1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shared/c2/barrierSetC2.hpp"
28 #include "memory/allocation.inline.hpp"
29 #include "memory/resourceArea.hpp"
30 #include "opto/block.hpp"
31 #include "opto/callnode.hpp"
32 #include "opto/castnode.hpp"
33 #include "opto/cfgnode.hpp"
34 #include "opto/idealGraphPrinter.hpp"
35 #include "opto/loopnode.hpp"
36 #include "opto/machnode.hpp"
37 #include "opto/opcodes.hpp"
38 #include "opto/phaseX.hpp"
39 #include "opto/regalloc.hpp"
40 #include "opto/rootnode.hpp"
41 #include "utilities/macros.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 
44 //=============================================================================
45 #define NODE_HASH_MINIMUM_SIZE    255
46 //------------------------------NodeHash---------------------------------------
NodeHash(uint est_max_size)47 NodeHash::NodeHash(uint est_max_size) :
48   _a(Thread::current()->resource_area()),
49   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
50   _inserts(0), _insert_limit( insert_limit() ),
51   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
52 #ifndef PRODUCT
53   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
54   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
55    _total_inserts(0), _total_insert_probes(0)
56 #endif
57 {
58   // _sentinel must be in the current node space
59   _sentinel = new ProjNode(NULL, TypeFunc::Control);
60   memset(_table,0,sizeof(Node*)*_max);
61 }
62 
63 //------------------------------NodeHash---------------------------------------
NodeHash(Arena * arena,uint est_max_size)64 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
65   _a(arena),
66   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
67   _inserts(0), _insert_limit( insert_limit() ),
68   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) )
69 #ifndef PRODUCT
70   , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0),
71   _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0),
72    _total_inserts(0), _total_insert_probes(0)
73 #endif
74 {
75   // _sentinel must be in the current node space
76   _sentinel = new ProjNode(NULL, TypeFunc::Control);
77   memset(_table,0,sizeof(Node*)*_max);
78 }
79 
80 //------------------------------NodeHash---------------------------------------
NodeHash(NodeHash * nh)81 NodeHash::NodeHash(NodeHash *nh) {
82   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
83   // just copy in all the fields
84   *this = *nh;
85   // nh->_sentinel must be in the current node space
86 }
87 
replace_with(NodeHash * nh)88 void NodeHash::replace_with(NodeHash *nh) {
89   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
90   // just copy in all the fields
91   *this = *nh;
92   // nh->_sentinel must be in the current node space
93 }
94 
95 //------------------------------hash_find--------------------------------------
96 // Find in hash table
hash_find(const Node * n)97 Node *NodeHash::hash_find( const Node *n ) {
98   // ((Node*)n)->set_hash( n->hash() );
99   uint hash = n->hash();
100   if (hash == Node::NO_HASH) {
101     NOT_PRODUCT( _lookup_misses++ );
102     return NULL;
103   }
104   uint key = hash & (_max-1);
105   uint stride = key | 0x01;
106   NOT_PRODUCT( _look_probes++ );
107   Node *k = _table[key];        // Get hashed value
108   if( !k ) {                    // ?Miss?
109     NOT_PRODUCT( _lookup_misses++ );
110     return NULL;                // Miss!
111   }
112 
113   int op = n->Opcode();
114   uint req = n->req();
115   while( 1 ) {                  // While probing hash table
116     if( k->req() == req &&      // Same count of inputs
117         k->Opcode() == op ) {   // Same Opcode
118       for( uint i=0; i<req; i++ )
119         if( n->in(i)!=k->in(i)) // Different inputs?
120           goto collision;       // "goto" is a speed hack...
121       if( n->cmp(*k) ) {        // Check for any special bits
122         NOT_PRODUCT( _lookup_hits++ );
123         return k;               // Hit!
124       }
125     }
126   collision:
127     NOT_PRODUCT( _look_probes++ );
128     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
129     k = _table[key];            // Get hashed value
130     if( !k ) {                  // ?Miss?
131       NOT_PRODUCT( _lookup_misses++ );
132       return NULL;              // Miss!
133     }
134   }
135   ShouldNotReachHere();
136   return NULL;
137 }
138 
139 //------------------------------hash_find_insert-------------------------------
140 // Find in hash table, insert if not already present
141 // Used to preserve unique entries in hash table
hash_find_insert(Node * n)142 Node *NodeHash::hash_find_insert( Node *n ) {
143   // n->set_hash( );
144   uint hash = n->hash();
145   if (hash == Node::NO_HASH) {
146     NOT_PRODUCT( _lookup_misses++ );
147     return NULL;
148   }
149   uint key = hash & (_max-1);
150   uint stride = key | 0x01;     // stride must be relatively prime to table siz
151   uint first_sentinel = 0;      // replace a sentinel if seen.
152   NOT_PRODUCT( _look_probes++ );
153   Node *k = _table[key];        // Get hashed value
154   if( !k ) {                    // ?Miss?
155     NOT_PRODUCT( _lookup_misses++ );
156     _table[key] = n;            // Insert into table!
157     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
158     check_grow();               // Grow table if insert hit limit
159     return NULL;                // Miss!
160   }
161   else if( k == _sentinel ) {
162     first_sentinel = key;      // Can insert here
163   }
164 
165   int op = n->Opcode();
166   uint req = n->req();
167   while( 1 ) {                  // While probing hash table
168     if( k->req() == req &&      // Same count of inputs
169         k->Opcode() == op ) {   // Same Opcode
170       for( uint i=0; i<req; i++ )
171         if( n->in(i)!=k->in(i)) // Different inputs?
172           goto collision;       // "goto" is a speed hack...
173       if( n->cmp(*k) ) {        // Check for any special bits
174         NOT_PRODUCT( _lookup_hits++ );
175         return k;               // Hit!
176       }
177     }
178   collision:
179     NOT_PRODUCT( _look_probes++ );
180     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
181     k = _table[key];            // Get hashed value
182     if( !k ) {                  // ?Miss?
183       NOT_PRODUCT( _lookup_misses++ );
184       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
185       _table[key] = n;          // Insert into table!
186       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
187       check_grow();             // Grow table if insert hit limit
188       return NULL;              // Miss!
189     }
190     else if( first_sentinel == 0 && k == _sentinel ) {
191       first_sentinel = key;    // Can insert here
192     }
193 
194   }
195   ShouldNotReachHere();
196   return NULL;
197 }
198 
199 //------------------------------hash_insert------------------------------------
200 // Insert into hash table
hash_insert(Node * n)201 void NodeHash::hash_insert( Node *n ) {
202   // // "conflict" comments -- print nodes that conflict
203   // bool conflict = false;
204   // n->set_hash();
205   uint hash = n->hash();
206   if (hash == Node::NO_HASH) {
207     return;
208   }
209   check_grow();
210   uint key = hash & (_max-1);
211   uint stride = key | 0x01;
212 
213   while( 1 ) {                  // While probing hash table
214     NOT_PRODUCT( _insert_probes++ );
215     Node *k = _table[key];      // Get hashed value
216     if( !k || (k == _sentinel) ) break;       // Found a slot
217     assert( k != n, "already inserted" );
218     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
219     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
220   }
221   _table[key] = n;              // Insert into table!
222   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
223   // if( conflict ) { n->dump(); }
224 }
225 
226 //------------------------------hash_delete------------------------------------
227 // Replace in hash table with sentinel
hash_delete(const Node * n)228 bool NodeHash::hash_delete( const Node *n ) {
229   Node *k;
230   uint hash = n->hash();
231   if (hash == Node::NO_HASH) {
232     NOT_PRODUCT( _delete_misses++ );
233     return false;
234   }
235   uint key = hash & (_max-1);
236   uint stride = key | 0x01;
237   debug_only( uint counter = 0; );
238   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
239     debug_only( counter++ );
240     NOT_PRODUCT( _delete_probes++ );
241     k = _table[key];            // Get hashed value
242     if( !k ) {                  // Miss?
243       NOT_PRODUCT( _delete_misses++ );
244       return false;             // Miss! Not in chain
245     }
246     else if( n == k ) {
247       NOT_PRODUCT( _delete_hits++ );
248       _table[key] = _sentinel;  // Hit! Label as deleted entry
249       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
250       return true;
251     }
252     else {
253       // collision: move through table with prime offset
254       key = (key + stride/*7*/) & (_max-1);
255       assert( counter <= _insert_limit, "Cycle in hash-table");
256     }
257   }
258   ShouldNotReachHere();
259   return false;
260 }
261 
262 //------------------------------round_up---------------------------------------
263 // Round up to nearest power of 2
round_up(uint x)264 uint NodeHash::round_up(uint x) {
265   x += (x >> 2);                  // Add 25% slop
266   return MAX2(16U, round_up_power_of_2(x));
267 }
268 
269 //------------------------------grow-------------------------------------------
270 // Grow _table to next power of 2 and insert old entries
grow()271 void  NodeHash::grow() {
272   // Record old state
273   uint   old_max   = _max;
274   Node **old_table = _table;
275   // Construct new table with twice the space
276 #ifndef PRODUCT
277   _grows++;
278   _total_inserts       += _inserts;
279   _total_insert_probes += _insert_probes;
280   _insert_probes   = 0;
281 #endif
282   _inserts         = 0;
283   _max     = _max << 1;
284   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
285   memset(_table,0,sizeof(Node*)*_max);
286   _insert_limit = insert_limit();
287   // Insert old entries into the new table
288   for( uint i = 0; i < old_max; i++ ) {
289     Node *m = *old_table++;
290     if( !m || m == _sentinel ) continue;
291     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
292     hash_insert(m);
293   }
294 }
295 
296 //------------------------------clear------------------------------------------
297 // Clear all entries in _table to NULL but keep storage
clear()298 void  NodeHash::clear() {
299 #ifdef ASSERT
300   // Unlock all nodes upon removal from table.
301   for (uint i = 0; i < _max; i++) {
302     Node* n = _table[i];
303     if (!n || n == _sentinel)  continue;
304     n->exit_hash_lock();
305   }
306 #endif
307 
308   memset( _table, 0, _max * sizeof(Node*) );
309 }
310 
311 //-----------------------remove_useless_nodes----------------------------------
312 // Remove useless nodes from value table,
313 // implementation does not depend on hash function
remove_useless_nodes(VectorSet & useful)314 void NodeHash::remove_useless_nodes(VectorSet &useful) {
315 
316   // Dead nodes in the hash table inherited from GVN should not replace
317   // existing nodes, remove dead nodes.
318   uint max = size();
319   Node *sentinel_node = sentinel();
320   for( uint i = 0; i < max; ++i ) {
321     Node *n = at(i);
322     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
323       debug_only(n->exit_hash_lock()); // Unlock the node when removed
324       _table[i] = sentinel_node;       // Replace with placeholder
325     }
326   }
327 }
328 
329 
check_no_speculative_types()330 void NodeHash::check_no_speculative_types() {
331 #ifdef ASSERT
332   uint max = size();
333   Node *sentinel_node = sentinel();
334   for (uint i = 0; i < max; ++i) {
335     Node *n = at(i);
336     if(n != NULL && n != sentinel_node && n->is_Type() && n->outcnt() > 0) {
337       TypeNode* tn = n->as_Type();
338       const Type* t = tn->type();
339       const Type* t_no_spec = t->remove_speculative();
340       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
341     }
342   }
343 #endif
344 }
345 
346 #ifndef PRODUCT
347 //------------------------------dump-------------------------------------------
348 // Dump statistics for the hash table
dump()349 void NodeHash::dump() {
350   _total_inserts       += _inserts;
351   _total_insert_probes += _insert_probes;
352   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
353     if (WizardMode) {
354       for (uint i=0; i<_max; i++) {
355         if (_table[i])
356           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
357       }
358     }
359     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
360     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
361     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
362     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
363     // sentinels increase lookup cost, but not insert cost
364     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
365     assert( _inserts+(_inserts>>3) < _max, "table too full" );
366     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
367   }
368 }
369 
find_index(uint idx)370 Node *NodeHash::find_index(uint idx) { // For debugging
371   // Find an entry by its index value
372   for( uint i = 0; i < _max; i++ ) {
373     Node *m = _table[i];
374     if( !m || m == _sentinel ) continue;
375     if( m->_idx == (uint)idx ) return m;
376   }
377   return NULL;
378 }
379 #endif
380 
381 #ifdef ASSERT
~NodeHash()382 NodeHash::~NodeHash() {
383   // Unlock all nodes upon destruction of table.
384   if (_table != (Node**)badAddress)  clear();
385 }
386 
operator =(const NodeHash & nh)387 void NodeHash::operator=(const NodeHash& nh) {
388   // Unlock all nodes upon replacement of table.
389   if (&nh == this)  return;
390   if (_table != (Node**)badAddress)  clear();
391   memcpy((void*)this, (void*)&nh, sizeof(*this));
392   // Do not increment hash_lock counts again.
393   // Instead, be sure we never again use the source table.
394   ((NodeHash*)&nh)->_table = (Node**)badAddress;
395 }
396 
397 
398 #endif
399 
400 
401 //=============================================================================
402 //------------------------------PhaseRemoveUseless-----------------------------
403 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
PhaseRemoveUseless(PhaseGVN * gvn,Unique_Node_List * worklist,PhaseNumber phase_num)404 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num) : Phase(phase_num),
405   _useful(Thread::current()->resource_area()) {
406 
407   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
408   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
409   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
410 
411   // Identify nodes that are reachable from below, useful.
412   C->identify_useful_nodes(_useful);
413   // Update dead node list
414   C->update_dead_node_list(_useful);
415 
416   // Remove all useless nodes from PhaseValues' recorded types
417   // Must be done before disconnecting nodes to preserve hash-table-invariant
418   gvn->remove_useless_nodes(_useful.member_set());
419 
420   // Remove all useless nodes from future worklist
421   worklist->remove_useless_nodes(_useful.member_set());
422 
423   // Disconnect 'useless' nodes that are adjacent to useful nodes
424   C->remove_useless_nodes(_useful);
425 }
426 
427 //=============================================================================
428 //------------------------------PhaseRenumberLive------------------------------
429 // First, remove useless nodes (equivalent to identifying live nodes).
430 // Then, renumber live nodes.
431 //
432 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure.
433 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the
434 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique
435 // value in the range [0, x).
436 //
437 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is
438 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes).
439 //
440 // The PhaseRenumberLive phase updates two data structures with the new node IDs.
441 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be
442 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'.
443 // (2) Type information (the field PhaseGVN::_types) maps type information to each
444 // node ID. The mapping is updated to use the new node IDs as well. Updated type
445 // information is returned in PhaseGVN::_types.
446 //
447 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist.
448 //
449 // Other data structures used by the compiler are not updated. The hash table for value
450 // numbering (the field PhaseGVN::_table) is not updated because computing the hash
451 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either
452 // because it is empty wherever PhaseRenumberLive is used.
PhaseRenumberLive(PhaseGVN * gvn,Unique_Node_List * worklist,Unique_Node_List * new_worklist,PhaseNumber phase_num)453 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn,
454                                      Unique_Node_List* worklist, Unique_Node_List* new_worklist,
455                                      PhaseNumber phase_num) :
456   PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live),
457   _new_type_array(C->comp_arena()),
458   _old2new_map(C->unique(), C->unique(), -1),
459   _delayed(Thread::current()->resource_area()),
460   _is_pass_finished(false),
461   _live_node_count(C->live_nodes())
462 {
463   assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place");
464   assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes");
465   assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point");
466   assert(_delayed.size() == 0, "should be empty");
467 
468   uint worklist_size = worklist->size();
469 
470   // Iterate over the set of live nodes.
471   for (uint current_idx = 0; current_idx < _useful.size(); current_idx++) {
472     Node* n = _useful.at(current_idx);
473 
474     bool in_worklist = false;
475     if (worklist->member(n)) {
476       in_worklist = true;
477     }
478 
479     const Type* type = gvn->type_or_null(n);
480     _new_type_array.map(current_idx, type);
481 
482     assert(_old2new_map.at(n->_idx) == -1, "already seen");
483     _old2new_map.at_put(n->_idx, current_idx);
484 
485     n->set_idx(current_idx); // Update node ID.
486 
487     if (in_worklist) {
488       new_worklist->push(n);
489     }
490 
491     if (update_embedded_ids(n) < 0) {
492       _delayed.push(n); // has embedded IDs; handle later
493     }
494   }
495 
496   assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist");
497   assert(_live_node_count == _useful.size(), "all live nodes must be processed");
498 
499   _is_pass_finished = true; // pass finished; safe to process delayed updates
500 
501   while (_delayed.size() > 0) {
502     Node* n = _delayed.pop();
503     int no_of_updates = update_embedded_ids(n);
504     assert(no_of_updates > 0, "should be updated");
505   }
506 
507   // Replace the compiler's type information with the updated type information.
508   gvn->replace_types(_new_type_array);
509 
510   // Update the unique node count of the compilation to the number of currently live nodes.
511   C->set_unique(_live_node_count);
512 
513   // Set the dead node count to 0 and reset dead node list.
514   C->reset_dead_node_list();
515 }
516 
new_index(int old_idx)517 int PhaseRenumberLive::new_index(int old_idx) {
518   assert(_is_pass_finished, "not finished");
519   if (_old2new_map.at(old_idx) == -1) { // absent
520     // Allocate a placeholder to preserve uniqueness
521     _old2new_map.at_put(old_idx, _live_node_count);
522     _live_node_count++;
523   }
524   return _old2new_map.at(old_idx);
525 }
526 
update_embedded_ids(Node * n)527 int PhaseRenumberLive::update_embedded_ids(Node* n) {
528   int no_of_updates = 0;
529   if (n->is_Phi()) {
530     PhiNode* phi = n->as_Phi();
531     if (phi->_inst_id != -1) {
532       if (!_is_pass_finished) {
533         return -1; // delay
534       }
535       int new_idx = new_index(phi->_inst_id);
536       assert(new_idx != -1, "");
537       phi->_inst_id = new_idx;
538       no_of_updates++;
539     }
540     if (phi->_inst_mem_id != -1) {
541       if (!_is_pass_finished) {
542         return -1; // delay
543       }
544       int new_idx = new_index(phi->_inst_mem_id);
545       assert(new_idx != -1, "");
546       phi->_inst_mem_id = new_idx;
547       no_of_updates++;
548     }
549   }
550 
551   const Type* type = _new_type_array.fast_lookup(n->_idx);
552   if (type != NULL && type->isa_oopptr() && type->is_oopptr()->is_known_instance()) {
553     if (!_is_pass_finished) {
554         return -1; // delay
555     }
556     int old_idx = type->is_oopptr()->instance_id();
557     int new_idx = new_index(old_idx);
558     const Type* new_type = type->is_oopptr()->with_instance_id(new_idx);
559     _new_type_array.map(n->_idx, new_type);
560     no_of_updates++;
561   }
562 
563   return no_of_updates;
564 }
565 
566 //=============================================================================
567 //------------------------------PhaseTransform---------------------------------
PhaseTransform(PhaseNumber pnum)568 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
569   _arena(Thread::current()->resource_area()),
570   _nodes(_arena),
571   _types(_arena)
572 {
573   init_con_caches();
574 #ifndef PRODUCT
575   clear_progress();
576   clear_transforms();
577   set_allow_progress(true);
578 #endif
579   // Force allocation for currently existing nodes
580   _types.map(C->unique(), NULL);
581 }
582 
583 //------------------------------PhaseTransform---------------------------------
PhaseTransform(Arena * arena,PhaseNumber pnum)584 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
585   _arena(arena),
586   _nodes(arena),
587   _types(arena)
588 {
589   init_con_caches();
590 #ifndef PRODUCT
591   clear_progress();
592   clear_transforms();
593   set_allow_progress(true);
594 #endif
595   // Force allocation for currently existing nodes
596   _types.map(C->unique(), NULL);
597 }
598 
599 //------------------------------PhaseTransform---------------------------------
600 // Initialize with previously generated type information
PhaseTransform(PhaseTransform * pt,PhaseNumber pnum)601 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
602   _arena(pt->_arena),
603   _nodes(pt->_nodes),
604   _types(pt->_types)
605 {
606   init_con_caches();
607 #ifndef PRODUCT
608   clear_progress();
609   clear_transforms();
610   set_allow_progress(true);
611 #endif
612 }
613 
init_con_caches()614 void PhaseTransform::init_con_caches() {
615   memset(_icons,0,sizeof(_icons));
616   memset(_lcons,0,sizeof(_lcons));
617   memset(_zcons,0,sizeof(_zcons));
618 }
619 
620 
621 //--------------------------------find_int_type--------------------------------
find_int_type(Node * n)622 const TypeInt* PhaseTransform::find_int_type(Node* n) {
623   if (n == NULL)  return NULL;
624   // Call type_or_null(n) to determine node's type since we might be in
625   // parse phase and call n->Value() may return wrong type.
626   // (For example, a phi node at the beginning of loop parsing is not ready.)
627   const Type* t = type_or_null(n);
628   if (t == NULL)  return NULL;
629   return t->isa_int();
630 }
631 
632 
633 //-------------------------------find_long_type--------------------------------
find_long_type(Node * n)634 const TypeLong* PhaseTransform::find_long_type(Node* n) {
635   if (n == NULL)  return NULL;
636   // (See comment above on type_or_null.)
637   const Type* t = type_or_null(n);
638   if (t == NULL)  return NULL;
639   return t->isa_long();
640 }
641 
642 
643 #ifndef PRODUCT
dump_old2new_map() const644 void PhaseTransform::dump_old2new_map() const {
645   _nodes.dump();
646 }
647 
dump_new(uint nidx) const648 void PhaseTransform::dump_new( uint nidx ) const {
649   for( uint i=0; i<_nodes.Size(); i++ )
650     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
651       _nodes[i]->dump();
652       tty->cr();
653       tty->print_cr("Old index= %d",i);
654       return;
655     }
656   tty->print_cr("Node %d not found in the new indices", nidx);
657 }
658 
659 //------------------------------dump_types-------------------------------------
dump_types() const660 void PhaseTransform::dump_types( ) const {
661   _types.dump();
662 }
663 
664 //------------------------------dump_nodes_and_types---------------------------
dump_nodes_and_types(const Node * root,uint depth,bool only_ctrl)665 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
666   VectorSet visited(Thread::current()->resource_area());
667   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
668 }
669 
670 //------------------------------dump_nodes_and_types_recur---------------------
dump_nodes_and_types_recur(const Node * n,uint depth,bool only_ctrl,VectorSet & visited)671 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
672   if( !n ) return;
673   if( depth == 0 ) return;
674   if( visited.test_set(n->_idx) ) return;
675   for( uint i=0; i<n->len(); i++ ) {
676     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
677     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
678   }
679   n->dump();
680   if (type_or_null(n) != NULL) {
681     tty->print("      "); type(n)->dump(); tty->cr();
682   }
683 }
684 
685 #endif
686 
687 
688 //=============================================================================
689 //------------------------------PhaseValues------------------------------------
690 // Set minimum table size to "255"
PhaseValues(Arena * arena,uint est_max_size)691 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
692   NOT_PRODUCT( clear_new_values(); )
693 }
694 
695 //------------------------------PhaseValues------------------------------------
696 // Set minimum table size to "255"
PhaseValues(PhaseValues * ptv)697 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
698   _table(&ptv->_table) {
699   NOT_PRODUCT( clear_new_values(); )
700 }
701 
702 //------------------------------~PhaseValues-----------------------------------
703 #ifndef PRODUCT
~PhaseValues()704 PhaseValues::~PhaseValues() {
705   _table.dump();
706 
707   // Statistics for value progress and efficiency
708   if( PrintCompilation && Verbose && WizardMode ) {
709     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
710       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
711     if( made_transforms() != 0 ) {
712       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
713     } else {
714       tty->cr();
715     }
716   }
717 }
718 #endif
719 
720 //------------------------------makecon----------------------------------------
makecon(const Type * t)721 ConNode* PhaseTransform::makecon(const Type *t) {
722   assert(t->singleton(), "must be a constant");
723   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
724   switch (t->base()) {  // fast paths
725   case Type::Half:
726   case Type::Top:  return (ConNode*) C->top();
727   case Type::Int:  return intcon( t->is_int()->get_con() );
728   case Type::Long: return longcon( t->is_long()->get_con() );
729   default:         break;
730   }
731   if (t->is_zero_type())
732     return zerocon(t->basic_type());
733   return uncached_makecon(t);
734 }
735 
736 //--------------------------uncached_makecon-----------------------------------
737 // Make an idealized constant - one of ConINode, ConPNode, etc.
uncached_makecon(const Type * t)738 ConNode* PhaseValues::uncached_makecon(const Type *t) {
739   assert(t->singleton(), "must be a constant");
740   ConNode* x = ConNode::make(t);
741   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
742   if (k == NULL) {
743     set_type(x, t);             // Missed, provide type mapping
744     GrowableArray<Node_Notes*>* nna = C->node_note_array();
745     if (nna != NULL) {
746       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
747       loc->clear(); // do not put debug info on constants
748     }
749   } else {
750     x->destruct();              // Hit, destroy duplicate constant
751     x = k;                      // use existing constant
752   }
753   return x;
754 }
755 
756 //------------------------------intcon-----------------------------------------
757 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
intcon(jint i)758 ConINode* PhaseTransform::intcon(jint i) {
759   // Small integer?  Check cache! Check that cached node is not dead
760   if (i >= _icon_min && i <= _icon_max) {
761     ConINode* icon = _icons[i-_icon_min];
762     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
763       return icon;
764   }
765   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
766   assert(icon->is_Con(), "");
767   if (i >= _icon_min && i <= _icon_max)
768     _icons[i-_icon_min] = icon;   // Cache small integers
769   return icon;
770 }
771 
772 //------------------------------longcon----------------------------------------
773 // Fast long constant.
longcon(jlong l)774 ConLNode* PhaseTransform::longcon(jlong l) {
775   // Small integer?  Check cache! Check that cached node is not dead
776   if (l >= _lcon_min && l <= _lcon_max) {
777     ConLNode* lcon = _lcons[l-_lcon_min];
778     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
779       return lcon;
780   }
781   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
782   assert(lcon->is_Con(), "");
783   if (l >= _lcon_min && l <= _lcon_max)
784     _lcons[l-_lcon_min] = lcon;      // Cache small integers
785   return lcon;
786 }
787 
788 //------------------------------zerocon-----------------------------------------
789 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
zerocon(BasicType bt)790 ConNode* PhaseTransform::zerocon(BasicType bt) {
791   assert((uint)bt <= _zcon_max, "domain check");
792   ConNode* zcon = _zcons[bt];
793   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
794     return zcon;
795   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
796   _zcons[bt] = zcon;
797   return zcon;
798 }
799 
800 
801 
802 //=============================================================================
apply_ideal(Node * k,bool can_reshape)803 Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) {
804   Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape);
805   if (i == NULL) {
806     i = k->Ideal(this, can_reshape);
807   }
808   return i;
809 }
810 
811 //------------------------------transform--------------------------------------
812 // Return a node which computes the same function as this node, but in a
813 // faster or cheaper fashion.
transform(Node * n)814 Node *PhaseGVN::transform( Node *n ) {
815   return transform_no_reclaim(n);
816 }
817 
818 //------------------------------transform--------------------------------------
819 // Return a node which computes the same function as this node, but
820 // in a faster or cheaper fashion.
transform_no_reclaim(Node * n)821 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
822   NOT_PRODUCT( set_transforms(); )
823 
824   // Apply the Ideal call in a loop until it no longer applies
825   Node *k = n;
826   NOT_PRODUCT( uint loop_count = 0; )
827   while( 1 ) {
828     Node *i = apply_ideal(k, /*can_reshape=*/false);
829     if( !i ) break;
830     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
831     k = i;
832     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
833   }
834   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
835 
836 
837   // If brand new node, make space in type array.
838   ensure_type_or_null(k);
839 
840   // Since I just called 'Value' to compute the set of run-time values
841   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
842   // cache Value.  Later requests for the local phase->type of this Node can
843   // use the cached Value instead of suffering with 'bottom_type'.
844   const Type *t = k->Value(this); // Get runtime Value set
845   assert(t != NULL, "value sanity");
846   if (type_or_null(k) != t) {
847 #ifndef PRODUCT
848     // Do not count initial visit to node as a transformation
849     if (type_or_null(k) == NULL) {
850       inc_new_values();
851       set_progress();
852     }
853 #endif
854     set_type(k, t);
855     // If k is a TypeNode, capture any more-precise type permanently into Node
856     k->raise_bottom_type(t);
857   }
858 
859   if( t->singleton() && !k->is_Con() ) {
860     NOT_PRODUCT( set_progress(); )
861     return makecon(t);          // Turn into a constant
862   }
863 
864   // Now check for Identities
865   Node *i = k->Identity(this);  // Look for a nearby replacement
866   if( i != k ) {                // Found? Return replacement!
867     NOT_PRODUCT( set_progress(); )
868     return i;
869   }
870 
871   // Global Value Numbering
872   i = hash_find_insert(k);      // Insert if new
873   if( i && (i != k) ) {
874     // Return the pre-existing node
875     NOT_PRODUCT( set_progress(); )
876     return i;
877   }
878 
879   // Return Idealized original
880   return k;
881 }
882 
is_dominator_helper(Node * d,Node * n,bool linear_only)883 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) {
884   if (d->is_top() || (d->is_Proj() && d->in(0)->is_top())) {
885     return false;
886   }
887   if (n->is_top() || (n->is_Proj() && n->in(0)->is_top())) {
888     return false;
889   }
890   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
891   int i = 0;
892   while (d != n) {
893     n = IfNode::up_one_dom(n, linear_only);
894     i++;
895     if (n == NULL || i >= 100) {
896       return false;
897     }
898   }
899   return true;
900 }
901 
902 #ifdef ASSERT
903 //------------------------------dead_loop_check--------------------------------
904 // Check for a simple dead loop when a data node references itself directly
905 // or through an other data node excluding cons and phis.
dead_loop_check(Node * n)906 void PhaseGVN::dead_loop_check( Node *n ) {
907   // Phi may reference itself in a loop
908   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
909     // Do 2 levels check and only data inputs.
910     bool no_dead_loop = true;
911     uint cnt = n->req();
912     for (uint i = 1; i < cnt && no_dead_loop; i++) {
913       Node *in = n->in(i);
914       if (in == n) {
915         no_dead_loop = false;
916       } else if (in != NULL && !in->is_dead_loop_safe()) {
917         uint icnt = in->req();
918         for (uint j = 1; j < icnt && no_dead_loop; j++) {
919           if (in->in(j) == n || in->in(j) == in)
920             no_dead_loop = false;
921         }
922       }
923     }
924     if (!no_dead_loop) n->dump(3);
925     assert(no_dead_loop, "dead loop detected");
926   }
927 }
928 #endif
929 
930 //=============================================================================
931 //------------------------------PhaseIterGVN-----------------------------------
932 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
PhaseIterGVN(PhaseIterGVN * igvn)933 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
934                                                    _delay_transform(igvn->_delay_transform),
935                                                    _stack( igvn->_stack ),
936                                                    _worklist( igvn->_worklist )
937 {
938 }
939 
940 //------------------------------PhaseIterGVN-----------------------------------
941 // Initialize with previous PhaseGVN info from Parser
PhaseIterGVN(PhaseGVN * gvn)942 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
943                                               _delay_transform(false),
944 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that
945 //       the constructor is used in incremental inlining, this consumes too much memory:
946 //                                            _stack(C->live_nodes() >> 1),
947 //       So, as a band-aid, we replace this by:
948                                               _stack(C->comp_arena(), 32),
949                                               _worklist(*C->for_igvn())
950 {
951   uint max;
952 
953   // Dead nodes in the hash table inherited from GVN were not treated as
954   // roots during def-use info creation; hence they represent an invisible
955   // use.  Clear them out.
956   max = _table.size();
957   for( uint i = 0; i < max; ++i ) {
958     Node *n = _table.at(i);
959     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
960       if( n->is_top() ) continue;
961       assert( false, "Parse::remove_useless_nodes missed this node");
962       hash_delete(n);
963     }
964   }
965 
966   // Any Phis or Regions on the worklist probably had uses that could not
967   // make more progress because the uses were made while the Phis and Regions
968   // were in half-built states.  Put all uses of Phis and Regions on worklist.
969   max = _worklist.size();
970   for( uint j = 0; j < max; j++ ) {
971     Node *n = _worklist.at(j);
972     uint uop = n->Opcode();
973     if( uop == Op_Phi || uop == Op_Region ||
974         n->is_Type() ||
975         n->is_Mem() )
976       add_users_to_worklist(n);
977   }
978 }
979 
980 /**
981  * Initialize worklist for each node.
982  */
init_worklist(Node * first)983 void PhaseIterGVN::init_worklist(Node* first) {
984   Unique_Node_List to_process;
985   to_process.push(first);
986 
987   while (to_process.size() > 0) {
988     Node* n = to_process.pop();
989     if (!_worklist.member(n)) {
990       _worklist.push(n);
991 
992       uint cnt = n->req();
993       for(uint i = 0; i < cnt; i++) {
994         Node* m = n->in(i);
995         if (m != NULL) {
996           to_process.push(m);
997         }
998       }
999     }
1000   }
1001 }
1002 
1003 #ifndef PRODUCT
verify_step(Node * n)1004 void PhaseIterGVN::verify_step(Node* n) {
1005   if (VerifyIterativeGVN) {
1006     _verify_window[_verify_counter % _verify_window_size] = n;
1007     ++_verify_counter;
1008     ResourceMark rm;
1009     ResourceArea* area = Thread::current()->resource_area();
1010     VectorSet old_space(area), new_space(area);
1011     if (C->unique() < 1000 ||
1012         0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
1013       ++_verify_full_passes;
1014       Node::verify_recur(C->root(), -1, old_space, new_space);
1015     }
1016     const int verify_depth = 4;
1017     for ( int i = 0; i < _verify_window_size; i++ ) {
1018       Node* n = _verify_window[i];
1019       if ( n == NULL )  continue;
1020       if( n->in(0) == NodeSentinel ) {  // xform_idom
1021         _verify_window[i] = n->in(1);
1022         --i; continue;
1023       }
1024       // Typical fanout is 1-2, so this call visits about 6 nodes.
1025       Node::verify_recur(n, verify_depth, old_space, new_space);
1026     }
1027   }
1028 }
1029 
trace_PhaseIterGVN(Node * n,Node * nn,const Type * oldtype)1030 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) {
1031   if (TraceIterativeGVN) {
1032     uint wlsize = _worklist.size();
1033     const Type* newtype = type_or_null(n);
1034     if (nn != n) {
1035       // print old node
1036       tty->print("< ");
1037       if (oldtype != newtype && oldtype != NULL) {
1038         oldtype->dump();
1039       }
1040       do { tty->print("\t"); } while (tty->position() < 16);
1041       tty->print("<");
1042       n->dump();
1043     }
1044     if (oldtype != newtype || nn != n) {
1045       // print new node and/or new type
1046       if (oldtype == NULL) {
1047         tty->print("* ");
1048       } else if (nn != n) {
1049         tty->print("> ");
1050       } else {
1051         tty->print("= ");
1052       }
1053       if (newtype == NULL) {
1054         tty->print("null");
1055       } else {
1056         newtype->dump();
1057       }
1058       do { tty->print("\t"); } while (tty->position() < 16);
1059       nn->dump();
1060     }
1061     if (Verbose && wlsize < _worklist.size()) {
1062       tty->print("  Push {");
1063       while (wlsize != _worklist.size()) {
1064         Node* pushed = _worklist.at(wlsize++);
1065         tty->print(" %d", pushed->_idx);
1066       }
1067       tty->print_cr(" }");
1068     }
1069     if (nn != n) {
1070       // ignore n, it might be subsumed
1071       verify_step((Node*) NULL);
1072     }
1073   }
1074 }
1075 
init_verifyPhaseIterGVN()1076 void PhaseIterGVN::init_verifyPhaseIterGVN() {
1077   _verify_counter = 0;
1078   _verify_full_passes = 0;
1079   for (int i = 0; i < _verify_window_size; i++) {
1080     _verify_window[i] = NULL;
1081   }
1082 #ifdef ASSERT
1083   // Verify that all modified nodes are on _worklist
1084   Unique_Node_List* modified_list = C->modified_nodes();
1085   while (modified_list != NULL && modified_list->size()) {
1086     Node* n = modified_list->pop();
1087     if (n->outcnt() != 0 && !n->is_Con() && !_worklist.member(n)) {
1088       n->dump();
1089       assert(false, "modified node is not on IGVN._worklist");
1090     }
1091   }
1092 #endif
1093 }
1094 
verify_PhaseIterGVN()1095 void PhaseIterGVN::verify_PhaseIterGVN() {
1096 #ifdef ASSERT
1097   // Verify nodes with changed inputs.
1098   Unique_Node_List* modified_list = C->modified_nodes();
1099   while (modified_list != NULL && modified_list->size()) {
1100     Node* n = modified_list->pop();
1101     if (n->outcnt() != 0 && !n->is_Con()) { // skip dead and Con nodes
1102       n->dump();
1103       assert(false, "modified node was not processed by IGVN.transform_old()");
1104     }
1105   }
1106 #endif
1107 
1108   C->verify_graph_edges();
1109   if (VerifyIterativeGVN && PrintOpto) {
1110     if (_verify_counter == _verify_full_passes) {
1111       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
1112                     (int) _verify_full_passes);
1113     } else {
1114       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
1115                   (int) _verify_counter, (int) _verify_full_passes);
1116     }
1117   }
1118 
1119 #ifdef ASSERT
1120   while (modified_list->size()) {
1121     Node* n = modified_list->pop();
1122     n->dump();
1123     assert(false, "VerifyIterativeGVN: new modified node was added");
1124   }
1125 #endif
1126 }
1127 #endif /* PRODUCT */
1128 
1129 #ifdef ASSERT
1130 /**
1131  * Dumps information that can help to debug the problem. A debug
1132  * build fails with an assert.
1133  */
dump_infinite_loop_info(Node * n)1134 void PhaseIterGVN::dump_infinite_loop_info(Node* n) {
1135   n->dump(4);
1136   _worklist.dump();
1137   assert(false, "infinite loop in PhaseIterGVN::optimize");
1138 }
1139 
1140 /**
1141  * Prints out information about IGVN if the 'verbose' option is used.
1142  */
trace_PhaseIterGVN_verbose(Node * n,int num_processed)1143 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) {
1144   if (TraceIterativeGVN && Verbose) {
1145     tty->print("  Pop ");
1146     n->dump();
1147     if ((num_processed % 100) == 0) {
1148       _worklist.print_set();
1149     }
1150   }
1151 }
1152 #endif /* ASSERT */
1153 
optimize()1154 void PhaseIterGVN::optimize() {
1155   DEBUG_ONLY(uint num_processed  = 0;)
1156   NOT_PRODUCT(init_verifyPhaseIterGVN();)
1157 
1158   uint loop_count = 0;
1159   // Pull from worklist and transform the node. If the node has changed,
1160   // update edge info and put uses on worklist.
1161   while(_worklist.size()) {
1162     if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) {
1163       return;
1164     }
1165     Node* n  = _worklist.pop();
1166     if (++loop_count >= K * C->live_nodes()) {
1167       DEBUG_ONLY(dump_infinite_loop_info(n);)
1168       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
1169       return;
1170     }
1171     DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);)
1172     if (n->outcnt() != 0) {
1173       NOT_PRODUCT(const Type* oldtype = type_or_null(n));
1174       // Do the transformation
1175       Node* nn = transform_old(n);
1176       NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);)
1177     } else if (!n->is_top()) {
1178       remove_dead_node(n);
1179     }
1180   }
1181   NOT_PRODUCT(verify_PhaseIterGVN();)
1182 }
1183 
1184 
1185 /**
1186  * Register a new node with the optimizer.  Update the types array, the def-use
1187  * info.  Put on worklist.
1188  */
register_new_node_with_optimizer(Node * n,Node * orig)1189 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
1190   set_type_bottom(n);
1191   _worklist.push(n);
1192   if (orig != NULL)  C->copy_node_notes_to(n, orig);
1193   return n;
1194 }
1195 
1196 //------------------------------transform--------------------------------------
1197 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
transform(Node * n)1198 Node *PhaseIterGVN::transform( Node *n ) {
1199   if (_delay_transform) {
1200     // Register the node but don't optimize for now
1201     register_new_node_with_optimizer(n);
1202     return n;
1203   }
1204 
1205   // If brand new node, make space in type array, and give it a type.
1206   ensure_type_or_null(n);
1207   if (type_or_null(n) == NULL) {
1208     set_type_bottom(n);
1209   }
1210 
1211   return transform_old(n);
1212 }
1213 
transform_old(Node * n)1214 Node *PhaseIterGVN::transform_old(Node* n) {
1215   DEBUG_ONLY(uint loop_count = 0;);
1216   NOT_PRODUCT(set_transforms());
1217 
1218   // Remove 'n' from hash table in case it gets modified
1219   _table.hash_delete(n);
1220   if (VerifyIterativeGVN) {
1221    assert(!_table.find_index(n->_idx), "found duplicate entry in table");
1222   }
1223 
1224   // Apply the Ideal call in a loop until it no longer applies
1225   Node* k = n;
1226   DEBUG_ONLY(dead_loop_check(k);)
1227   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1228   C->remove_modified_node(k);
1229   Node* i = apply_ideal(k, /*can_reshape=*/true);
1230   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1231 #ifndef PRODUCT
1232   verify_step(k);
1233 #endif
1234 
1235   while (i != NULL) {
1236 #ifdef ASSERT
1237     if (loop_count >= K) {
1238       dump_infinite_loop_info(i);
1239     }
1240     loop_count++;
1241 #endif
1242     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1243     // Made a change; put users of original Node on worklist
1244     add_users_to_worklist(k);
1245     // Replacing root of transform tree?
1246     if (k != i) {
1247       // Make users of old Node now use new.
1248       subsume_node(k, i);
1249       k = i;
1250     }
1251     DEBUG_ONLY(dead_loop_check(k);)
1252     // Try idealizing again
1253     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1254     C->remove_modified_node(k);
1255     i = apply_ideal(k, /*can_reshape=*/true);
1256     assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes");
1257 #ifndef PRODUCT
1258     verify_step(k);
1259 #endif
1260   }
1261 
1262   // If brand new node, make space in type array.
1263   ensure_type_or_null(k);
1264 
1265   // See what kind of values 'k' takes on at runtime
1266   const Type* t = k->Value(this);
1267   assert(t != NULL, "value sanity");
1268 
1269   // Since I just called 'Value' to compute the set of run-time values
1270   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1271   // cache Value.  Later requests for the local phase->type of this Node can
1272   // use the cached Value instead of suffering with 'bottom_type'.
1273   if (type_or_null(k) != t) {
1274 #ifndef PRODUCT
1275     inc_new_values();
1276     set_progress();
1277 #endif
1278     set_type(k, t);
1279     // If k is a TypeNode, capture any more-precise type permanently into Node
1280     k->raise_bottom_type(t);
1281     // Move users of node to worklist
1282     add_users_to_worklist(k);
1283   }
1284   // If 'k' computes a constant, replace it with a constant
1285   if (t->singleton() && !k->is_Con()) {
1286     NOT_PRODUCT(set_progress();)
1287     Node* con = makecon(t);     // Make a constant
1288     add_users_to_worklist(k);
1289     subsume_node(k, con);       // Everybody using k now uses con
1290     return con;
1291   }
1292 
1293   // Now check for Identities
1294   i = k->Identity(this);      // Look for a nearby replacement
1295   if (i != k) {                // Found? Return replacement!
1296     NOT_PRODUCT(set_progress();)
1297     add_users_to_worklist(k);
1298     subsume_node(k, i);       // Everybody using k now uses i
1299     return i;
1300   }
1301 
1302   // Global Value Numbering
1303   i = hash_find_insert(k);      // Check for pre-existing node
1304   if (i && (i != k)) {
1305     // Return the pre-existing node if it isn't dead
1306     NOT_PRODUCT(set_progress();)
1307     add_users_to_worklist(k);
1308     subsume_node(k, i);       // Everybody using k now uses i
1309     return i;
1310   }
1311 
1312   // Return Idealized original
1313   return k;
1314 }
1315 
1316 //---------------------------------saturate------------------------------------
saturate(const Type * new_type,const Type * old_type,const Type * limit_type) const1317 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1318                                    const Type* limit_type) const {
1319   return new_type->narrow(old_type);
1320 }
1321 
1322 //------------------------------remove_globally_dead_node----------------------
1323 // Kill a globally dead Node.  All uses are also globally dead and are
1324 // aggressively trimmed.
remove_globally_dead_node(Node * dead)1325 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1326   enum DeleteProgress {
1327     PROCESS_INPUTS,
1328     PROCESS_OUTPUTS
1329   };
1330   assert(_stack.is_empty(), "not empty");
1331   _stack.push(dead, PROCESS_INPUTS);
1332 
1333   while (_stack.is_nonempty()) {
1334     dead = _stack.node();
1335     if (dead->Opcode() == Op_SafePoint) {
1336       dead->as_SafePoint()->disconnect_from_root(this);
1337     }
1338     uint progress_state = _stack.index();
1339     assert(dead != C->root(), "killing root, eh?");
1340     assert(!dead->is_top(), "add check for top when pushing");
1341     NOT_PRODUCT( set_progress(); )
1342     if (progress_state == PROCESS_INPUTS) {
1343       // After following inputs, continue to outputs
1344       _stack.set_index(PROCESS_OUTPUTS);
1345       if (!dead->is_Con()) { // Don't kill cons but uses
1346         bool recurse = false;
1347         // Remove from hash table
1348         _table.hash_delete( dead );
1349         // Smash all inputs to 'dead', isolating him completely
1350         for (uint i = 0; i < dead->req(); i++) {
1351           Node *in = dead->in(i);
1352           if (in != NULL && in != C->top()) {  // Points to something?
1353             int nrep = dead->replace_edge(in, NULL);  // Kill edges
1354             assert((nrep > 0), "sanity");
1355             if (in->outcnt() == 0) { // Made input go dead?
1356               _stack.push(in, PROCESS_INPUTS); // Recursively remove
1357               recurse = true;
1358             } else if (in->outcnt() == 1 &&
1359                        in->has_special_unique_user()) {
1360               _worklist.push(in->unique_out());
1361             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1362               if (in->Opcode() == Op_Region) {
1363                 _worklist.push(in);
1364               } else if (in->is_Store()) {
1365                 DUIterator_Fast imax, i = in->fast_outs(imax);
1366                 _worklist.push(in->fast_out(i));
1367                 i++;
1368                 if (in->outcnt() == 2) {
1369                   _worklist.push(in->fast_out(i));
1370                   i++;
1371                 }
1372                 assert(!(i < imax), "sanity");
1373               }
1374             } else {
1375               BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in);
1376             }
1377             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
1378                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
1379               // A Load that directly follows an InitializeNode is
1380               // going away. The Stores that follow are candidates
1381               // again to be captured by the InitializeNode.
1382               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
1383                 Node *n = in->fast_out(j);
1384                 if (n->is_Store()) {
1385                   _worklist.push(n);
1386                 }
1387               }
1388             }
1389           } // if (in != NULL && in != C->top())
1390         } // for (uint i = 0; i < dead->req(); i++)
1391         if (recurse) {
1392           continue;
1393         }
1394       } // if (!dead->is_Con())
1395     } // if (progress_state == PROCESS_INPUTS)
1396 
1397     // Aggressively kill globally dead uses
1398     // (Rather than pushing all the outs at once, we push one at a time,
1399     // plus the parent to resume later, because of the indefinite number
1400     // of edge deletions per loop trip.)
1401     if (dead->outcnt() > 0) {
1402       // Recursively remove output edges
1403       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
1404     } else {
1405       // Finished disconnecting all input and output edges.
1406       _stack.pop();
1407       // Remove dead node from iterative worklist
1408       _worklist.remove(dead);
1409       C->remove_modified_node(dead);
1410       // Constant node that has no out-edges and has only one in-edge from
1411       // root is usually dead. However, sometimes reshaping walk makes
1412       // it reachable by adding use edges. So, we will NOT count Con nodes
1413       // as dead to be conservative about the dead node count at any
1414       // given time.
1415       if (!dead->is_Con()) {
1416         C->record_dead_node(dead->_idx);
1417       }
1418       if (dead->is_macro()) {
1419         C->remove_macro_node(dead);
1420       }
1421       if (dead->is_expensive()) {
1422         C->remove_expensive_node(dead);
1423       }
1424       CastIINode* cast = dead->isa_CastII();
1425       if (cast != NULL && cast->has_range_check()) {
1426         C->remove_range_check_cast(cast);
1427       }
1428       if (dead->Opcode() == Op_Opaque4) {
1429         C->remove_opaque4_node(dead);
1430       }
1431       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1432       bs->unregister_potential_barrier_node(dead);
1433     }
1434   } // while (_stack.is_nonempty())
1435 }
1436 
1437 //------------------------------subsume_node-----------------------------------
1438 // Remove users from node 'old' and add them to node 'nn'.
subsume_node(Node * old,Node * nn)1439 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1440   if (old->Opcode() == Op_SafePoint) {
1441     old->as_SafePoint()->disconnect_from_root(this);
1442   }
1443   assert( old != hash_find(old), "should already been removed" );
1444   assert( old != C->top(), "cannot subsume top node");
1445   // Copy debug or profile information to the new version:
1446   C->copy_node_notes_to(nn, old);
1447   // Move users of node 'old' to node 'nn'
1448   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1449     Node* use = old->last_out(i);  // for each use...
1450     // use might need re-hashing (but it won't if it's a new node)
1451     rehash_node_delayed(use);
1452     // Update use-def info as well
1453     // We remove all occurrences of old within use->in,
1454     // so as to avoid rehashing any node more than once.
1455     // The hash table probe swamps any outer loop overhead.
1456     uint num_edges = 0;
1457     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1458       if (use->in(j) == old) {
1459         use->set_req(j, nn);
1460         ++num_edges;
1461       }
1462     }
1463     i -= num_edges;    // we deleted 1 or more copies of this edge
1464   }
1465 
1466   // Search for instance field data PhiNodes in the same region pointing to the old
1467   // memory PhiNode and update their instance memory ids to point to the new node.
1468   if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) {
1469     Node* region = old->in(0);
1470     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1471       PhiNode* phi = region->fast_out(i)->isa_Phi();
1472       if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) {
1473         phi->set_inst_mem_id((int)nn->_idx);
1474       }
1475     }
1476   }
1477 
1478   // Smash all inputs to 'old', isolating him completely
1479   Node *temp = new Node(1);
1480   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1481   remove_dead_node( old );
1482   temp->del_req(0);         // Yank bogus edge
1483 #ifndef PRODUCT
1484   if( VerifyIterativeGVN ) {
1485     for ( int i = 0; i < _verify_window_size; i++ ) {
1486       if ( _verify_window[i] == old )
1487         _verify_window[i] = nn;
1488     }
1489   }
1490 #endif
1491   _worklist.remove(temp);   // this can be necessary
1492   temp->destruct();         // reuse the _idx of this little guy
1493 }
1494 
1495 //------------------------------add_users_to_worklist--------------------------
add_users_to_worklist0(Node * n)1496 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1497   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1498     _worklist.push(n->fast_out(i));  // Push on worklist
1499   }
1500 }
1501 
1502 // Return counted loop Phi if as a counted loop exit condition, cmp
1503 // compares the the induction variable with n
countedloop_phi_from_cmp(CmpINode * cmp,Node * n)1504 static PhiNode* countedloop_phi_from_cmp(CmpINode* cmp, Node* n) {
1505   for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) {
1506     Node* bol = cmp->fast_out(i);
1507     for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) {
1508       Node* iff = bol->fast_out(i2);
1509       if (iff->is_CountedLoopEnd()) {
1510         CountedLoopEndNode* cle = iff->as_CountedLoopEnd();
1511         if (cle->limit() == n) {
1512           PhiNode* phi = cle->phi();
1513           if (phi != NULL) {
1514             return phi;
1515           }
1516         }
1517       }
1518     }
1519   }
1520   return NULL;
1521 }
1522 
add_users_to_worklist(Node * n)1523 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1524   add_users_to_worklist0(n);
1525 
1526   // Move users of node to worklist
1527   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1528     Node* use = n->fast_out(i); // Get use
1529 
1530     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1531         use->is_Store() )       // Enable store/load same address
1532       add_users_to_worklist0(use);
1533 
1534     // If we changed the receiver type to a call, we need to revisit
1535     // the Catch following the call.  It's looking for a non-NULL
1536     // receiver to know when to enable the regular fall-through path
1537     // in addition to the NullPtrException path.
1538     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1539       Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control);
1540       if (p != NULL) {
1541         add_users_to_worklist0(p);
1542       }
1543     }
1544 
1545     uint use_op = use->Opcode();
1546     if(use->is_Cmp()) {       // Enable CMP/BOOL optimization
1547       add_users_to_worklist(use); // Put Bool on worklist
1548       if (use->outcnt() > 0) {
1549         Node* bol = use->raw_out(0);
1550         if (bol->outcnt() > 0) {
1551           Node* iff = bol->raw_out(0);
1552           if (iff->outcnt() == 2) {
1553             // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1554             // phi merging either 0 or 1 onto the worklist
1555             Node* ifproj0 = iff->raw_out(0);
1556             Node* ifproj1 = iff->raw_out(1);
1557             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1558               Node* region0 = ifproj0->raw_out(0);
1559               Node* region1 = ifproj1->raw_out(0);
1560               if( region0 == region1 )
1561                 add_users_to_worklist0(region0);
1562             }
1563           }
1564         }
1565       }
1566       if (use_op == Op_CmpI) {
1567         Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n);
1568         if (phi != NULL) {
1569           // If an opaque node feeds into the limit condition of a
1570           // CountedLoop, we need to process the Phi node for the
1571           // induction variable when the opaque node is removed:
1572           // the range of values taken by the Phi is now known and
1573           // so its type is also known.
1574           _worklist.push(phi);
1575         }
1576         Node* in1 = use->in(1);
1577         for (uint i = 0; i < in1->outcnt(); i++) {
1578           if (in1->raw_out(i)->Opcode() == Op_CastII) {
1579             Node* castii = in1->raw_out(i);
1580             if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) {
1581               Node* ifnode = castii->in(0)->in(0);
1582               if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) {
1583                 // Reprocess a CastII node that may depend on an
1584                 // opaque node value when the opaque node is
1585                 // removed. In case it carries a dependency we can do
1586                 // a better job of computing its type.
1587                 _worklist.push(castii);
1588               }
1589             }
1590           }
1591         }
1592       }
1593     }
1594 
1595     // If changed Cast input, check Phi users for simple cycles
1596     if (use->is_ConstraintCast()) {
1597       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1598         Node* u = use->fast_out(i2);
1599         if (u->is_Phi())
1600           _worklist.push(u);
1601       }
1602     }
1603     // If changed LShift inputs, check RShift users for useless sign-ext
1604     if( use_op == Op_LShiftI ) {
1605       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1606         Node* u = use->fast_out(i2);
1607         if (u->Opcode() == Op_RShiftI)
1608           _worklist.push(u);
1609       }
1610     }
1611     // If changed AddI/SubI inputs, check CmpU for range check optimization.
1612     if (use_op == Op_AddI || use_op == Op_SubI) {
1613       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1614         Node* u = use->fast_out(i2);
1615         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
1616           _worklist.push(u);
1617         }
1618       }
1619     }
1620     // If changed AddP inputs, check Stores for loop invariant
1621     if( use_op == Op_AddP ) {
1622       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1623         Node* u = use->fast_out(i2);
1624         if (u->is_Mem())
1625           _worklist.push(u);
1626       }
1627     }
1628     // If changed initialization activity, check dependent Stores
1629     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1630       InitializeNode* init = use->as_Allocate()->initialization();
1631       if (init != NULL) {
1632         Node* imem = init->proj_out_or_null(TypeFunc::Memory);
1633         if (imem != NULL)  add_users_to_worklist0(imem);
1634       }
1635     }
1636     if (use_op == Op_Initialize) {
1637       Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory);
1638       if (imem != NULL)  add_users_to_worklist0(imem);
1639     }
1640     // Loading the java mirror from a Klass requires two loads and the type
1641     // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1642     //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
1643     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1644     bool has_load_barrier_nodes = bs->has_load_barrier_nodes();
1645 
1646     if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) {
1647       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1648         Node* u = use->fast_out(i2);
1649         const Type* ut = u->bottom_type();
1650         if (u->Opcode() == Op_LoadP && ut->isa_instptr()) {
1651           if (has_load_barrier_nodes) {
1652             // Search for load barriers behind the load
1653             for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1654               Node* b = u->fast_out(i3);
1655               if (bs->is_gc_barrier_node(b)) {
1656                 _worklist.push(b);
1657               }
1658             }
1659           }
1660           _worklist.push(u);
1661         }
1662       }
1663     }
1664   }
1665 }
1666 
1667 /**
1668  * Remove the speculative part of all types that we know of
1669  */
remove_speculative_types()1670 void PhaseIterGVN::remove_speculative_types()  {
1671   assert(UseTypeSpeculation, "speculation is off");
1672   for (uint i = 0; i < _types.Size(); i++)  {
1673     const Type* t = _types.fast_lookup(i);
1674     if (t != NULL) {
1675       _types.map(i, t->remove_speculative());
1676     }
1677   }
1678   _table.check_no_speculative_types();
1679 }
1680 
1681 //=============================================================================
1682 #ifndef PRODUCT
1683 uint PhaseCCP::_total_invokes   = 0;
1684 uint PhaseCCP::_total_constants = 0;
1685 #endif
1686 //------------------------------PhaseCCP---------------------------------------
1687 // Conditional Constant Propagation, ala Wegman & Zadeck
PhaseCCP(PhaseIterGVN * igvn)1688 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1689   NOT_PRODUCT( clear_constants(); )
1690   assert( _worklist.size() == 0, "" );
1691   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1692   _nodes.clear();               // Clear out from IterGVN
1693   analyze();
1694 }
1695 
1696 #ifndef PRODUCT
1697 //------------------------------~PhaseCCP--------------------------------------
~PhaseCCP()1698 PhaseCCP::~PhaseCCP() {
1699   inc_invokes();
1700   _total_constants += count_constants();
1701 }
1702 #endif
1703 
1704 
1705 #ifdef ASSERT
ccp_type_widens(const Type * t,const Type * t0)1706 static bool ccp_type_widens(const Type* t, const Type* t0) {
1707   assert(t->meet(t0) == t, "Not monotonic");
1708   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1709   case Type::Int:
1710     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1711     break;
1712   case Type::Long:
1713     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1714     break;
1715   default:
1716     break;
1717   }
1718   return true;
1719 }
1720 #endif //ASSERT
1721 
1722 //------------------------------analyze----------------------------------------
analyze()1723 void PhaseCCP::analyze() {
1724   // Initialize all types to TOP, optimistic analysis
1725   for (int i = C->unique() - 1; i >= 0; i--)  {
1726     _types.map(i,Type::TOP);
1727   }
1728 
1729   // Push root onto worklist
1730   Unique_Node_List worklist;
1731   worklist.push(C->root());
1732 
1733   // Pull from worklist; compute new value; push changes out.
1734   // This loop is the meat of CCP.
1735   while( worklist.size() ) {
1736     Node *n = worklist.pop();
1737     const Type *t = n->Value(this);
1738     if (t != type(n)) {
1739       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1740 #ifndef PRODUCT
1741       if( TracePhaseCCP ) {
1742         t->dump();
1743         do { tty->print("\t"); } while (tty->position() < 16);
1744         n->dump();
1745       }
1746 #endif
1747       set_type(n, t);
1748       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1749         Node* m = n->fast_out(i);   // Get user
1750         if (m->is_Region()) {  // New path to Region?  Must recheck Phis too
1751           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1752             Node* p = m->fast_out(i2); // Propagate changes to uses
1753             if (p->bottom_type() != type(p)) { // If not already bottomed out
1754               worklist.push(p); // Propagate change to user
1755             }
1756           }
1757         }
1758         // If we changed the receiver type to a call, we need to revisit
1759         // the Catch following the call.  It's looking for a non-NULL
1760         // receiver to know when to enable the regular fall-through path
1761         // in addition to the NullPtrException path
1762         if (m->is_Call()) {
1763           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1764             Node* p = m->fast_out(i2);  // Propagate changes to uses
1765             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control) {
1766               Node* catch_node = p->find_out_with(Op_Catch);
1767               if (catch_node != NULL) {
1768                 worklist.push(catch_node);
1769               }
1770             }
1771           }
1772         }
1773         if (m->bottom_type() != type(m)) { // If not already bottomed out
1774           worklist.push(m);     // Propagate change to user
1775         }
1776 
1777         // CmpU nodes can get their type information from two nodes up in the
1778         // graph (instead of from the nodes immediately above). Make sure they
1779         // are added to the worklist if nodes they depend on are updated, since
1780         // they could be missed and get wrong types otherwise.
1781         uint m_op = m->Opcode();
1782         if (m_op == Op_AddI || m_op == Op_SubI) {
1783           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1784             Node* p = m->fast_out(i2); // Propagate changes to uses
1785             if (p->Opcode() == Op_CmpU) {
1786               // Got a CmpU which might need the new type information from node n.
1787               if(p->bottom_type() != type(p)) { // If not already bottomed out
1788                 worklist.push(p); // Propagate change to user
1789               }
1790             }
1791           }
1792         }
1793         // If n is used in a counted loop exit condition then the type
1794         // of the counted loop's Phi depends on the type of n. See
1795         // PhiNode::Value().
1796         if (m_op == Op_CmpI) {
1797           PhiNode* phi = countedloop_phi_from_cmp((CmpINode*)m, n);
1798           if (phi != NULL) {
1799             worklist.push(phi);
1800           }
1801         }
1802         // Loading the java mirror from a Klass requires two loads and the type
1803         // of the mirror load depends on the type of 'n'. See LoadNode::Value().
1804         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1805         bool has_load_barrier_nodes = bs->has_load_barrier_nodes();
1806 
1807         if (m_op == Op_LoadP && m->bottom_type()->isa_rawptr()) {
1808           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1809             Node* u = m->fast_out(i2);
1810             const Type* ut = u->bottom_type();
1811             if (u->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(u)) {
1812               if (has_load_barrier_nodes) {
1813                 // Search for load barriers behind the load
1814                 for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) {
1815                   Node* b = u->fast_out(i3);
1816                   if (bs->is_gc_barrier_node(b)) {
1817                     worklist.push(b);
1818                   }
1819                 }
1820               }
1821               worklist.push(u);
1822             }
1823           }
1824         }
1825       }
1826     }
1827   }
1828 }
1829 
1830 //------------------------------do_transform-----------------------------------
1831 // Top level driver for the recursive transformer
do_transform()1832 void PhaseCCP::do_transform() {
1833   // Correct leaves of new-space Nodes; they point to old-space.
1834   C->set_root( transform(C->root())->as_Root() );
1835   assert( C->top(),  "missing TOP node" );
1836   assert( C->root(), "missing root" );
1837 }
1838 
1839 //------------------------------transform--------------------------------------
1840 // Given a Node in old-space, clone him into new-space.
1841 // Convert any of his old-space children into new-space children.
transform(Node * n)1842 Node *PhaseCCP::transform( Node *n ) {
1843   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1844   if( new_node != NULL )
1845     return new_node;                // Been there, done that, return old answer
1846   new_node = transform_once(n);     // Check for constant
1847   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1848 
1849   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1850   GrowableArray <Node *> trstack(C->live_nodes() >> 1);
1851 
1852   trstack.push(new_node);           // Process children of cloned node
1853   while ( trstack.is_nonempty() ) {
1854     Node *clone = trstack.pop();
1855     uint cnt = clone->req();
1856     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1857       Node *input = clone->in(i);
1858       if( input != NULL ) {                    // Ignore NULLs
1859         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1860         if( new_input == NULL ) {
1861           new_input = transform_once(input);   // Check for constant
1862           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1863           trstack.push(new_input);
1864         }
1865         assert( new_input == clone->in(i), "insanity check");
1866       }
1867     }
1868   }
1869   return new_node;
1870 }
1871 
1872 
1873 //------------------------------transform_once---------------------------------
1874 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
transform_once(Node * n)1875 Node *PhaseCCP::transform_once( Node *n ) {
1876   const Type *t = type(n);
1877   // Constant?  Use constant Node instead
1878   if( t->singleton() ) {
1879     Node *nn = n;               // Default is to return the original constant
1880     if( t == Type::TOP ) {
1881       // cache my top node on the Compile instance
1882       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1883         C->set_cached_top_node(ConNode::make(Type::TOP));
1884         set_type(C->top(), Type::TOP);
1885       }
1886       nn = C->top();
1887     }
1888     if( !n->is_Con() ) {
1889       if( t != Type::TOP ) {
1890         nn = makecon(t);        // ConNode::make(t);
1891         NOT_PRODUCT( inc_constants(); )
1892       } else if( n->is_Region() ) { // Unreachable region
1893         // Note: nn == C->top()
1894         n->set_req(0, NULL);        // Cut selfreference
1895         bool progress = true;
1896         uint max = n->outcnt();
1897         DUIterator i;
1898         while (progress) {
1899           progress = false;
1900           // Eagerly remove dead phis to avoid phis copies creation.
1901           for (i = n->outs(); n->has_out(i); i++) {
1902             Node* m = n->out(i);
1903             if (m->is_Phi()) {
1904               assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1905               replace_node(m, nn);
1906               if (max != n->outcnt()) {
1907                 progress = true;
1908                 i = n->refresh_out_pos(i);
1909                 max = n->outcnt();
1910               }
1911             }
1912           }
1913         }
1914       }
1915       replace_node(n,nn);       // Update DefUse edges for new constant
1916     }
1917     return nn;
1918   }
1919 
1920   // If x is a TypeNode, capture any more-precise type permanently into Node
1921   if (t != n->bottom_type()) {
1922     hash_delete(n);             // changing bottom type may force a rehash
1923     n->raise_bottom_type(t);
1924     _worklist.push(n);          // n re-enters the hash table via the worklist
1925   }
1926 
1927   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1928   switch( n->Opcode() ) {
1929   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1930   case Op_If:
1931   case Op_CountedLoopEnd:
1932   case Op_Region:
1933   case Op_Loop:
1934   case Op_CountedLoop:
1935   case Op_Conv2B:
1936   case Op_Opaque1:
1937   case Op_Opaque2:
1938     _worklist.push(n);
1939     break;
1940   default:
1941     break;
1942   }
1943 
1944   return  n;
1945 }
1946 
1947 //---------------------------------saturate------------------------------------
saturate(const Type * new_type,const Type * old_type,const Type * limit_type) const1948 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1949                                const Type* limit_type) const {
1950   const Type* wide_type = new_type->widen(old_type, limit_type);
1951   if (wide_type != new_type) {          // did we widen?
1952     // If so, we may have widened beyond the limit type.  Clip it back down.
1953     new_type = wide_type->filter(limit_type);
1954   }
1955   return new_type;
1956 }
1957 
1958 //------------------------------print_statistics-------------------------------
1959 #ifndef PRODUCT
print_statistics()1960 void PhaseCCP::print_statistics() {
1961   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1962 }
1963 #endif
1964 
1965 
1966 //=============================================================================
1967 #ifndef PRODUCT
1968 uint PhasePeephole::_total_peepholes = 0;
1969 #endif
1970 //------------------------------PhasePeephole----------------------------------
1971 // Conditional Constant Propagation, ala Wegman & Zadeck
PhasePeephole(PhaseRegAlloc * regalloc,PhaseCFG & cfg)1972 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1973   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1974   NOT_PRODUCT( clear_peepholes(); )
1975 }
1976 
1977 #ifndef PRODUCT
1978 //------------------------------~PhasePeephole---------------------------------
~PhasePeephole()1979 PhasePeephole::~PhasePeephole() {
1980   _total_peepholes += count_peepholes();
1981 }
1982 #endif
1983 
1984 //------------------------------transform--------------------------------------
transform(Node * n)1985 Node *PhasePeephole::transform( Node *n ) {
1986   ShouldNotCallThis();
1987   return NULL;
1988 }
1989 
1990 //------------------------------do_transform-----------------------------------
do_transform()1991 void PhasePeephole::do_transform() {
1992   bool method_name_not_printed = true;
1993 
1994   // Examine each basic block
1995   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
1996     Block* block = _cfg.get_block(block_number);
1997     bool block_not_printed = true;
1998 
1999     // and each instruction within a block
2000     uint end_index = block->number_of_nodes();
2001     // block->end_idx() not valid after PhaseRegAlloc
2002     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
2003       Node     *n = block->get_node(instruction_index);
2004       if( n->is_Mach() ) {
2005         MachNode *m = n->as_Mach();
2006         int deleted_count = 0;
2007         // check for peephole opportunities
2008         MachNode *m2 = m->peephole(block, instruction_index, _regalloc, deleted_count);
2009         if( m2 != NULL ) {
2010 #ifndef PRODUCT
2011           if( PrintOptoPeephole ) {
2012             // Print method, first time only
2013             if( C->method() && method_name_not_printed ) {
2014               C->method()->print_short_name(); tty->cr();
2015               method_name_not_printed = false;
2016             }
2017             // Print this block
2018             if( Verbose && block_not_printed) {
2019               tty->print_cr("in block");
2020               block->dump();
2021               block_not_printed = false;
2022             }
2023             // Print instructions being deleted
2024             for( int i = (deleted_count - 1); i >= 0; --i ) {
2025               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
2026             }
2027             tty->print_cr("replaced with");
2028             // Print new instruction
2029             m2->format(_regalloc);
2030             tty->print("\n\n");
2031           }
2032 #endif
2033           // Remove old nodes from basic block and update instruction_index
2034           // (old nodes still exist and may have edges pointing to them
2035           //  as register allocation info is stored in the allocator using
2036           //  the node index to live range mappings.)
2037           uint safe_instruction_index = (instruction_index - deleted_count);
2038           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
2039             block->remove_node( instruction_index );
2040           }
2041           // install new node after safe_instruction_index
2042           block->insert_node(m2, safe_instruction_index + 1);
2043           end_index = block->number_of_nodes() - 1; // Recompute new block size
2044           NOT_PRODUCT( inc_peepholes(); )
2045         }
2046       }
2047     }
2048   }
2049 }
2050 
2051 //------------------------------print_statistics-------------------------------
2052 #ifndef PRODUCT
print_statistics()2053 void PhasePeephole::print_statistics() {
2054   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
2055 }
2056 #endif
2057 
2058 
2059 //=============================================================================
2060 //------------------------------set_req_X--------------------------------------
set_req_X(uint i,Node * n,PhaseIterGVN * igvn)2061 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
2062   assert( is_not_dead(n), "can not use dead node");
2063   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
2064   Node *old = in(i);
2065   set_req(i, n);
2066 
2067   // old goes dead?
2068   if( old ) {
2069     switch (old->outcnt()) {
2070     case 0:
2071       // Put into the worklist to kill later. We do not kill it now because the
2072       // recursive kill will delete the current node (this) if dead-loop exists
2073       if (!old->is_top())
2074         igvn->_worklist.push( old );
2075       break;
2076     case 1:
2077       if( old->is_Store() || old->has_special_unique_user() )
2078         igvn->add_users_to_worklist( old );
2079       break;
2080     case 2:
2081       if( old->is_Store() )
2082         igvn->add_users_to_worklist( old );
2083       if( old->Opcode() == Op_Region )
2084         igvn->_worklist.push(old);
2085       break;
2086     case 3:
2087       if( old->Opcode() == Op_Region ) {
2088         igvn->_worklist.push(old);
2089         igvn->add_users_to_worklist( old );
2090       }
2091       break;
2092     default:
2093       break;
2094     }
2095 
2096     BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old);
2097   }
2098 
2099 }
2100 
2101 //-------------------------------replace_by-----------------------------------
2102 // Using def-use info, replace one node for another.  Follow the def-use info
2103 // to all users of the OLD node.  Then make all uses point to the NEW node.
replace_by(Node * new_node)2104 void Node::replace_by(Node *new_node) {
2105   assert(!is_top(), "top node has no DU info");
2106   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
2107     Node* use = last_out(i);
2108     uint uses_found = 0;
2109     for (uint j = 0; j < use->len(); j++) {
2110       if (use->in(j) == this) {
2111         if (j < use->req())
2112               use->set_req(j, new_node);
2113         else  use->set_prec(j, new_node);
2114         uses_found++;
2115       }
2116     }
2117     i -= uses_found;    // we deleted 1 or more copies of this edge
2118   }
2119 }
2120 
2121 //=============================================================================
2122 //-----------------------------------------------------------------------------
grow(uint i)2123 void Type_Array::grow( uint i ) {
2124   if( !_max ) {
2125     _max = 1;
2126     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
2127     _types[0] = NULL;
2128   }
2129   uint old = _max;
2130   _max = next_power_of_2(i);
2131   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
2132   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
2133 }
2134 
2135 //------------------------------dump-------------------------------------------
2136 #ifndef PRODUCT
dump() const2137 void Type_Array::dump() const {
2138   uint max = Size();
2139   for( uint i = 0; i < max; i++ ) {
2140     if( _types[i] != NULL ) {
2141       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
2142     }
2143   }
2144 }
2145 #endif
2146