1 /*
2  * Copyright (c) 2012, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "jvm.h"
27 #include "memory/allocation.inline.hpp"
28 #include "os_aix.inline.hpp"
29 #include "runtime/os.hpp"
30 #include "runtime/os_perf.hpp"
31 #include "utilities/globalDefinitions.hpp"
32 
33 #include CPU_HEADER(vm_version_ext)
34 
35 #include <stdio.h>
36 #include <stdarg.h>
37 #include <unistd.h>
38 #include <errno.h>
39 #include <string.h>
40 #include <sys/resource.h>
41 #include <sys/types.h>
42 #include <sys/stat.h>
43 #include <dirent.h>
44 #include <stdlib.h>
45 #include <dlfcn.h>
46 #include <pthread.h>
47 #include <limits.h>
48 
49 /**
50    /proc/[number]/stat
51               Status information about the process.  This is used by ps(1).  It is defined in /usr/src/linux/fs/proc/array.c.
52 
53               The fields, in order, with their proper scanf(3) format specifiers, are:
54 
55               1. pid %d The process id.
56 
57               2. comm %s
58                      The filename of the executable, in parentheses.  This is visible whether or not the executable is swapped out.
59 
60               3. state %c
61                      One  character  from  the  string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
62                      sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
63 
64               4. ppid %d
65                      The PID of the parent.
66 
67               5. pgrp %d
68                      The process group ID of the process.
69 
70               6. session %d
71                      The session ID of the process.
72 
73               7. tty_nr %d
74                      The tty the process uses.
75 
76               8. tpgid %d
77                      The process group ID of the process which currently owns the tty that the process is connected to.
78 
79               9. flags %lu
80                      The flags of the process.  The math bit is decimal 4, and the traced bit is decimal 10.
81 
82               10. minflt %lu
83                      The number of minor faults the process has made which have not required loading a memory page from disk.
84 
85               11. cminflt %lu
86                      The number of minor faults that the process's waited-for children have made.
87 
88               12. majflt %lu
89                      The number of major faults the process has made which have required loading a memory page from disk.
90 
91               13. cmajflt %lu
92                      The number of major faults that the process's waited-for children have made.
93 
94               14. utime %lu
95                      The number of jiffies that this process has been scheduled in user mode.
96 
97               15. stime %lu
98                      The number of jiffies that this process has been scheduled in kernel mode.
99 
100               16. cutime %ld
101                      The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
102 
103               17. cstime %ld
104                      The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
105 
106               18. priority %ld
107                      The standard nice value, plus fifteen.  The value is never negative in the kernel.
108 
109               19. nice %ld
110                      The nice value ranges from 19 (nicest) to -19 (not nice to others).
111 
112               20. 0 %ld  This value is hard coded to 0 as a placeholder for a removed field.
113 
114               21. itrealvalue %ld
115                      The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
116 
117               22. starttime %lu
118                      The time in jiffies the process started after system boot.
119 
120               23. vsize %lu
121                      Virtual memory size in bytes.
122 
123               24. rss %ld
124                      Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which  count
125                      towards text, data, or stack space.  This does not include pages which have not been demand-loaded in, or which are swapped out.
126 
127               25. rlim %lu
128                      Current limit in bytes on the rss of the process (usually 4294967295 on i386).
129 
130               26. startcode %lu
131                      The address above which program text can run.
132 
133               27. endcode %lu
134                      The address below which program text can run.
135 
136               28. startstack %lu
137                      The address of the start of the stack.
138 
139               29. kstkesp %lu
140                      The current value of esp (stack pointer), as found in the kernel stack page for the process.
141 
142               30. kstkeip %lu
143                      The current EIP (instruction pointer).
144 
145               31. signal %lu
146                      The bitmap of pending signals (usually 0).
147 
148               32. blocked %lu
149                      The bitmap of blocked signals (usually 0, 2 for shells).
150 
151               33. sigignore %lu
152                      The bitmap of ignored signals.
153 
154               34. sigcatch %lu
155                      The bitmap of catched signals.
156 
157               35. wchan %lu
158                      This  is the "channel" in which the process is waiting.  It is the address of a system call, and can be looked up in a namelist if you need
159                      a textual name.  (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
160 
161               36. nswap %lu
162                      Number of pages swapped - not maintained.
163 
164               37. cnswap %lu
165                      Cumulative nswap for child processes.
166 
167               38. exit_signal %d
168                      Signal to be sent to parent when we die.
169 
170               39. processor %d
171                      CPU number last executed on.
172 
173 
174 
175  ///// SSCANF FORMAT STRING. Copy and use.
176 
177 field:        1  2  3  4  5  6  7  8  9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 39
178 format:       %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
179 
180 
181 */
182 
183 /**
184  * For platforms that have them, when declaring
185  * a printf-style function,
186  *   formatSpec is the parameter number (starting at 1)
187  *       that is the format argument ("%d pid %s")
188  *   params is the parameter number where the actual args to
189  *       the format starts. If the args are in a va_list, this
190  *       should be 0.
191  */
192 #ifndef PRINTF_ARGS
193 #  define PRINTF_ARGS(formatSpec,  params) ATTRIBUTE_PRINTF(formatSpec, params)
194 #endif
195 
196 #ifndef SCANF_ARGS
197 #  define SCANF_ARGS(formatSpec,   params) ATTRIBUTE_SCANF(formatSpec, params)
198 #endif
199 
200 #ifndef _PRINTFMT_
201 #  define _PRINTFMT_
202 #endif
203 
204 #ifndef _SCANFMT_
205 #  define _SCANFMT_
206 #endif
207 
208 
209 struct CPUPerfTicks {
210   uint64_t  used;
211   uint64_t  usedKernel;
212   uint64_t  total;
213 };
214 
215 typedef enum {
216   CPU_LOAD_VM_ONLY,
217   CPU_LOAD_GLOBAL,
218 } CpuLoadTarget;
219 
220 enum {
221   UNDETECTED,
222   UNDETECTABLE,
223   LINUX26_NPTL,
224   BAREMETAL
225 };
226 
227 struct CPUPerfCounters {
228   int   nProcs;
229   CPUPerfTicks jvmTicks;
230   CPUPerfTicks* cpus;
231 };
232 
233 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
234 
235 /** reads /proc/<pid>/stat data, with some checks and some skips.
236  *  Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
237  */
vread_statdata(const char * procfile,_SCANFMT_ const char * fmt,va_list args)238 static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
239   FILE*f;
240   int n;
241   char buf[2048];
242 
243   if ((f = fopen(procfile, "r")) == NULL) {
244     return -1;
245   }
246 
247   if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
248     char *tmp;
249 
250     buf[n-1] = '\0';
251     /** skip through pid and exec name. */
252     if ((tmp = strrchr(buf, ')')) != NULL) {
253       // skip the ')' and the following space
254       // but check that buffer is long enough
255       tmp += 2;
256       if (tmp < buf + n) {
257         n = vsscanf(tmp, fmt, args);
258       }
259     }
260   }
261 
262   fclose(f);
263 
264   return n;
265 }
266 
read_statdata(const char * procfile,_SCANFMT_ const char * fmt,...)267 static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
268   int   n;
269   va_list args;
270 
271   va_start(args, fmt);
272   n = vread_statdata(procfile, fmt, args);
273   va_end(args);
274   return n;
275 }
276 
277 /**
278  * on Linux we got the ticks related information from /proc/stat
279  * this does not work on AIX, libperfstat might be an alternative
280  */
get_total_ticks(int which_logical_cpu,CPUPerfTicks * pticks)281 static OSReturn get_total_ticks(int which_logical_cpu, CPUPerfTicks* pticks) {
282   return OS_ERR;
283 }
284 
285 /** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
read_ticks(const char * procfile,uint64_t * userTicks,uint64_t * systemTicks)286 static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
287   return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
288     userTicks, systemTicks);
289 }
290 
291 /**
292  * Return the number of ticks spent in any of the processes belonging
293  * to the JVM on any CPU.
294  */
get_jvm_ticks(CPUPerfTicks * pticks)295 static OSReturn get_jvm_ticks(CPUPerfTicks* pticks) {
296   return OS_ERR;
297 }
298 
299 /**
300  * Return the load of the CPU as a double. 1.0 means the CPU process uses all
301  * available time for user or system processes, 0.0 means the CPU uses all time
302  * being idle.
303  *
304  * Returns a negative value if there is a problem in determining the CPU load.
305  */
get_cpu_load(int which_logical_cpu,CPUPerfCounters * counters,double * pkernelLoad,CpuLoadTarget target)306 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
307   uint64_t udiff, kdiff, tdiff;
308   CPUPerfTicks* pticks;
309   CPUPerfTicks  tmp;
310   double user_load;
311 
312   *pkernelLoad = 0.0;
313 
314   if (target == CPU_LOAD_VM_ONLY) {
315     pticks = &counters->jvmTicks;
316   } else if (-1 == which_logical_cpu) {
317     pticks = &counters->cpus[counters->nProcs];
318   } else {
319     pticks = &counters->cpus[which_logical_cpu];
320   }
321 
322   tmp = *pticks;
323 
324   if (target == CPU_LOAD_VM_ONLY) {
325     if (get_jvm_ticks(pticks) != OS_OK) {
326       return -1.0;
327     }
328   } else if (get_total_ticks(which_logical_cpu, pticks) != OS_OK) {
329     return -1.0;
330   }
331 
332   // seems like we sometimes end up with less kernel ticks when
333   // reading /proc/self/stat a second time, timing issue between cpus?
334   if (pticks->usedKernel < tmp.usedKernel) {
335     kdiff = 0;
336   } else {
337     kdiff = pticks->usedKernel - tmp.usedKernel;
338   }
339   tdiff = pticks->total - tmp.total;
340   udiff = pticks->used - tmp.used;
341 
342   if (tdiff == 0) {
343     return 0.0;
344   } else if (tdiff < (udiff + kdiff)) {
345     tdiff = udiff + kdiff;
346   }
347   *pkernelLoad = (kdiff / (double)tdiff);
348   // BUG9044876, normalize return values to sane values
349   *pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
350   *pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
351 
352   user_load = (udiff / (double)tdiff);
353   user_load = MAX2<double>(user_load, 0.0);
354   user_load = MIN2<double>(user_load, 1.0);
355 
356   return user_load;
357 }
358 
parse_stat(_SCANFMT_ const char * fmt,...)359 static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
360   return OS_ERR;
361 }
362 
get_noof_context_switches(uint64_t * switches)363 static int get_noof_context_switches(uint64_t* switches) {
364   return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
365 }
366 
367 /** returns boot time in _seconds_ since epoch */
get_boot_time(uint64_t * time)368 static int get_boot_time(uint64_t* time) {
369   return parse_stat("btime " UINT64_FORMAT "\n", time);
370 }
371 
perf_context_switch_rate(double * rate)372 static int perf_context_switch_rate(double* rate) {
373   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
374   static uint64_t      bootTime;
375   static uint64_t      lastTimeNanos;
376   static uint64_t      lastSwitches;
377   static double        lastRate;
378 
379   uint64_t bt = 0;
380   int res = 0;
381 
382   // First time through bootTime will be zero.
383   if (bootTime == 0) {
384     uint64_t tmp;
385     if (get_boot_time(&tmp) < 0) {
386       return OS_ERR;
387     }
388     bt = tmp * 1000;
389   }
390 
391   res = OS_OK;
392 
393   pthread_mutex_lock(&contextSwitchLock);
394   {
395 
396     uint64_t sw;
397     s8 t, d;
398 
399     if (bootTime == 0) {
400       // First interval is measured from boot time which is
401       // seconds since the epoch. Thereafter we measure the
402       // elapsed time using javaTimeNanos as it is monotonic-
403       // non-decreasing.
404       lastTimeNanos = os::javaTimeNanos();
405       t = os::javaTimeMillis();
406       d = t - bt;
407       // keep bootTime zero for now to use as a first-time-through flag
408     } else {
409       t = os::javaTimeNanos();
410       d = nanos_to_millis(t - lastTimeNanos);
411     }
412 
413     if (d == 0) {
414       *rate = lastRate;
415     } else if (get_noof_context_switches(&sw) == 0) {
416       *rate      = ( (double)(sw - lastSwitches) / d ) * 1000;
417       lastRate     = *rate;
418       lastSwitches = sw;
419       if (bootTime != 0) {
420         lastTimeNanos = t;
421       }
422     } else {
423       *rate = 0;
424       res   = OS_ERR;
425     }
426     if (*rate <= 0) {
427       *rate = 0;
428       lastRate = 0;
429     }
430 
431     if (bootTime == 0) {
432       bootTime = bt;
433     }
434   }
435   pthread_mutex_unlock(&contextSwitchLock);
436 
437   return res;
438 }
439 
440 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
441   friend class CPUPerformanceInterface;
442  private:
443   CPUPerfCounters _counters;
444 
445   int cpu_load(int which_logical_cpu, double* cpu_load);
446   int context_switch_rate(double* rate);
447   int cpu_load_total_process(double* cpu_load);
448   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
449 
450  public:
451   CPUPerformance();
452   bool initialize();
453   ~CPUPerformance();
454 };
455 
CPUPerformance()456 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
457   _counters.nProcs = os::active_processor_count();
458   _counters.cpus = NULL;
459 }
460 
initialize()461 bool CPUPerformanceInterface::CPUPerformance::initialize() {
462   size_t array_entry_count = _counters.nProcs + 1;
463   _counters.cpus = NEW_C_HEAP_ARRAY(CPUPerfTicks, array_entry_count, mtInternal);
464   memset(_counters.cpus, 0, array_entry_count * sizeof(*_counters.cpus));
465 
466   // For the CPU load total
467   get_total_ticks(-1, &_counters.cpus[_counters.nProcs]);
468 
469   // For each CPU
470   for (int i = 0; i < _counters.nProcs; i++) {
471     get_total_ticks(i, &_counters.cpus[i]);
472   }
473   // For JVM load
474   get_jvm_ticks(&_counters.jvmTicks);
475 
476   // initialize context switch system
477   // the double is only for init
478   double init_ctx_switch_rate;
479   perf_context_switch_rate(&init_ctx_switch_rate);
480 
481   return true;
482 }
483 
~CPUPerformance()484 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
485   if (_counters.cpus != NULL) {
486     FREE_C_HEAP_ARRAY(char, _counters.cpus);
487   }
488 }
489 
cpu_load(int which_logical_cpu,double * cpu_load)490 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
491   double u, s;
492   u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
493   if (u < 0) {
494     *cpu_load = 0.0;
495     return OS_ERR;
496   }
497   // Cap total systemload to 1.0
498   *cpu_load = MIN2<double>((u + s), 1.0);
499   return OS_OK;
500 }
501 
cpu_load_total_process(double * cpu_load)502 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
503   double u, s;
504   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
505   if (u < 0) {
506     *cpu_load = 0.0;
507     return OS_ERR;
508   }
509   *cpu_load = u + s;
510   return OS_OK;
511 }
512 
cpu_loads_process(double * pjvmUserLoad,double * pjvmKernelLoad,double * psystemTotalLoad)513 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
514   double u, s, t;
515 
516   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
517   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
518   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
519 
520   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
521   if (u < 0) {
522     *pjvmUserLoad = 0.0;
523     *pjvmKernelLoad = 0.0;
524     *psystemTotalLoad = 0.0;
525     return OS_ERR;
526   }
527 
528   cpu_load(-1, &t);
529   // clamp at user+system and 1.0
530   if (u + s > t) {
531     t = MIN2<double>(u + s, 1.0);
532   }
533 
534   *pjvmUserLoad = u;
535   *pjvmKernelLoad = s;
536   *psystemTotalLoad = t;
537 
538   return OS_OK;
539 }
540 
context_switch_rate(double * rate)541 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
542   return perf_context_switch_rate(rate);
543 }
544 
CPUPerformanceInterface()545 CPUPerformanceInterface::CPUPerformanceInterface() {
546   _impl = NULL;
547 }
548 
initialize()549 bool CPUPerformanceInterface::initialize() {
550   _impl = new CPUPerformanceInterface::CPUPerformance();
551   return _impl->initialize();
552 }
553 
~CPUPerformanceInterface()554 CPUPerformanceInterface::~CPUPerformanceInterface() {
555   if (_impl != NULL) {
556     delete _impl;
557   }
558 }
559 
cpu_load(int which_logical_cpu,double * cpu_load) const560 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
561   return _impl->cpu_load(which_logical_cpu, cpu_load);
562 }
563 
cpu_load_total_process(double * cpu_load) const564 int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
565   return _impl->cpu_load_total_process(cpu_load);
566 }
567 
cpu_loads_process(double * pjvmUserLoad,double * pjvmKernelLoad,double * psystemTotalLoad) const568 int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
569   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
570 }
571 
context_switch_rate(double * rate) const572 int CPUPerformanceInterface::context_switch_rate(double* rate) const {
573   return _impl->context_switch_rate(rate);
574 }
575 
576 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
577   friend class SystemProcessInterface;
578  private:
579   class ProcessIterator : public CHeapObj<mtInternal> {
580     friend class SystemProcessInterface::SystemProcesses;
581    private:
582     DIR*           _dir;
583     struct dirent* _entry;
584     bool           _valid;
585     char           _exeName[PATH_MAX];
586     char           _exePath[PATH_MAX];
587 
588     ProcessIterator();
589     ~ProcessIterator();
590     bool initialize();
591 
is_valid() const592     bool is_valid() const { return _valid; }
593     bool is_valid_entry(struct dirent* entry) const;
594     bool is_dir(const char* name) const;
595     int  fsize(const char* name, uint64_t& size) const;
596 
597     char* allocate_string(const char* str) const;
598     void  get_exe_name();
599     char* get_exe_path();
600     char* get_cmdline();
601 
602     int current(SystemProcess* process_info);
603     int next_process();
604   };
605 
606   ProcessIterator* _iterator;
607   SystemProcesses();
608   bool initialize();
609   ~SystemProcesses();
610 
611   //information about system processes
612   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
613 };
614 
is_dir(const char * name) const615 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
616   struct stat mystat;
617   int ret_val = 0;
618 
619   ret_val = stat(name, &mystat);
620   if (ret_val < 0) {
621     return false;
622   }
623   ret_val = S_ISDIR(mystat.st_mode);
624   return ret_val > 0;
625 }
626 
fsize(const char * name,uint64_t & size) const627 int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
628   assert(name != NULL, "name pointer is NULL!");
629   size = 0;
630   struct stat fbuf;
631 
632   if (stat(name, &fbuf) < 0) {
633     return OS_ERR;
634   }
635   size = fbuf.st_size;
636   return OS_OK;
637 }
638 
639 // if it has a numeric name, is a directory and has a 'stat' file in it
is_valid_entry(struct dirent * entry) const640 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
641   char buffer[PATH_MAX];
642   uint64_t size = 0;
643 
644   if (atoi(entry->d_name) != 0) {
645     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
646     buffer[PATH_MAX - 1] = '\0';
647 
648     if (is_dir(buffer)) {
649       jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
650       buffer[PATH_MAX - 1] = '\0';
651       if (fsize(buffer, size) != OS_ERR) {
652         return true;
653       }
654     }
655   }
656   return false;
657 }
658 
659 // get exe-name from /proc/<pid>/stat
get_exe_name()660 void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
661   FILE* fp;
662   char  buffer[PATH_MAX];
663 
664   jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
665   buffer[PATH_MAX - 1] = '\0';
666   if ((fp = fopen(buffer, "r")) != NULL) {
667     if (fgets(buffer, PATH_MAX, fp) != NULL) {
668       char* start, *end;
669       // exe-name is between the first pair of ( and )
670       start = strchr(buffer, '(');
671       if (start != NULL && start[1] != '\0') {
672         start++;
673         end = strrchr(start, ')');
674         if (end != NULL) {
675           size_t len;
676           len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
677           memcpy(_exeName, start, len);
678           _exeName[len] = '\0';
679         }
680       }
681     }
682     fclose(fp);
683   }
684 }
685 
686 // get command line from /proc/<pid>/cmdline
get_cmdline()687 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
688   FILE* fp;
689   char  buffer[PATH_MAX];
690   char* cmdline = NULL;
691 
692   jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
693   buffer[PATH_MAX - 1] = '\0';
694   if ((fp = fopen(buffer, "r")) != NULL) {
695     size_t size = 0;
696     char   dummy;
697 
698     // find out how long the file is (stat always returns 0)
699     while (fread(&dummy, 1, 1, fp) == 1) {
700       size++;
701     }
702     if (size > 0) {
703       cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
704       cmdline[0] = '\0';
705       if (fseek(fp, 0, SEEK_SET) == 0) {
706         if (fread(cmdline, 1, size, fp) == size) {
707           // the file has the arguments separated by '\0',
708           // so we translate '\0' to ' '
709           for (size_t i = 0; i < size; i++) {
710             if (cmdline[i] == '\0') {
711               cmdline[i] = ' ';
712             }
713           }
714           cmdline[size] = '\0';
715         }
716       }
717     }
718     fclose(fp);
719   }
720   return cmdline;
721 }
722 
723 // get full path to exe from /proc/<pid>/exe symlink
get_exe_path()724 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
725   char buffer[PATH_MAX];
726 
727   jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
728   buffer[PATH_MAX - 1] = '\0';
729   return realpath(buffer, _exePath);
730 }
731 
allocate_string(const char * str) const732 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
733   if (str != NULL) {
734     return os::strdup_check_oom(str, mtInternal);
735   }
736   return NULL;
737 }
738 
current(SystemProcess * process_info)739 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
740   if (!is_valid()) {
741     return OS_ERR;
742   }
743 
744   process_info->set_pid(atoi(_entry->d_name));
745 
746   get_exe_name();
747   process_info->set_name(allocate_string(_exeName));
748 
749   if (get_exe_path() != NULL) {
750      process_info->set_path(allocate_string(_exePath));
751   }
752 
753   char* cmdline = NULL;
754   cmdline = get_cmdline();
755   if (cmdline != NULL) {
756     process_info->set_command_line(allocate_string(cmdline));
757     FREE_C_HEAP_ARRAY(char, cmdline);
758   }
759 
760   return OS_OK;
761 }
762 
next_process()763 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
764   if (!is_valid()) {
765     return OS_ERR;
766   }
767 
768   do {
769     _entry = os::readdir(_dir);
770     if (_entry == NULL) {
771       // Error or reached end.  Could use errno to distinguish those cases.
772       _valid = false;
773       return OS_ERR;
774     }
775   } while(!is_valid_entry(_entry));
776 
777   _valid = true;
778   return OS_OK;
779 }
780 
ProcessIterator()781 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
782   _dir = NULL;
783   _entry = NULL;
784   _valid = false;
785 }
786 
initialize()787 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
788   // Not yet implemented.
789   return false;
790 }
791 
~ProcessIterator()792 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
793   if (_dir != NULL) {
794     os::closedir(_dir);
795   }
796 }
797 
SystemProcesses()798 SystemProcessInterface::SystemProcesses::SystemProcesses() {
799   _iterator = NULL;
800 }
801 
initialize()802 bool SystemProcessInterface::SystemProcesses::initialize() {
803   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
804   return _iterator->initialize();
805 }
806 
~SystemProcesses()807 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
808   if (_iterator != NULL) {
809     delete _iterator;
810   }
811 }
812 
system_processes(SystemProcess ** system_processes,int * no_of_sys_processes) const813 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
814   assert(system_processes != NULL, "system_processes pointer is NULL!");
815   assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
816   assert(_iterator != NULL, "iterator is NULL!");
817 
818   // initialize pointers
819   *no_of_sys_processes = 0;
820   *system_processes = NULL;
821 
822   while (_iterator->is_valid()) {
823     SystemProcess* tmp = new SystemProcess();
824     _iterator->current(tmp);
825 
826     //if already existing head
827     if (*system_processes != NULL) {
828       //move "first to second"
829       tmp->set_next(*system_processes);
830     }
831     // new head
832     *system_processes = tmp;
833     // increment
834     (*no_of_sys_processes)++;
835     // step forward
836     _iterator->next_process();
837   }
838   return OS_OK;
839 }
840 
system_processes(SystemProcess ** system_procs,int * no_of_sys_processes) const841 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
842   return _impl->system_processes(system_procs, no_of_sys_processes);
843 }
844 
SystemProcessInterface()845 SystemProcessInterface::SystemProcessInterface() {
846   _impl = NULL;
847 }
848 
initialize()849 bool SystemProcessInterface::initialize() {
850   _impl = new SystemProcessInterface::SystemProcesses();
851   return _impl->initialize();
852 }
853 
~SystemProcessInterface()854 SystemProcessInterface::~SystemProcessInterface() {
855   if (_impl != NULL) {
856     delete _impl;
857   }
858 }
859 
CPUInformationInterface()860 CPUInformationInterface::CPUInformationInterface() {
861   _cpu_info = NULL;
862 }
863 
initialize()864 bool CPUInformationInterface::initialize() {
865   _cpu_info = new CPUInformation();
866   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
867   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
868   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
869   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
870   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
871   return true;
872 }
873 
~CPUInformationInterface()874 CPUInformationInterface::~CPUInformationInterface() {
875   if (_cpu_info != NULL) {
876     if (_cpu_info->cpu_name() != NULL) {
877       const char* cpu_name = _cpu_info->cpu_name();
878       FREE_C_HEAP_ARRAY(char, cpu_name);
879       _cpu_info->set_cpu_name(NULL);
880     }
881     if (_cpu_info->cpu_description() != NULL) {
882        const char* cpu_desc = _cpu_info->cpu_description();
883        FREE_C_HEAP_ARRAY(char, cpu_desc);
884       _cpu_info->set_cpu_description(NULL);
885     }
886     delete _cpu_info;
887   }
888 }
889 
cpu_information(CPUInformation & cpu_info)890 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
891   if (_cpu_info == NULL) {
892     return OS_ERR;
893   }
894 
895   cpu_info = *_cpu_info; // shallow copy assignment
896   return OS_OK;
897 }
898 
899 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
900   friend class NetworkPerformanceInterface;
901  private:
902   NetworkPerformance();
903   NONCOPYABLE(NetworkPerformance);
904   bool initialize();
905   ~NetworkPerformance();
906   int network_utilization(NetworkInterface** network_interfaces) const;
907 };
908 
NetworkPerformance()909 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
910 
911 }
912 
initialize()913 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
914   return true;
915 }
916 
~NetworkPerformance()917 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
918 }
919 
network_utilization(NetworkInterface ** network_interfaces) const920 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
921 {
922   return FUNCTIONALITY_NOT_IMPLEMENTED;
923 }
924 
NetworkPerformanceInterface()925 NetworkPerformanceInterface::NetworkPerformanceInterface() {
926   _impl = NULL;
927 }
928 
~NetworkPerformanceInterface()929 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
930   if (_impl != NULL) {
931     delete _impl;
932   }
933 }
934 
initialize()935 bool NetworkPerformanceInterface::initialize() {
936   _impl = new NetworkPerformanceInterface::NetworkPerformance();
937   return _impl->initialize();
938 }
939 
network_utilization(NetworkInterface ** network_interfaces) const940 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
941   return _impl->network_utilization(network_interfaces);
942 }
943