2783   if( n->req() == 3 &&          // two-input instruction
2784       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2785       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2786       n->in(2)->outcnt() == 1 &&// right use IS a last use
2787       !n->in(2)->is_Con() ) {   // right use is not a constant
2788     // Check for commutative opcode
2789     switch( nop ) {
2790     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2791     case Op_MaxI:  case Op_MinI:
2792     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2793     case Op_AndL:  case Op_XorL:  case Op_OrL:
2794     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2795       // Move "last use" input to left by swapping inputs
2796       n->swap_edges(1, 2);
2797       break;
2798     }
2799     default:
2800       break;
2801     }
2802   }
2803 
2804 #ifdef ASSERT
2805   if( n->is_Mem() ) {
2806     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2807     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2808             // oop will be recorded in oop map if load crosses safepoint
2809             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2810                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2811             "raw memory operations should have control edge");
2812   }
2813   if (n->is_MemBar()) {
2814     MemBarNode* mb = n->as_MemBar();
2815     if (mb->trailing_store() || mb->trailing_load_store()) {
2816       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2817       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
2818       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2819              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2820     } else if (mb->leading()) {
2821       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2822     }
2823   }
2824 #endif
2825   // Count FPU ops and common calls, implements item (3)
2826   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2827   if (!gc_handled) {
2828     final_graph_reshaping_main_switch(n, frc, nop);
2829   }
2830 
2831   // Collect CFG split points
2832   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2833     frc._tests.push(n);
2834   }
2835 }
2836 
final_graph_reshaping_main_switch(Node * n,Final_Reshape_Counts & frc,uint nop)2837 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2838   switch( nop ) {
2839   // Count all float operations that may use FPU
2840   case Op_AddF:
2841   case Op_SubF:
2842   case Op_MulF:
2843   case Op_DivF:
2844   case Op_NegF:
2845   case Op_ModF:
2846   case Op_ConvI2F:
2847   case Op_ConF:
2848   case Op_CmpF:
2849   case Op_CmpF3:
2850   // case Op_ConvL2F: // longs are split into 32-bit halves
2851     frc.inc_float_count();
2852     break;
2853 
2854   case Op_ConvF2D:
2855   case Op_ConvD2F:
2856     frc.inc_float_count();
2857     frc.inc_double_count();
2858     break;
2859 
2860   // Count all double operations that may use FPU
2861   case Op_AddD:
2862   case Op_SubD:
2863   case Op_MulD:
2864   case Op_DivD:
2865   case Op_NegD:
2866   case Op_ModD:
2867   case Op_ConvI2D:
2868   case Op_ConvD2I:
2869   // case Op_ConvL2D: // handled by leaf call
2870   // case Op_ConvD2L: // handled by leaf call
2871   case Op_ConD:
2872   case Op_CmpD:
2873   case Op_CmpD3:
2874     frc.inc_double_count();
2875     break;
2876   case Op_Opaque1:              // Remove Opaque Nodes before matching
2877   case Op_Opaque2:              // Remove Opaque Nodes before matching
2878   case Op_Opaque3:
2879     n->subsume_by(n->in(1), this);
2880     break;
2881   case Op_CallStaticJava:
2882   case Op_CallJava:
2883   case Op_CallDynamicJava:
2884     frc.inc_java_call_count(); // Count java call site;
2885   case Op_CallRuntime:
2886   case Op_CallLeaf:
2887   case Op_CallLeafNoFP: {
2888     assert (n->is_Call(), "");
2889     CallNode *call = n->as_Call();
2890     // Count call sites where the FP mode bit would have to be flipped.
2891     // Do not count uncommon runtime calls:
2892     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2893     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2894     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2895       frc.inc_call_count();   // Count the call site
2896     } else {                  // See if uncommon argument is shared
2897       Node *n = call->in(TypeFunc::Parms);
2898       int nop = n->Opcode();
2899       // Clone shared simple arguments to uncommon calls, item (1).
2900       if (n->outcnt() > 1 &&
2901           !n->is_Proj() &&
2902           nop != Op_CreateEx &&
2903           nop != Op_CheckCastPP &&
2904           nop != Op_DecodeN &&
2905           nop != Op_DecodeNKlass &&
2906           !n->is_Mem() &&
2907           !n->is_Phi()) {
2908         Node *x = n->clone();
2909         call->set_req(TypeFunc::Parms, x);
2910       }
2911     }
2912     break;
2913   }
2914 
2915   case Op_StoreD:
2916   case Op_LoadD:
2917   case Op_LoadD_unaligned:
2918     frc.inc_double_count();
2919     goto handle_mem;
2920   case Op_StoreF:
2921   case Op_LoadF:
2922     frc.inc_float_count();
2923     goto handle_mem;
2924 
2925   case Op_StoreCM:
2926     {
2927       // Convert OopStore dependence into precedence edge
2928       Node* prec = n->in(MemNode::OopStore);
2929       n->del_req(MemNode::OopStore);
2930       n->add_prec(prec);
2931       eliminate_redundant_card_marks(n);
2932     }
2933 
2934     // fall through
2935 
2936   case Op_StoreB:
2937   case Op_StoreC:
2938   case Op_StorePConditional:
2939   case Op_StoreI:
2940   case Op_StoreL:
2941   case Op_StoreIConditional:
2942   case Op_StoreLConditional:
2943   case Op_CompareAndSwapB:
2944   case Op_CompareAndSwapS:
2945   case Op_CompareAndSwapI:
2946   case Op_CompareAndSwapL:
2947   case Op_CompareAndSwapP:
2948   case Op_CompareAndSwapN:
2949   case Op_WeakCompareAndSwapB:
2950   case Op_WeakCompareAndSwapS:
2951   case Op_WeakCompareAndSwapI:
2952   case Op_WeakCompareAndSwapL:
2953   case Op_WeakCompareAndSwapP:
2954   case Op_WeakCompareAndSwapN:
2955   case Op_CompareAndExchangeB:
2956   case Op_CompareAndExchangeS:
2957   case Op_CompareAndExchangeI:
2958   case Op_CompareAndExchangeL:
2959   case Op_CompareAndExchangeP:
2960   case Op_CompareAndExchangeN:
2961   case Op_GetAndAddS:
2962   case Op_GetAndAddB:
2963   case Op_GetAndAddI:
2964   case Op_GetAndAddL:
2965   case Op_GetAndSetS:
2966   case Op_GetAndSetB:
2967   case Op_GetAndSetI:
2968   case Op_GetAndSetL:
2969   case Op_GetAndSetP:
2970   case Op_GetAndSetN:
2971   case Op_StoreP:
2972   case Op_StoreN:
2973   case Op_StoreNKlass:
2974   case Op_LoadB:
2975   case Op_LoadUB:
2976   case Op_LoadUS:
2977   case Op_LoadI:
2978   case Op_LoadKlass:
2979   case Op_LoadNKlass:
2980   case Op_LoadL:
2981   case Op_LoadL_unaligned:
2982   case Op_LoadPLocked:
2983   case Op_LoadP:
2984   case Op_LoadN:
2985   case Op_LoadRange:
2986   case Op_LoadS: {
2987   handle_mem:
2988 #ifdef ASSERT
2989     if( VerifyOptoOopOffsets ) {
2990       MemNode* mem  = n->as_Mem();
2991       // Check to see if address types have grounded out somehow.
2992       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2993       assert( !tp || oop_offset_is_sane(tp), "" );
2994     }
2995 #endif
2996     break;
2997   }
2998 
2999   case Op_AddP: {               // Assert sane base pointers
3000     Node *addp = n->in(AddPNode::Address);
3001     assert( !addp->is_AddP() ||
3002             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3003             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3004             "Base pointers must match (addp %u)", addp->_idx );
3005 #ifdef _LP64
3006     if ((UseCompressedOops || UseCompressedClassPointers) &&
3007         addp->Opcode() == Op_ConP &&
3008         addp == n->in(AddPNode::Base) &&
3009         n->in(AddPNode::Offset)->is_Con()) {
3010       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3011       // on the platform and on the compressed oops mode.
3012       // Use addressing with narrow klass to load with offset on x86.
3013       // Some platforms can use the constant pool to load ConP.
3014       // Do this transformation here since IGVN will convert ConN back to ConP.
3015       const Type* t = addp->bottom_type();
3016       bool is_oop   = t->isa_oopptr() != NULL;
3017       bool is_klass = t->isa_klassptr() != NULL;
3018 
3019       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3020           (is_klass && Matcher::const_klass_prefer_decode())) {
3021         Node* nn = NULL;
3022 
3023         int op = is_oop ? Op_ConN : Op_ConNKlass;
3024 
3025         // Look for existing ConN node of the same exact type.
3026         Node* r  = root();
3027         uint cnt = r->outcnt();
3028         for (uint i = 0; i < cnt; i++) {
3029           Node* m = r->raw_out(i);
3030           if (m!= NULL && m->Opcode() == op &&
3031               m->bottom_type()->make_ptr() == t) {
3032             nn = m;
3033             break;
3034           }
3035         }
3036         if (nn != NULL) {
3037           // Decode a narrow oop to match address
3038           // [R12 + narrow_oop_reg<<3 + offset]
3039           if (is_oop) {
3040             nn = new DecodeNNode(nn, t);
3041           } else {
3042             nn = new DecodeNKlassNode(nn, t);
3043           }
3044           // Check for succeeding AddP which uses the same Base.
3045           // Otherwise we will run into the assertion above when visiting that guy.
3046           for (uint i = 0; i < n->outcnt(); ++i) {
3047             Node *out_i = n->raw_out(i);
3048             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3049               out_i->set_req(AddPNode::Base, nn);
3050 #ifdef ASSERT
3051               for (uint j = 0; j < out_i->outcnt(); ++j) {
3052                 Node *out_j = out_i->raw_out(j);
3053                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3054                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3055               }
3056 #endif
3057             }
3058           }
3059           n->set_req(AddPNode::Base, nn);
3060           n->set_req(AddPNode::Address, nn);
3061           if (addp->outcnt() == 0) {
3062             addp->disconnect_inputs(NULL, this);
3063           }
3064         }
3065       }
3066     }
3067 #endif
3068     // platform dependent reshaping of the address expression
3069     reshape_address(n->as_AddP());
3070     break;
3071   }
3072 
3073   case Op_CastPP: {
3074     // Remove CastPP nodes to gain more freedom during scheduling but
3075     // keep the dependency they encode as control or precedence edges
3076     // (if control is set already) on memory operations. Some CastPP
3077     // nodes don't have a control (don't carry a dependency): skip
3078     // those.
3079     if (n->in(0) != NULL) {
3080       ResourceMark rm;
3081       Unique_Node_List wq;
3082       wq.push(n);
3083       for (uint next = 0; next < wq.size(); ++next) {
3084         Node *m = wq.at(next);
3085         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3086           Node* use = m->fast_out(i);
3087           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3088             use->ensure_control_or_add_prec(n->in(0));
3089           } else {
3090             switch(use->Opcode()) {
3091             case Op_AddP:
3092             case Op_DecodeN:
3093             case Op_DecodeNKlass:
3094             case Op_CheckCastPP:
3095             case Op_CastPP:
3096               wq.push(use);
3097               break;
3098             }
3099           }
3100         }
3101       }
3102     }
3103     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3104     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3105       Node* in1 = n->in(1);
3106       const Type* t = n->bottom_type();
3107       Node* new_in1 = in1->clone();
3108       new_in1->as_DecodeN()->set_type(t);
3109 
3110       if (!Matcher::narrow_oop_use_complex_address()) {
3111         //
3112         // x86, ARM and friends can handle 2 adds in addressing mode
3113         // and Matcher can fold a DecodeN node into address by using
3114         // a narrow oop directly and do implicit NULL check in address:
3115         //
3116         // [R12 + narrow_oop_reg<<3 + offset]
3117         // NullCheck narrow_oop_reg
3118         //
3119         // On other platforms (Sparc) we have to keep new DecodeN node and
3120         // use it to do implicit NULL check in address:
3121         //
3122         // decode_not_null narrow_oop_reg, base_reg
3123         // [base_reg + offset]
3124         // NullCheck base_reg
3125         //
3126         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3127         // to keep the information to which NULL check the new DecodeN node
3128         // corresponds to use it as value in implicit_null_check().
3129         //
3130         new_in1->set_req(0, n->in(0));
3131       }
3132 
3133       n->subsume_by(new_in1, this);
3134       if (in1->outcnt() == 0) {
3135         in1->disconnect_inputs(NULL, this);
3136       }
3137     } else {
3138       n->subsume_by(n->in(1), this);
3139       if (n->outcnt() == 0) {
3140         n->disconnect_inputs(NULL, this);
3141       }
3142     }
3143     break;
3144   }
3145 #ifdef _LP64
3146   case Op_CmpP:
3147     // Do this transformation here to preserve CmpPNode::sub() and
3148     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3149     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3150       Node* in1 = n->in(1);
3151       Node* in2 = n->in(2);
3152       if (!in1->is_DecodeNarrowPtr()) {
3153         in2 = in1;
3154         in1 = n->in(2);
3155       }
3156       assert(in1->is_DecodeNarrowPtr(), "sanity");
3157 
3158       Node* new_in2 = NULL;
3159       if (in2->is_DecodeNarrowPtr()) {
3160         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3161         new_in2 = in2->in(1);
3162       } else if (in2->Opcode() == Op_ConP) {
3163         const Type* t = in2->bottom_type();
3164         if (t == TypePtr::NULL_PTR) {
3165           assert(in1->is_DecodeN(), "compare klass to null?");
3166           // Don't convert CmpP null check into CmpN if compressed
3167           // oops implicit null check is not generated.
3168           // This will allow to generate normal oop implicit null check.
3169           if (Matcher::gen_narrow_oop_implicit_null_checks())
3170             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3171           //
3172           // This transformation together with CastPP transformation above
3173           // will generated code for implicit NULL checks for compressed oops.
3174           //
3175           // The original code after Optimize()
3176           //
3177           //    LoadN memory, narrow_oop_reg
3178           //    decode narrow_oop_reg, base_reg
3179           //    CmpP base_reg, NULL
3180           //    CastPP base_reg // NotNull
3181           //    Load [base_reg + offset], val_reg
3182           //
3183           // after these transformations will be
3184           //
3185           //    LoadN memory, narrow_oop_reg
3186           //    CmpN narrow_oop_reg, NULL
3187           //    decode_not_null narrow_oop_reg, base_reg
3188           //    Load [base_reg + offset], val_reg
3189           //
3190           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3191           // since narrow oops can be used in debug info now (see the code in
3192           // final_graph_reshaping_walk()).
3193           //
3194           // At the end the code will be matched to
3195           // on x86:
3196           //
3197           //    Load_narrow_oop memory, narrow_oop_reg
3198           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3199           //    NullCheck narrow_oop_reg
3200           //
3201           // and on sparc:
3202           //
3203           //    Load_narrow_oop memory, narrow_oop_reg
3204           //    decode_not_null narrow_oop_reg, base_reg
3205           //    Load [base_reg + offset], val_reg
3206           //    NullCheck base_reg
3207           //
3208         } else if (t->isa_oopptr()) {
3209           new_in2 = ConNode::make(t->make_narrowoop());
3210         } else if (t->isa_klassptr()) {
3211           new_in2 = ConNode::make(t->make_narrowklass());
3212         }
3213       }
3214       if (new_in2 != NULL) {
3215         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3216         n->subsume_by(cmpN, this);
3217         if (in1->outcnt() == 0) {
3218           in1->disconnect_inputs(NULL, this);
3219         }
3220         if (in2->outcnt() == 0) {
3221           in2->disconnect_inputs(NULL, this);
3222         }
3223       }
3224     }
3225     break;
3226 
3227   case Op_DecodeN:
3228   case Op_DecodeNKlass:
3229     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3230     // DecodeN could be pinned when it can't be fold into
3231     // an address expression, see the code for Op_CastPP above.
3232     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3233     break;
3234 
3235   case Op_EncodeP:
3236   case Op_EncodePKlass: {
3237     Node* in1 = n->in(1);
3238     if (in1->is_DecodeNarrowPtr()) {
3239       n->subsume_by(in1->in(1), this);
3240     } else if (in1->Opcode() == Op_ConP) {
3241       const Type* t = in1->bottom_type();
3242       if (t == TypePtr::NULL_PTR) {
3243         assert(t->isa_oopptr(), "null klass?");
3244         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3245       } else if (t->isa_oopptr()) {
3246         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3247       } else if (t->isa_klassptr()) {
3248         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3249       }
3250     }
3251     if (in1->outcnt() == 0) {
3252       in1->disconnect_inputs(NULL, this);
3253     }
3254     break;
3255   }
3256 
3257   case Op_Proj: {
3258     if (OptimizeStringConcat) {
3259       ProjNode* p = n->as_Proj();
3260       if (p->_is_io_use) {
3261         // Separate projections were used for the exception path which
3262         // are normally removed by a late inline.  If it wasn't inlined
3263         // then they will hang around and should just be replaced with
3264         // the original one.
3265         Node* proj = NULL;
3266         // Replace with just one
3267         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3268           Node *use = i.get();
3269           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3270             proj = use;
3271             break;
3272           }
3273         }
3274         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3275         if (proj != NULL) {
3276           p->subsume_by(proj, this);
3277         }
3278       }
3279     }
3280     break;
3281   }
3282 
3283   case Op_Phi:
3284     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3285       // The EncodeP optimization may create Phi with the same edges
3286       // for all paths. It is not handled well by Register Allocator.
3287       Node* unique_in = n->in(1);
3288       assert(unique_in != NULL, "");
3289       uint cnt = n->req();
3290       for (uint i = 2; i < cnt; i++) {
3291         Node* m = n->in(i);
3292         assert(m != NULL, "");
3293         if (unique_in != m)
3294           unique_in = NULL;
3295       }
3296       if (unique_in != NULL) {
3297         n->subsume_by(unique_in, this);
3298       }
3299     }
3300     break;
3301 
3302 #endif
3303 
3304 #ifdef ASSERT
3305   case Op_CastII:
3306     // Verify that all range check dependent CastII nodes were removed.
3307     if (n->isa_CastII()->has_range_check()) {
3308       n->dump(3);
3309       assert(false, "Range check dependent CastII node was not removed");
3310     }
3311     break;
3312 #endif
3313 
3314   case Op_ModI:
3315     if (UseDivMod) {
3316       // Check if a%b and a/b both exist
3317       Node* d = n->find_similar(Op_DivI);
3318       if (d) {
3319         // Replace them with a fused divmod if supported
3320         if (Matcher::has_match_rule(Op_DivModI)) {
3321           DivModINode* divmod = DivModINode::make(n);
3322           d->subsume_by(divmod->div_proj(), this);
3323           n->subsume_by(divmod->mod_proj(), this);
3324         } else {
3325           // replace a%b with a-((a/b)*b)
3326           Node* mult = new MulINode(d, d->in(2));
3327           Node* sub  = new SubINode(d->in(1), mult);
3328           n->subsume_by(sub, this);
3329         }
3330       }
3331     }
3332     break;
3333 
3334   case Op_ModL:
3335     if (UseDivMod) {
3336       // Check if a%b and a/b both exist
3337       Node* d = n->find_similar(Op_DivL);
3338       if (d) {
3339         // Replace them with a fused divmod if supported
3340         if (Matcher::has_match_rule(Op_DivModL)) {
3341           DivModLNode* divmod = DivModLNode::make(n);
3342           d->subsume_by(divmod->div_proj(), this);
3343           n->subsume_by(divmod->mod_proj(), this);
3344         } else {
3345           // replace a%b with a-((a/b)*b)
3346           Node* mult = new MulLNode(d, d->in(2));
3347           Node* sub  = new SubLNode(d->in(1), mult);
3348           n->subsume_by(sub, this);
3349         }
3350       }
3351     }
3352     break;
3353 
3354   case Op_LoadVector:
3355   case Op_StoreVector:
3356     break;
3357 
3358   case Op_AddReductionVI:
3359   case Op_AddReductionVL:
3360   case Op_AddReductionVF:
3361   case Op_AddReductionVD:
3362   case Op_MulReductionVI:
3363   case Op_MulReductionVL:
3364   case Op_MulReductionVF:
3365   case Op_MulReductionVD:
3366   case Op_MinReductionV:
3367   case Op_MaxReductionV:
3368     break;
3369 
3370   case Op_PackB:
3371   case Op_PackS:
3372   case Op_PackI:
3373   case Op_PackF:
3374   case Op_PackL:
3375   case Op_PackD:
3376     if (n->req()-1 > 2) {
3377       // Replace many operand PackNodes with a binary tree for matching
3378       PackNode* p = (PackNode*) n;
3379       Node* btp = p->binary_tree_pack(1, n->req());
3380       n->subsume_by(btp, this);
3381     }
3382     break;
3383   case Op_Loop:
3384   case Op_CountedLoop:
3385   case Op_OuterStripMinedLoop:
3386     if (n->as_Loop()->is_inner_loop()) {
3387       frc.inc_inner_loop_count();
3388     }
3389     n->as_Loop()->verify_strip_mined(0);
3390     break;
3391   case Op_LShiftI:
3392   case Op_RShiftI:
3393   case Op_URShiftI:
3394   case Op_LShiftL:
3395   case Op_RShiftL:
3396   case Op_URShiftL:
3397     if (Matcher::need_masked_shift_count) {
3398       // The cpu's shift instructions don't restrict the count to the
3399       // lower 5/6 bits. We need to do the masking ourselves.
3400       Node* in2 = n->in(2);
3401       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3402       const TypeInt* t = in2->find_int_type();
3403       if (t != NULL && t->is_con()) {
3404         juint shift = t->get_con();
3405         if (shift > mask) { // Unsigned cmp
3406           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3407         }
3408       } else {
3409         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3410           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3411           n->set_req(2, shift);
3412         }
3413       }
3414       if (in2->outcnt() == 0) { // Remove dead node
3415         in2->disconnect_inputs(NULL, this);
3416       }
3417     }
3418     break;
3419   case Op_MemBarStoreStore:
3420   case Op_MemBarRelease:
3421     // Break the link with AllocateNode: it is no longer useful and
3422     // confuses register allocation.
3423     if (n->req() > MemBarNode::Precedent) {
3424       n->set_req(MemBarNode::Precedent, top());
3425     }
3426     break;
3427   case Op_MemBarAcquire: {
3428     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3429       // At parse time, the trailing MemBarAcquire for a volatile load
3430       // is created with an edge to the load. After optimizations,
3431       // that input may be a chain of Phis. If those phis have no
3432       // other use, then the MemBarAcquire keeps them alive and
3433       // register allocation can be confused.
3434       ResourceMark rm;
3435       Unique_Node_List wq;
3436       wq.push(n->in(MemBarNode::Precedent));
3437       n->set_req(MemBarNode::Precedent, top());
3438       while (wq.size() > 0) {
3439         Node* m = wq.pop();
3440         if (m->outcnt() == 0) {
3441           for (uint j = 0; j < m->req(); j++) {
3442             Node* in = m->in(j);
3443             if (in != NULL) {
3444               wq.push(in);
3445             }
3446           }
3447           m->disconnect_inputs(NULL, this);
3448         }
3449       }
3450     }
3451     break;
3452   }
3453   case Op_RangeCheck: {
3454     RangeCheckNode* rc = n->as_RangeCheck();
3455     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3456     n->subsume_by(iff, this);
3457     frc._tests.push(iff);
3458     break;
3459   }
3460   case Op_ConvI2L: {
3461     if (!Matcher::convi2l_type_required) {
3462       // Code generation on some platforms doesn't need accurate
3463       // ConvI2L types. Widening the type can help remove redundant
3464       // address computations.
3465       n->as_Type()->set_type(TypeLong::INT);
3466       ResourceMark rm;
3467       Unique_Node_List wq;
3468       wq.push(n);
3469       for (uint next = 0; next < wq.size(); next++) {
3470         Node *m = wq.at(next);
3471 
3472         for(;;) {
3473           // Loop over all nodes with identical inputs edges as m
3474           Node* k = m->find_similar(m->Opcode());
3475           if (k == NULL) {
3476             break;
3477           }
3478           // Push their uses so we get a chance to remove node made
3479           // redundant
3480           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3481             Node* u = k->fast_out(i);
3482             if (u->Opcode() == Op_LShiftL ||
3483                 u->Opcode() == Op_AddL ||
3484                 u->Opcode() == Op_SubL ||
3485                 u->Opcode() == Op_AddP) {
3486               wq.push(u);
3487             }
3488           }
3489           // Replace all nodes with identical edges as m with m
3490           k->subsume_by(m, this);
3491         }
3492       }
3493     }
3494     break;
3495   }
3496   case Op_CmpUL: {
3497     if (!Matcher::has_match_rule(Op_CmpUL)) {
3498       // No support for unsigned long comparisons
3499       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3500       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3501       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3502       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3503       Node* andl = new AndLNode(orl, remove_sign_mask);
3504       Node* cmp = new CmpLNode(andl, n->in(2));
3505       n->subsume_by(cmp, this);
3506     }
3507     break;
3508   }
3509   default:
3510     assert(!n->is_Call(), "");
3511     assert(!n->is_Mem(), "");
3512     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3513     break;
3514   }
3515 }
3516 
3517 //------------------------------final_graph_reshaping_walk---------------------
3518 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3519 // requires that the walk visits a node's inputs before visiting the node.
final_graph_reshaping_walk(Node_Stack & nstack,Node * root,Final_Reshape_Counts & frc)3520 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3521   ResourceArea *area = Thread::current()->resource_area();
3522   Unique_Node_List sfpt(area);
3523 
3524   frc._visited.set(root->_idx); // first, mark node as visited
3525   uint cnt = root->req();
3526   Node *n = root;
3527   uint  i = 0;
3528   while (true) {
3529     if (i < cnt) {
3530       // Place all non-visited non-null inputs onto stack
3531       Node* m = n->in(i);
3532       ++i;
3533       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3534         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3535           // compute worst case interpreter size in case of a deoptimization
3536           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3537 
3538           sfpt.push(m);
3539         }
3540         cnt = m->req();
3541         nstack.push(n, i); // put on stack parent and next input's index
3542         n = m;
3543         i = 0;
3544       }
3545     } else {
3546       // Now do post-visit work
3547       final_graph_reshaping_impl( n, frc );
3548       if (nstack.is_empty())
3549         break;             // finished
3550       n = nstack.node();   // Get node from stack
3551       cnt = n->req();
3552       i = nstack.index();
3553       nstack.pop();        // Shift to the next node on stack
3554     }
3555   }
3556 
3557   // Skip next transformation if compressed oops are not used.
3558   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3559       (!UseCompressedOops && !UseCompressedClassPointers))
3560     return;
3561 
3562   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3563   // It could be done for an uncommon traps or any safepoints/calls
3564   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3565   while (sfpt.size() > 0) {
3566     n = sfpt.pop();
3567     JVMState *jvms = n->as_SafePoint()->jvms();
3568     assert(jvms != NULL, "sanity");
3569     int start = jvms->debug_start();
3570     int end   = n->req();
3571     bool is_uncommon = (n->is_CallStaticJava() &&
3572                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3573     for (int j = start; j < end; j++) {
3574       Node* in = n->in(j);
3575       if (in->is_DecodeNarrowPtr()) {
3576         bool safe_to_skip = true;
3577         if (!is_uncommon ) {
3578           // Is it safe to skip?
3579           for (uint i = 0; i < in->outcnt(); i++) {
3580             Node* u = in->raw_out(i);
3581             if (!u->is_SafePoint() ||
3582                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3583               safe_to_skip = false;
3584             }
3585           }
3586         }
3587         if (safe_to_skip) {
3588           n->set_req(j, in->in(1));
3589         }
3590         if (in->outcnt() == 0) {
3591           in->disconnect_inputs(NULL, this);
3592         }
3593       }
3594     }
3595   }
3596 }
3597 
3598 //------------------------------final_graph_reshaping--------------------------
3599 // Final Graph Reshaping.
3600 //
3601 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3602 //     and not commoned up and forced early.  Must come after regular
3603 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3604 //     inputs to Loop Phis; these will be split by the allocator anyways.
3605 //     Remove Opaque nodes.
3606 // (2) Move last-uses by commutative operations to the left input to encourage
3607 //     Intel update-in-place two-address operations and better register usage
3608 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3609 //     calls canonicalizing them back.
3610 // (3) Count the number of double-precision FP ops, single-precision FP ops
3611 //     and call sites.  On Intel, we can get correct rounding either by
3612 //     forcing singles to memory (requires extra stores and loads after each
3613 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3614 //     clearing the mode bit around call sites).  The mode bit is only used
3615 //     if the relative frequency of single FP ops to calls is low enough.
3616 //     This is a key transform for SPEC mpeg_audio.
3617 // (4) Detect infinite loops; blobs of code reachable from above but not
3618 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3619 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3620 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3621 //     Detection is by looking for IfNodes where only 1 projection is
3622 //     reachable from below or CatchNodes missing some targets.
3623 // (5) Assert for insane oop offsets in debug mode.
3624 
final_graph_reshaping()3625 bool Compile::final_graph_reshaping() {
3626   // an infinite loop may have been eliminated by the optimizer,
3627   // in which case the graph will be empty.
3628   if (root()->req() == 1) {
3629     record_method_not_compilable("trivial infinite loop");
3630     return true;
3631   }
3632 
3633   // Expensive nodes have their control input set to prevent the GVN
3634   // from freely commoning them. There's no GVN beyond this point so
3635   // no need to keep the control input. We want the expensive nodes to
3636   // be freely moved to the least frequent code path by gcm.
3637   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3638   for (int i = 0; i < expensive_count(); i++) {
3639     _expensive_nodes->at(i)->set_req(0, NULL);
3640   }
3641 
3642   Final_Reshape_Counts frc;
3643 
3644   // Visit everybody reachable!
3645   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3646   Node_Stack nstack(live_nodes() >> 1);
3647   final_graph_reshaping_walk(nstack, root(), frc);
3648 
3649   // Check for unreachable (from below) code (i.e., infinite loops).
3650   for( uint i = 0; i < frc._tests.size(); i++ ) {
3651     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3652     // Get number of CFG targets.
3653     // Note that PCTables include exception targets after calls.
3654     uint required_outcnt = n->required_outcnt();
3655     if (n->outcnt() != required_outcnt) {
3656       // Check for a few special cases.  Rethrow Nodes never take the
3657       // 'fall-thru' path, so expected kids is 1 less.
3658       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3659         if (n->in(0)->in(0)->is_Call()) {
3660           CallNode *call = n->in(0)->in(0)->as_Call();
3661           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3662             required_outcnt--;      // Rethrow always has 1 less kid
3663           } else if (call->req() > TypeFunc::Parms &&
3664                      call->is_CallDynamicJava()) {
3665             // Check for null receiver. In such case, the optimizer has
3666             // detected that the virtual call will always result in a null
3667             // pointer exception. The fall-through projection of this CatchNode
3668             // will not be populated.
3669             Node *arg0 = call->in(TypeFunc::Parms);
3670             if (arg0->is_Type() &&
3671                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3672               required_outcnt--;
3673             }
3674           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3675                      call->req() > TypeFunc::Parms+1 &&
3676                      call->is_CallStaticJava()) {
3677             // Check for negative array length. In such case, the optimizer has
3678             // detected that the allocation attempt will always result in an
3679             // exception. There is no fall-through projection of this CatchNode .
3680             Node *arg1 = call->in(TypeFunc::Parms+1);
3681             if (arg1->is_Type() &&
3682                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3683               required_outcnt--;
3684             }
3685           }
3686         }
3687       }
3688       // Recheck with a better notion of 'required_outcnt'
3689       if (n->outcnt() != required_outcnt) {
3690         record_method_not_compilable("malformed control flow");
3691         return true;            // Not all targets reachable!
3692       }
3693     }
3694     // Check that I actually visited all kids.  Unreached kids
3695     // must be infinite loops.
3696     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3697       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3698         record_method_not_compilable("infinite loop");
3699         return true;            // Found unvisited kid; must be unreach
3700       }
3701 
3702     // Here so verification code in final_graph_reshaping_walk()
3703     // always see an OuterStripMinedLoopEnd
3704     if (n->is_OuterStripMinedLoopEnd()) {
3705       IfNode* init_iff = n->as_If();
3706       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3707       n->subsume_by(iff, this);
3708     }
3709   }
3710 
3711   // If original bytecodes contained a mixture of floats and doubles
3712   // check if the optimizer has made it homogenous, item (3).
3713   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3714       frc.get_float_count() > 32 &&
3715       frc.get_double_count() == 0 &&
3716       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3717     set_24_bit_selection_and_mode( false,  true );
3718   }
3719 
3720   set_java_calls(frc.get_java_call_count());
3721   set_inner_loops(frc.get_inner_loop_count());
3722 
3723   // No infinite loops, no reason to bail out.
3724   return false;
3725 }
3726 
3727 //-----------------------------too_many_traps----------------------------------
3728 // Report if there are too many traps at the current method and bci.
3729 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
too_many_traps(ciMethod * method,int bci,Deoptimization::DeoptReason reason)3730 bool Compile::too_many_traps(ciMethod* method,
3731                              int bci,
3732                              Deoptimization::DeoptReason reason) {
3733   ciMethodData* md = method->method_data();
3734   if (md->is_empty()) {
3735     // Assume the trap has not occurred, or that it occurred only
3736     // because of a transient condition during start-up in the interpreter.
3737     return false;
3738   }
3739   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3740   if (md->has_trap_at(bci, m, reason) != 0) {
3741     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3742     // Also, if there are multiple reasons, or if there is no per-BCI record,
3743     // assume the worst.
3744     if (log())
3745       log()->elem("observe trap='%s' count='%d'",
3746                   Deoptimization::trap_reason_name(reason),
3747                   md->trap_count(reason));
3748     return true;
3749   } else {
3750     // Ignore method/bci and see if there have been too many globally.
3751     return too_many_traps(reason, md);
3752   }
3753 }
3754 
3755 // Less-accurate variant which does not require a method and bci.
too_many_traps(Deoptimization::DeoptReason reason,ciMethodData * logmd)3756 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3757                              ciMethodData* logmd) {
3758   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3759     // Too many traps globally.
3760     // Note that we use cumulative trap_count, not just md->trap_count.
3761     if (log()) {
3762       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3763       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3764                   Deoptimization::trap_reason_name(reason),
3765                   mcount, trap_count(reason));
3766     }
3767     return true;
3768   } else {
3769     // The coast is clear.
3770     return false;
3771   }
3772 }
3773 
3774 //--------------------------too_many_recompiles--------------------------------
3775 // Report if there are too many recompiles at the current method and bci.
3776 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3777 // Is not eager to return true, since this will cause the compiler to use
3778 // Action_none for a trap point, to avoid too many recompilations.
too_many_recompiles(ciMethod * method,int bci,Deoptimization::DeoptReason reason)3779 bool Compile::too_many_recompiles(ciMethod* method,
3780                                   int bci,
3781                                   Deoptimization::DeoptReason reason) {
3782   ciMethodData* md = method->method_data();
3783   if (md->is_empty()) {
3784     // Assume the trap has not occurred, or that it occurred only
3785     // because of a transient condition during start-up in the interpreter.
3786     return false;
3787   }
3788   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3789   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3790   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3791   Deoptimization::DeoptReason per_bc_reason
3792     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3793   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3794   if ((per_bc_reason == Deoptimization::Reason_none
3795        || md->has_trap_at(bci, m, reason) != 0)
3796       // The trap frequency measure we care about is the recompile count:
3797       && md->trap_recompiled_at(bci, m)
3798       && md->overflow_recompile_count() >= bc_cutoff) {
3799     // Do not emit a trap here if it has already caused recompilations.
3800     // Also, if there are multiple reasons, or if there is no per-BCI record,
3801     // assume the worst.
3802     if (log())
3803       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3804                   Deoptimization::trap_reason_name(reason),
3805                   md->trap_count(reason),
3806                   md->overflow_recompile_count());
3807     return true;
3808   } else if (trap_count(reason) != 0
3809              && decompile_count() >= m_cutoff) {
3810     // Too many recompiles globally, and we have seen this sort of trap.
3811     // Use cumulative decompile_count, not just md->decompile_count.
3812     if (log())
3813       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3814                   Deoptimization::trap_reason_name(reason),
3815                   md->trap_count(reason), trap_count(reason),
3816                   md->decompile_count(), decompile_count());
3817     return true;
3818   } else {
3819     // The coast is clear.
3820     return false;
3821   }
3822 }
3823 
3824 // Compute when not to trap. Used by matching trap based nodes and
3825 // NullCheck optimization.
set_allowed_deopt_reasons()3826 void Compile::set_allowed_deopt_reasons() {
3827   _allowed_reasons = 0;
3828   if (is_method_compilation()) {
3829     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3830       assert(rs < BitsPerInt, "recode bit map");
3831       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3832         _allowed_reasons |= nth_bit(rs);
3833       }
3834     }
3835   }
3836 }
3837 
needs_clinit_barrier(ciMethod * method,ciMethod * accessing_method)3838 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
3839   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
3840 }
3841 
needs_clinit_barrier(ciField * field,ciMethod * accessing_method)3842 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
3843   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
3844 }
3845 
needs_clinit_barrier(ciInstanceKlass * holder,ciMethod * accessing_method)3846 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
3847   if (holder->is_initialized()) {
3848     return false;
3849   }
3850   if (holder->is_being_initialized()) {
3851     if (accessing_method->holder() == holder) {
3852       // Access inside a class. The barrier can be elided when access happens in <clinit>,
3853       // <init>, or a static method. In all those cases, there was an initialization
3854       // barrier on the holder klass passed.
3855       if (accessing_method->is_static_initializer() ||
3856           accessing_method->is_object_initializer() ||
3857           accessing_method->is_static()) {
3858         return false;
3859       }
3860     } else if (accessing_method->holder()->is_subclass_of(holder)) {
3861       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
3862       // In case of <init> or a static method, the barrier is on the subclass is not enough:
3863       // child class can become fully initialized while its parent class is still being initialized.
3864       if (accessing_method->is_static_initializer()) {
3865         return false;
3866       }
3867     }
3868     ciMethod* root = method(); // the root method of compilation
3869     if (root != accessing_method) {
3870       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
3871     }
3872   }
3873   return true;
3874 }
3875 
3876 #ifndef PRODUCT
3877 //------------------------------verify_graph_edges---------------------------
3878 // Walk the Graph and verify that there is a one-to-one correspondence
3879 // between Use-Def edges and Def-Use edges in the graph.
verify_graph_edges(bool no_dead_code)3880 void Compile::verify_graph_edges(bool no_dead_code) {
3881   if (VerifyGraphEdges) {
3882     ResourceArea *area = Thread::current()->resource_area();
3883     Unique_Node_List visited(area);
3884     // Call recursive graph walk to check edges
3885     _root->verify_edges(visited);
3886     if (no_dead_code) {
3887       // Now make sure that no visited node is used by an unvisited node.
3888       bool dead_nodes = false;
3889       Unique_Node_List checked(area);
3890       while (visited.size() > 0) {
3891         Node* n = visited.pop();
3892         checked.push(n);
3893         for (uint i = 0; i < n->outcnt(); i++) {
3894           Node* use = n->raw_out(i);
3895           if (checked.member(use))  continue;  // already checked
3896           if (visited.member(use))  continue;  // already in the graph
3897           if (use->is_Con())        continue;  // a dead ConNode is OK
3898           // At this point, we have found a dead node which is DU-reachable.
3899           if (!dead_nodes) {
3900             tty->print_cr("*** Dead nodes reachable via DU edges:");
3901             dead_nodes = true;
3902           }
3903           use->dump(2);
3904           tty->print_cr("---");
3905           checked.push(use);  // No repeats; pretend it is now checked.
3906         }
3907       }
3908       assert(!dead_nodes, "using nodes must be reachable from root");
3909     }
3910   }
3911 }
3912 #endif
3913 
3914 // The Compile object keeps track of failure reasons separately from the ciEnv.
3915 // This is required because there is not quite a 1-1 relation between the
3916 // ciEnv and its compilation task and the Compile object.  Note that one
3917 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3918 // to backtrack and retry without subsuming loads.  Other than this backtracking
3919 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3920 // by the logic in C2Compiler.
record_failure(const char * reason)3921 void Compile::record_failure(const char* reason) {
3922   if (log() != NULL) {
3923     log()->elem("failure reason='%s' phase='compile'", reason);
3924   }
3925   if (_failure_reason == NULL) {
3926     // Record the first failure reason.
3927     _failure_reason = reason;
3928   }
3929 
3930   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3931     C->print_method(PHASE_FAILURE);
3932   }
3933   _root = NULL;  // flush the graph, too
3934 }
3935 
TracePhase(const char * name,elapsedTimer * accumulator)3936 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3937   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3938     _phase_name(name), _dolog(CITimeVerbose)
3939 {
3940   if (_dolog) {
3941     C = Compile::current();
3942     _log = C->log();
3943   } else {
3944     C = NULL;
3945     _log = NULL;
3946   }
3947   if (_log != NULL) {
3948     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3949     _log->stamp();
3950     _log->end_head();
3951   }
3952 }
3953 
~TracePhase()3954 Compile::TracePhase::~TracePhase() {
3955 
3956   C = Compile::current();
3957   if (_dolog) {
3958     _log = C->log();
3959   } else {
3960     _log = NULL;
3961   }
3962 
3963 #ifdef ASSERT
3964   if (PrintIdealNodeCount) {
3965     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3966                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3967   }
3968 
3969   if (VerifyIdealNodeCount) {
3970     Compile::current()->print_missing_nodes();
3971   }
3972 #endif
3973 
3974   if (_log != NULL) {
3975     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3976   }
3977 }
3978 
3979 //=============================================================================
3980 // Two Constant's are equal when the type and the value are equal.
operator ==(const Constant & other)3981 bool Compile::Constant::operator==(const Constant& other) {
3982   if (type()          != other.type()         )  return false;
3983   if (can_be_reused() != other.can_be_reused())  return false;
3984   // For floating point values we compare the bit pattern.
3985   switch (type()) {
3986   case T_INT:
3987   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3988   case T_LONG:
3989   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3990   case T_OBJECT:
3991   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3992   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3993   case T_METADATA: return (_v._metadata == other._v._metadata);
3994   default: ShouldNotReachHere(); return false;
3995   }
3996 }
3997 
type_to_size_in_bytes(BasicType t)3998 static int type_to_size_in_bytes(BasicType t) {
3999   switch (t) {
4000   case T_INT:     return sizeof(jint   );
4001   case T_LONG:    return sizeof(jlong  );
4002   case T_FLOAT:   return sizeof(jfloat );
4003   case T_DOUBLE:  return sizeof(jdouble);
4004   case T_METADATA: return sizeof(Metadata*);
4005     // We use T_VOID as marker for jump-table entries (labels) which
4006     // need an internal word relocation.
4007   case T_VOID:
4008   case T_ADDRESS:
4009   case T_OBJECT:  return sizeof(jobject);
4010   default:
4011     ShouldNotReachHere();
4012     return -1;
4013   }
4014 }
4015 
qsort_comparator(Constant * a,Constant * b)4016 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4017   // sort descending
4018   if (a->freq() > b->freq())  return -1;
4019   if (a->freq() < b->freq())  return  1;
4020   return 0;
4021 }
4022 
calculate_offsets_and_size()4023 void Compile::ConstantTable::calculate_offsets_and_size() {
4024   // First, sort the array by frequencies.
4025   _constants.sort(qsort_comparator);
4026 
4027 #ifdef ASSERT
4028   // Make sure all jump-table entries were sorted to the end of the
4029   // array (they have a negative frequency).
4030   bool found_void = false;
4031   for (int i = 0; i < _constants.length(); i++) {
4032     Constant con = _constants.at(i);
4033     if (con.type() == T_VOID)
4034       found_void = true;  // jump-tables
4035     else
4036       assert(!found_void, "wrong sorting");
4037   }
4038 #endif
4039 
4040   int offset = 0;
4041   for (int i = 0; i < _constants.length(); i++) {
4042     Constant* con = _constants.adr_at(i);
4043 
4044     // Align offset for type.
4045     int typesize = type_to_size_in_bytes(con->type());
4046     offset = align_up(offset, typesize);
4047     con->set_offset(offset);   // set constant's offset
4048 
4049     if (con->type() == T_VOID) {
4050       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4051       offset = offset + typesize * n->outcnt();  // expand jump-table
4052     } else {
4053       offset = offset + typesize;
4054     }
4055   }
4056 
4057   // Align size up to the next section start (which is insts; see
4058   // CodeBuffer::align_at_start).
4059   assert(_size == -1, "already set?");
4060   _size = align_up(offset, (int)CodeEntryAlignment);
4061 }
4062 
emit(CodeBuffer & cb)4063 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4064   MacroAssembler _masm(&cb);
4065   for (int i = 0; i < _constants.length(); i++) {
4066     Constant con = _constants.at(i);
4067     address constant_addr = NULL;
4068     switch (con.type()) {
4069     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4070     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4071     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4072     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4073     case T_OBJECT: {
4074       jobject obj = con.get_jobject();
4075       int oop_index = _masm.oop_recorder()->find_index(obj);
4076       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4077       break;
4078     }
4079     case T_ADDRESS: {
4080       address addr = (address) con.get_jobject();
4081       constant_addr = _masm.address_constant(addr);
4082       break;
4083     }
4084     // We use T_VOID as marker for jump-table entries (labels) which
4085     // need an internal word relocation.
4086     case T_VOID: {
4087       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4088       // Fill the jump-table with a dummy word.  The real value is
4089       // filled in later in fill_jump_table.
4090       address dummy = (address) n;
4091       constant_addr = _masm.address_constant(dummy);
4092       // Expand jump-table
4093       for (uint i = 1; i < n->outcnt(); i++) {
4094         address temp_addr = _masm.address_constant(dummy + i);
4095         assert(temp_addr, "consts section too small");
4096       }
4097       break;
4098     }
4099     case T_METADATA: {
4100       Metadata* obj = con.get_metadata();
4101       int metadata_index = _masm.oop_recorder()->find_index(obj);
4102       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4103       break;
4104     }
4105     default: ShouldNotReachHere();
4106     }
4107     assert(constant_addr, "consts section too small");
4108     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4109             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4110   }
4111 }
4112 
find_offset(Constant & con) const4113 int Compile::ConstantTable::find_offset(Constant& con) const {
4114   int idx = _constants.find(con);
4115   guarantee(idx != -1, "constant must be in constant table");
4116   int offset = _constants.at(idx).offset();
4117   guarantee(offset != -1, "constant table not emitted yet?");
4118   return offset;
4119 }
4120 
add(Constant & con)4121 void Compile::ConstantTable::add(Constant& con) {
4122   if (con.can_be_reused()) {
4123     int idx = _constants.find(con);
4124     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4125       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4126       return;
4127     }
4128   }
4129   (void) _constants.append(con);
4130 }
4131 
add(MachConstantNode * n,BasicType type,jvalue value)4132 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4133   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4134   Constant con(type, value, b->_freq);
4135   add(con);
4136   return con;
4137 }
4138 
add(Metadata * metadata)4139 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4140   Constant con(metadata);
4141   add(con);
4142   return con;
4143 }
4144 
add(MachConstantNode * n,MachOper * oper)4145 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4146   jvalue value;
4147   BasicType type = oper->type()->basic_type();
4148   switch (type) {
4149   case T_LONG:    value.j = oper->constantL(); break;
4150   case T_FLOAT:   value.f = oper->constantF(); break;
4151   case T_DOUBLE:  value.d = oper->constantD(); break;
4152   case T_OBJECT:
4153   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4154   case T_METADATA: return add((Metadata*)oper->constant()); break;
4155   default: guarantee(false, "unhandled type: %s", type2name(type));
4156   }
4157   return add(n, type, value);
4158 }
4159 
add_jump_table(MachConstantNode * n)4160 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4161   jvalue value;
4162   // We can use the node pointer here to identify the right jump-table
4163   // as this method is called from Compile::Fill_buffer right before
4164   // the MachNodes are emitted and the jump-table is filled (means the
4165   // MachNode pointers do not change anymore).
4166   value.l = (jobject) n;
4167   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4168   add(con);
4169   return con;
4170 }
4171 
fill_jump_table(CodeBuffer & cb,MachConstantNode * n,GrowableArray<Label * > labels) const4172 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4173   // If called from Compile::scratch_emit_size do nothing.
4174   if (Compile::current()->in_scratch_emit_size())  return;
4175 
4176   assert(labels.is_nonempty(), "must be");
4177   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4178 
4179   // Since MachConstantNode::constant_offset() also contains
4180   // table_base_offset() we need to subtract the table_base_offset()
4181   // to get the plain offset into the constant table.
4182   int offset = n->constant_offset() - table_base_offset();
4183 
4184   MacroAssembler _masm(&cb);
4185   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4186 
4187   for (uint i = 0; i < n->outcnt(); i++) {
4188     address* constant_addr = &jump_table_base[i];
4189     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4190     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4191     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4192   }
4193 }
4194 
4195 //----------------------------static_subtype_check-----------------------------
4196 // Shortcut important common cases when superklass is exact:
4197 // (0) superklass is java.lang.Object (can occur in reflective code)
4198 // (1) subklass is already limited to a subtype of superklass => always ok
4199 // (2) subklass does not overlap with superklass => always fail
4200 // (3) superklass has NO subtypes and we can check with a simple compare.
static_subtype_check(ciKlass * superk,ciKlass * subk)4201 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4202   if (StressReflectiveCode) {
4203     return SSC_full_test;       // Let caller generate the general case.
4204   }
4205 
4206   if (superk == env()->Object_klass()) {
4207     return SSC_always_true;     // (0) this test cannot fail
4208   }
4209 
4210   ciType* superelem = superk;
4211   if (superelem->is_array_klass())
4212     superelem = superelem->as_array_klass()->base_element_type();
4213 
4214   if (!subk->is_interface()) {  // cannot trust static interface types yet
4215     if (subk->is_subtype_of(superk)) {
4216       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4217     }
4218     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4219         !superk->is_subtype_of(subk)) {
4220       return SSC_always_false;
4221     }
4222   }
4223 
4224   // If casting to an instance klass, it must have no subtypes
4225   if (superk->is_interface()) {
4226     // Cannot trust interfaces yet.
4227     // %%% S.B. superk->nof_implementors() == 1
4228   } else if (superelem->is_instance_klass()) {
4229     ciInstanceKlass* ik = superelem->as_instance_klass();
4230     if (!ik->has_subklass() && !ik->is_interface()) {
4231       if (!ik->is_final()) {
4232         // Add a dependency if there is a chance of a later subclass.
4233         dependencies()->assert_leaf_type(ik);
4234       }
4235       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4236     }
4237   } else {
4238     // A primitive array type has no subtypes.
4239     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4240   }
4241 
4242   return SSC_full_test;
4243 }
4244 
conv_I2X_index(PhaseGVN * phase,Node * idx,const TypeInt * sizetype,Node * ctrl)4245 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4246 #ifdef _LP64
4247   // The scaled index operand to AddP must be a clean 64-bit value.
4248   // Java allows a 32-bit int to be incremented to a negative
4249   // value, which appears in a 64-bit register as a large
4250   // positive number.  Using that large positive number as an
4251   // operand in pointer arithmetic has bad consequences.
4252   // On the other hand, 32-bit overflow is rare, and the possibility
4253   // can often be excluded, if we annotate the ConvI2L node with
4254   // a type assertion that its value is known to be a small positive
4255   // number.  (The prior range check has ensured this.)
4256   // This assertion is used by ConvI2LNode::Ideal.
4257   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4258   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4259   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4260   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4261 #endif
4262   return idx;
4263 }
4264 
4265 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
constrained_convI2L(PhaseGVN * phase,Node * value,const TypeInt * itype,Node * ctrl)4266 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4267   if (ctrl != NULL) {
4268     // Express control dependency by a CastII node with a narrow type.
4269     value = new CastIINode(value, itype, false, true /* range check dependency */);
4270     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4271     // node from floating above the range check during loop optimizations. Otherwise, the
4272     // ConvI2L node may be eliminated independently of the range check, causing the data path
4273     // to become TOP while the control path is still there (although it's unreachable).
4274     value->set_req(0, ctrl);
4275     // Save CastII node to remove it after loop optimizations.
4276     phase->C->add_range_check_cast(value);
4277     value = phase->transform(value);
4278   }
4279   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4280   return phase->transform(new ConvI2LNode(value, ltype));
4281 }
4282 
print_inlining_stream_free()4283 void Compile::print_inlining_stream_free() {
4284   if (_print_inlining_stream != NULL) {
4285     _print_inlining_stream->~stringStream();
4286     _print_inlining_stream = NULL;
4287   }
4288 }
4289 
4290 // The message about the current inlining is accumulated in
4291 // _print_inlining_stream and transfered into the _print_inlining_list
4292 // once we know whether inlining succeeds or not. For regular
4293 // inlining, messages are appended to the buffer pointed by
4294 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4295 // a new buffer is added after _print_inlining_idx in the list. This
4296 // way we can update the inlining message for late inlining call site
4297 // when the inlining is attempted again.
print_inlining_init()4298 void Compile::print_inlining_init() {
4299   if (print_inlining() || print_intrinsics()) {
4300     // print_inlining_init is actually called several times.
4301     print_inlining_stream_free();
4302     _print_inlining_stream = new stringStream();
4303     // Watch out: The memory initialized by the constructor call PrintInliningBuffer()
4304     // will be copied into the only initial element. The default destructor of
4305     // PrintInliningBuffer will be called when leaving the scope here. If it
4306     // would destuct the  enclosed stringStream _print_inlining_list[0]->_ss
4307     // would be destructed, too!
4308     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4309   }
4310 }
4311 
print_inlining_reinit()4312 void Compile::print_inlining_reinit() {
4313   if (print_inlining() || print_intrinsics()) {
4314     print_inlining_stream_free();
4315     // Re allocate buffer when we change ResourceMark
4316     _print_inlining_stream = new stringStream();
4317   }
4318 }
4319 
print_inlining_reset()4320 void Compile::print_inlining_reset() {
4321   _print_inlining_stream->reset();
4322 }
4323 
print_inlining_commit()4324 void Compile::print_inlining_commit() {
4325   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4326   // Transfer the message from _print_inlining_stream to the current
4327   // _print_inlining_list buffer and clear _print_inlining_stream.
4328   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4329   print_inlining_reset();
4330 }
4331 
print_inlining_push()4332 void Compile::print_inlining_push() {
4333   // Add new buffer to the _print_inlining_list at current position
4334   _print_inlining_idx++;
4335   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4336 }
4337 
print_inlining_current()4338 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4339   return _print_inlining_list->at(_print_inlining_idx);
4340 }
4341 
print_inlining_update(CallGenerator * cg)4342 void Compile::print_inlining_update(CallGenerator* cg) {
4343   if (print_inlining() || print_intrinsics()) {
4344     if (!cg->is_late_inline()) {
4345       if (print_inlining_current().cg() != NULL) {
4346         print_inlining_push();
4347       }
4348       print_inlining_commit();
4349     } else {
4350       if (print_inlining_current().cg() != cg &&
4351           (print_inlining_current().cg() != NULL ||
4352            print_inlining_current().ss()->size() != 0)) {
4353         print_inlining_push();
4354       }
4355       print_inlining_commit();
4356       print_inlining_current().set_cg(cg);
4357     }
4358   }
4359 }
4360 
print_inlining_move_to(CallGenerator * cg)4361 void Compile::print_inlining_move_to(CallGenerator* cg) {
4362   // We resume inlining at a late inlining call site. Locate the
4363   // corresponding inlining buffer so that we can update it.
4364   if (print_inlining()) {
4365     for (int i = 0; i < _print_inlining_list->length(); i++) {
4366       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4367         _print_inlining_idx = i;
4368         return;
4369       }
4370     }
4371     ShouldNotReachHere();
4372   }
4373 }
4374 
print_inlining_update_delayed(CallGenerator * cg)4375 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4376   if (print_inlining()) {
4377     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4378     assert(print_inlining_current().cg() == cg, "wrong entry");
4379     // replace message with new message
4380     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4381     print_inlining_commit();
4382     print_inlining_current().set_cg(cg);
4383   }
4384 }
4385 
print_inlining_assert_ready()4386 void Compile::print_inlining_assert_ready() {
4387   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4388 }
4389 
process_print_inlining()4390 void Compile::process_print_inlining() {
4391   bool do_print_inlining = print_inlining() || print_intrinsics();
4392   if (do_print_inlining || log() != NULL) {
4393     // Print inlining message for candidates that we couldn't inline
4394     // for lack of space
4395     for (int i = 0; i < _late_inlines.length(); i++) {
4396       CallGenerator* cg = _late_inlines.at(i);
4397       if (!cg->is_mh_late_inline()) {
4398         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4399         if (do_print_inlining) {
4400           cg->print_inlining_late(msg);
4401         }
4402         log_late_inline_failure(cg, msg);
4403       }
4404     }
4405   }
4406   if (do_print_inlining) {
4407     ResourceMark rm;
4408     stringStream ss;
4409     assert(_print_inlining_list != NULL, "process_print_inlining should be called only once.");
4410     for (int i = 0; i < _print_inlining_list->length(); i++) {
4411       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4412       _print_inlining_list->at(i).freeStream();
4413     }
4414     // Reset _print_inlining_list, it only contains destructed objects.
4415     // It is on the arena, so it will be freed when the arena is reset.
4416     _print_inlining_list = NULL;
4417     // _print_inlining_stream won't be used anymore, either.
4418     print_inlining_stream_free();
4419     size_t end = ss.size();
4420     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4421     strncpy(_print_inlining_output, ss.base(), end+1);
4422     _print_inlining_output[end] = 0;
4423   }
4424 }
4425 
dump_print_inlining()4426 void Compile::dump_print_inlining() {
4427   if (_print_inlining_output != NULL) {
4428     tty->print_raw(_print_inlining_output);
4429   }
4430 }
4431 
log_late_inline(CallGenerator * cg)4432 void Compile::log_late_inline(CallGenerator* cg) {
4433   if (log() != NULL) {
4434     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4435                 cg->unique_id());
4436     JVMState* p = cg->call_node()->jvms();
4437     while (p != NULL) {
4438       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4439       p = p->caller();
4440     }
4441     log()->tail("late_inline");
4442   }
4443 }
4444 
log_late_inline_failure(CallGenerator * cg,const char * msg)4445 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4446   log_late_inline(cg);
4447   if (log() != NULL) {
4448     log()->inline_fail(msg);
4449   }
4450 }
4451 
log_inline_id(CallGenerator * cg)4452 void Compile::log_inline_id(CallGenerator* cg) {
4453   if (log() != NULL) {
4454     // The LogCompilation tool needs a unique way to identify late
4455     // inline call sites. This id must be unique for this call site in
4456     // this compilation. Try to have it unique across compilations as
4457     // well because it can be convenient when grepping through the log
4458     // file.
4459     // Distinguish OSR compilations from others in case CICountOSR is
4460     // on.
4461     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4462     cg->set_unique_id(id);
4463     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4464   }
4465 }
4466 
log_inline_failure(const char * msg)4467 void Compile::log_inline_failure(const char* msg) {
4468   if (C->log() != NULL) {
4469     C->log()->inline_fail(msg);
4470   }
4471 }
4472 
4473 
4474 // Dump inlining replay data to the stream.
4475 // Don't change thread state and acquire any locks.
dump_inline_data(outputStream * out)4476 void Compile::dump_inline_data(outputStream* out) {
4477   InlineTree* inl_tree = ilt();
4478   if (inl_tree != NULL) {
4479     out->print(" inline %d", inl_tree->count());
4480     inl_tree->dump_replay_data(out);
4481   }
4482 }
4483 
cmp_expensive_nodes(Node * n1,Node * n2)4484 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4485   if (n1->Opcode() < n2->Opcode())      return -1;
4486   else if (n1->Opcode() > n2->Opcode()) return 1;
4487 
4488   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4489   for (uint i = 1; i < n1->req(); i++) {
4490     if (n1->in(i) < n2->in(i))      return -1;
4491     else if (n1->in(i) > n2->in(i)) return 1;
4492   }
4493 
4494   return 0;
4495 }
4496 
cmp_expensive_nodes(Node ** n1p,Node ** n2p)4497 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4498   Node* n1 = *n1p;
4499   Node* n2 = *n2p;
4500 
4501   return cmp_expensive_nodes(n1, n2);
4502 }
4503 
sort_expensive_nodes()4504 void Compile::sort_expensive_nodes() {
4505   if (!expensive_nodes_sorted()) {
4506     _expensive_nodes->sort(cmp_expensive_nodes);
4507   }
4508 }
4509 
expensive_nodes_sorted() const4510 bool Compile::expensive_nodes_sorted() const {
4511   for (int i = 1; i < _expensive_nodes->length(); i++) {
4512     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4513       return false;
4514     }
4515   }
4516   return true;
4517 }
4518 
should_optimize_expensive_nodes(PhaseIterGVN & igvn)4519 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4520   if (_expensive_nodes->length() == 0) {
4521     return false;
4522   }
4523 
4524   assert(OptimizeExpensiveOps, "optimization off?");
4525 
4526   // Take this opportunity to remove dead nodes from the list
4527   int j = 0;
4528   for (int i = 0; i < _expensive_nodes->length(); i++) {
4529     Node* n = _expensive_nodes->at(i);
4530     if (!n->is_unreachable(igvn)) {
4531       assert(n->is_expensive(), "should be expensive");
4532       _expensive_nodes->at_put(j, n);
4533       j++;
4534     }
4535   }
4536   _expensive_nodes->trunc_to(j);
4537 
4538   // Then sort the list so that similar nodes are next to each other
4539   // and check for at least two nodes of identical kind with same data
4540   // inputs.
4541   sort_expensive_nodes();
4542 
4543   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4544     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4545       return true;
4546     }
4547   }
4548 
4549   return false;
4550 }
4551 
cleanup_expensive_nodes(PhaseIterGVN & igvn)4552 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4553   if (_expensive_nodes->length() == 0) {
4554     return;
4555   }
4556 
4557   assert(OptimizeExpensiveOps, "optimization off?");
4558 
4559   // Sort to bring similar nodes next to each other and clear the
4560   // control input of nodes for which there's only a single copy.
4561   sort_expensive_nodes();
4562 
4563   int j = 0;
4564   int identical = 0;
4565   int i = 0;
4566   bool modified = false;
4567   for (; i < _expensive_nodes->length()-1; i++) {
4568     assert(j <= i, "can't write beyond current index");
4569     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4570       identical++;
4571       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4572       continue;
4573     }
4574     if (identical > 0) {
4575       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4576       identical = 0;
4577     } else {
4578       Node* n = _expensive_nodes->at(i);
4579       igvn.replace_input_of(n, 0, NULL);
4580       igvn.hash_insert(n);
4581       modified = true;
4582     }
4583   }
4584   if (identical > 0) {
4585     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4586   } else if (_expensive_nodes->length() >= 1) {
4587     Node* n = _expensive_nodes->at(i);
4588     igvn.replace_input_of(n, 0, NULL);
4589     igvn.hash_insert(n);
4590     modified = true;
4591   }
4592   _expensive_nodes->trunc_to(j);
4593   if (modified) {
4594     igvn.optimize();
4595   }
4596 }
4597 
add_expensive_node(Node * n)4598 void Compile::add_expensive_node(Node * n) {
4599   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4600   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4601   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4602   if (OptimizeExpensiveOps) {
4603     _expensive_nodes->append(n);
4604   } else {
4605     // Clear control input and let IGVN optimize expensive nodes if
4606     // OptimizeExpensiveOps is off.
4607     n->set_req(0, NULL);
4608   }
4609 }
4610 
4611 /**
4612  * Remove the speculative part of types and clean up the graph
4613  */
remove_speculative_types(PhaseIterGVN & igvn)4614 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4615   if (UseTypeSpeculation) {
4616     Unique_Node_List worklist;
4617     worklist.push(root());
4618     int modified = 0;
4619     // Go over all type nodes that carry a speculative type, drop the
4620     // speculative part of the type and enqueue the node for an igvn
4621     // which may optimize it out.
4622     for (uint next = 0; next < worklist.size(); ++next) {
4623       Node *n  = worklist.at(next);
4624       if (n->is_Type()) {
4625         TypeNode* tn = n->as_Type();
4626         const Type* t = tn->type();
4627         const Type* t_no_spec = t->remove_speculative();
4628         if (t_no_spec != t) {
4629           bool in_hash = igvn.hash_delete(n);
4630           assert(in_hash, "node should be in igvn hash table");
4631           tn->set_type(t_no_spec);
4632           igvn.hash_insert(n);
4633           igvn._worklist.push(n); // give it a chance to go away
4634           modified++;
4635         }
4636       }
4637       uint max = n->len();
4638       for( uint i = 0; i < max; ++i ) {
4639         Node *m = n->in(i);
4640         if (not_a_node(m))  continue;
4641         worklist.push(m);
4642       }
4643     }
4644     // Drop the speculative part of all types in the igvn's type table
4645     igvn.remove_speculative_types();
4646     if (modified > 0) {
4647       igvn.optimize();
4648     }
4649 #ifdef ASSERT
4650     // Verify that after the IGVN is over no speculative type has resurfaced
4651     worklist.clear();
4652     worklist.push(root());
4653     for (uint next = 0; next < worklist.size(); ++next) {
4654       Node *n  = worklist.at(next);
4655       const Type* t = igvn.type_or_null(n);
4656       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4657       if (n->is_Type()) {
4658         t = n->as_Type()->type();
4659         assert(t == t->remove_speculative(), "no more speculative types");
4660       }
4661       uint max = n->len();
4662       for( uint i = 0; i < max; ++i ) {
4663         Node *m = n->in(i);
4664         if (not_a_node(m))  continue;
4665         worklist.push(m);
4666       }
4667     }
4668     igvn.check_no_speculative_types();
4669 #endif
4670   }
4671 }
4672 
4673 // Auxiliary method to support randomized stressing/fuzzing.
4674 //
4675 // This method can be called the arbitrary number of times, with current count
4676 // as the argument. The logic allows selecting a single candidate from the
4677 // running list of candidates as follows:
4678 //    int count = 0;
4679 //    Cand* selected = null;
4680 //    while(cand = cand->next()) {
4681 //      if (randomized_select(++count)) {
4682 //        selected = cand;
4683 //      }
4684 //    }
4685 //
4686 // Including count equalizes the chances any candidate is "selected".
4687 // This is useful when we don't have the complete list of candidates to choose
4688 // from uniformly. In this case, we need to adjust the randomicity of the
4689 // selection, or else we will end up biasing the selection towards the latter
4690 // candidates.
4691 //
4692 // Quick back-envelope calculation shows that for the list of n candidates
4693 // the equal probability for the candidate to persist as "best" can be
4694 // achieved by replacing it with "next" k-th candidate with the probability
4695 // of 1/k. It can be easily shown that by the end of the run, the
4696 // probability for any candidate is converged to 1/n, thus giving the
4697 // uniform distribution among all the candidates.
4698 //
4699 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4700 #define RANDOMIZED_DOMAIN_POW 29
4701 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4702 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
randomized_select(int count)4703 bool Compile::randomized_select(int count) {
4704   assert(count > 0, "only positive");
4705   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4706 }
4707 
clone_map()4708 CloneMap&     Compile::clone_map()                 { return _clone_map; }
set_clone_map(Dict * d)4709 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4710 
dump() const4711 void NodeCloneInfo::dump() const {
4712   tty->print(" {%d:%d} ", idx(), gen());
4713 }
4714 
clone(Node * old,Node * nnn,int gen)4715 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4716   uint64_t val = value(old->_idx);
4717   NodeCloneInfo cio(val);
4718   assert(val != 0, "old node should be in the map");
4719   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4720   insert(nnn->_idx, cin.get());
4721 #ifndef PRODUCT
4722   if (is_debug()) {
4723     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4724   }
4725 #endif
4726 }
4727 
verify_insert_and_clone(Node * old,Node * nnn,int gen)4728 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4729   NodeCloneInfo cio(value(old->_idx));
4730   if (cio.get() == 0) {
4731     cio.set(old->_idx, 0);
4732     insert(old->_idx, cio.get());
4733 #ifndef PRODUCT
4734     if (is_debug()) {
4735       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4736     }
4737 #endif
4738   }
4739   clone(old, nnn, gen);
4740 }
4741 
max_gen() const4742 int CloneMap::max_gen() const {
4743   int g = 0;
4744   DictI di(_dict);
4745   for(; di.test(); ++di) {
4746     int t = gen(di._key);
4747     if (g < t) {
4748       g = t;
4749 #ifndef PRODUCT
4750       if (is_debug()) {
4751         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4752       }
4753 #endif
4754     }
4755   }
4756   return g;
4757 }
4758 
dump(node_idx_t key) const4759 void CloneMap::dump(node_idx_t key) const {
4760   uint64_t val = value(key);
4761   if (val != 0) {
4762     NodeCloneInfo ni(val);
4763     ni.dump();
4764   }
4765 }
4766