1 /*
2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3  * Use is subject to license terms.
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with this library; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /* *********************************************************************
25  *
26  * The Original Code is the elliptic curve math library for prime field curves.
27  *
28  * The Initial Developer of the Original Code is
29  * Sun Microsystems, Inc.
30  * Portions created by the Initial Developer are Copyright (C) 2003
31  * the Initial Developer. All Rights Reserved.
32  *
33  * Contributor(s):
34  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
35  *   Stephen Fung <fungstep@hotmail.com>, and
36  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
37  *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
38  *   Nils Larsch <nla@trustcenter.de>, and
39  *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
40  *
41  * Last Modified Date from the Original Code: May 2017
42  *********************************************************************** */
43 
44 #include "ecp.h"
45 #include "mplogic.h"
46 #ifndef _KERNEL
47 #include <stdlib.h>
48 #endif
49 #ifdef ECL_DEBUG
50 #include <assert.h>
51 #endif
52 
53 /* Converts a point P(px, py) from affine coordinates to Jacobian
54  * projective coordinates R(rx, ry, rz). Assumes input is already
55  * field-encoded using field_enc, and returns output that is still
56  * field-encoded. */
57 mp_err
ec_GFp_pt_aff2jac(const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,mp_int * rz,const ECGroup * group)58 ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
59                                   mp_int *ry, mp_int *rz, const ECGroup *group)
60 {
61         mp_err res = MP_OKAY;
62 
63         if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
64                 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
65         } else {
66                 MP_CHECKOK(mp_copy(px, rx));
67                 MP_CHECKOK(mp_copy(py, ry));
68                 MP_CHECKOK(mp_set_int(rz, 1));
69                 if (group->meth->field_enc) {
70                         MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
71                 }
72         }
73   CLEANUP:
74         return res;
75 }
76 
77 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
78  * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
79  * Assumes input is already field-encoded using field_enc, and returns
80  * output that is still field-encoded. */
81 mp_err
ec_GFp_pt_jac2aff(const mp_int * px,const mp_int * py,const mp_int * pz,mp_int * rx,mp_int * ry,const ECGroup * group)82 ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
83                                   mp_int *rx, mp_int *ry, const ECGroup *group)
84 {
85         mp_err res = MP_OKAY;
86         mp_int z1, z2, z3;
87 
88         MP_DIGITS(&z1) = 0;
89         MP_DIGITS(&z2) = 0;
90         MP_DIGITS(&z3) = 0;
91         MP_CHECKOK(mp_init(&z1, FLAG(px)));
92         MP_CHECKOK(mp_init(&z2, FLAG(px)));
93         MP_CHECKOK(mp_init(&z3, FLAG(px)));
94 
95         /* if point at infinity, then set point at infinity and exit */
96         if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
97                 MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
98                 goto CLEANUP;
99         }
100 
101         /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
102         if (mp_cmp_d(pz, 1) == 0) {
103                 MP_CHECKOK(mp_copy(px, rx));
104                 MP_CHECKOK(mp_copy(py, ry));
105         } else {
106                 MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
107                 MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
108                 MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
109                 MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
110                 MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
111         }
112 
113   CLEANUP:
114         mp_clear(&z1);
115         mp_clear(&z2);
116         mp_clear(&z3);
117         return res;
118 }
119 
120 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
121  * coordinates. */
122 mp_err
ec_GFp_pt_is_inf_jac(const mp_int * px,const mp_int * py,const mp_int * pz)123 ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
124 {
125         return mp_cmp_z(pz);
126 }
127 
128 /* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
129  * coordinates. */
130 mp_err
ec_GFp_pt_set_inf_jac(mp_int * px,mp_int * py,mp_int * pz)131 ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
132 {
133         mp_zero(pz);
134         return MP_OKAY;
135 }
136 
137 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
138  * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
139  * Uses mixed Jacobian-affine coordinates. Assumes input is already
140  * field-encoded using field_enc, and returns output that is still
141  * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
142  * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
143  * Fields. */
144 mp_err
ec_GFp_pt_add_jac_aff(const mp_int * px,const mp_int * py,const mp_int * pz,const mp_int * qx,const mp_int * qy,mp_int * rx,mp_int * ry,mp_int * rz,const ECGroup * group)145 ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
146                                           const mp_int *qx, const mp_int *qy, mp_int *rx,
147                                           mp_int *ry, mp_int *rz, const ECGroup *group)
148 {
149         mp_err res = MP_OKAY;
150         mp_int A, B, C, D, C2, C3;
151 
152         MP_DIGITS(&A) = 0;
153         MP_DIGITS(&B) = 0;
154         MP_DIGITS(&C) = 0;
155         MP_DIGITS(&D) = 0;
156         MP_DIGITS(&C2) = 0;
157         MP_DIGITS(&C3) = 0;
158         MP_CHECKOK(mp_init(&A, FLAG(px)));
159         MP_CHECKOK(mp_init(&B, FLAG(px)));
160         MP_CHECKOK(mp_init(&C, FLAG(px)));
161         MP_CHECKOK(mp_init(&D, FLAG(px)));
162         MP_CHECKOK(mp_init(&C2, FLAG(px)));
163         MP_CHECKOK(mp_init(&C3, FLAG(px)));
164 
165         /* If either P or Q is the point at infinity, then return the other
166          * point */
167         if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
168                 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
169                 goto CLEANUP;
170         }
171         if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
172                 MP_CHECKOK(mp_copy(px, rx));
173                 MP_CHECKOK(mp_copy(py, ry));
174                 MP_CHECKOK(mp_copy(pz, rz));
175                 goto CLEANUP;
176         }
177 
178         /* A = qx * pz^2, B = qy * pz^3 */
179         MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
180         MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
181         MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
182         MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
183 
184         /*
185          * Additional checks for point equality and point at infinity
186          */
187         if (mp_cmp(px, &A) == 0 && mp_cmp(py, &B) == 0) {
188             /* POINT_DOUBLE(P) */
189             MP_CHECKOK(ec_GFp_pt_dbl_jac(px, py, pz, rx, ry, rz, group));
190             goto CLEANUP;
191         }
192 
193         /* C = A - px, D = B - py */
194         MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
195         MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
196 
197         /* C2 = C^2, C3 = C^3 */
198         MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
199         MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
200 
201         /* rz = pz * C */
202         MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
203 
204         /* C = px * C^2 */
205         MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
206         /* A = D^2 */
207         MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
208 
209         /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
210         MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
211         MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
212         MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
213 
214         /* C3 = py * C^3 */
215         MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
216 
217         /* ry = D * (px * C^2 - rx) - py * C^3 */
218         MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
219         MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
220         MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
221 
222   CLEANUP:
223         mp_clear(&A);
224         mp_clear(&B);
225         mp_clear(&C);
226         mp_clear(&D);
227         mp_clear(&C2);
228         mp_clear(&C3);
229         return res;
230 }
231 
232 /* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
233  * Jacobian coordinates.
234  *
235  * Assumes input is already field-encoded using field_enc, and returns
236  * output that is still field-encoded.
237  *
238  * This routine implements Point Doubling in the Jacobian Projective
239  * space as described in the paper "Efficient elliptic curve exponentiation
240  * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
241  */
242 mp_err
ec_GFp_pt_dbl_jac(const mp_int * px,const mp_int * py,const mp_int * pz,mp_int * rx,mp_int * ry,mp_int * rz,const ECGroup * group)243 ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
244                                   mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
245 {
246         mp_err res = MP_OKAY;
247         mp_int t0, t1, M, S;
248 
249         MP_DIGITS(&t0) = 0;
250         MP_DIGITS(&t1) = 0;
251         MP_DIGITS(&M) = 0;
252         MP_DIGITS(&S) = 0;
253         MP_CHECKOK(mp_init(&t0, FLAG(px)));
254         MP_CHECKOK(mp_init(&t1, FLAG(px)));
255         MP_CHECKOK(mp_init(&M, FLAG(px)));
256         MP_CHECKOK(mp_init(&S, FLAG(px)));
257 
258         if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
259                 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
260                 goto CLEANUP;
261         }
262 
263         if (mp_cmp_d(pz, 1) == 0) {
264                 /* M = 3 * px^2 + a */
265                 MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
266                 MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
267                 MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
268                 MP_CHECKOK(group->meth->
269                                    field_add(&t0, &group->curvea, &M, group->meth));
270         } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
271                 /* M = 3 * (px + pz^2) * (px - pz^2) */
272                 MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
273                 MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
274                 MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
275                 MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
276                 MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
277                 MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
278         } else {
279                 /* M = 3 * (px^2) + a * (pz^4) */
280                 MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
281                 MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
282                 MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
283                 MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
284                 MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
285                 MP_CHECKOK(group->meth->
286                                    field_mul(&M, &group->curvea, &M, group->meth));
287                 MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
288         }
289 
290         /* rz = 2 * py * pz */
291         /* t0 = 4 * py^2 */
292         if (mp_cmp_d(pz, 1) == 0) {
293                 MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
294                 MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
295         } else {
296                 MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
297                 MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
298                 MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
299         }
300 
301         /* S = 4 * px * py^2 = px * (2 * py)^2 */
302         MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
303 
304         /* rx = M^2 - 2 * S */
305         MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
306         MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
307         MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
308 
309         /* ry = M * (S - rx) - 8 * py^4 */
310         MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
311         if (mp_isodd(&t1)) {
312                 MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
313         }
314         MP_CHECKOK(mp_div_2(&t1, &t1));
315         MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
316         MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
317         MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
318 
319   CLEANUP:
320         mp_clear(&t0);
321         mp_clear(&t1);
322         mp_clear(&M);
323         mp_clear(&S);
324         return res;
325 }
326 
327 /* by default, this routine is unused and thus doesn't need to be compiled */
328 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
329 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
330  * a, b and p are the elliptic curve coefficients and the prime that
331  * determines the field GFp.  Elliptic curve points P and R can be
332  * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
333  * already field-encoded using field_enc, and returns output that is still
334  * field-encoded. Uses 4-bit window method. */
335 mp_err
ec_GFp_pt_mul_jac(const mp_int * n,const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group)336 ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
337                                   mp_int *rx, mp_int *ry, const ECGroup *group)
338 {
339         mp_err res = MP_OKAY;
340         mp_int precomp[16][2], rz;
341         int i, ni, d;
342 
343         MP_DIGITS(&rz) = 0;
344         for (i = 0; i < 16; i++) {
345                 MP_DIGITS(&precomp[i][0]) = 0;
346                 MP_DIGITS(&precomp[i][1]) = 0;
347         }
348 
349         ARGCHK(group != NULL, MP_BADARG);
350         ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
351 
352         /* initialize precomputation table */
353         for (i = 0; i < 16; i++) {
354                 MP_CHECKOK(mp_init(&precomp[i][0]));
355                 MP_CHECKOK(mp_init(&precomp[i][1]));
356         }
357 
358         /* fill precomputation table */
359         mp_zero(&precomp[0][0]);
360         mp_zero(&precomp[0][1]);
361         MP_CHECKOK(mp_copy(px, &precomp[1][0]));
362         MP_CHECKOK(mp_copy(py, &precomp[1][1]));
363         for (i = 2; i < 16; i++) {
364                 MP_CHECKOK(group->
365                                    point_add(&precomp[1][0], &precomp[1][1],
366                                                          &precomp[i - 1][0], &precomp[i - 1][1],
367                                                          &precomp[i][0], &precomp[i][1], group));
368         }
369 
370         d = (mpl_significant_bits(n) + 3) / 4;
371 
372         /* R = inf */
373         MP_CHECKOK(mp_init(&rz));
374         MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
375 
376         for (i = d - 1; i >= 0; i--) {
377                 /* compute window ni */
378                 ni = MP_GET_BIT(n, 4 * i + 3);
379                 ni <<= 1;
380                 ni |= MP_GET_BIT(n, 4 * i + 2);
381                 ni <<= 1;
382                 ni |= MP_GET_BIT(n, 4 * i + 1);
383                 ni <<= 1;
384                 ni |= MP_GET_BIT(n, 4 * i);
385                 /* R = 2^4 * R */
386                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
387                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
388                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
389                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
390                 /* R = R + (ni * P) */
391                 MP_CHECKOK(ec_GFp_pt_add_jac_aff
392                                    (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
393                                         &rz, group));
394         }
395 
396         /* convert result S to affine coordinates */
397         MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
398 
399   CLEANUP:
400         mp_clear(&rz);
401         for (i = 0; i < 16; i++) {
402                 mp_clear(&precomp[i][0]);
403                 mp_clear(&precomp[i][1]);
404         }
405         return res;
406 }
407 #endif
408 
409 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
410  * k2 * P(x, y), where G is the generator (base point) of the group of
411  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
412  * Uses mixed Jacobian-affine coordinates. Input and output values are
413  * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
414  * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
415  * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
416 mp_err
ec_GFp_pts_mul_jac(const mp_int * k1,const mp_int * k2,const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group,int timing)417 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
418                                    const mp_int *py, mp_int *rx, mp_int *ry,
419                                    const ECGroup *group, int timing)
420 {
421         mp_err res = MP_OKAY;
422         mp_int precomp[4][4][2];
423         mp_int rz;
424         const mp_int *a, *b;
425         int i, j;
426         int ai, bi, d;
427 
428         for (i = 0; i < 4; i++) {
429                 for (j = 0; j < 4; j++) {
430                         MP_DIGITS(&precomp[i][j][0]) = 0;
431                         MP_DIGITS(&precomp[i][j][1]) = 0;
432                 }
433         }
434         MP_DIGITS(&rz) = 0;
435 
436         ARGCHK(group != NULL, MP_BADARG);
437         ARGCHK(!((k1 == NULL)
438                          && ((k2 == NULL) || (px == NULL)
439                                  || (py == NULL))), MP_BADARG);
440 
441         /* if some arguments are not defined used ECPoint_mul */
442         if (k1 == NULL) {
443                 return ECPoint_mul(group, k2, px, py, rx, ry, timing);
444         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
445                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing);
446         }
447 
448         /* initialize precomputation table */
449         for (i = 0; i < 4; i++) {
450                 for (j = 0; j < 4; j++) {
451                         MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
452                         MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
453                 }
454         }
455 
456         /* fill precomputation table */
457         /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
458         if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
459                 a = k2;
460                 b = k1;
461                 if (group->meth->field_enc) {
462                         MP_CHECKOK(group->meth->
463                                            field_enc(px, &precomp[1][0][0], group->meth));
464                         MP_CHECKOK(group->meth->
465                                            field_enc(py, &precomp[1][0][1], group->meth));
466                 } else {
467                         MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
468                         MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
469                 }
470                 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
471                 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
472         } else {
473                 a = k1;
474                 b = k2;
475                 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
476                 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
477                 if (group->meth->field_enc) {
478                         MP_CHECKOK(group->meth->
479                                            field_enc(px, &precomp[0][1][0], group->meth));
480                         MP_CHECKOK(group->meth->
481                                            field_enc(py, &precomp[0][1][1], group->meth));
482                 } else {
483                         MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
484                         MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
485                 }
486         }
487         /* precompute [*][0][*] */
488         mp_zero(&precomp[0][0][0]);
489         mp_zero(&precomp[0][0][1]);
490         MP_CHECKOK(group->
491                            point_dbl(&precomp[1][0][0], &precomp[1][0][1],
492                                                  &precomp[2][0][0], &precomp[2][0][1], group));
493         MP_CHECKOK(group->
494                            point_add(&precomp[1][0][0], &precomp[1][0][1],
495                                                  &precomp[2][0][0], &precomp[2][0][1],
496                                                  &precomp[3][0][0], &precomp[3][0][1], group));
497         /* precompute [*][1][*] */
498         for (i = 1; i < 4; i++) {
499                 MP_CHECKOK(group->
500                                    point_add(&precomp[0][1][0], &precomp[0][1][1],
501                                                          &precomp[i][0][0], &precomp[i][0][1],
502                                                          &precomp[i][1][0], &precomp[i][1][1], group));
503         }
504         /* precompute [*][2][*] */
505         MP_CHECKOK(group->
506                            point_dbl(&precomp[0][1][0], &precomp[0][1][1],
507                                                  &precomp[0][2][0], &precomp[0][2][1], group));
508         for (i = 1; i < 4; i++) {
509                 MP_CHECKOK(group->
510                                    point_add(&precomp[0][2][0], &precomp[0][2][1],
511                                                          &precomp[i][0][0], &precomp[i][0][1],
512                                                          &precomp[i][2][0], &precomp[i][2][1], group));
513         }
514         /* precompute [*][3][*] */
515         MP_CHECKOK(group->
516                            point_add(&precomp[0][1][0], &precomp[0][1][1],
517                                                  &precomp[0][2][0], &precomp[0][2][1],
518                                                  &precomp[0][3][0], &precomp[0][3][1], group));
519         for (i = 1; i < 4; i++) {
520                 MP_CHECKOK(group->
521                                    point_add(&precomp[0][3][0], &precomp[0][3][1],
522                                                          &precomp[i][0][0], &precomp[i][0][1],
523                                                          &precomp[i][3][0], &precomp[i][3][1], group));
524         }
525 
526         d = (mpl_significant_bits(a) + 1) / 2;
527 
528         /* R = inf */
529         MP_CHECKOK(mp_init(&rz, FLAG(k1)));
530         MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
531 
532         for (i = d - 1; i >= 0; i--) {
533                 ai = MP_GET_BIT(a, 2 * i + 1);
534                 ai <<= 1;
535                 ai |= MP_GET_BIT(a, 2 * i);
536                 bi = MP_GET_BIT(b, 2 * i + 1);
537                 bi <<= 1;
538                 bi |= MP_GET_BIT(b, 2 * i);
539                 /* R = 2^2 * R */
540                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
541                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
542                 /* R = R + (ai * A + bi * B) */
543                 MP_CHECKOK(ec_GFp_pt_add_jac_aff
544                                    (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
545                                         rx, ry, &rz, group));
546         }
547 
548         MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
549 
550         if (group->meth->field_dec) {
551                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
552                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
553         }
554 
555   CLEANUP:
556         mp_clear(&rz);
557         for (i = 0; i < 4; i++) {
558                 for (j = 0; j < 4; j++) {
559                         mp_clear(&precomp[i][j][0]);
560                         mp_clear(&precomp[i][j][1]);
561                 }
562         }
563         return res;
564 }
565