1 /*
2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "ci/ciUtilities.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/c2/barrierSetC2.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "memory/resourceArea.hpp"
32 #include "opto/addnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/convertnode.hpp"
35 #include "opto/graphKit.hpp"
36 #include "opto/idealKit.hpp"
37 #include "opto/intrinsicnode.hpp"
38 #include "opto/locknode.hpp"
39 #include "opto/machnode.hpp"
40 #include "opto/opaquenode.hpp"
41 #include "opto/parse.hpp"
42 #include "opto/rootnode.hpp"
43 #include "opto/runtime.hpp"
44 #include "runtime/deoptimization.hpp"
45 #include "runtime/sharedRuntime.hpp"
46 #include "utilities/bitMap.inline.hpp"
47 
48 //----------------------------GraphKit-----------------------------------------
49 // Main utility constructor.
GraphKit(JVMState * jvms)50 GraphKit::GraphKit(JVMState* jvms)
51   : Phase(Phase::Parser),
52     _env(C->env()),
53     _gvn(*C->initial_gvn()),
54     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
55 {
56   _exceptions = jvms->map()->next_exception();
57   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
58   set_jvms(jvms);
59 }
60 
61 // Private constructor for parser.
GraphKit()62 GraphKit::GraphKit()
63   : Phase(Phase::Parser),
64     _env(C->env()),
65     _gvn(*C->initial_gvn()),
66     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
67 {
68   _exceptions = NULL;
69   set_map(NULL);
70   debug_only(_sp = -99);
71   debug_only(set_bci(-99));
72 }
73 
74 
75 
76 //---------------------------clean_stack---------------------------------------
77 // Clear away rubbish from the stack area of the JVM state.
78 // This destroys any arguments that may be waiting on the stack.
clean_stack(int from_sp)79 void GraphKit::clean_stack(int from_sp) {
80   SafePointNode* map      = this->map();
81   JVMState*      jvms     = this->jvms();
82   int            stk_size = jvms->stk_size();
83   int            stkoff   = jvms->stkoff();
84   Node*          top      = this->top();
85   for (int i = from_sp; i < stk_size; i++) {
86     if (map->in(stkoff + i) != top) {
87       map->set_req(stkoff + i, top);
88     }
89   }
90 }
91 
92 
93 //--------------------------------sync_jvms-----------------------------------
94 // Make sure our current jvms agrees with our parse state.
sync_jvms() const95 JVMState* GraphKit::sync_jvms() const {
96   JVMState* jvms = this->jvms();
97   jvms->set_bci(bci());       // Record the new bci in the JVMState
98   jvms->set_sp(sp());         // Record the new sp in the JVMState
99   assert(jvms_in_sync(), "jvms is now in sync");
100   return jvms;
101 }
102 
103 //--------------------------------sync_jvms_for_reexecute---------------------
104 // Make sure our current jvms agrees with our parse state.  This version
105 // uses the reexecute_sp for reexecuting bytecodes.
sync_jvms_for_reexecute()106 JVMState* GraphKit::sync_jvms_for_reexecute() {
107   JVMState* jvms = this->jvms();
108   jvms->set_bci(bci());          // Record the new bci in the JVMState
109   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
110   return jvms;
111 }
112 
113 #ifdef ASSERT
jvms_in_sync() const114 bool GraphKit::jvms_in_sync() const {
115   Parse* parse = is_Parse();
116   if (parse == NULL) {
117     if (bci() !=      jvms()->bci())          return false;
118     if (sp()  != (int)jvms()->sp())           return false;
119     return true;
120   }
121   if (jvms()->method() != parse->method())    return false;
122   if (jvms()->bci()    != parse->bci())       return false;
123   int jvms_sp = jvms()->sp();
124   if (jvms_sp          != parse->sp())        return false;
125   int jvms_depth = jvms()->depth();
126   if (jvms_depth       != parse->depth())     return false;
127   return true;
128 }
129 
130 // Local helper checks for special internal merge points
131 // used to accumulate and merge exception states.
132 // They are marked by the region's in(0) edge being the map itself.
133 // Such merge points must never "escape" into the parser at large,
134 // until they have been handed to gvn.transform.
is_hidden_merge(Node * reg)135 static bool is_hidden_merge(Node* reg) {
136   if (reg == NULL)  return false;
137   if (reg->is_Phi()) {
138     reg = reg->in(0);
139     if (reg == NULL)  return false;
140   }
141   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
142 }
143 
verify_map() const144 void GraphKit::verify_map() const {
145   if (map() == NULL)  return;  // null map is OK
146   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
147   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
148   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
149 }
150 
verify_exception_state(SafePointNode * ex_map)151 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
152   assert(ex_map->next_exception() == NULL, "not already part of a chain");
153   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
154 }
155 #endif
156 
157 //---------------------------stop_and_kill_map---------------------------------
158 // Set _map to NULL, signalling a stop to further bytecode execution.
159 // First smash the current map's control to a constant, to mark it dead.
stop_and_kill_map()160 void GraphKit::stop_and_kill_map() {
161   SafePointNode* dead_map = stop();
162   if (dead_map != NULL) {
163     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
164     assert(dead_map->is_killed(), "must be so marked");
165   }
166 }
167 
168 
169 //--------------------------------stopped--------------------------------------
170 // Tell if _map is NULL, or control is top.
stopped()171 bool GraphKit::stopped() {
172   if (map() == NULL)           return true;
173   else if (control() == top()) return true;
174   else                         return false;
175 }
176 
177 
178 //-----------------------------has_ex_handler----------------------------------
179 // Tell if this method or any caller method has exception handlers.
has_ex_handler()180 bool GraphKit::has_ex_handler() {
181   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
182     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
183       return true;
184     }
185   }
186   return false;
187 }
188 
189 //------------------------------save_ex_oop------------------------------------
190 // Save an exception without blowing stack contents or other JVM state.
set_saved_ex_oop(SafePointNode * ex_map,Node * ex_oop)191 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
192   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
193   ex_map->add_req(ex_oop);
194   debug_only(verify_exception_state(ex_map));
195 }
196 
common_saved_ex_oop(SafePointNode * ex_map,bool clear_it)197 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
198   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
199   Node* ex_oop = ex_map->in(ex_map->req()-1);
200   if (clear_it)  ex_map->del_req(ex_map->req()-1);
201   return ex_oop;
202 }
203 
204 //-----------------------------saved_ex_oop------------------------------------
205 // Recover a saved exception from its map.
saved_ex_oop(SafePointNode * ex_map)206 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
207   return common_saved_ex_oop(ex_map, false);
208 }
209 
210 //--------------------------clear_saved_ex_oop---------------------------------
211 // Erase a previously saved exception from its map.
clear_saved_ex_oop(SafePointNode * ex_map)212 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
213   return common_saved_ex_oop(ex_map, true);
214 }
215 
216 #ifdef ASSERT
217 //---------------------------has_saved_ex_oop----------------------------------
218 // Erase a previously saved exception from its map.
has_saved_ex_oop(SafePointNode * ex_map)219 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
220   return ex_map->req() == ex_map->jvms()->endoff()+1;
221 }
222 #endif
223 
224 //-------------------------make_exception_state--------------------------------
225 // Turn the current JVM state into an exception state, appending the ex_oop.
make_exception_state(Node * ex_oop)226 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
227   sync_jvms();
228   SafePointNode* ex_map = stop();  // do not manipulate this map any more
229   set_saved_ex_oop(ex_map, ex_oop);
230   return ex_map;
231 }
232 
233 
234 //--------------------------add_exception_state--------------------------------
235 // Add an exception to my list of exceptions.
add_exception_state(SafePointNode * ex_map)236 void GraphKit::add_exception_state(SafePointNode* ex_map) {
237   if (ex_map == NULL || ex_map->control() == top()) {
238     return;
239   }
240 #ifdef ASSERT
241   verify_exception_state(ex_map);
242   if (has_exceptions()) {
243     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
244   }
245 #endif
246 
247   // If there is already an exception of exactly this type, merge with it.
248   // In particular, null-checks and other low-level exceptions common up here.
249   Node*       ex_oop  = saved_ex_oop(ex_map);
250   const Type* ex_type = _gvn.type(ex_oop);
251   if (ex_oop == top()) {
252     // No action needed.
253     return;
254   }
255   assert(ex_type->isa_instptr(), "exception must be an instance");
256   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
257     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
258     // We check sp also because call bytecodes can generate exceptions
259     // both before and after arguments are popped!
260     if (ex_type2 == ex_type
261         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
262       combine_exception_states(ex_map, e2);
263       return;
264     }
265   }
266 
267   // No pre-existing exception of the same type.  Chain it on the list.
268   push_exception_state(ex_map);
269 }
270 
271 //-----------------------add_exception_states_from-----------------------------
add_exception_states_from(JVMState * jvms)272 void GraphKit::add_exception_states_from(JVMState* jvms) {
273   SafePointNode* ex_map = jvms->map()->next_exception();
274   if (ex_map != NULL) {
275     jvms->map()->set_next_exception(NULL);
276     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
277       next_map = ex_map->next_exception();
278       ex_map->set_next_exception(NULL);
279       add_exception_state(ex_map);
280     }
281   }
282 }
283 
284 //-----------------------transfer_exceptions_into_jvms-------------------------
transfer_exceptions_into_jvms()285 JVMState* GraphKit::transfer_exceptions_into_jvms() {
286   if (map() == NULL) {
287     // We need a JVMS to carry the exceptions, but the map has gone away.
288     // Create a scratch JVMS, cloned from any of the exception states...
289     if (has_exceptions()) {
290       _map = _exceptions;
291       _map = clone_map();
292       _map->set_next_exception(NULL);
293       clear_saved_ex_oop(_map);
294       debug_only(verify_map());
295     } else {
296       // ...or created from scratch
297       JVMState* jvms = new (C) JVMState(_method, NULL);
298       jvms->set_bci(_bci);
299       jvms->set_sp(_sp);
300       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
301       set_jvms(jvms);
302       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
303       set_all_memory(top());
304       while (map()->req() < jvms->endoff())  map()->add_req(top());
305     }
306     // (This is a kludge, in case you didn't notice.)
307     set_control(top());
308   }
309   JVMState* jvms = sync_jvms();
310   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
311   jvms->map()->set_next_exception(_exceptions);
312   _exceptions = NULL;   // done with this set of exceptions
313   return jvms;
314 }
315 
add_n_reqs(Node * dstphi,Node * srcphi)316 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
317   assert(is_hidden_merge(dstphi), "must be a special merge node");
318   assert(is_hidden_merge(srcphi), "must be a special merge node");
319   uint limit = srcphi->req();
320   for (uint i = PhiNode::Input; i < limit; i++) {
321     dstphi->add_req(srcphi->in(i));
322   }
323 }
add_one_req(Node * dstphi,Node * src)324 static inline void add_one_req(Node* dstphi, Node* src) {
325   assert(is_hidden_merge(dstphi), "must be a special merge node");
326   assert(!is_hidden_merge(src), "must not be a special merge node");
327   dstphi->add_req(src);
328 }
329 
330 //-----------------------combine_exception_states------------------------------
331 // This helper function combines exception states by building phis on a
332 // specially marked state-merging region.  These regions and phis are
333 // untransformed, and can build up gradually.  The region is marked by
334 // having a control input of its exception map, rather than NULL.  Such
335 // regions do not appear except in this function, and in use_exception_state.
combine_exception_states(SafePointNode * ex_map,SafePointNode * phi_map)336 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
337   if (failing())  return;  // dying anyway...
338   JVMState* ex_jvms = ex_map->_jvms;
339   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
340   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
341   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
342   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
343   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
344   assert(ex_map->req() == phi_map->req(), "matching maps");
345   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
346   Node*         hidden_merge_mark = root();
347   Node*         region  = phi_map->control();
348   MergeMemNode* phi_mem = phi_map->merged_memory();
349   MergeMemNode* ex_mem  = ex_map->merged_memory();
350   if (region->in(0) != hidden_merge_mark) {
351     // The control input is not (yet) a specially-marked region in phi_map.
352     // Make it so, and build some phis.
353     region = new RegionNode(2);
354     _gvn.set_type(region, Type::CONTROL);
355     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
356     region->init_req(1, phi_map->control());
357     phi_map->set_control(region);
358     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
359     record_for_igvn(io_phi);
360     _gvn.set_type(io_phi, Type::ABIO);
361     phi_map->set_i_o(io_phi);
362     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
363       Node* m = mms.memory();
364       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
365       record_for_igvn(m_phi);
366       _gvn.set_type(m_phi, Type::MEMORY);
367       mms.set_memory(m_phi);
368     }
369   }
370 
371   // Either or both of phi_map and ex_map might already be converted into phis.
372   Node* ex_control = ex_map->control();
373   // if there is special marking on ex_map also, we add multiple edges from src
374   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
375   // how wide was the destination phi_map, originally?
376   uint orig_width = region->req();
377 
378   if (add_multiple) {
379     add_n_reqs(region, ex_control);
380     add_n_reqs(phi_map->i_o(), ex_map->i_o());
381   } else {
382     // ex_map has no merges, so we just add single edges everywhere
383     add_one_req(region, ex_control);
384     add_one_req(phi_map->i_o(), ex_map->i_o());
385   }
386   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
387     if (mms.is_empty()) {
388       // get a copy of the base memory, and patch some inputs into it
389       const TypePtr* adr_type = mms.adr_type(C);
390       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
391       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
392       mms.set_memory(phi);
393       // Prepare to append interesting stuff onto the newly sliced phi:
394       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
395     }
396     // Append stuff from ex_map:
397     if (add_multiple) {
398       add_n_reqs(mms.memory(), mms.memory2());
399     } else {
400       add_one_req(mms.memory(), mms.memory2());
401     }
402   }
403   uint limit = ex_map->req();
404   for (uint i = TypeFunc::Parms; i < limit; i++) {
405     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
406     if (i == tos)  i = ex_jvms->monoff();
407     Node* src = ex_map->in(i);
408     Node* dst = phi_map->in(i);
409     if (src != dst) {
410       PhiNode* phi;
411       if (dst->in(0) != region) {
412         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
413         record_for_igvn(phi);
414         _gvn.set_type(phi, phi->type());
415         phi_map->set_req(i, dst);
416         // Prepare to append interesting stuff onto the new phi:
417         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
418       } else {
419         assert(dst->is_Phi(), "nobody else uses a hidden region");
420         phi = dst->as_Phi();
421       }
422       if (add_multiple && src->in(0) == ex_control) {
423         // Both are phis.
424         add_n_reqs(dst, src);
425       } else {
426         while (dst->req() < region->req())  add_one_req(dst, src);
427       }
428       const Type* srctype = _gvn.type(src);
429       if (phi->type() != srctype) {
430         const Type* dsttype = phi->type()->meet_speculative(srctype);
431         if (phi->type() != dsttype) {
432           phi->set_type(dsttype);
433           _gvn.set_type(phi, dsttype);
434         }
435       }
436     }
437   }
438   phi_map->merge_replaced_nodes_with(ex_map);
439 }
440 
441 //--------------------------use_exception_state--------------------------------
use_exception_state(SafePointNode * phi_map)442 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
443   if (failing()) { stop(); return top(); }
444   Node* region = phi_map->control();
445   Node* hidden_merge_mark = root();
446   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
447   Node* ex_oop = clear_saved_ex_oop(phi_map);
448   if (region->in(0) == hidden_merge_mark) {
449     // Special marking for internal ex-states.  Process the phis now.
450     region->set_req(0, region);  // now it's an ordinary region
451     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
452     // Note: Setting the jvms also sets the bci and sp.
453     set_control(_gvn.transform(region));
454     uint tos = jvms()->stkoff() + sp();
455     for (uint i = 1; i < tos; i++) {
456       Node* x = phi_map->in(i);
457       if (x->in(0) == region) {
458         assert(x->is_Phi(), "expected a special phi");
459         phi_map->set_req(i, _gvn.transform(x));
460       }
461     }
462     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
463       Node* x = mms.memory();
464       if (x->in(0) == region) {
465         assert(x->is_Phi(), "nobody else uses a hidden region");
466         mms.set_memory(_gvn.transform(x));
467       }
468     }
469     if (ex_oop->in(0) == region) {
470       assert(ex_oop->is_Phi(), "expected a special phi");
471       ex_oop = _gvn.transform(ex_oop);
472     }
473   } else {
474     set_jvms(phi_map->jvms());
475   }
476 
477   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
478   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
479   return ex_oop;
480 }
481 
482 //---------------------------------java_bc-------------------------------------
java_bc() const483 Bytecodes::Code GraphKit::java_bc() const {
484   ciMethod* method = this->method();
485   int       bci    = this->bci();
486   if (method != NULL && bci != InvocationEntryBci)
487     return method->java_code_at_bci(bci);
488   else
489     return Bytecodes::_illegal;
490 }
491 
uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,bool must_throw)492 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
493                                                           bool must_throw) {
494     // if the exception capability is set, then we will generate code
495     // to check the JavaThread.should_post_on_exceptions flag to see
496     // if we actually need to report exception events (for this
497     // thread).  If we don't need to report exception events, we will
498     // take the normal fast path provided by add_exception_events.  If
499     // exception event reporting is enabled for this thread, we will
500     // take the uncommon_trap in the BuildCutout below.
501 
502     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
503     Node* jthread = _gvn.transform(new ThreadLocalNode());
504     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
505     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
506 
507     // Test the should_post_on_exceptions_flag vs. 0
508     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
509     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
510 
511     // Branch to slow_path if should_post_on_exceptions_flag was true
512     { BuildCutout unless(this, tst, PROB_MAX);
513       // Do not try anything fancy if we're notifying the VM on every throw.
514       // Cf. case Bytecodes::_athrow in parse2.cpp.
515       uncommon_trap(reason, Deoptimization::Action_none,
516                     (ciKlass*)NULL, (char*)NULL, must_throw);
517     }
518 
519 }
520 
521 //------------------------------builtin_throw----------------------------------
builtin_throw(Deoptimization::DeoptReason reason,Node * arg)522 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
523   bool must_throw = true;
524 
525   if (env()->jvmti_can_post_on_exceptions()) {
526     // check if we must post exception events, take uncommon trap if so
527     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
528     // here if should_post_on_exceptions is false
529     // continue on with the normal codegen
530   }
531 
532   // If this particular condition has not yet happened at this
533   // bytecode, then use the uncommon trap mechanism, and allow for
534   // a future recompilation if several traps occur here.
535   // If the throw is hot, try to use a more complicated inline mechanism
536   // which keeps execution inside the compiled code.
537   bool treat_throw_as_hot = false;
538   ciMethodData* md = method()->method_data();
539 
540   if (ProfileTraps) {
541     if (too_many_traps(reason)) {
542       treat_throw_as_hot = true;
543     }
544     // (If there is no MDO at all, assume it is early in
545     // execution, and that any deopts are part of the
546     // startup transient, and don't need to be remembered.)
547 
548     // Also, if there is a local exception handler, treat all throws
549     // as hot if there has been at least one in this method.
550     if (C->trap_count(reason) != 0
551         && method()->method_data()->trap_count(reason) != 0
552         && has_ex_handler()) {
553         treat_throw_as_hot = true;
554     }
555   }
556 
557   // If this throw happens frequently, an uncommon trap might cause
558   // a performance pothole.  If there is a local exception handler,
559   // and if this particular bytecode appears to be deoptimizing often,
560   // let us handle the throw inline, with a preconstructed instance.
561   // Note:   If the deopt count has blown up, the uncommon trap
562   // runtime is going to flush this nmethod, not matter what.
563   if (treat_throw_as_hot
564       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
565     // If the throw is local, we use a pre-existing instance and
566     // punt on the backtrace.  This would lead to a missing backtrace
567     // (a repeat of 4292742) if the backtrace object is ever asked
568     // for its backtrace.
569     // Fixing this remaining case of 4292742 requires some flavor of
570     // escape analysis.  Leave that for the future.
571     ciInstance* ex_obj = NULL;
572     switch (reason) {
573     case Deoptimization::Reason_null_check:
574       ex_obj = env()->NullPointerException_instance();
575       break;
576     case Deoptimization::Reason_div0_check:
577       ex_obj = env()->ArithmeticException_instance();
578       break;
579     case Deoptimization::Reason_range_check:
580       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
581       break;
582     case Deoptimization::Reason_class_check:
583       if (java_bc() == Bytecodes::_aastore) {
584         ex_obj = env()->ArrayStoreException_instance();
585       } else {
586         ex_obj = env()->ClassCastException_instance();
587       }
588       break;
589     default:
590       break;
591     }
592     if (failing()) { stop(); return; }  // exception allocation might fail
593     if (ex_obj != NULL) {
594       // Cheat with a preallocated exception object.
595       if (C->log() != NULL)
596         C->log()->elem("hot_throw preallocated='1' reason='%s'",
597                        Deoptimization::trap_reason_name(reason));
598       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
599       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
600 
601       // Clear the detail message of the preallocated exception object.
602       // Weblogic sometimes mutates the detail message of exceptions
603       // using reflection.
604       int offset = java_lang_Throwable::get_detailMessage_offset();
605       const TypePtr* adr_typ = ex_con->add_offset(offset);
606 
607       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
608       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
609       Node *store = access_store_at(ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
610 
611       add_exception_state(make_exception_state(ex_node));
612       return;
613     }
614   }
615 
616   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
617   // It won't be much cheaper than bailing to the interp., since we'll
618   // have to pass up all the debug-info, and the runtime will have to
619   // create the stack trace.
620 
621   // Usual case:  Bail to interpreter.
622   // Reserve the right to recompile if we haven't seen anything yet.
623 
624   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
625   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
626   if (treat_throw_as_hot
627       && (method()->method_data()->trap_recompiled_at(bci(), m)
628           || C->too_many_traps(reason))) {
629     // We cannot afford to take more traps here.  Suffer in the interpreter.
630     if (C->log() != NULL)
631       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
632                      Deoptimization::trap_reason_name(reason),
633                      C->trap_count(reason));
634     action = Deoptimization::Action_none;
635   }
636 
637   // "must_throw" prunes the JVM state to include only the stack, if there
638   // are no local exception handlers.  This should cut down on register
639   // allocation time and code size, by drastically reducing the number
640   // of in-edges on the call to the uncommon trap.
641 
642   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
643 }
644 
645 
646 //----------------------------PreserveJVMState---------------------------------
PreserveJVMState(GraphKit * kit,bool clone_map)647 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
648   debug_only(kit->verify_map());
649   _kit    = kit;
650   _map    = kit->map();   // preserve the map
651   _sp     = kit->sp();
652   kit->set_map(clone_map ? kit->clone_map() : NULL);
653 #ifdef ASSERT
654   _bci    = kit->bci();
655   Parse* parser = kit->is_Parse();
656   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
657   _block  = block;
658 #endif
659 }
~PreserveJVMState()660 PreserveJVMState::~PreserveJVMState() {
661   GraphKit* kit = _kit;
662 #ifdef ASSERT
663   assert(kit->bci() == _bci, "bci must not shift");
664   Parse* parser = kit->is_Parse();
665   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
666   assert(block == _block,    "block must not shift");
667 #endif
668   kit->set_map(_map);
669   kit->set_sp(_sp);
670 }
671 
672 
673 //-----------------------------BuildCutout-------------------------------------
BuildCutout(GraphKit * kit,Node * p,float prob,float cnt)674 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
675   : PreserveJVMState(kit)
676 {
677   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
678   SafePointNode* outer_map = _map;   // preserved map is caller's
679   SafePointNode* inner_map = kit->map();
680   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
681   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
682   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
683 }
~BuildCutout()684 BuildCutout::~BuildCutout() {
685   GraphKit* kit = _kit;
686   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
687 }
688 
689 //---------------------------PreserveReexecuteState----------------------------
PreserveReexecuteState(GraphKit * kit)690 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
691   assert(!kit->stopped(), "must call stopped() before");
692   _kit    =    kit;
693   _sp     =    kit->sp();
694   _reexecute = kit->jvms()->_reexecute;
695 }
~PreserveReexecuteState()696 PreserveReexecuteState::~PreserveReexecuteState() {
697   if (_kit->stopped()) return;
698   _kit->jvms()->_reexecute = _reexecute;
699   _kit->set_sp(_sp);
700 }
701 
702 //------------------------------clone_map--------------------------------------
703 // Implementation of PreserveJVMState
704 //
705 // Only clone_map(...) here. If this function is only used in the
706 // PreserveJVMState class we may want to get rid of this extra
707 // function eventually and do it all there.
708 
clone_map()709 SafePointNode* GraphKit::clone_map() {
710   if (map() == NULL)  return NULL;
711 
712   // Clone the memory edge first
713   Node* mem = MergeMemNode::make(map()->memory());
714   gvn().set_type_bottom(mem);
715 
716   SafePointNode *clonemap = (SafePointNode*)map()->clone();
717   JVMState* jvms = this->jvms();
718   JVMState* clonejvms = jvms->clone_shallow(C);
719   clonemap->set_memory(mem);
720   clonemap->set_jvms(clonejvms);
721   clonejvms->set_map(clonemap);
722   record_for_igvn(clonemap);
723   gvn().set_type_bottom(clonemap);
724   return clonemap;
725 }
726 
727 
728 //-----------------------------set_map_clone-----------------------------------
set_map_clone(SafePointNode * m)729 void GraphKit::set_map_clone(SafePointNode* m) {
730   _map = m;
731   _map = clone_map();
732   _map->set_next_exception(NULL);
733   debug_only(verify_map());
734 }
735 
736 
737 //----------------------------kill_dead_locals---------------------------------
738 // Detect any locals which are known to be dead, and force them to top.
kill_dead_locals()739 void GraphKit::kill_dead_locals() {
740   // Consult the liveness information for the locals.  If any
741   // of them are unused, then they can be replaced by top().  This
742   // should help register allocation time and cut down on the size
743   // of the deoptimization information.
744 
745   // This call is made from many of the bytecode handling
746   // subroutines called from the Big Switch in do_one_bytecode.
747   // Every bytecode which might include a slow path is responsible
748   // for killing its dead locals.  The more consistent we
749   // are about killing deads, the fewer useless phis will be
750   // constructed for them at various merge points.
751 
752   // bci can be -1 (InvocationEntryBci).  We return the entry
753   // liveness for the method.
754 
755   if (method() == NULL || method()->code_size() == 0) {
756     // We are building a graph for a call to a native method.
757     // All locals are live.
758     return;
759   }
760 
761   ResourceMark rm;
762 
763   // Consult the liveness information for the locals.  If any
764   // of them are unused, then they can be replaced by top().  This
765   // should help register allocation time and cut down on the size
766   // of the deoptimization information.
767   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
768 
769   int len = (int)live_locals.size();
770   assert(len <= jvms()->loc_size(), "too many live locals");
771   for (int local = 0; local < len; local++) {
772     if (!live_locals.at(local)) {
773       set_local(local, top());
774     }
775   }
776 }
777 
778 #ifdef ASSERT
779 //-------------------------dead_locals_are_killed------------------------------
780 // Return true if all dead locals are set to top in the map.
781 // Used to assert "clean" debug info at various points.
dead_locals_are_killed()782 bool GraphKit::dead_locals_are_killed() {
783   if (method() == NULL || method()->code_size() == 0) {
784     // No locals need to be dead, so all is as it should be.
785     return true;
786   }
787 
788   // Make sure somebody called kill_dead_locals upstream.
789   ResourceMark rm;
790   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
791     if (jvms->loc_size() == 0)  continue;  // no locals to consult
792     SafePointNode* map = jvms->map();
793     ciMethod* method = jvms->method();
794     int       bci    = jvms->bci();
795     if (jvms == this->jvms()) {
796       bci = this->bci();  // it might not yet be synched
797     }
798     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
799     int len = (int)live_locals.size();
800     if (!live_locals.is_valid() || len == 0)
801       // This method is trivial, or is poisoned by a breakpoint.
802       return true;
803     assert(len == jvms->loc_size(), "live map consistent with locals map");
804     for (int local = 0; local < len; local++) {
805       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
806         if (PrintMiscellaneous && (Verbose || WizardMode)) {
807           tty->print_cr("Zombie local %d: ", local);
808           jvms->dump();
809         }
810         return false;
811       }
812     }
813   }
814   return true;
815 }
816 
817 #endif //ASSERT
818 
819 // Helper function for enforcing certain bytecodes to reexecute if
820 // deoptimization happens
should_reexecute_implied_by_bytecode(JVMState * jvms,bool is_anewarray)821 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
822   ciMethod* cur_method = jvms->method();
823   int       cur_bci   = jvms->bci();
824   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
825     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
826     return Interpreter::bytecode_should_reexecute(code) ||
827            (is_anewarray && code == Bytecodes::_multianewarray);
828     // Reexecute _multianewarray bytecode which was replaced with
829     // sequence of [a]newarray. See Parse::do_multianewarray().
830     //
831     // Note: interpreter should not have it set since this optimization
832     // is limited by dimensions and guarded by flag so in some cases
833     // multianewarray() runtime calls will be generated and
834     // the bytecode should not be reexecutes (stack will not be reset).
835   } else
836     return false;
837 }
838 
839 // Helper function for adding JVMState and debug information to node
add_safepoint_edges(SafePointNode * call,bool must_throw)840 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
841   // Add the safepoint edges to the call (or other safepoint).
842 
843   // Make sure dead locals are set to top.  This
844   // should help register allocation time and cut down on the size
845   // of the deoptimization information.
846   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
847 
848   // Walk the inline list to fill in the correct set of JVMState's
849   // Also fill in the associated edges for each JVMState.
850 
851   // If the bytecode needs to be reexecuted we need to put
852   // the arguments back on the stack.
853   const bool should_reexecute = jvms()->should_reexecute();
854   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
855 
856   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
857   // undefined if the bci is different.  This is normal for Parse but it
858   // should not happen for LibraryCallKit because only one bci is processed.
859   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
860          "in LibraryCallKit the reexecute bit should not change");
861 
862   // If we are guaranteed to throw, we can prune everything but the
863   // input to the current bytecode.
864   bool can_prune_locals = false;
865   uint stack_slots_not_pruned = 0;
866   int inputs = 0, depth = 0;
867   if (must_throw) {
868     assert(method() == youngest_jvms->method(), "sanity");
869     if (compute_stack_effects(inputs, depth)) {
870       can_prune_locals = true;
871       stack_slots_not_pruned = inputs;
872     }
873   }
874 
875   if (env()->should_retain_local_variables()) {
876     // At any safepoint, this method can get breakpointed, which would
877     // then require an immediate deoptimization.
878     can_prune_locals = false;  // do not prune locals
879     stack_slots_not_pruned = 0;
880   }
881 
882   // do not scribble on the input jvms
883   JVMState* out_jvms = youngest_jvms->clone_deep(C);
884   call->set_jvms(out_jvms); // Start jvms list for call node
885 
886   // For a known set of bytecodes, the interpreter should reexecute them if
887   // deoptimization happens. We set the reexecute state for them here
888   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
889       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
890     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
891   }
892 
893   // Presize the call:
894   DEBUG_ONLY(uint non_debug_edges = call->req());
895   call->add_req_batch(top(), youngest_jvms->debug_depth());
896   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
897 
898   // Set up edges so that the call looks like this:
899   //  Call [state:] ctl io mem fptr retadr
900   //       [parms:] parm0 ... parmN
901   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
902   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
903   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
904   // Note that caller debug info precedes callee debug info.
905 
906   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
907   uint debug_ptr = call->req();
908 
909   // Loop over the map input edges associated with jvms, add them
910   // to the call node, & reset all offsets to match call node array.
911   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
912     uint debug_end   = debug_ptr;
913     uint debug_start = debug_ptr - in_jvms->debug_size();
914     debug_ptr = debug_start;  // back up the ptr
915 
916     uint p = debug_start;  // walks forward in [debug_start, debug_end)
917     uint j, k, l;
918     SafePointNode* in_map = in_jvms->map();
919     out_jvms->set_map(call);
920 
921     if (can_prune_locals) {
922       assert(in_jvms->method() == out_jvms->method(), "sanity");
923       // If the current throw can reach an exception handler in this JVMS,
924       // then we must keep everything live that can reach that handler.
925       // As a quick and dirty approximation, we look for any handlers at all.
926       if (in_jvms->method()->has_exception_handlers()) {
927         can_prune_locals = false;
928       }
929     }
930 
931     // Add the Locals
932     k = in_jvms->locoff();
933     l = in_jvms->loc_size();
934     out_jvms->set_locoff(p);
935     if (!can_prune_locals) {
936       for (j = 0; j < l; j++)
937         call->set_req(p++, in_map->in(k+j));
938     } else {
939       p += l;  // already set to top above by add_req_batch
940     }
941 
942     // Add the Expression Stack
943     k = in_jvms->stkoff();
944     l = in_jvms->sp();
945     out_jvms->set_stkoff(p);
946     if (!can_prune_locals) {
947       for (j = 0; j < l; j++)
948         call->set_req(p++, in_map->in(k+j));
949     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
950       // Divide stack into {S0,...,S1}, where S0 is set to top.
951       uint s1 = stack_slots_not_pruned;
952       stack_slots_not_pruned = 0;  // for next iteration
953       if (s1 > l)  s1 = l;
954       uint s0 = l - s1;
955       p += s0;  // skip the tops preinstalled by add_req_batch
956       for (j = s0; j < l; j++)
957         call->set_req(p++, in_map->in(k+j));
958     } else {
959       p += l;  // already set to top above by add_req_batch
960     }
961 
962     // Add the Monitors
963     k = in_jvms->monoff();
964     l = in_jvms->mon_size();
965     out_jvms->set_monoff(p);
966     for (j = 0; j < l; j++)
967       call->set_req(p++, in_map->in(k+j));
968 
969     // Copy any scalar object fields.
970     k = in_jvms->scloff();
971     l = in_jvms->scl_size();
972     out_jvms->set_scloff(p);
973     for (j = 0; j < l; j++)
974       call->set_req(p++, in_map->in(k+j));
975 
976     // Finish the new jvms.
977     out_jvms->set_endoff(p);
978 
979     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
980     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
981     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
982     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
983     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
984     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
985 
986     // Update the two tail pointers in parallel.
987     out_jvms = out_jvms->caller();
988     in_jvms  = in_jvms->caller();
989   }
990 
991   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
992 
993   // Test the correctness of JVMState::debug_xxx accessors:
994   assert(call->jvms()->debug_start() == non_debug_edges, "");
995   assert(call->jvms()->debug_end()   == call->req(), "");
996   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
997 }
998 
compute_stack_effects(int & inputs,int & depth)999 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1000   Bytecodes::Code code = java_bc();
1001   if (code == Bytecodes::_wide) {
1002     code = method()->java_code_at_bci(bci() + 1);
1003   }
1004 
1005   BasicType rtype = T_ILLEGAL;
1006   int       rsize = 0;
1007 
1008   if (code != Bytecodes::_illegal) {
1009     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1010     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1011     if (rtype < T_CONFLICT)
1012       rsize = type2size[rtype];
1013   }
1014 
1015   switch (code) {
1016   case Bytecodes::_illegal:
1017     return false;
1018 
1019   case Bytecodes::_ldc:
1020   case Bytecodes::_ldc_w:
1021   case Bytecodes::_ldc2_w:
1022     inputs = 0;
1023     break;
1024 
1025   case Bytecodes::_dup:         inputs = 1;  break;
1026   case Bytecodes::_dup_x1:      inputs = 2;  break;
1027   case Bytecodes::_dup_x2:      inputs = 3;  break;
1028   case Bytecodes::_dup2:        inputs = 2;  break;
1029   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1030   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1031   case Bytecodes::_swap:        inputs = 2;  break;
1032   case Bytecodes::_arraylength: inputs = 1;  break;
1033 
1034   case Bytecodes::_getstatic:
1035   case Bytecodes::_putstatic:
1036   case Bytecodes::_getfield:
1037   case Bytecodes::_putfield:
1038     {
1039       bool ignored_will_link;
1040       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1041       int      size  = field->type()->size();
1042       bool is_get = (depth >= 0), is_static = (depth & 1);
1043       inputs = (is_static ? 0 : 1);
1044       if (is_get) {
1045         depth = size - inputs;
1046       } else {
1047         inputs += size;        // putxxx pops the value from the stack
1048         depth = - inputs;
1049       }
1050     }
1051     break;
1052 
1053   case Bytecodes::_invokevirtual:
1054   case Bytecodes::_invokespecial:
1055   case Bytecodes::_invokestatic:
1056   case Bytecodes::_invokedynamic:
1057   case Bytecodes::_invokeinterface:
1058     {
1059       bool ignored_will_link;
1060       ciSignature* declared_signature = NULL;
1061       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1062       assert(declared_signature != NULL, "cannot be null");
1063       inputs   = declared_signature->arg_size_for_bc(code);
1064       int size = declared_signature->return_type()->size();
1065       depth = size - inputs;
1066     }
1067     break;
1068 
1069   case Bytecodes::_multianewarray:
1070     {
1071       ciBytecodeStream iter(method());
1072       iter.reset_to_bci(bci());
1073       iter.next();
1074       inputs = iter.get_dimensions();
1075       assert(rsize == 1, "");
1076       depth = rsize - inputs;
1077     }
1078     break;
1079 
1080   case Bytecodes::_ireturn:
1081   case Bytecodes::_lreturn:
1082   case Bytecodes::_freturn:
1083   case Bytecodes::_dreturn:
1084   case Bytecodes::_areturn:
1085     assert(rsize == -depth, "");
1086     inputs = rsize;
1087     break;
1088 
1089   case Bytecodes::_jsr:
1090   case Bytecodes::_jsr_w:
1091     inputs = 0;
1092     depth  = 1;                  // S.B. depth=1, not zero
1093     break;
1094 
1095   default:
1096     // bytecode produces a typed result
1097     inputs = rsize - depth;
1098     assert(inputs >= 0, "");
1099     break;
1100   }
1101 
1102 #ifdef ASSERT
1103   // spot check
1104   int outputs = depth + inputs;
1105   assert(outputs >= 0, "sanity");
1106   switch (code) {
1107   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1108   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1109   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1110   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1111   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1112   default:                    break;
1113   }
1114 #endif //ASSERT
1115 
1116   return true;
1117 }
1118 
1119 
1120 
1121 //------------------------------basic_plus_adr---------------------------------
basic_plus_adr(Node * base,Node * ptr,Node * offset)1122 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1123   // short-circuit a common case
1124   if (offset == intcon(0))  return ptr;
1125   return _gvn.transform( new AddPNode(base, ptr, offset) );
1126 }
1127 
ConvI2L(Node * offset)1128 Node* GraphKit::ConvI2L(Node* offset) {
1129   // short-circuit a common case
1130   jint offset_con = find_int_con(offset, Type::OffsetBot);
1131   if (offset_con != Type::OffsetBot) {
1132     return longcon((jlong) offset_con);
1133   }
1134   return _gvn.transform( new ConvI2LNode(offset));
1135 }
1136 
ConvI2UL(Node * offset)1137 Node* GraphKit::ConvI2UL(Node* offset) {
1138   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1139   if (offset_con != (juint) Type::OffsetBot) {
1140     return longcon((julong) offset_con);
1141   }
1142   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1143   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1144   return _gvn.transform( new AndLNode(conv, mask) );
1145 }
1146 
ConvL2I(Node * offset)1147 Node* GraphKit::ConvL2I(Node* offset) {
1148   // short-circuit a common case
1149   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1150   if (offset_con != (jlong)Type::OffsetBot) {
1151     return intcon((int) offset_con);
1152   }
1153   return _gvn.transform( new ConvL2INode(offset));
1154 }
1155 
1156 //-------------------------load_object_klass-----------------------------------
load_object_klass(Node * obj)1157 Node* GraphKit::load_object_klass(Node* obj) {
1158   // Special-case a fresh allocation to avoid building nodes:
1159   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1160   if (akls != NULL)  return akls;
1161   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1162   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1163 }
1164 
1165 //-------------------------load_array_length-----------------------------------
load_array_length(Node * array)1166 Node* GraphKit::load_array_length(Node* array) {
1167   // Special-case a fresh allocation to avoid building nodes:
1168   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1169   Node *alen;
1170   if (alloc == NULL) {
1171     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1172     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1173   } else {
1174     alen = alloc->Ideal_length();
1175     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1176     if (ccast != alen) {
1177       alen = _gvn.transform(ccast);
1178     }
1179   }
1180   return alen;
1181 }
1182 
1183 //------------------------------do_null_check----------------------------------
1184 // Helper function to do a NULL pointer check.  Returned value is
1185 // the incoming address with NULL casted away.  You are allowed to use the
1186 // not-null value only if you are control dependent on the test.
1187 #ifndef PRODUCT
1188 extern int explicit_null_checks_inserted,
1189            explicit_null_checks_elided;
1190 #endif
null_check_common(Node * value,BasicType type,bool assert_null,Node ** null_control,bool speculative)1191 Node* GraphKit::null_check_common(Node* value, BasicType type,
1192                                   // optional arguments for variations:
1193                                   bool assert_null,
1194                                   Node* *null_control,
1195                                   bool speculative) {
1196   assert(!assert_null || null_control == NULL, "not both at once");
1197   if (stopped())  return top();
1198   NOT_PRODUCT(explicit_null_checks_inserted++);
1199 
1200   // Construct NULL check
1201   Node *chk = NULL;
1202   switch(type) {
1203     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1204     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1205     case T_ARRAY  : // fall through
1206       type = T_OBJECT;  // simplify further tests
1207     case T_OBJECT : {
1208       const Type *t = _gvn.type( value );
1209 
1210       const TypeOopPtr* tp = t->isa_oopptr();
1211       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1212           // Only for do_null_check, not any of its siblings:
1213           && !assert_null && null_control == NULL) {
1214         // Usually, any field access or invocation on an unloaded oop type
1215         // will simply fail to link, since the statically linked class is
1216         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1217         // the static class is loaded but the sharper oop type is not.
1218         // Rather than checking for this obscure case in lots of places,
1219         // we simply observe that a null check on an unloaded class
1220         // will always be followed by a nonsense operation, so we
1221         // can just issue the uncommon trap here.
1222         // Our access to the unloaded class will only be correct
1223         // after it has been loaded and initialized, which requires
1224         // a trip through the interpreter.
1225 #ifndef PRODUCT
1226         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1227 #endif
1228         uncommon_trap(Deoptimization::Reason_unloaded,
1229                       Deoptimization::Action_reinterpret,
1230                       tp->klass(), "!loaded");
1231         return top();
1232       }
1233 
1234       if (assert_null) {
1235         // See if the type is contained in NULL_PTR.
1236         // If so, then the value is already null.
1237         if (t->higher_equal(TypePtr::NULL_PTR)) {
1238           NOT_PRODUCT(explicit_null_checks_elided++);
1239           return value;           // Elided null assert quickly!
1240         }
1241       } else {
1242         // See if mixing in the NULL pointer changes type.
1243         // If so, then the NULL pointer was not allowed in the original
1244         // type.  In other words, "value" was not-null.
1245         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1246           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1247           NOT_PRODUCT(explicit_null_checks_elided++);
1248           return value;           // Elided null check quickly!
1249         }
1250       }
1251       chk = new CmpPNode( value, null() );
1252       break;
1253     }
1254 
1255     default:
1256       fatal("unexpected type: %s", type2name(type));
1257   }
1258   assert(chk != NULL, "sanity check");
1259   chk = _gvn.transform(chk);
1260 
1261   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1262   BoolNode *btst = new BoolNode( chk, btest);
1263   Node   *tst = _gvn.transform( btst );
1264 
1265   //-----------
1266   // if peephole optimizations occurred, a prior test existed.
1267   // If a prior test existed, maybe it dominates as we can avoid this test.
1268   if (tst != btst && type == T_OBJECT) {
1269     // At this point we want to scan up the CFG to see if we can
1270     // find an identical test (and so avoid this test altogether).
1271     Node *cfg = control();
1272     int depth = 0;
1273     while( depth < 16 ) {       // Limit search depth for speed
1274       if( cfg->Opcode() == Op_IfTrue &&
1275           cfg->in(0)->in(1) == tst ) {
1276         // Found prior test.  Use "cast_not_null" to construct an identical
1277         // CastPP (and hence hash to) as already exists for the prior test.
1278         // Return that casted value.
1279         if (assert_null) {
1280           replace_in_map(value, null());
1281           return null();  // do not issue the redundant test
1282         }
1283         Node *oldcontrol = control();
1284         set_control(cfg);
1285         Node *res = cast_not_null(value);
1286         set_control(oldcontrol);
1287         NOT_PRODUCT(explicit_null_checks_elided++);
1288         return res;
1289       }
1290       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1291       if (cfg == NULL)  break;  // Quit at region nodes
1292       depth++;
1293     }
1294   }
1295 
1296   //-----------
1297   // Branch to failure if null
1298   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1299   Deoptimization::DeoptReason reason;
1300   if (assert_null) {
1301     reason = Deoptimization::reason_null_assert(speculative);
1302   } else if (type == T_OBJECT) {
1303     reason = Deoptimization::reason_null_check(speculative);
1304   } else {
1305     reason = Deoptimization::Reason_div0_check;
1306   }
1307   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1308   // ciMethodData::has_trap_at will return a conservative -1 if any
1309   // must-be-null assertion has failed.  This could cause performance
1310   // problems for a method after its first do_null_assert failure.
1311   // Consider using 'Reason_class_check' instead?
1312 
1313   // To cause an implicit null check, we set the not-null probability
1314   // to the maximum (PROB_MAX).  For an explicit check the probability
1315   // is set to a smaller value.
1316   if (null_control != NULL || too_many_traps(reason)) {
1317     // probability is less likely
1318     ok_prob =  PROB_LIKELY_MAG(3);
1319   } else if (!assert_null &&
1320              (ImplicitNullCheckThreshold > 0) &&
1321              method() != NULL &&
1322              (method()->method_data()->trap_count(reason)
1323               >= (uint)ImplicitNullCheckThreshold)) {
1324     ok_prob =  PROB_LIKELY_MAG(3);
1325   }
1326 
1327   if (null_control != NULL) {
1328     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1329     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1330     set_control(      _gvn.transform( new IfTrueNode(iff)));
1331 #ifndef PRODUCT
1332     if (null_true == top()) {
1333       explicit_null_checks_elided++;
1334     }
1335 #endif
1336     (*null_control) = null_true;
1337   } else {
1338     BuildCutout unless(this, tst, ok_prob);
1339     // Check for optimizer eliding test at parse time
1340     if (stopped()) {
1341       // Failure not possible; do not bother making uncommon trap.
1342       NOT_PRODUCT(explicit_null_checks_elided++);
1343     } else if (assert_null) {
1344       uncommon_trap(reason,
1345                     Deoptimization::Action_make_not_entrant,
1346                     NULL, "assert_null");
1347     } else {
1348       replace_in_map(value, zerocon(type));
1349       builtin_throw(reason);
1350     }
1351   }
1352 
1353   // Must throw exception, fall-thru not possible?
1354   if (stopped()) {
1355     return top();               // No result
1356   }
1357 
1358   if (assert_null) {
1359     // Cast obj to null on this path.
1360     replace_in_map(value, zerocon(type));
1361     return zerocon(type);
1362   }
1363 
1364   // Cast obj to not-null on this path, if there is no null_control.
1365   // (If there is a null_control, a non-null value may come back to haunt us.)
1366   return cast_not_null(value, (null_control == NULL || (*null_control) == top()));
1367 }
1368 
1369 
1370 //------------------------------cast_not_null----------------------------------
1371 // Cast obj to not-null on this path
cast_not_null(Node * obj,bool do_replace_in_map)1372 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1373   Node* cast = NULL;
1374   const Type* t = _gvn.type(obj);
1375   if (t->make_ptr() != NULL) {
1376     const Type* t_not_null = t->join_speculative(TypePtr::NOTNULL);
1377     // Object is already not-null?
1378     if (t == t_not_null) {
1379       return obj;
1380     }
1381     cast = ConstraintCastNode::make_cast(Op_CastPP, control(), obj, t_not_null, false);
1382   } else if (t->isa_int() != NULL) {
1383     cast = ConstraintCastNode::make_cast(Op_CastII, control(), obj, TypeInt::INT, true);
1384   } else if (t->isa_long() != NULL) {
1385     cast = ConstraintCastNode::make_cast(Op_CastLL, control(), obj, TypeLong::LONG, true);
1386   } else {
1387     fatal("unexpected type: %s", type2name(t->basic_type()));
1388   }
1389   cast = _gvn.transform(cast);
1390 
1391   // Scan for instances of 'obj' in the current JVM mapping.
1392   // These instances are known to be not-null after the test.
1393   if (do_replace_in_map) {
1394     replace_in_map(obj, cast);
1395   }
1396   return cast;
1397 }
1398 
1399 // Sometimes in intrinsics, we implicitly know an object is not null
1400 // (there's no actual null check) so we can cast it to not null. In
1401 // the course of optimizations, the input to the cast can become null.
1402 // In that case that data path will die and we need the control path
1403 // to become dead as well to keep the graph consistent. So we have to
1404 // add a check for null for which one branch can't be taken. It uses
1405 // an Opaque4 node that will cause the check to be removed after loop
1406 // opts so the test goes away and the compiled code doesn't execute a
1407 // useless check.
must_be_not_null(Node * value,bool do_replace_in_map)1408 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1409   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1410   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1411   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1412   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1413   _gvn.set_type(iff, iff->Value(&_gvn));
1414   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1415   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1416   Node* halt = _gvn.transform(new HaltNode(if_f, frame, "unexpected null in intrinsic"));
1417   C->root()->add_req(halt);
1418   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1419   set_control(if_t);
1420   return cast_not_null(value, do_replace_in_map);
1421 }
1422 
1423 
1424 //--------------------------replace_in_map-------------------------------------
replace_in_map(Node * old,Node * neww)1425 void GraphKit::replace_in_map(Node* old, Node* neww) {
1426   if (old == neww) {
1427     return;
1428   }
1429 
1430   map()->replace_edge(old, neww);
1431 
1432   // Note: This operation potentially replaces any edge
1433   // on the map.  This includes locals, stack, and monitors
1434   // of the current (innermost) JVM state.
1435 
1436   // don't let inconsistent types from profiling escape this
1437   // method
1438 
1439   const Type* told = _gvn.type(old);
1440   const Type* tnew = _gvn.type(neww);
1441 
1442   if (!tnew->higher_equal(told)) {
1443     return;
1444   }
1445 
1446   map()->record_replaced_node(old, neww);
1447 }
1448 
1449 
1450 //=============================================================================
1451 //--------------------------------memory---------------------------------------
memory(uint alias_idx)1452 Node* GraphKit::memory(uint alias_idx) {
1453   MergeMemNode* mem = merged_memory();
1454   Node* p = mem->memory_at(alias_idx);
1455   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1456   return p;
1457 }
1458 
1459 //-----------------------------reset_memory------------------------------------
reset_memory()1460 Node* GraphKit::reset_memory() {
1461   Node* mem = map()->memory();
1462   // do not use this node for any more parsing!
1463   debug_only( map()->set_memory((Node*)NULL) );
1464   return _gvn.transform( mem );
1465 }
1466 
1467 //------------------------------set_all_memory---------------------------------
set_all_memory(Node * newmem)1468 void GraphKit::set_all_memory(Node* newmem) {
1469   Node* mergemem = MergeMemNode::make(newmem);
1470   gvn().set_type_bottom(mergemem);
1471   map()->set_memory(mergemem);
1472 }
1473 
1474 //------------------------------set_all_memory_call----------------------------
set_all_memory_call(Node * call,bool separate_io_proj)1475 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1476   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1477   set_all_memory(newmem);
1478 }
1479 
1480 //=============================================================================
1481 //
1482 // parser factory methods for MemNodes
1483 //
1484 // These are layered on top of the factory methods in LoadNode and StoreNode,
1485 // and integrate with the parser's memory state and _gvn engine.
1486 //
1487 
1488 // factory methods in "int adr_idx"
make_load(Node * ctl,Node * adr,const Type * t,BasicType bt,int adr_idx,MemNode::MemOrd mo,LoadNode::ControlDependency control_dependency,bool require_atomic_access,bool unaligned,bool mismatched,bool unsafe,uint8_t barrier_data)1489 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1490                           int adr_idx,
1491                           MemNode::MemOrd mo,
1492                           LoadNode::ControlDependency control_dependency,
1493                           bool require_atomic_access,
1494                           bool unaligned,
1495                           bool mismatched,
1496                           bool unsafe,
1497                           uint8_t barrier_data) {
1498   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1499   const TypePtr* adr_type = NULL; // debug-mode-only argument
1500   debug_only(adr_type = C->get_adr_type(adr_idx));
1501   Node* mem = memory(adr_idx);
1502   Node* ld;
1503   if (require_atomic_access && bt == T_LONG) {
1504     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe, barrier_data);
1505   } else if (require_atomic_access && bt == T_DOUBLE) {
1506     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe, barrier_data);
1507   } else {
1508     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched, unsafe, barrier_data);
1509   }
1510   ld = _gvn.transform(ld);
1511   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1512     // Improve graph before escape analysis and boxing elimination.
1513     record_for_igvn(ld);
1514   }
1515   return ld;
1516 }
1517 
store_to_memory(Node * ctl,Node * adr,Node * val,BasicType bt,int adr_idx,MemNode::MemOrd mo,bool require_atomic_access,bool unaligned,bool mismatched,bool unsafe)1518 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1519                                 int adr_idx,
1520                                 MemNode::MemOrd mo,
1521                                 bool require_atomic_access,
1522                                 bool unaligned,
1523                                 bool mismatched,
1524                                 bool unsafe) {
1525   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1526   const TypePtr* adr_type = NULL;
1527   debug_only(adr_type = C->get_adr_type(adr_idx));
1528   Node *mem = memory(adr_idx);
1529   Node* st;
1530   if (require_atomic_access && bt == T_LONG) {
1531     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1532   } else if (require_atomic_access && bt == T_DOUBLE) {
1533     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1534   } else {
1535     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1536   }
1537   if (unaligned) {
1538     st->as_Store()->set_unaligned_access();
1539   }
1540   if (mismatched) {
1541     st->as_Store()->set_mismatched_access();
1542   }
1543   if (unsafe) {
1544     st->as_Store()->set_unsafe_access();
1545   }
1546   st = _gvn.transform(st);
1547   set_memory(st, adr_idx);
1548   // Back-to-back stores can only remove intermediate store with DU info
1549   // so push on worklist for optimizer.
1550   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1551     record_for_igvn(st);
1552 
1553   return st;
1554 }
1555 
access_store_at(Node * obj,Node * adr,const TypePtr * adr_type,Node * val,const Type * val_type,BasicType bt,DecoratorSet decorators)1556 Node* GraphKit::access_store_at(Node* obj,
1557                                 Node* adr,
1558                                 const TypePtr* adr_type,
1559                                 Node* val,
1560                                 const Type* val_type,
1561                                 BasicType bt,
1562                                 DecoratorSet decorators) {
1563   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1564   // could be delayed during Parse (for example, in adjust_map_after_if()).
1565   // Execute transformation here to avoid barrier generation in such case.
1566   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1567     val = _gvn.makecon(TypePtr::NULL_PTR);
1568   }
1569 
1570   if (stopped()) {
1571     return top(); // Dead path ?
1572   }
1573 
1574   assert(val != NULL, "not dead path");
1575 
1576   C2AccessValuePtr addr(adr, adr_type);
1577   C2AccessValue value(val, val_type);
1578   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1579   if (access.is_raw()) {
1580     return _barrier_set->BarrierSetC2::store_at(access, value);
1581   } else {
1582     return _barrier_set->store_at(access, value);
1583   }
1584 }
1585 
access_load_at(Node * obj,Node * adr,const TypePtr * adr_type,const Type * val_type,BasicType bt,DecoratorSet decorators)1586 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1587                                Node* adr,   // actual adress to store val at
1588                                const TypePtr* adr_type,
1589                                const Type* val_type,
1590                                BasicType bt,
1591                                DecoratorSet decorators) {
1592   if (stopped()) {
1593     return top(); // Dead path ?
1594   }
1595 
1596   C2AccessValuePtr addr(adr, adr_type);
1597   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1598   if (access.is_raw()) {
1599     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1600   } else {
1601     return _barrier_set->load_at(access, val_type);
1602   }
1603 }
1604 
access_load(Node * adr,const Type * val_type,BasicType bt,DecoratorSet decorators)1605 Node* GraphKit::access_load(Node* adr,   // actual adress to load val at
1606                             const Type* val_type,
1607                             BasicType bt,
1608                             DecoratorSet decorators) {
1609   if (stopped()) {
1610     return top(); // Dead path ?
1611   }
1612 
1613   C2AccessValuePtr addr(adr, NULL);
1614   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, NULL, addr);
1615   if (access.is_raw()) {
1616     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1617   } else {
1618     return _barrier_set->load_at(access, val_type);
1619   }
1620 }
1621 
access_atomic_cmpxchg_val_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * expected_val,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1622 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* obj,
1623                                              Node* adr,
1624                                              const TypePtr* adr_type,
1625                                              int alias_idx,
1626                                              Node* expected_val,
1627                                              Node* new_val,
1628                                              const Type* value_type,
1629                                              BasicType bt,
1630                                              DecoratorSet decorators) {
1631   C2AccessValuePtr addr(adr, adr_type);
1632   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1633                         bt, obj, addr, alias_idx);
1634   if (access.is_raw()) {
1635     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1636   } else {
1637     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1638   }
1639 }
1640 
access_atomic_cmpxchg_bool_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * expected_val,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1641 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* obj,
1642                                               Node* adr,
1643                                               const TypePtr* adr_type,
1644                                               int alias_idx,
1645                                               Node* expected_val,
1646                                               Node* new_val,
1647                                               const Type* value_type,
1648                                               BasicType bt,
1649                                               DecoratorSet decorators) {
1650   C2AccessValuePtr addr(adr, adr_type);
1651   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1652                         bt, obj, addr, alias_idx);
1653   if (access.is_raw()) {
1654     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1655   } else {
1656     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1657   }
1658 }
1659 
access_atomic_xchg_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1660 Node* GraphKit::access_atomic_xchg_at(Node* obj,
1661                                       Node* adr,
1662                                       const TypePtr* adr_type,
1663                                       int alias_idx,
1664                                       Node* new_val,
1665                                       const Type* value_type,
1666                                       BasicType bt,
1667                                       DecoratorSet decorators) {
1668   C2AccessValuePtr addr(adr, adr_type);
1669   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1670                         bt, obj, addr, alias_idx);
1671   if (access.is_raw()) {
1672     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1673   } else {
1674     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1675   }
1676 }
1677 
access_atomic_add_at(Node * obj,Node * adr,const TypePtr * adr_type,int alias_idx,Node * new_val,const Type * value_type,BasicType bt,DecoratorSet decorators)1678 Node* GraphKit::access_atomic_add_at(Node* obj,
1679                                      Node* adr,
1680                                      const TypePtr* adr_type,
1681                                      int alias_idx,
1682                                      Node* new_val,
1683                                      const Type* value_type,
1684                                      BasicType bt,
1685                                      DecoratorSet decorators) {
1686   C2AccessValuePtr addr(adr, adr_type);
1687   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1688   if (access.is_raw()) {
1689     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1690   } else {
1691     return _barrier_set->atomic_add_at(access, new_val, value_type);
1692   }
1693 }
1694 
access_clone(Node * src,Node * dst,Node * size,bool is_array)1695 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1696   return _barrier_set->clone(this, src, dst, size, is_array);
1697 }
1698 
1699 //-------------------------array_element_address-------------------------
array_element_address(Node * ary,Node * idx,BasicType elembt,const TypeInt * sizetype,Node * ctrl)1700 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1701                                       const TypeInt* sizetype, Node* ctrl) {
1702   uint shift  = exact_log2(type2aelembytes(elembt));
1703   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1704 
1705   // short-circuit a common case (saves lots of confusing waste motion)
1706   jint idx_con = find_int_con(idx, -1);
1707   if (idx_con >= 0) {
1708     intptr_t offset = header + ((intptr_t)idx_con << shift);
1709     return basic_plus_adr(ary, offset);
1710   }
1711 
1712   // must be correct type for alignment purposes
1713   Node* base  = basic_plus_adr(ary, header);
1714   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1715   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1716   return basic_plus_adr(ary, base, scale);
1717 }
1718 
1719 //-------------------------load_array_element-------------------------
load_array_element(Node * ctl,Node * ary,Node * idx,const TypeAryPtr * arytype)1720 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1721   const Type* elemtype = arytype->elem();
1722   BasicType elembt = elemtype->array_element_basic_type();
1723   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1724   if (elembt == T_NARROWOOP) {
1725     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1726   }
1727   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1728   return ld;
1729 }
1730 
1731 //-------------------------set_arguments_for_java_call-------------------------
1732 // Arguments (pre-popped from the stack) are taken from the JVMS.
set_arguments_for_java_call(CallJavaNode * call)1733 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1734   // Add the call arguments:
1735   uint nargs = call->method()->arg_size();
1736   for (uint i = 0; i < nargs; i++) {
1737     Node* arg = argument(i);
1738     call->init_req(i + TypeFunc::Parms, arg);
1739   }
1740 }
1741 
1742 //---------------------------set_edges_for_java_call---------------------------
1743 // Connect a newly created call into the current JVMS.
1744 // A return value node (if any) is returned from set_edges_for_java_call.
set_edges_for_java_call(CallJavaNode * call,bool must_throw,bool separate_io_proj)1745 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1746 
1747   // Add the predefined inputs:
1748   call->init_req( TypeFunc::Control, control() );
1749   call->init_req( TypeFunc::I_O    , i_o() );
1750   call->init_req( TypeFunc::Memory , reset_memory() );
1751   call->init_req( TypeFunc::FramePtr, frameptr() );
1752   call->init_req( TypeFunc::ReturnAdr, top() );
1753 
1754   add_safepoint_edges(call, must_throw);
1755 
1756   Node* xcall = _gvn.transform(call);
1757 
1758   if (xcall == top()) {
1759     set_control(top());
1760     return;
1761   }
1762   assert(xcall == call, "call identity is stable");
1763 
1764   // Re-use the current map to produce the result.
1765 
1766   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1767   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1768   set_all_memory_call(xcall, separate_io_proj);
1769 
1770   //return xcall;   // no need, caller already has it
1771 }
1772 
set_results_for_java_call(CallJavaNode * call,bool separate_io_proj,bool deoptimize)1773 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1774   if (stopped())  return top();  // maybe the call folded up?
1775 
1776   // Capture the return value, if any.
1777   Node* ret;
1778   if (call->method() == NULL ||
1779       call->method()->return_type()->basic_type() == T_VOID)
1780         ret = top();
1781   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1782 
1783   // Note:  Since any out-of-line call can produce an exception,
1784   // we always insert an I_O projection from the call into the result.
1785 
1786   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1787 
1788   if (separate_io_proj) {
1789     // The caller requested separate projections be used by the fall
1790     // through and exceptional paths, so replace the projections for
1791     // the fall through path.
1792     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1793     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1794   }
1795   return ret;
1796 }
1797 
1798 //--------------------set_predefined_input_for_runtime_call--------------------
1799 // Reading and setting the memory state is way conservative here.
1800 // The real problem is that I am not doing real Type analysis on memory,
1801 // so I cannot distinguish card mark stores from other stores.  Across a GC
1802 // point the Store Barrier and the card mark memory has to agree.  I cannot
1803 // have a card mark store and its barrier split across the GC point from
1804 // either above or below.  Here I get that to happen by reading ALL of memory.
1805 // A better answer would be to separate out card marks from other memory.
1806 // For now, return the input memory state, so that it can be reused
1807 // after the call, if this call has restricted memory effects.
set_predefined_input_for_runtime_call(SafePointNode * call,Node * narrow_mem)1808 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1809   // Set fixed predefined input arguments
1810   Node* memory = reset_memory();
1811   Node* m = narrow_mem == NULL ? memory : narrow_mem;
1812   call->init_req( TypeFunc::Control,   control()  );
1813   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1814   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
1815   call->init_req( TypeFunc::FramePtr,  frameptr() );
1816   call->init_req( TypeFunc::ReturnAdr, top()      );
1817   return memory;
1818 }
1819 
1820 //-------------------set_predefined_output_for_runtime_call--------------------
1821 // Set control and memory (not i_o) from the call.
1822 // If keep_mem is not NULL, use it for the output state,
1823 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1824 // If hook_mem is NULL, this call produces no memory effects at all.
1825 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1826 // then only that memory slice is taken from the call.
1827 // In the last case, we must put an appropriate memory barrier before
1828 // the call, so as to create the correct anti-dependencies on loads
1829 // preceding the call.
set_predefined_output_for_runtime_call(Node * call,Node * keep_mem,const TypePtr * hook_mem)1830 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1831                                                       Node* keep_mem,
1832                                                       const TypePtr* hook_mem) {
1833   // no i/o
1834   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1835   if (keep_mem) {
1836     // First clone the existing memory state
1837     set_all_memory(keep_mem);
1838     if (hook_mem != NULL) {
1839       // Make memory for the call
1840       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1841       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1842       // We also use hook_mem to extract specific effects from arraycopy stubs.
1843       set_memory(mem, hook_mem);
1844     }
1845     // ...else the call has NO memory effects.
1846 
1847     // Make sure the call advertises its memory effects precisely.
1848     // This lets us build accurate anti-dependences in gcm.cpp.
1849     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1850            "call node must be constructed correctly");
1851   } else {
1852     assert(hook_mem == NULL, "");
1853     // This is not a "slow path" call; all memory comes from the call.
1854     set_all_memory_call(call);
1855   }
1856 }
1857 
1858 // Keep track of MergeMems feeding into other MergeMems
add_mergemem_users_to_worklist(Unique_Node_List & wl,Node * mem)1859 static void add_mergemem_users_to_worklist(Unique_Node_List& wl, Node* mem) {
1860   if (!mem->is_MergeMem()) {
1861     return;
1862   }
1863   for (SimpleDUIterator i(mem); i.has_next(); i.next()) {
1864     Node* use = i.get();
1865     if (use->is_MergeMem()) {
1866       wl.push(use);
1867     }
1868   }
1869 }
1870 
1871 // Replace the call with the current state of the kit.
replace_call(CallNode * call,Node * result,bool do_replaced_nodes)1872 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1873   JVMState* ejvms = NULL;
1874   if (has_exceptions()) {
1875     ejvms = transfer_exceptions_into_jvms();
1876   }
1877 
1878   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1879   ReplacedNodes replaced_nodes_exception;
1880   Node* ex_ctl = top();
1881 
1882   SafePointNode* final_state = stop();
1883 
1884   // Find all the needed outputs of this call
1885   CallProjections callprojs;
1886   call->extract_projections(&callprojs, true);
1887 
1888   Unique_Node_List wl;
1889   Node* init_mem = call->in(TypeFunc::Memory);
1890   Node* final_mem = final_state->in(TypeFunc::Memory);
1891   Node* final_ctl = final_state->in(TypeFunc::Control);
1892   Node* final_io = final_state->in(TypeFunc::I_O);
1893 
1894   // Replace all the old call edges with the edges from the inlining result
1895   if (callprojs.fallthrough_catchproj != NULL) {
1896     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1897   }
1898   if (callprojs.fallthrough_memproj != NULL) {
1899     if (final_mem->is_MergeMem()) {
1900       // Parser's exits MergeMem was not transformed but may be optimized
1901       final_mem = _gvn.transform(final_mem);
1902     }
1903     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1904     add_mergemem_users_to_worklist(wl, final_mem);
1905   }
1906   if (callprojs.fallthrough_ioproj != NULL) {
1907     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1908   }
1909 
1910   // Replace the result with the new result if it exists and is used
1911   if (callprojs.resproj != NULL && result != NULL) {
1912     C->gvn_replace_by(callprojs.resproj, result);
1913   }
1914 
1915   if (ejvms == NULL) {
1916     // No exception edges to simply kill off those paths
1917     if (callprojs.catchall_catchproj != NULL) {
1918       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1919     }
1920     if (callprojs.catchall_memproj != NULL) {
1921       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1922     }
1923     if (callprojs.catchall_ioproj != NULL) {
1924       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1925     }
1926     // Replace the old exception object with top
1927     if (callprojs.exobj != NULL) {
1928       C->gvn_replace_by(callprojs.exobj, C->top());
1929     }
1930   } else {
1931     GraphKit ekit(ejvms);
1932 
1933     // Load my combined exception state into the kit, with all phis transformed:
1934     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1935     replaced_nodes_exception = ex_map->replaced_nodes();
1936 
1937     Node* ex_oop = ekit.use_exception_state(ex_map);
1938 
1939     if (callprojs.catchall_catchproj != NULL) {
1940       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1941       ex_ctl = ekit.control();
1942     }
1943     if (callprojs.catchall_memproj != NULL) {
1944       Node* ex_mem = ekit.reset_memory();
1945       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
1946       add_mergemem_users_to_worklist(wl, ex_mem);
1947     }
1948     if (callprojs.catchall_ioproj != NULL) {
1949       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1950     }
1951 
1952     // Replace the old exception object with the newly created one
1953     if (callprojs.exobj != NULL) {
1954       C->gvn_replace_by(callprojs.exobj, ex_oop);
1955     }
1956   }
1957 
1958   // Disconnect the call from the graph
1959   call->disconnect_inputs(NULL, C);
1960   C->gvn_replace_by(call, C->top());
1961 
1962   // Clean up any MergeMems that feed other MergeMems since the
1963   // optimizer doesn't like that.
1964   while (wl.size() > 0) {
1965     _gvn.transform(wl.pop());
1966   }
1967 
1968   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1969     replaced_nodes.apply(C, final_ctl);
1970   }
1971   if (!ex_ctl->is_top() && do_replaced_nodes) {
1972     replaced_nodes_exception.apply(C, ex_ctl);
1973   }
1974 }
1975 
1976 
1977 //------------------------------increment_counter------------------------------
1978 // for statistics: increment a VM counter by 1
1979 
increment_counter(address counter_addr)1980 void GraphKit::increment_counter(address counter_addr) {
1981   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1982   increment_counter(adr1);
1983 }
1984 
increment_counter(Node * counter_addr)1985 void GraphKit::increment_counter(Node* counter_addr) {
1986   int adr_type = Compile::AliasIdxRaw;
1987   Node* ctrl = control();
1988   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1989   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1990   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1991 }
1992 
1993 
1994 //------------------------------uncommon_trap----------------------------------
1995 // Bail out to the interpreter in mid-method.  Implemented by calling the
1996 // uncommon_trap blob.  This helper function inserts a runtime call with the
1997 // right debug info.
uncommon_trap(int trap_request,ciKlass * klass,const char * comment,bool must_throw,bool keep_exact_action)1998 void GraphKit::uncommon_trap(int trap_request,
1999                              ciKlass* klass, const char* comment,
2000                              bool must_throw,
2001                              bool keep_exact_action) {
2002   if (failing())  stop();
2003   if (stopped())  return; // trap reachable?
2004 
2005   // Note:  If ProfileTraps is true, and if a deopt. actually
2006   // occurs here, the runtime will make sure an MDO exists.  There is
2007   // no need to call method()->ensure_method_data() at this point.
2008 
2009   // Set the stack pointer to the right value for reexecution:
2010   set_sp(reexecute_sp());
2011 
2012 #ifdef ASSERT
2013   if (!must_throw) {
2014     // Make sure the stack has at least enough depth to execute
2015     // the current bytecode.
2016     int inputs, ignored_depth;
2017     if (compute_stack_effects(inputs, ignored_depth)) {
2018       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
2019              Bytecodes::name(java_bc()), sp(), inputs);
2020     }
2021   }
2022 #endif
2023 
2024   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2025   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2026 
2027   switch (action) {
2028   case Deoptimization::Action_maybe_recompile:
2029   case Deoptimization::Action_reinterpret:
2030     // Temporary fix for 6529811 to allow virtual calls to be sure they
2031     // get the chance to go from mono->bi->mega
2032     if (!keep_exact_action &&
2033         Deoptimization::trap_request_index(trap_request) < 0 &&
2034         too_many_recompiles(reason)) {
2035       // This BCI is causing too many recompilations.
2036       if (C->log() != NULL) {
2037         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2038                 Deoptimization::trap_reason_name(reason),
2039                 Deoptimization::trap_action_name(action));
2040       }
2041       action = Deoptimization::Action_none;
2042       trap_request = Deoptimization::make_trap_request(reason, action);
2043     } else {
2044       C->set_trap_can_recompile(true);
2045     }
2046     break;
2047   case Deoptimization::Action_make_not_entrant:
2048     C->set_trap_can_recompile(true);
2049     break;
2050   case Deoptimization::Action_none:
2051   case Deoptimization::Action_make_not_compilable:
2052     break;
2053   default:
2054 #ifdef ASSERT
2055     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2056 #endif
2057     break;
2058   }
2059 
2060   if (TraceOptoParse) {
2061     char buf[100];
2062     tty->print_cr("Uncommon trap %s at bci:%d",
2063                   Deoptimization::format_trap_request(buf, sizeof(buf),
2064                                                       trap_request), bci());
2065   }
2066 
2067   CompileLog* log = C->log();
2068   if (log != NULL) {
2069     int kid = (klass == NULL)? -1: log->identify(klass);
2070     log->begin_elem("uncommon_trap bci='%d'", bci());
2071     char buf[100];
2072     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2073                                                           trap_request));
2074     if (kid >= 0)         log->print(" klass='%d'", kid);
2075     if (comment != NULL)  log->print(" comment='%s'", comment);
2076     log->end_elem();
2077   }
2078 
2079   // Make sure any guarding test views this path as very unlikely
2080   Node *i0 = control()->in(0);
2081   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2082     IfNode *iff = i0->as_If();
2083     float f = iff->_prob;   // Get prob
2084     if (control()->Opcode() == Op_IfTrue) {
2085       if (f > PROB_UNLIKELY_MAG(4))
2086         iff->_prob = PROB_MIN;
2087     } else {
2088       if (f < PROB_LIKELY_MAG(4))
2089         iff->_prob = PROB_MAX;
2090     }
2091   }
2092 
2093   // Clear out dead values from the debug info.
2094   kill_dead_locals();
2095 
2096   // Now insert the uncommon trap subroutine call
2097   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2098   const TypePtr* no_memory_effects = NULL;
2099   // Pass the index of the class to be loaded
2100   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2101                                  (must_throw ? RC_MUST_THROW : 0),
2102                                  OptoRuntime::uncommon_trap_Type(),
2103                                  call_addr, "uncommon_trap", no_memory_effects,
2104                                  intcon(trap_request));
2105   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2106          "must extract request correctly from the graph");
2107   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2108 
2109   call->set_req(TypeFunc::ReturnAdr, returnadr());
2110   // The debug info is the only real input to this call.
2111 
2112   // Halt-and-catch fire here.  The above call should never return!
2113   HaltNode* halt = new HaltNode(control(), frameptr(), "uncommon trap returned which should never happen");
2114   _gvn.set_type_bottom(halt);
2115   root()->add_req(halt);
2116 
2117   stop_and_kill_map();
2118 }
2119 
2120 
2121 //--------------------------just_allocated_object------------------------------
2122 // Report the object that was just allocated.
2123 // It must be the case that there are no intervening safepoints.
2124 // We use this to determine if an object is so "fresh" that
2125 // it does not require card marks.
just_allocated_object(Node * current_control)2126 Node* GraphKit::just_allocated_object(Node* current_control) {
2127   Node* ctrl = current_control;
2128   // Object::<init> is invoked after allocation, most of invoke nodes
2129   // will be reduced, but a region node is kept in parse time, we check
2130   // the pattern and skip the region node if it degraded to a copy.
2131   if (ctrl != NULL && ctrl->is_Region() && ctrl->req() == 2 &&
2132       ctrl->as_Region()->is_copy()) {
2133     ctrl = ctrl->as_Region()->is_copy();
2134   }
2135   if (C->recent_alloc_ctl() == ctrl) {
2136    return C->recent_alloc_obj();
2137   }
2138   return NULL;
2139 }
2140 
2141 
round_double_arguments(ciMethod * dest_method)2142 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2143   // (Note:  TypeFunc::make has a cache that makes this fast.)
2144   const TypeFunc* tf    = TypeFunc::make(dest_method);
2145   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2146   for (int j = 0; j < nargs; j++) {
2147     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2148     if( targ->basic_type() == T_DOUBLE ) {
2149       // If any parameters are doubles, they must be rounded before
2150       // the call, dstore_rounding does gvn.transform
2151       Node *arg = argument(j);
2152       arg = dstore_rounding(arg);
2153       set_argument(j, arg);
2154     }
2155   }
2156 }
2157 
2158 /**
2159  * Record profiling data exact_kls for Node n with the type system so
2160  * that it can propagate it (speculation)
2161  *
2162  * @param n          node that the type applies to
2163  * @param exact_kls  type from profiling
2164  * @param maybe_null did profiling see null?
2165  *
2166  * @return           node with improved type
2167  */
record_profile_for_speculation(Node * n,ciKlass * exact_kls,ProfilePtrKind ptr_kind)2168 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2169   const Type* current_type = _gvn.type(n);
2170   assert(UseTypeSpeculation, "type speculation must be on");
2171 
2172   const TypePtr* speculative = current_type->speculative();
2173 
2174   // Should the klass from the profile be recorded in the speculative type?
2175   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2176     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2177     const TypeOopPtr* xtype = tklass->as_instance_type();
2178     assert(xtype->klass_is_exact(), "Should be exact");
2179     // Any reason to believe n is not null (from this profiling or a previous one)?
2180     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2181     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2182     // record the new speculative type's depth
2183     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2184     speculative = speculative->with_inline_depth(jvms()->depth());
2185   } else if (current_type->would_improve_ptr(ptr_kind)) {
2186     // Profiling report that null was never seen so we can change the
2187     // speculative type to non null ptr.
2188     if (ptr_kind == ProfileAlwaysNull) {
2189       speculative = TypePtr::NULL_PTR;
2190     } else {
2191       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2192       const TypePtr* ptr = TypePtr::NOTNULL;
2193       if (speculative != NULL) {
2194         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2195       } else {
2196         speculative = ptr;
2197       }
2198     }
2199   }
2200 
2201   if (speculative != current_type->speculative()) {
2202     // Build a type with a speculative type (what we think we know
2203     // about the type but will need a guard when we use it)
2204     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2205     // We're changing the type, we need a new CheckCast node to carry
2206     // the new type. The new type depends on the control: what
2207     // profiling tells us is only valid from here as far as we can
2208     // tell.
2209     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2210     cast = _gvn.transform(cast);
2211     replace_in_map(n, cast);
2212     n = cast;
2213   }
2214 
2215   return n;
2216 }
2217 
2218 /**
2219  * Record profiling data from receiver profiling at an invoke with the
2220  * type system so that it can propagate it (speculation)
2221  *
2222  * @param n  receiver node
2223  *
2224  * @return   node with improved type
2225  */
record_profiled_receiver_for_speculation(Node * n)2226 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2227   if (!UseTypeSpeculation) {
2228     return n;
2229   }
2230   ciKlass* exact_kls = profile_has_unique_klass();
2231   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2232   if ((java_bc() == Bytecodes::_checkcast ||
2233        java_bc() == Bytecodes::_instanceof ||
2234        java_bc() == Bytecodes::_aastore) &&
2235       method()->method_data()->is_mature()) {
2236     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2237     if (data != NULL) {
2238       if (!data->as_BitData()->null_seen()) {
2239         ptr_kind = ProfileNeverNull;
2240       } else {
2241         assert(data->is_ReceiverTypeData(), "bad profile data type");
2242         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2243         uint i = 0;
2244         for (; i < call->row_limit(); i++) {
2245           ciKlass* receiver = call->receiver(i);
2246           if (receiver != NULL) {
2247             break;
2248           }
2249         }
2250         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2251       }
2252     }
2253   }
2254   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2255 }
2256 
2257 /**
2258  * Record profiling data from argument profiling at an invoke with the
2259  * type system so that it can propagate it (speculation)
2260  *
2261  * @param dest_method  target method for the call
2262  * @param bc           what invoke bytecode is this?
2263  */
record_profiled_arguments_for_speculation(ciMethod * dest_method,Bytecodes::Code bc)2264 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2265   if (!UseTypeSpeculation) {
2266     return;
2267   }
2268   const TypeFunc* tf    = TypeFunc::make(dest_method);
2269   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2270   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2271   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2272     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2273     if (is_reference_type(targ->basic_type())) {
2274       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2275       ciKlass* better_type = NULL;
2276       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2277         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2278       }
2279       i++;
2280     }
2281   }
2282 }
2283 
2284 /**
2285  * Record profiling data from parameter profiling at an invoke with
2286  * the type system so that it can propagate it (speculation)
2287  */
record_profiled_parameters_for_speculation()2288 void GraphKit::record_profiled_parameters_for_speculation() {
2289   if (!UseTypeSpeculation) {
2290     return;
2291   }
2292   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2293     if (_gvn.type(local(i))->isa_oopptr()) {
2294       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2295       ciKlass* better_type = NULL;
2296       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2297         record_profile_for_speculation(local(i), better_type, ptr_kind);
2298       }
2299       j++;
2300     }
2301   }
2302 }
2303 
2304 /**
2305  * Record profiling data from return value profiling at an invoke with
2306  * the type system so that it can propagate it (speculation)
2307  */
record_profiled_return_for_speculation()2308 void GraphKit::record_profiled_return_for_speculation() {
2309   if (!UseTypeSpeculation) {
2310     return;
2311   }
2312   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2313   ciKlass* better_type = NULL;
2314   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2315     // If profiling reports a single type for the return value,
2316     // feed it to the type system so it can propagate it as a
2317     // speculative type
2318     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2319   }
2320 }
2321 
round_double_result(ciMethod * dest_method)2322 void GraphKit::round_double_result(ciMethod* dest_method) {
2323   // A non-strict method may return a double value which has an extended
2324   // exponent, but this must not be visible in a caller which is 'strict'
2325   // If a strict caller invokes a non-strict callee, round a double result
2326 
2327   BasicType result_type = dest_method->return_type()->basic_type();
2328   assert( method() != NULL, "must have caller context");
2329   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2330     // Destination method's return value is on top of stack
2331     // dstore_rounding() does gvn.transform
2332     Node *result = pop_pair();
2333     result = dstore_rounding(result);
2334     push_pair(result);
2335   }
2336 }
2337 
2338 // rounding for strict float precision conformance
precision_rounding(Node * n)2339 Node* GraphKit::precision_rounding(Node* n) {
2340   return UseStrictFP && _method->flags().is_strict()
2341     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2342     ? _gvn.transform( new RoundFloatNode(0, n) )
2343     : n;
2344 }
2345 
2346 // rounding for strict double precision conformance
dprecision_rounding(Node * n)2347 Node* GraphKit::dprecision_rounding(Node *n) {
2348   return UseStrictFP && _method->flags().is_strict()
2349     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2350     ? _gvn.transform( new RoundDoubleNode(0, n) )
2351     : n;
2352 }
2353 
2354 // rounding for non-strict double stores
dstore_rounding(Node * n)2355 Node* GraphKit::dstore_rounding(Node* n) {
2356   return Matcher::strict_fp_requires_explicit_rounding
2357     && UseSSE <= 1
2358     ? _gvn.transform( new RoundDoubleNode(0, n) )
2359     : n;
2360 }
2361 
2362 //=============================================================================
2363 // Generate a fast path/slow path idiom.  Graph looks like:
2364 // [foo] indicates that 'foo' is a parameter
2365 //
2366 //              [in]     NULL
2367 //                 \    /
2368 //                  CmpP
2369 //                  Bool ne
2370 //                   If
2371 //                  /  \
2372 //              True    False-<2>
2373 //              / |
2374 //             /  cast_not_null
2375 //           Load  |    |   ^
2376 //        [fast_test]   |   |
2377 // gvn to   opt_test    |   |
2378 //          /    \      |  <1>
2379 //      True     False  |
2380 //        |         \\  |
2381 //   [slow_call]     \[fast_result]
2382 //    Ctl   Val       \      \
2383 //     |               \      \
2384 //    Catch       <1>   \      \
2385 //   /    \        ^     \      \
2386 //  Ex    No_Ex    |      \      \
2387 //  |       \   \  |       \ <2>  \
2388 //  ...      \  [slow_res] |  |    \   [null_result]
2389 //            \         \--+--+---  |  |
2390 //             \           | /    \ | /
2391 //              --------Region     Phi
2392 //
2393 //=============================================================================
2394 // Code is structured as a series of driver functions all called 'do_XXX' that
2395 // call a set of helper functions.  Helper functions first, then drivers.
2396 
2397 //------------------------------null_check_oop---------------------------------
2398 // Null check oop.  Set null-path control into Region in slot 3.
2399 // Make a cast-not-nullness use the other not-null control.  Return cast.
null_check_oop(Node * value,Node ** null_control,bool never_see_null,bool safe_for_replace,bool speculative)2400 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2401                                bool never_see_null,
2402                                bool safe_for_replace,
2403                                bool speculative) {
2404   // Initial NULL check taken path
2405   (*null_control) = top();
2406   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2407 
2408   // Generate uncommon_trap:
2409   if (never_see_null && (*null_control) != top()) {
2410     // If we see an unexpected null at a check-cast we record it and force a
2411     // recompile; the offending check-cast will be compiled to handle NULLs.
2412     // If we see more than one offending BCI, then all checkcasts in the
2413     // method will be compiled to handle NULLs.
2414     PreserveJVMState pjvms(this);
2415     set_control(*null_control);
2416     replace_in_map(value, null());
2417     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2418     uncommon_trap(reason,
2419                   Deoptimization::Action_make_not_entrant);
2420     (*null_control) = top();    // NULL path is dead
2421   }
2422   if ((*null_control) == top() && safe_for_replace) {
2423     replace_in_map(value, cast);
2424   }
2425 
2426   // Cast away null-ness on the result
2427   return cast;
2428 }
2429 
2430 //------------------------------opt_iff----------------------------------------
2431 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2432 // Return slow-path control.
opt_iff(Node * region,Node * iff)2433 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2434   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2435 
2436   // Fast path taken; set region slot 2
2437   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2438   region->init_req(2,fast_taken); // Capture fast-control
2439 
2440   // Fast path not-taken, i.e. slow path
2441   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2442   return slow_taken;
2443 }
2444 
2445 //-----------------------------make_runtime_call-------------------------------
make_runtime_call(int flags,const TypeFunc * call_type,address call_addr,const char * call_name,const TypePtr * adr_type,Node * parm0,Node * parm1,Node * parm2,Node * parm3,Node * parm4,Node * parm5,Node * parm6,Node * parm7)2446 Node* GraphKit::make_runtime_call(int flags,
2447                                   const TypeFunc* call_type, address call_addr,
2448                                   const char* call_name,
2449                                   const TypePtr* adr_type,
2450                                   // The following parms are all optional.
2451                                   // The first NULL ends the list.
2452                                   Node* parm0, Node* parm1,
2453                                   Node* parm2, Node* parm3,
2454                                   Node* parm4, Node* parm5,
2455                                   Node* parm6, Node* parm7) {
2456   assert(call_addr != NULL, "must not call NULL targets");
2457 
2458   // Slow-path call
2459   bool is_leaf = !(flags & RC_NO_LEAF);
2460   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2461   if (call_name == NULL) {
2462     assert(!is_leaf, "must supply name for leaf");
2463     call_name = OptoRuntime::stub_name(call_addr);
2464   }
2465   CallNode* call;
2466   if (!is_leaf) {
2467     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2468                                            bci(), adr_type);
2469   } else if (flags & RC_NO_FP) {
2470     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2471   } else {
2472     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2473   }
2474 
2475   // The following is similar to set_edges_for_java_call,
2476   // except that the memory effects of the call are restricted to AliasIdxRaw.
2477 
2478   // Slow path call has no side-effects, uses few values
2479   bool wide_in  = !(flags & RC_NARROW_MEM);
2480   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2481 
2482   Node* prev_mem = NULL;
2483   if (wide_in) {
2484     prev_mem = set_predefined_input_for_runtime_call(call);
2485   } else {
2486     assert(!wide_out, "narrow in => narrow out");
2487     Node* narrow_mem = memory(adr_type);
2488     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2489   }
2490 
2491   // Hook each parm in order.  Stop looking at the first NULL.
2492   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2493   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2494   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2495   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2496   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2497   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2498   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2499   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2500     /* close each nested if ===> */  } } } } } } } }
2501   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2502 
2503   if (!is_leaf) {
2504     // Non-leaves can block and take safepoints:
2505     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2506   }
2507   // Non-leaves can throw exceptions:
2508   if (has_io) {
2509     call->set_req(TypeFunc::I_O, i_o());
2510   }
2511 
2512   if (flags & RC_UNCOMMON) {
2513     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2514     // (An "if" probability corresponds roughly to an unconditional count.
2515     // Sort of.)
2516     call->set_cnt(PROB_UNLIKELY_MAG(4));
2517   }
2518 
2519   Node* c = _gvn.transform(call);
2520   assert(c == call, "cannot disappear");
2521 
2522   if (wide_out) {
2523     // Slow path call has full side-effects.
2524     set_predefined_output_for_runtime_call(call);
2525   } else {
2526     // Slow path call has few side-effects, and/or sets few values.
2527     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2528   }
2529 
2530   if (has_io) {
2531     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2532   }
2533   return call;
2534 
2535 }
2536 
2537 //------------------------------merge_memory-----------------------------------
2538 // Merge memory from one path into the current memory state.
merge_memory(Node * new_mem,Node * region,int new_path)2539 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2540   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2541     Node* old_slice = mms.force_memory();
2542     Node* new_slice = mms.memory2();
2543     if (old_slice != new_slice) {
2544       PhiNode* phi;
2545       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2546         if (mms.is_empty()) {
2547           // clone base memory Phi's inputs for this memory slice
2548           assert(old_slice == mms.base_memory(), "sanity");
2549           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2550           _gvn.set_type(phi, Type::MEMORY);
2551           for (uint i = 1; i < phi->req(); i++) {
2552             phi->init_req(i, old_slice->in(i));
2553           }
2554         } else {
2555           phi = old_slice->as_Phi(); // Phi was generated already
2556         }
2557       } else {
2558         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2559         _gvn.set_type(phi, Type::MEMORY);
2560       }
2561       phi->set_req(new_path, new_slice);
2562       mms.set_memory(phi);
2563     }
2564   }
2565 }
2566 
2567 //------------------------------make_slow_call_ex------------------------------
2568 // Make the exception handler hookups for the slow call
make_slow_call_ex(Node * call,ciInstanceKlass * ex_klass,bool separate_io_proj,bool deoptimize)2569 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2570   if (stopped())  return;
2571 
2572   // Make a catch node with just two handlers:  fall-through and catch-all
2573   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2574   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2575   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2576   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2577 
2578   { PreserveJVMState pjvms(this);
2579     set_control(excp);
2580     set_i_o(i_o);
2581 
2582     if (excp != top()) {
2583       if (deoptimize) {
2584         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2585         uncommon_trap(Deoptimization::Reason_unhandled,
2586                       Deoptimization::Action_none);
2587       } else {
2588         // Create an exception state also.
2589         // Use an exact type if the caller has a specific exception.
2590         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2591         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2592         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2593       }
2594     }
2595   }
2596 
2597   // Get the no-exception control from the CatchNode.
2598   set_control(norm);
2599 }
2600 
gen_subtype_check_compare(Node * ctrl,Node * in1,Node * in2,BoolTest::mask test,float p,PhaseGVN * gvn,BasicType bt)2601 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2602   Node* cmp = NULL;
2603   switch(bt) {
2604   case T_INT: cmp = new CmpINode(in1, in2); break;
2605   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2606   default: fatal("unexpected comparison type %s", type2name(bt));
2607   }
2608   gvn->transform(cmp);
2609   Node* bol = gvn->transform(new BoolNode(cmp, test));
2610   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2611   gvn->transform(iff);
2612   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2613   return iff;
2614 }
2615 
2616 
2617 //-------------------------------gen_subtype_check-----------------------------
2618 // Generate a subtyping check.  Takes as input the subtype and supertype.
2619 // Returns 2 values: sets the default control() to the true path and returns
2620 // the false path.  Only reads invariant memory; sets no (visible) memory.
2621 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2622 // but that's not exposed to the optimizer.  This call also doesn't take in an
2623 // Object; if you wish to check an Object you need to load the Object's class
2624 // prior to coming here.
gen_subtype_check(Node * subklass,Node * superklass,Node ** ctrl,MergeMemNode * mem,PhaseGVN * gvn)2625 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2626   Compile* C = gvn->C;
2627 
2628   if ((*ctrl)->is_top()) {
2629     return C->top();
2630   }
2631 
2632   // Fast check for identical types, perhaps identical constants.
2633   // The types can even be identical non-constants, in cases
2634   // involving Array.newInstance, Object.clone, etc.
2635   if (subklass == superklass)
2636     return C->top();             // false path is dead; no test needed.
2637 
2638   if (gvn->type(superklass)->singleton()) {
2639     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2640     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2641 
2642     // In the common case of an exact superklass, try to fold up the
2643     // test before generating code.  You may ask, why not just generate
2644     // the code and then let it fold up?  The answer is that the generated
2645     // code will necessarily include null checks, which do not always
2646     // completely fold away.  If they are also needless, then they turn
2647     // into a performance loss.  Example:
2648     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2649     // Here, the type of 'fa' is often exact, so the store check
2650     // of fa[1]=x will fold up, without testing the nullness of x.
2651     switch (C->static_subtype_check(superk, subk)) {
2652     case Compile::SSC_always_false:
2653       {
2654         Node* always_fail = *ctrl;
2655         *ctrl = gvn->C->top();
2656         return always_fail;
2657       }
2658     case Compile::SSC_always_true:
2659       return C->top();
2660     case Compile::SSC_easy_test:
2661       {
2662         // Just do a direct pointer compare and be done.
2663         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2664         *ctrl = gvn->transform(new IfTrueNode(iff));
2665         return gvn->transform(new IfFalseNode(iff));
2666       }
2667     case Compile::SSC_full_test:
2668       break;
2669     default:
2670       ShouldNotReachHere();
2671     }
2672   }
2673 
2674   // %%% Possible further optimization:  Even if the superklass is not exact,
2675   // if the subklass is the unique subtype of the superklass, the check
2676   // will always succeed.  We could leave a dependency behind to ensure this.
2677 
2678   // First load the super-klass's check-offset
2679   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2680   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2681   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2682   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2683   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2684 
2685   // Load from the sub-klass's super-class display list, or a 1-word cache of
2686   // the secondary superclass list, or a failing value with a sentinel offset
2687   // if the super-klass is an interface or exceptionally deep in the Java
2688   // hierarchy and we have to scan the secondary superclass list the hard way.
2689   // Worst-case type is a little odd: NULL is allowed as a result (usually
2690   // klass loads can never produce a NULL).
2691   Node *chk_off_X = chk_off;
2692 #ifdef _LP64
2693   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2694 #endif
2695   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2696   // For some types like interfaces the following loadKlass is from a 1-word
2697   // cache which is mutable so can't use immutable memory.  Other
2698   // types load from the super-class display table which is immutable.
2699   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2700   Node *kmem = might_be_cache ? m : C->immutable_memory();
2701   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2702 
2703   // Compile speed common case: ARE a subtype and we canNOT fail
2704   if( superklass == nkls )
2705     return C->top();             // false path is dead; no test needed.
2706 
2707   // See if we get an immediate positive hit.  Happens roughly 83% of the
2708   // time.  Test to see if the value loaded just previously from the subklass
2709   // is exactly the superklass.
2710   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2711   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2712   *ctrl = gvn->transform(new IfFalseNode(iff1));
2713 
2714   // Compile speed common case: Check for being deterministic right now.  If
2715   // chk_off is a constant and not equal to cacheoff then we are NOT a
2716   // subklass.  In this case we need exactly the 1 test above and we can
2717   // return those results immediately.
2718   if (!might_be_cache) {
2719     Node* not_subtype_ctrl = *ctrl;
2720     *ctrl = iftrue1; // We need exactly the 1 test above
2721     return not_subtype_ctrl;
2722   }
2723 
2724   // Gather the various success & failures here
2725   RegionNode *r_ok_subtype = new RegionNode(4);
2726   gvn->record_for_igvn(r_ok_subtype);
2727   RegionNode *r_not_subtype = new RegionNode(3);
2728   gvn->record_for_igvn(r_not_subtype);
2729 
2730   r_ok_subtype->init_req(1, iftrue1);
2731 
2732   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2733   // is roughly 63% of the remaining cases).  Test to see if the loaded
2734   // check-offset points into the subklass display list or the 1-element
2735   // cache.  If it points to the display (and NOT the cache) and the display
2736   // missed then it's not a subtype.
2737   Node *cacheoff = gvn->intcon(cacheoff_con);
2738   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2739   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2740   *ctrl = gvn->transform(new IfFalseNode(iff2));
2741 
2742   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2743   // No performance impact (too rare) but allows sharing of secondary arrays
2744   // which has some footprint reduction.
2745   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2746   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2747   *ctrl = gvn->transform(new IfFalseNode(iff3));
2748 
2749   // -- Roads not taken here: --
2750   // We could also have chosen to perform the self-check at the beginning
2751   // of this code sequence, as the assembler does.  This would not pay off
2752   // the same way, since the optimizer, unlike the assembler, can perform
2753   // static type analysis to fold away many successful self-checks.
2754   // Non-foldable self checks work better here in second position, because
2755   // the initial primary superclass check subsumes a self-check for most
2756   // types.  An exception would be a secondary type like array-of-interface,
2757   // which does not appear in its own primary supertype display.
2758   // Finally, we could have chosen to move the self-check into the
2759   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2760   // dependent manner.  But it is worthwhile to have the check here,
2761   // where it can be perhaps be optimized.  The cost in code space is
2762   // small (register compare, branch).
2763 
2764   // Now do a linear scan of the secondary super-klass array.  Again, no real
2765   // performance impact (too rare) but it's gotta be done.
2766   // Since the code is rarely used, there is no penalty for moving it
2767   // out of line, and it can only improve I-cache density.
2768   // The decision to inline or out-of-line this final check is platform
2769   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2770   Node* psc = gvn->transform(
2771     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2772 
2773   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2774   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2775   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2776 
2777   // Return false path; set default control to true path.
2778   *ctrl = gvn->transform(r_ok_subtype);
2779   return gvn->transform(r_not_subtype);
2780 }
2781 
2782 // Profile-driven exact type check:
type_check_receiver(Node * receiver,ciKlass * klass,float prob,Node ** casted_receiver)2783 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2784                                     float prob,
2785                                     Node* *casted_receiver) {
2786   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2787   Node* recv_klass = load_object_klass(receiver);
2788   Node* want_klass = makecon(tklass);
2789   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2790   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2791   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2792   set_control( _gvn.transform( new IfTrueNode (iff) ));
2793   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2794 
2795   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2796   assert(recv_xtype->klass_is_exact(), "");
2797 
2798   // Subsume downstream occurrences of receiver with a cast to
2799   // recv_xtype, since now we know what the type will be.
2800   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2801   (*casted_receiver) = _gvn.transform(cast);
2802   // (User must make the replace_in_map call.)
2803 
2804   return fail;
2805 }
2806 
2807 //------------------------------subtype_check_receiver-------------------------
subtype_check_receiver(Node * receiver,ciKlass * klass,Node ** casted_receiver)2808 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2809                                        Node** casted_receiver) {
2810   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2811   Node* recv_klass = load_object_klass(receiver);
2812   Node* want_klass = makecon(tklass);
2813 
2814   Node* slow_ctl = gen_subtype_check(recv_klass, want_klass);
2815 
2816   // Cast receiver after successful check
2817   const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2818   Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2819   (*casted_receiver) = _gvn.transform(cast);
2820 
2821   return slow_ctl;
2822 }
2823 
2824 //------------------------------seems_never_null-------------------------------
2825 // Use null_seen information if it is available from the profile.
2826 // If we see an unexpected null at a type check we record it and force a
2827 // recompile; the offending check will be recompiled to handle NULLs.
2828 // If we see several offending BCIs, then all checks in the
2829 // method will be recompiled.
seems_never_null(Node * obj,ciProfileData * data,bool & speculating)2830 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2831   speculating = !_gvn.type(obj)->speculative_maybe_null();
2832   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2833   if (UncommonNullCast               // Cutout for this technique
2834       && obj != null()               // And not the -Xcomp stupid case?
2835       && !too_many_traps(reason)
2836       ) {
2837     if (speculating) {
2838       return true;
2839     }
2840     if (data == NULL)
2841       // Edge case:  no mature data.  Be optimistic here.
2842       return true;
2843     // If the profile has not seen a null, assume it won't happen.
2844     assert(java_bc() == Bytecodes::_checkcast ||
2845            java_bc() == Bytecodes::_instanceof ||
2846            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2847     return !data->as_BitData()->null_seen();
2848   }
2849   speculating = false;
2850   return false;
2851 }
2852 
guard_klass_being_initialized(Node * klass)2853 void GraphKit::guard_klass_being_initialized(Node* klass) {
2854   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
2855   Node* adr = basic_plus_adr(top(), klass, init_state_off);
2856   Node* init_state = LoadNode::make(_gvn, NULL, immutable_memory(), adr,
2857                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
2858                                     T_BYTE, MemNode::unordered);
2859   init_state = _gvn.transform(init_state);
2860 
2861   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
2862 
2863   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
2864   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2865 
2866   { BuildCutout unless(this, tst, PROB_MAX);
2867     uncommon_trap(Deoptimization::Reason_initialized, Deoptimization::Action_reinterpret);
2868   }
2869 }
2870 
guard_init_thread(Node * klass)2871 void GraphKit::guard_init_thread(Node* klass) {
2872   int init_thread_off = in_bytes(InstanceKlass::init_thread_offset());
2873   Node* adr = basic_plus_adr(top(), klass, init_thread_off);
2874 
2875   Node* init_thread = LoadNode::make(_gvn, NULL, immutable_memory(), adr,
2876                                      adr->bottom_type()->is_ptr(), TypePtr::NOTNULL,
2877                                      T_ADDRESS, MemNode::unordered);
2878   init_thread = _gvn.transform(init_thread);
2879 
2880   Node* cur_thread = _gvn.transform(new ThreadLocalNode());
2881 
2882   Node* chk = _gvn.transform(new CmpPNode(cur_thread, init_thread));
2883   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2884 
2885   { BuildCutout unless(this, tst, PROB_MAX);
2886     uncommon_trap(Deoptimization::Reason_uninitialized, Deoptimization::Action_none);
2887   }
2888 }
2889 
clinit_barrier(ciInstanceKlass * ik,ciMethod * context)2890 void GraphKit::clinit_barrier(ciInstanceKlass* ik, ciMethod* context) {
2891   if (ik->is_being_initialized()) {
2892     if (C->needs_clinit_barrier(ik, context)) {
2893       Node* klass = makecon(TypeKlassPtr::make(ik));
2894       guard_klass_being_initialized(klass);
2895       guard_init_thread(klass);
2896       insert_mem_bar(Op_MemBarCPUOrder);
2897     }
2898   } else if (ik->is_initialized()) {
2899     return; // no barrier needed
2900   } else {
2901     uncommon_trap(Deoptimization::Reason_uninitialized,
2902                   Deoptimization::Action_reinterpret,
2903                   NULL);
2904   }
2905 }
2906 
2907 //------------------------maybe_cast_profiled_receiver-------------------------
2908 // If the profile has seen exactly one type, narrow to exactly that type.
2909 // Subsequent type checks will always fold up.
maybe_cast_profiled_receiver(Node * not_null_obj,ciKlass * require_klass,ciKlass * spec_klass,bool safe_for_replace)2910 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2911                                              ciKlass* require_klass,
2912                                              ciKlass* spec_klass,
2913                                              bool safe_for_replace) {
2914   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2915 
2916   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2917 
2918   // Make sure we haven't already deoptimized from this tactic.
2919   if (too_many_traps_or_recompiles(reason))
2920     return NULL;
2921 
2922   // (No, this isn't a call, but it's enough like a virtual call
2923   // to use the same ciMethod accessor to get the profile info...)
2924   // If we have a speculative type use it instead of profiling (which
2925   // may not help us)
2926   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2927   if (exact_kls != NULL) {// no cast failures here
2928     if (require_klass == NULL ||
2929         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2930       // If we narrow the type to match what the type profile sees or
2931       // the speculative type, we can then remove the rest of the
2932       // cast.
2933       // This is a win, even if the exact_kls is very specific,
2934       // because downstream operations, such as method calls,
2935       // will often benefit from the sharper type.
2936       Node* exact_obj = not_null_obj; // will get updated in place...
2937       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2938                                             &exact_obj);
2939       { PreserveJVMState pjvms(this);
2940         set_control(slow_ctl);
2941         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2942       }
2943       if (safe_for_replace) {
2944         replace_in_map(not_null_obj, exact_obj);
2945       }
2946       return exact_obj;
2947     }
2948     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2949   }
2950 
2951   return NULL;
2952 }
2953 
2954 /**
2955  * Cast obj to type and emit guard unless we had too many traps here
2956  * already
2957  *
2958  * @param obj       node being casted
2959  * @param type      type to cast the node to
2960  * @param not_null  true if we know node cannot be null
2961  */
maybe_cast_profiled_obj(Node * obj,ciKlass * type,bool not_null)2962 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2963                                         ciKlass* type,
2964                                         bool not_null) {
2965   if (stopped()) {
2966     return obj;
2967   }
2968 
2969   // type == NULL if profiling tells us this object is always null
2970   if (type != NULL) {
2971     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2972     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2973 
2974     if (!too_many_traps_or_recompiles(null_reason) &&
2975         !too_many_traps_or_recompiles(class_reason)) {
2976       Node* not_null_obj = NULL;
2977       // not_null is true if we know the object is not null and
2978       // there's no need for a null check
2979       if (!not_null) {
2980         Node* null_ctl = top();
2981         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2982         assert(null_ctl->is_top(), "no null control here");
2983       } else {
2984         not_null_obj = obj;
2985       }
2986 
2987       Node* exact_obj = not_null_obj;
2988       ciKlass* exact_kls = type;
2989       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2990                                             &exact_obj);
2991       {
2992         PreserveJVMState pjvms(this);
2993         set_control(slow_ctl);
2994         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2995       }
2996       replace_in_map(not_null_obj, exact_obj);
2997       obj = exact_obj;
2998     }
2999   } else {
3000     if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3001       Node* exact_obj = null_assert(obj);
3002       replace_in_map(obj, exact_obj);
3003       obj = exact_obj;
3004     }
3005   }
3006   return obj;
3007 }
3008 
3009 //-------------------------------gen_instanceof--------------------------------
3010 // Generate an instance-of idiom.  Used by both the instance-of bytecode
3011 // and the reflective instance-of call.
gen_instanceof(Node * obj,Node * superklass,bool safe_for_replace)3012 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3013   kill_dead_locals();           // Benefit all the uncommon traps
3014   assert( !stopped(), "dead parse path should be checked in callers" );
3015   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3016          "must check for not-null not-dead klass in callers");
3017 
3018   // Make the merge point
3019   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3020   RegionNode* region = new RegionNode(PATH_LIMIT);
3021   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3022   C->set_has_split_ifs(true); // Has chance for split-if optimization
3023 
3024   ciProfileData* data = NULL;
3025   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3026     data = method()->method_data()->bci_to_data(bci());
3027   }
3028   bool speculative_not_null = false;
3029   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3030                          && seems_never_null(obj, data, speculative_not_null));
3031 
3032   // Null check; get casted pointer; set region slot 3
3033   Node* null_ctl = top();
3034   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3035 
3036   // If not_null_obj is dead, only null-path is taken
3037   if (stopped()) {              // Doing instance-of on a NULL?
3038     set_control(null_ctl);
3039     return intcon(0);
3040   }
3041   region->init_req(_null_path, null_ctl);
3042   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3043   if (null_ctl == top()) {
3044     // Do this eagerly, so that pattern matches like is_diamond_phi
3045     // will work even during parsing.
3046     assert(_null_path == PATH_LIMIT-1, "delete last");
3047     region->del_req(_null_path);
3048     phi   ->del_req(_null_path);
3049   }
3050 
3051   // Do we know the type check always succeed?
3052   bool known_statically = false;
3053   if (_gvn.type(superklass)->singleton()) {
3054     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
3055     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
3056     if (subk != NULL && subk->is_loaded()) {
3057       int static_res = C->static_subtype_check(superk, subk);
3058       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3059     }
3060   }
3061 
3062   if (!known_statically) {
3063     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3064     // We may not have profiling here or it may not help us. If we
3065     // have a speculative type use it to perform an exact cast.
3066     ciKlass* spec_obj_type = obj_type->speculative_type();
3067     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
3068       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
3069       if (stopped()) {            // Profile disagrees with this path.
3070         set_control(null_ctl);    // Null is the only remaining possibility.
3071         return intcon(0);
3072       }
3073       if (cast_obj != NULL) {
3074         not_null_obj = cast_obj;
3075       }
3076     }
3077   }
3078 
3079   // Load the object's klass
3080   Node* obj_klass = load_object_klass(not_null_obj);
3081 
3082   // Generate the subtype check
3083   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
3084 
3085   // Plug in the success path to the general merge in slot 1.
3086   region->init_req(_obj_path, control());
3087   phi   ->init_req(_obj_path, intcon(1));
3088 
3089   // Plug in the failing path to the general merge in slot 2.
3090   region->init_req(_fail_path, not_subtype_ctrl);
3091   phi   ->init_req(_fail_path, intcon(0));
3092 
3093   // Return final merged results
3094   set_control( _gvn.transform(region) );
3095   record_for_igvn(region);
3096 
3097   // If we know the type check always succeeds then we don't use the
3098   // profiling data at this bytecode. Don't lose it, feed it to the
3099   // type system as a speculative type.
3100   if (safe_for_replace) {
3101     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3102     replace_in_map(obj, casted_obj);
3103   }
3104 
3105   return _gvn.transform(phi);
3106 }
3107 
3108 //-------------------------------gen_checkcast---------------------------------
3109 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3110 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3111 // uncommon-trap paths work.  Adjust stack after this call.
3112 // If failure_control is supplied and not null, it is filled in with
3113 // the control edge for the cast failure.  Otherwise, an appropriate
3114 // uncommon trap or exception is thrown.
gen_checkcast(Node * obj,Node * superklass,Node ** failure_control)3115 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3116                               Node* *failure_control) {
3117   kill_dead_locals();           // Benefit all the uncommon traps
3118   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3119   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3120 
3121   // Fast cutout:  Check the case that the cast is vacuously true.
3122   // This detects the common cases where the test will short-circuit
3123   // away completely.  We do this before we perform the null check,
3124   // because if the test is going to turn into zero code, we don't
3125   // want a residual null check left around.  (Causes a slowdown,
3126   // for example, in some objArray manipulations, such as a[i]=a[j].)
3127   if (tk->singleton()) {
3128     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3129     if (objtp != NULL && objtp->klass() != NULL) {
3130       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3131       case Compile::SSC_always_true:
3132         // If we know the type check always succeed then we don't use
3133         // the profiling data at this bytecode. Don't lose it, feed it
3134         // to the type system as a speculative type.
3135         return record_profiled_receiver_for_speculation(obj);
3136       case Compile::SSC_always_false:
3137         // It needs a null check because a null will *pass* the cast check.
3138         // A non-null value will always produce an exception.
3139         return null_assert(obj);
3140       }
3141     }
3142   }
3143 
3144   ciProfileData* data = NULL;
3145   bool safe_for_replace = false;
3146   if (failure_control == NULL) {        // use MDO in regular case only
3147     assert(java_bc() == Bytecodes::_aastore ||
3148            java_bc() == Bytecodes::_checkcast,
3149            "interpreter profiles type checks only for these BCs");
3150     data = method()->method_data()->bci_to_data(bci());
3151     safe_for_replace = true;
3152   }
3153 
3154   // Make the merge point
3155   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3156   RegionNode* region = new RegionNode(PATH_LIMIT);
3157   Node*       phi    = new PhiNode(region, toop);
3158   C->set_has_split_ifs(true); // Has chance for split-if optimization
3159 
3160   // Use null-cast information if it is available
3161   bool speculative_not_null = false;
3162   bool never_see_null = ((failure_control == NULL)  // regular case only
3163                          && seems_never_null(obj, data, speculative_not_null));
3164 
3165   // Null check; get casted pointer; set region slot 3
3166   Node* null_ctl = top();
3167   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3168 
3169   // If not_null_obj is dead, only null-path is taken
3170   if (stopped()) {              // Doing instance-of on a NULL?
3171     set_control(null_ctl);
3172     return null();
3173   }
3174   region->init_req(_null_path, null_ctl);
3175   phi   ->init_req(_null_path, null());  // Set null path value
3176   if (null_ctl == top()) {
3177     // Do this eagerly, so that pattern matches like is_diamond_phi
3178     // will work even during parsing.
3179     assert(_null_path == PATH_LIMIT-1, "delete last");
3180     region->del_req(_null_path);
3181     phi   ->del_req(_null_path);
3182   }
3183 
3184   Node* cast_obj = NULL;
3185   if (tk->klass_is_exact()) {
3186     // The following optimization tries to statically cast the speculative type of the object
3187     // (for example obtained during profiling) to the type of the superklass and then do a
3188     // dynamic check that the type of the object is what we expect. To work correctly
3189     // for checkcast and aastore the type of superklass should be exact.
3190     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3191     // We may not have profiling here or it may not help us. If we have
3192     // a speculative type use it to perform an exact cast.
3193     ciKlass* spec_obj_type = obj_type->speculative_type();
3194     if (spec_obj_type != NULL || data != NULL) {
3195       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3196       if (cast_obj != NULL) {
3197         if (failure_control != NULL) // failure is now impossible
3198           (*failure_control) = top();
3199         // adjust the type of the phi to the exact klass:
3200         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3201       }
3202     }
3203   }
3204 
3205   if (cast_obj == NULL) {
3206     // Load the object's klass
3207     Node* obj_klass = load_object_klass(not_null_obj);
3208 
3209     // Generate the subtype check
3210     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3211 
3212     // Plug in success path into the merge
3213     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3214     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3215     if (failure_control == NULL) {
3216       if (not_subtype_ctrl != top()) { // If failure is possible
3217         PreserveJVMState pjvms(this);
3218         set_control(not_subtype_ctrl);
3219         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3220       }
3221     } else {
3222       (*failure_control) = not_subtype_ctrl;
3223     }
3224   }
3225 
3226   region->init_req(_obj_path, control());
3227   phi   ->init_req(_obj_path, cast_obj);
3228 
3229   // A merge of NULL or Casted-NotNull obj
3230   Node* res = _gvn.transform(phi);
3231 
3232   // Note I do NOT always 'replace_in_map(obj,result)' here.
3233   //  if( tk->klass()->can_be_primary_super()  )
3234     // This means that if I successfully store an Object into an array-of-String
3235     // I 'forget' that the Object is really now known to be a String.  I have to
3236     // do this because we don't have true union types for interfaces - if I store
3237     // a Baz into an array-of-Interface and then tell the optimizer it's an
3238     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3239     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3240   //  replace_in_map( obj, res );
3241 
3242   // Return final merged results
3243   set_control( _gvn.transform(region) );
3244   record_for_igvn(region);
3245 
3246   return record_profiled_receiver_for_speculation(res);
3247 }
3248 
3249 //------------------------------next_monitor-----------------------------------
3250 // What number should be given to the next monitor?
next_monitor()3251 int GraphKit::next_monitor() {
3252   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3253   int next = current + C->sync_stack_slots();
3254   // Keep the toplevel high water mark current:
3255   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3256   return current;
3257 }
3258 
3259 //------------------------------insert_mem_bar---------------------------------
3260 // Memory barrier to avoid floating things around
3261 // The membar serves as a pinch point between both control and all memory slices.
insert_mem_bar(int opcode,Node * precedent)3262 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3263   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3264   mb->init_req(TypeFunc::Control, control());
3265   mb->init_req(TypeFunc::Memory,  reset_memory());
3266   Node* membar = _gvn.transform(mb);
3267   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3268   set_all_memory_call(membar);
3269   return membar;
3270 }
3271 
3272 //-------------------------insert_mem_bar_volatile----------------------------
3273 // Memory barrier to avoid floating things around
3274 // The membar serves as a pinch point between both control and memory(alias_idx).
3275 // If you want to make a pinch point on all memory slices, do not use this
3276 // function (even with AliasIdxBot); use insert_mem_bar() instead.
insert_mem_bar_volatile(int opcode,int alias_idx,Node * precedent)3277 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3278   // When Parse::do_put_xxx updates a volatile field, it appends a series
3279   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3280   // The first membar is on the same memory slice as the field store opcode.
3281   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3282   // All the other membars (for other volatile slices, including AliasIdxBot,
3283   // which stands for all unknown volatile slices) are control-dependent
3284   // on the first membar.  This prevents later volatile loads or stores
3285   // from sliding up past the just-emitted store.
3286 
3287   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3288   mb->set_req(TypeFunc::Control,control());
3289   if (alias_idx == Compile::AliasIdxBot) {
3290     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3291   } else {
3292     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3293     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3294   }
3295   Node* membar = _gvn.transform(mb);
3296   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3297   if (alias_idx == Compile::AliasIdxBot) {
3298     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3299   } else {
3300     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3301   }
3302   return membar;
3303 }
3304 
3305 //------------------------------shared_lock------------------------------------
3306 // Emit locking code.
shared_lock(Node * obj)3307 FastLockNode* GraphKit::shared_lock(Node* obj) {
3308   // bci is either a monitorenter bc or InvocationEntryBci
3309   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3310   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3311 
3312   if( !GenerateSynchronizationCode )
3313     return NULL;                // Not locking things?
3314   if (stopped())                // Dead monitor?
3315     return NULL;
3316 
3317   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3318 
3319   // Box the stack location
3320   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3321   Node* mem = reset_memory();
3322 
3323   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3324   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3325     // Create the counters for this fast lock.
3326     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3327   }
3328 
3329   // Create the rtm counters for this fast lock if needed.
3330   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3331 
3332   // Add monitor to debug info for the slow path.  If we block inside the
3333   // slow path and de-opt, we need the monitor hanging around
3334   map()->push_monitor( flock );
3335 
3336   const TypeFunc *tf = LockNode::lock_type();
3337   LockNode *lock = new LockNode(C, tf);
3338 
3339   lock->init_req( TypeFunc::Control, control() );
3340   lock->init_req( TypeFunc::Memory , mem );
3341   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3342   lock->init_req( TypeFunc::FramePtr, frameptr() );
3343   lock->init_req( TypeFunc::ReturnAdr, top() );
3344 
3345   lock->init_req(TypeFunc::Parms + 0, obj);
3346   lock->init_req(TypeFunc::Parms + 1, box);
3347   lock->init_req(TypeFunc::Parms + 2, flock);
3348   add_safepoint_edges(lock);
3349 
3350   lock = _gvn.transform( lock )->as_Lock();
3351 
3352   // lock has no side-effects, sets few values
3353   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3354 
3355   insert_mem_bar(Op_MemBarAcquireLock);
3356 
3357   // Add this to the worklist so that the lock can be eliminated
3358   record_for_igvn(lock);
3359 
3360 #ifndef PRODUCT
3361   if (PrintLockStatistics) {
3362     // Update the counter for this lock.  Don't bother using an atomic
3363     // operation since we don't require absolute accuracy.
3364     lock->create_lock_counter(map()->jvms());
3365     increment_counter(lock->counter()->addr());
3366   }
3367 #endif
3368 
3369   return flock;
3370 }
3371 
3372 
3373 //------------------------------shared_unlock----------------------------------
3374 // Emit unlocking code.
shared_unlock(Node * box,Node * obj)3375 void GraphKit::shared_unlock(Node* box, Node* obj) {
3376   // bci is either a monitorenter bc or InvocationEntryBci
3377   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3378   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3379 
3380   if( !GenerateSynchronizationCode )
3381     return;
3382   if (stopped()) {               // Dead monitor?
3383     map()->pop_monitor();        // Kill monitor from debug info
3384     return;
3385   }
3386 
3387   // Memory barrier to avoid floating things down past the locked region
3388   insert_mem_bar(Op_MemBarReleaseLock);
3389 
3390   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3391   UnlockNode *unlock = new UnlockNode(C, tf);
3392 #ifdef ASSERT
3393   unlock->set_dbg_jvms(sync_jvms());
3394 #endif
3395   uint raw_idx = Compile::AliasIdxRaw;
3396   unlock->init_req( TypeFunc::Control, control() );
3397   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3398   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3399   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3400   unlock->init_req( TypeFunc::ReturnAdr, top() );
3401 
3402   unlock->init_req(TypeFunc::Parms + 0, obj);
3403   unlock->init_req(TypeFunc::Parms + 1, box);
3404   unlock = _gvn.transform(unlock)->as_Unlock();
3405 
3406   Node* mem = reset_memory();
3407 
3408   // unlock has no side-effects, sets few values
3409   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3410 
3411   // Kill monitor from debug info
3412   map()->pop_monitor( );
3413 }
3414 
3415 //-------------------------------get_layout_helper-----------------------------
3416 // If the given klass is a constant or known to be an array,
3417 // fetch the constant layout helper value into constant_value
3418 // and return (Node*)NULL.  Otherwise, load the non-constant
3419 // layout helper value, and return the node which represents it.
3420 // This two-faced routine is useful because allocation sites
3421 // almost always feature constant types.
get_layout_helper(Node * klass_node,jint & constant_value)3422 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3423   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3424   if (!StressReflectiveCode && inst_klass != NULL) {
3425     ciKlass* klass = inst_klass->klass();
3426     bool    xklass = inst_klass->klass_is_exact();
3427     if (xklass || klass->is_array_klass()) {
3428       jint lhelper = klass->layout_helper();
3429       if (lhelper != Klass::_lh_neutral_value) {
3430         constant_value = lhelper;
3431         return (Node*) NULL;
3432       }
3433     }
3434   }
3435   constant_value = Klass::_lh_neutral_value;  // put in a known value
3436   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3437   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3438 }
3439 
3440 // We just put in an allocate/initialize with a big raw-memory effect.
3441 // Hook selected additional alias categories on the initialization.
hook_memory_on_init(GraphKit & kit,int alias_idx,MergeMemNode * init_in_merge,Node * init_out_raw)3442 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3443                                 MergeMemNode* init_in_merge,
3444                                 Node* init_out_raw) {
3445   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3446   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3447 
3448   Node* prevmem = kit.memory(alias_idx);
3449   init_in_merge->set_memory_at(alias_idx, prevmem);
3450   kit.set_memory(init_out_raw, alias_idx);
3451 }
3452 
3453 //---------------------------set_output_for_allocation-------------------------
set_output_for_allocation(AllocateNode * alloc,const TypeOopPtr * oop_type,bool deoptimize_on_exception)3454 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3455                                           const TypeOopPtr* oop_type,
3456                                           bool deoptimize_on_exception) {
3457   int rawidx = Compile::AliasIdxRaw;
3458   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3459   add_safepoint_edges(alloc);
3460   Node* allocx = _gvn.transform(alloc);
3461   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3462   // create memory projection for i_o
3463   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3464   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3465 
3466   // create a memory projection as for the normal control path
3467   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3468   set_memory(malloc, rawidx);
3469 
3470   // a normal slow-call doesn't change i_o, but an allocation does
3471   // we create a separate i_o projection for the normal control path
3472   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3473   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3474 
3475   // put in an initialization barrier
3476   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3477                                                  rawoop)->as_Initialize();
3478   assert(alloc->initialization() == init,  "2-way macro link must work");
3479   assert(init ->allocation()     == alloc, "2-way macro link must work");
3480   {
3481     // Extract memory strands which may participate in the new object's
3482     // initialization, and source them from the new InitializeNode.
3483     // This will allow us to observe initializations when they occur,
3484     // and link them properly (as a group) to the InitializeNode.
3485     assert(init->in(InitializeNode::Memory) == malloc, "");
3486     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3487     init->set_req(InitializeNode::Memory, minit_in);
3488     record_for_igvn(minit_in); // fold it up later, if possible
3489     Node* minit_out = memory(rawidx);
3490     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3491     // Add an edge in the MergeMem for the header fields so an access
3492     // to one of those has correct memory state
3493     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3494     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3495     if (oop_type->isa_aryptr()) {
3496       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3497       int            elemidx  = C->get_alias_index(telemref);
3498       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3499     } else if (oop_type->isa_instptr()) {
3500       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3501       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3502         ciField* field = ik->nonstatic_field_at(i);
3503         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3504           continue;  // do not bother to track really large numbers of fields
3505         // Find (or create) the alias category for this field:
3506         int fieldidx = C->alias_type(field)->index();
3507         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3508       }
3509     }
3510   }
3511 
3512   // Cast raw oop to the real thing...
3513   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3514   javaoop = _gvn.transform(javaoop);
3515   C->set_recent_alloc(control(), javaoop);
3516   assert(just_allocated_object(control()) == javaoop, "just allocated");
3517 
3518 #ifdef ASSERT
3519   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3520     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3521            "Ideal_allocation works");
3522     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3523            "Ideal_allocation works");
3524     if (alloc->is_AllocateArray()) {
3525       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3526              "Ideal_allocation works");
3527       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3528              "Ideal_allocation works");
3529     } else {
3530       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3531     }
3532   }
3533 #endif //ASSERT
3534 
3535   return javaoop;
3536 }
3537 
3538 //---------------------------new_instance--------------------------------------
3539 // This routine takes a klass_node which may be constant (for a static type)
3540 // or may be non-constant (for reflective code).  It will work equally well
3541 // for either, and the graph will fold nicely if the optimizer later reduces
3542 // the type to a constant.
3543 // The optional arguments are for specialized use by intrinsics:
3544 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3545 //  - If 'return_size_val', report the the total object size to the caller.
3546 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
new_instance(Node * klass_node,Node * extra_slow_test,Node ** return_size_val,bool deoptimize_on_exception)3547 Node* GraphKit::new_instance(Node* klass_node,
3548                              Node* extra_slow_test,
3549                              Node* *return_size_val,
3550                              bool deoptimize_on_exception) {
3551   // Compute size in doublewords
3552   // The size is always an integral number of doublewords, represented
3553   // as a positive bytewise size stored in the klass's layout_helper.
3554   // The layout_helper also encodes (in a low bit) the need for a slow path.
3555   jint  layout_con = Klass::_lh_neutral_value;
3556   Node* layout_val = get_layout_helper(klass_node, layout_con);
3557   int   layout_is_con = (layout_val == NULL);
3558 
3559   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3560   // Generate the initial go-slow test.  It's either ALWAYS (return a
3561   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3562   // case) a computed value derived from the layout_helper.
3563   Node* initial_slow_test = NULL;
3564   if (layout_is_con) {
3565     assert(!StressReflectiveCode, "stress mode does not use these paths");
3566     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3567     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3568   } else {   // reflective case
3569     // This reflective path is used by Unsafe.allocateInstance.
3570     // (It may be stress-tested by specifying StressReflectiveCode.)
3571     // Basically, we want to get into the VM is there's an illegal argument.
3572     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3573     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3574     if (extra_slow_test != intcon(0)) {
3575       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3576     }
3577     // (Macro-expander will further convert this to a Bool, if necessary.)
3578   }
3579 
3580   // Find the size in bytes.  This is easy; it's the layout_helper.
3581   // The size value must be valid even if the slow path is taken.
3582   Node* size = NULL;
3583   if (layout_is_con) {
3584     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3585   } else {   // reflective case
3586     // This reflective path is used by clone and Unsafe.allocateInstance.
3587     size = ConvI2X(layout_val);
3588 
3589     // Clear the low bits to extract layout_helper_size_in_bytes:
3590     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3591     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3592     size = _gvn.transform( new AndXNode(size, mask) );
3593   }
3594   if (return_size_val != NULL) {
3595     (*return_size_val) = size;
3596   }
3597 
3598   // This is a precise notnull oop of the klass.
3599   // (Actually, it need not be precise if this is a reflective allocation.)
3600   // It's what we cast the result to.
3601   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3602   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3603   const TypeOopPtr* oop_type = tklass->as_instance_type();
3604 
3605   // Now generate allocation code
3606 
3607   // The entire memory state is needed for slow path of the allocation
3608   // since GC and deoptimization can happened.
3609   Node *mem = reset_memory();
3610   set_all_memory(mem); // Create new memory state
3611 
3612   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3613                                          control(), mem, i_o(),
3614                                          size, klass_node,
3615                                          initial_slow_test);
3616 
3617   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3618 }
3619 
3620 //-------------------------------new_array-------------------------------------
3621 // helper for both newarray and anewarray
3622 // The 'length' parameter is (obviously) the length of the array.
3623 // See comments on new_instance for the meaning of the other arguments.
new_array(Node * klass_node,Node * length,int nargs,Node ** return_size_val,bool deoptimize_on_exception)3624 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3625                           Node* length,         // number of array elements
3626                           int   nargs,          // number of arguments to push back for uncommon trap
3627                           Node* *return_size_val,
3628                           bool deoptimize_on_exception) {
3629   jint  layout_con = Klass::_lh_neutral_value;
3630   Node* layout_val = get_layout_helper(klass_node, layout_con);
3631   int   layout_is_con = (layout_val == NULL);
3632 
3633   if (!layout_is_con && !StressReflectiveCode &&
3634       !too_many_traps(Deoptimization::Reason_class_check)) {
3635     // This is a reflective array creation site.
3636     // Optimistically assume that it is a subtype of Object[],
3637     // so that we can fold up all the address arithmetic.
3638     layout_con = Klass::array_layout_helper(T_OBJECT);
3639     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3640     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3641     { BuildCutout unless(this, bol_lh, PROB_MAX);
3642       inc_sp(nargs);
3643       uncommon_trap(Deoptimization::Reason_class_check,
3644                     Deoptimization::Action_maybe_recompile);
3645     }
3646     layout_val = NULL;
3647     layout_is_con = true;
3648   }
3649 
3650   // Generate the initial go-slow test.  Make sure we do not overflow
3651   // if length is huge (near 2Gig) or negative!  We do not need
3652   // exact double-words here, just a close approximation of needed
3653   // double-words.  We can't add any offset or rounding bits, lest we
3654   // take a size -1 of bytes and make it positive.  Use an unsigned
3655   // compare, so negative sizes look hugely positive.
3656   int fast_size_limit = FastAllocateSizeLimit;
3657   if (layout_is_con) {
3658     assert(!StressReflectiveCode, "stress mode does not use these paths");
3659     // Increase the size limit if we have exact knowledge of array type.
3660     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3661     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3662   }
3663 
3664   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3665   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3666 
3667   // --- Size Computation ---
3668   // array_size = round_to_heap(array_header + (length << elem_shift));
3669   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3670   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3671   // The rounding mask is strength-reduced, if possible.
3672   int round_mask = MinObjAlignmentInBytes - 1;
3673   Node* header_size = NULL;
3674   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3675   // (T_BYTE has the weakest alignment and size restrictions...)
3676   if (layout_is_con) {
3677     int       hsize  = Klass::layout_helper_header_size(layout_con);
3678     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3679     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3680     if ((round_mask & ~right_n_bits(eshift)) == 0)
3681       round_mask = 0;  // strength-reduce it if it goes away completely
3682     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3683     assert(header_size_min <= hsize, "generic minimum is smallest");
3684     header_size_min = hsize;
3685     header_size = intcon(hsize + round_mask);
3686   } else {
3687     Node* hss   = intcon(Klass::_lh_header_size_shift);
3688     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3689     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3690     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3691     Node* mask  = intcon(round_mask);
3692     header_size = _gvn.transform( new AddINode(hsize, mask) );
3693   }
3694 
3695   Node* elem_shift = NULL;
3696   if (layout_is_con) {
3697     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3698     if (eshift != 0)
3699       elem_shift = intcon(eshift);
3700   } else {
3701     // There is no need to mask or shift this value.
3702     // The semantics of LShiftINode include an implicit mask to 0x1F.
3703     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3704     elem_shift = layout_val;
3705   }
3706 
3707   // Transition to native address size for all offset calculations:
3708   Node* lengthx = ConvI2X(length);
3709   Node* headerx = ConvI2X(header_size);
3710 #ifdef _LP64
3711   { const TypeInt* tilen = _gvn.find_int_type(length);
3712     if (tilen != NULL && tilen->_lo < 0) {
3713       // Add a manual constraint to a positive range.  Cf. array_element_address.
3714       jint size_max = fast_size_limit;
3715       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3716       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3717 
3718       // Only do a narrow I2L conversion if the range check passed.
3719       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3720       _gvn.transform(iff);
3721       RegionNode* region = new RegionNode(3);
3722       _gvn.set_type(region, Type::CONTROL);
3723       lengthx = new PhiNode(region, TypeLong::LONG);
3724       _gvn.set_type(lengthx, TypeLong::LONG);
3725 
3726       // Range check passed. Use ConvI2L node with narrow type.
3727       Node* passed = IfFalse(iff);
3728       region->init_req(1, passed);
3729       // Make I2L conversion control dependent to prevent it from
3730       // floating above the range check during loop optimizations.
3731       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3732 
3733       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3734       region->init_req(2, IfTrue(iff));
3735       lengthx->init_req(2, ConvI2X(length));
3736 
3737       set_control(region);
3738       record_for_igvn(region);
3739       record_for_igvn(lengthx);
3740     }
3741   }
3742 #endif
3743 
3744   // Combine header size (plus rounding) and body size.  Then round down.
3745   // This computation cannot overflow, because it is used only in two
3746   // places, one where the length is sharply limited, and the other
3747   // after a successful allocation.
3748   Node* abody = lengthx;
3749   if (elem_shift != NULL)
3750     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3751   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3752   if (round_mask != 0) {
3753     Node* mask = MakeConX(~round_mask);
3754     size       = _gvn.transform( new AndXNode(size, mask) );
3755   }
3756   // else if round_mask == 0, the size computation is self-rounding
3757 
3758   if (return_size_val != NULL) {
3759     // This is the size
3760     (*return_size_val) = size;
3761   }
3762 
3763   // Now generate allocation code
3764 
3765   // The entire memory state is needed for slow path of the allocation
3766   // since GC and deoptimization can happened.
3767   Node *mem = reset_memory();
3768   set_all_memory(mem); // Create new memory state
3769 
3770   if (initial_slow_test->is_Bool()) {
3771     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3772     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3773   }
3774 
3775   // Create the AllocateArrayNode and its result projections
3776   AllocateArrayNode* alloc
3777     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3778                             control(), mem, i_o(),
3779                             size, klass_node,
3780                             initial_slow_test,
3781                             length);
3782 
3783   // Cast to correct type.  Note that the klass_node may be constant or not,
3784   // and in the latter case the actual array type will be inexact also.
3785   // (This happens via a non-constant argument to inline_native_newArray.)
3786   // In any case, the value of klass_node provides the desired array type.
3787   const TypeInt* length_type = _gvn.find_int_type(length);
3788   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3789   if (ary_type->isa_aryptr() && length_type != NULL) {
3790     // Try to get a better type than POS for the size
3791     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3792   }
3793 
3794   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3795 
3796   // Cast length on remaining path to be as narrow as possible
3797   if (map()->find_edge(length) >= 0) {
3798     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3799     if (ccast != length) {
3800       _gvn.set_type_bottom(ccast);
3801       record_for_igvn(ccast);
3802       replace_in_map(length, ccast);
3803     }
3804   }
3805 
3806   return javaoop;
3807 }
3808 
3809 // The following "Ideal_foo" functions are placed here because they recognize
3810 // the graph shapes created by the functions immediately above.
3811 
3812 //---------------------------Ideal_allocation----------------------------------
3813 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
Ideal_allocation(Node * ptr,PhaseTransform * phase)3814 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3815   if (ptr == NULL) {     // reduce dumb test in callers
3816     return NULL;
3817   }
3818 
3819   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
3820   ptr = bs->step_over_gc_barrier(ptr);
3821 
3822   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3823     ptr = ptr->in(1);
3824     if (ptr == NULL) return NULL;
3825   }
3826   // Return NULL for allocations with several casts:
3827   //   j.l.reflect.Array.newInstance(jobject, jint)
3828   //   Object.clone()
3829   // to keep more precise type from last cast.
3830   if (ptr->is_Proj()) {
3831     Node* allo = ptr->in(0);
3832     if (allo != NULL && allo->is_Allocate()) {
3833       return allo->as_Allocate();
3834     }
3835   }
3836   // Report failure to match.
3837   return NULL;
3838 }
3839 
3840 // Fancy version which also strips off an offset (and reports it to caller).
Ideal_allocation(Node * ptr,PhaseTransform * phase,intptr_t & offset)3841 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3842                                              intptr_t& offset) {
3843   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3844   if (base == NULL)  return NULL;
3845   return Ideal_allocation(base, phase);
3846 }
3847 
3848 // Trace Initialize <- Proj[Parm] <- Allocate
allocation()3849 AllocateNode* InitializeNode::allocation() {
3850   Node* rawoop = in(InitializeNode::RawAddress);
3851   if (rawoop->is_Proj()) {
3852     Node* alloc = rawoop->in(0);
3853     if (alloc->is_Allocate()) {
3854       return alloc->as_Allocate();
3855     }
3856   }
3857   return NULL;
3858 }
3859 
3860 // Trace Allocate -> Proj[Parm] -> Initialize
initialization()3861 InitializeNode* AllocateNode::initialization() {
3862   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
3863   if (rawoop == NULL)  return NULL;
3864   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3865     Node* init = rawoop->fast_out(i);
3866     if (init->is_Initialize()) {
3867       assert(init->as_Initialize()->allocation() == this, "2-way link");
3868       return init->as_Initialize();
3869     }
3870   }
3871   return NULL;
3872 }
3873 
3874 //----------------------------- loop predicates ---------------------------
3875 
3876 //------------------------------add_predicate_impl----------------------------
add_empty_predicate_impl(Deoptimization::DeoptReason reason,int nargs)3877 void GraphKit::add_empty_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3878   // Too many traps seen?
3879   if (too_many_traps(reason)) {
3880 #ifdef ASSERT
3881     if (TraceLoopPredicate) {
3882       int tc = C->trap_count(reason);
3883       tty->print("too many traps=%s tcount=%d in ",
3884                     Deoptimization::trap_reason_name(reason), tc);
3885       method()->print(); // which method has too many predicate traps
3886       tty->cr();
3887     }
3888 #endif
3889     // We cannot afford to take more traps here,
3890     // do not generate predicate.
3891     return;
3892   }
3893 
3894   Node *cont    = _gvn.intcon(1);
3895   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3896   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3897   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3898   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3899   C->add_predicate_opaq(opq);
3900   {
3901     PreserveJVMState pjvms(this);
3902     set_control(iffalse);
3903     inc_sp(nargs);
3904     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3905   }
3906   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3907   set_control(iftrue);
3908 }
3909 
3910 //------------------------------add_predicate---------------------------------
add_empty_predicates(int nargs)3911 void GraphKit::add_empty_predicates(int nargs) {
3912   // These loop predicates remain empty. All concrete loop predicates are inserted above the corresponding
3913   // empty loop predicate later by 'PhaseIdealLoop::create_new_if_for_predicate'. All concrete loop predicates of
3914   // a specific kind (normal, profile or limit check) share the same uncommon trap as the empty loop predicate.
3915   if (UseLoopPredicate) {
3916     add_empty_predicate_impl(Deoptimization::Reason_predicate, nargs);
3917   }
3918   if (UseProfiledLoopPredicate) {
3919     add_empty_predicate_impl(Deoptimization::Reason_profile_predicate, nargs);
3920   }
3921   // loop's limit check predicate should be near the loop.
3922   add_empty_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3923 }
3924 
sync_kit(IdealKit & ideal)3925 void GraphKit::sync_kit(IdealKit& ideal) {
3926   set_all_memory(ideal.merged_memory());
3927   set_i_o(ideal.i_o());
3928   set_control(ideal.ctrl());
3929 }
3930 
final_sync(IdealKit & ideal)3931 void GraphKit::final_sync(IdealKit& ideal) {
3932   // Final sync IdealKit and graphKit.
3933   sync_kit(ideal);
3934 }
3935 
load_String_length(Node * str,bool set_ctrl)3936 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
3937   Node* len = load_array_length(load_String_value(str, set_ctrl));
3938   Node* coder = load_String_coder(str, set_ctrl);
3939   // Divide length by 2 if coder is UTF16
3940   return _gvn.transform(new RShiftINode(len, coder));
3941 }
3942 
load_String_value(Node * str,bool set_ctrl)3943 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
3944   int value_offset = java_lang_String::value_offset_in_bytes();
3945   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3946                                                      false, NULL, 0);
3947   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3948   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
3949                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
3950                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
3951   Node* p = basic_plus_adr(str, str, value_offset);
3952   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
3953                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3954   return load;
3955 }
3956 
load_String_coder(Node * str,bool set_ctrl)3957 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
3958   if (!CompactStrings) {
3959     return intcon(java_lang_String::CODER_UTF16);
3960   }
3961   int coder_offset = java_lang_String::coder_offset_in_bytes();
3962   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3963                                                      false, NULL, 0);
3964   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3965 
3966   Node* p = basic_plus_adr(str, str, coder_offset);
3967   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
3968                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3969   return load;
3970 }
3971 
store_String_value(Node * str,Node * value)3972 void GraphKit::store_String_value(Node* str, Node* value) {
3973   int value_offset = java_lang_String::value_offset_in_bytes();
3974   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3975                                                      false, NULL, 0);
3976   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3977 
3978   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
3979                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
3980 }
3981 
store_String_coder(Node * str,Node * value)3982 void GraphKit::store_String_coder(Node* str, Node* value) {
3983   int coder_offset = java_lang_String::coder_offset_in_bytes();
3984   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3985                                                      false, NULL, 0);
3986   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3987 
3988   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
3989                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
3990 }
3991 
3992 // Capture src and dst memory state with a MergeMemNode
capture_memory(const TypePtr * src_type,const TypePtr * dst_type)3993 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
3994   if (src_type == dst_type) {
3995     // Types are equal, we don't need a MergeMemNode
3996     return memory(src_type);
3997   }
3998   MergeMemNode* merge = MergeMemNode::make(map()->memory());
3999   record_for_igvn(merge); // fold it up later, if possible
4000   int src_idx = C->get_alias_index(src_type);
4001   int dst_idx = C->get_alias_index(dst_type);
4002   merge->set_memory_at(src_idx, memory(src_idx));
4003   merge->set_memory_at(dst_idx, memory(dst_idx));
4004   return merge;
4005 }
4006 
compress_string(Node * src,const TypeAryPtr * src_type,Node * dst,Node * count)4007 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
4008   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
4009   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
4010   // If input and output memory types differ, capture both states to preserve
4011   // the dependency between preceding and subsequent loads/stores.
4012   // For example, the following program:
4013   //  StoreB
4014   //  compress_string
4015   //  LoadB
4016   // has this memory graph (use->def):
4017   //  LoadB -> compress_string -> CharMem
4018   //             ... -> StoreB -> ByteMem
4019   // The intrinsic hides the dependency between LoadB and StoreB, causing
4020   // the load to read from memory not containing the result of the StoreB.
4021   // The correct memory graph should look like this:
4022   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
4023   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
4024   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
4025   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
4026   set_memory(res_mem, TypeAryPtr::BYTES);
4027   return str;
4028 }
4029 
inflate_string(Node * src,Node * dst,const TypeAryPtr * dst_type,Node * count)4030 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
4031   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
4032   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
4033   // Capture src and dst memory (see comment in 'compress_string').
4034   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
4035   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
4036   set_memory(_gvn.transform(str), dst_type);
4037 }
4038 
inflate_string_slow(Node * src,Node * dst,Node * start,Node * count)4039 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
4040   /**
4041    * int i_char = start;
4042    * for (int i_byte = 0; i_byte < count; i_byte++) {
4043    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
4044    * }
4045    */
4046   add_empty_predicates();
4047   RegionNode* head = new RegionNode(3);
4048   head->init_req(1, control());
4049   gvn().set_type(head, Type::CONTROL);
4050   record_for_igvn(head);
4051 
4052   Node* i_byte = new PhiNode(head, TypeInt::INT);
4053   i_byte->init_req(1, intcon(0));
4054   gvn().set_type(i_byte, TypeInt::INT);
4055   record_for_igvn(i_byte);
4056 
4057   Node* i_char = new PhiNode(head, TypeInt::INT);
4058   i_char->init_req(1, start);
4059   gvn().set_type(i_char, TypeInt::INT);
4060   record_for_igvn(i_char);
4061 
4062   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
4063   gvn().set_type(mem, Type::MEMORY);
4064   record_for_igvn(mem);
4065   set_control(head);
4066   set_memory(mem, TypeAryPtr::BYTES);
4067   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
4068   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
4069                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
4070                              false, false, true /* mismatched */);
4071 
4072   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
4073   head->init_req(2, IfTrue(iff));
4074   mem->init_req(2, st);
4075   i_byte->init_req(2, AddI(i_byte, intcon(1)));
4076   i_char->init_req(2, AddI(i_char, intcon(2)));
4077 
4078   set_control(IfFalse(iff));
4079   set_memory(st, TypeAryPtr::BYTES);
4080 }
4081 
make_constant_from_field(ciField * field,Node * obj)4082 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4083   if (!field->is_constant()) {
4084     return NULL; // Field not marked as constant.
4085   }
4086   ciInstance* holder = NULL;
4087   if (!field->is_static()) {
4088     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4089     if (const_oop != NULL && const_oop->is_instance()) {
4090       holder = const_oop->as_instance();
4091     }
4092   }
4093   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4094                                                         /*is_unsigned_load=*/false);
4095   if (con_type != NULL) {
4096     return makecon(con_type);
4097   }
4098   return NULL;
4099 }
4100