1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "interp_masm_x86.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "logging/log.hpp"
30 #include "oops/arrayOop.hpp"
31 #include "oops/markWord.hpp"
32 #include "oops/methodData.hpp"
33 #include "oops/method.hpp"
34 #include "prims/jvmtiExport.hpp"
35 #include "prims/jvmtiThreadState.hpp"
36 #include "runtime/basicLock.hpp"
37 #include "runtime/biasedLocking.hpp"
38 #include "runtime/frame.inline.hpp"
39 #include "runtime/safepointMechanism.hpp"
40 #include "runtime/sharedRuntime.hpp"
41 #include "runtime/thread.inline.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 
44 // Implementation of InterpreterMacroAssembler
45 
jump_to_entry(address entry)46 void InterpreterMacroAssembler::jump_to_entry(address entry) {
47   assert(entry, "Entry must have been generated by now");
48   jump(RuntimeAddress(entry));
49 }
50 
profile_obj_type(Register obj,const Address & mdo_addr)51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
52   Label update, next, none;
53 
54   interp_verify_oop(obj, atos);
55 
56   testptr(obj, obj);
57   jccb(Assembler::notZero, update);
58   orptr(mdo_addr, TypeEntries::null_seen);
59   jmpb(next);
60 
61   bind(update);
62   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
63   load_klass(obj, obj, tmp_load_klass);
64 
65   xorptr(obj, mdo_addr);
66   testptr(obj, TypeEntries::type_klass_mask);
67   jccb(Assembler::zero, next); // klass seen before, nothing to
68                                // do. The unknown bit may have been
69                                // set already but no need to check.
70 
71   testptr(obj, TypeEntries::type_unknown);
72   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
73 
74   cmpptr(mdo_addr, 0);
75   jccb(Assembler::equal, none);
76   cmpptr(mdo_addr, TypeEntries::null_seen);
77   jccb(Assembler::equal, none);
78   // There is a chance that the checks above (re-reading profiling
79   // data from memory) fail if another thread has just set the
80   // profiling to this obj's klass
81   xorptr(obj, mdo_addr);
82   testptr(obj, TypeEntries::type_klass_mask);
83   jccb(Assembler::zero, next);
84 
85   // different than before. Cannot keep accurate profile.
86   orptr(mdo_addr, TypeEntries::type_unknown);
87   jmpb(next);
88 
89   bind(none);
90   // first time here. Set profile type.
91   movptr(mdo_addr, obj);
92 
93   bind(next);
94 }
95 
profile_arguments_type(Register mdp,Register callee,Register tmp,bool is_virtual)96 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
97   if (!ProfileInterpreter) {
98     return;
99   }
100 
101   if (MethodData::profile_arguments() || MethodData::profile_return()) {
102     Label profile_continue;
103 
104     test_method_data_pointer(mdp, profile_continue);
105 
106     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
107 
108     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
109     jcc(Assembler::notEqual, profile_continue);
110 
111     if (MethodData::profile_arguments()) {
112       Label done;
113       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
114       addptr(mdp, off_to_args);
115 
116       for (int i = 0; i < TypeProfileArgsLimit; i++) {
117         if (i > 0 || MethodData::profile_return()) {
118           // If return value type is profiled we may have no argument to profile
119           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
120           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
121           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
122           jcc(Assembler::less, done);
123         }
124         movptr(tmp, Address(callee, Method::const_offset()));
125         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
126         // stack offset o (zero based) from the start of the argument
127         // list, for n arguments translates into offset n - o - 1 from
128         // the end of the argument list
129         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
130         subl(tmp, 1);
131         Address arg_addr = argument_address(tmp);
132         movptr(tmp, arg_addr);
133 
134         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
135         profile_obj_type(tmp, mdo_arg_addr);
136 
137         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
138         addptr(mdp, to_add);
139         off_to_args += to_add;
140       }
141 
142       if (MethodData::profile_return()) {
143         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
144         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
145       }
146 
147       bind(done);
148 
149       if (MethodData::profile_return()) {
150         // We're right after the type profile for the last
151         // argument. tmp is the number of cells left in the
152         // CallTypeData/VirtualCallTypeData to reach its end. Non null
153         // if there's a return to profile.
154         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
155         shll(tmp, exact_log2(DataLayout::cell_size));
156         addptr(mdp, tmp);
157       }
158       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
159     } else {
160       assert(MethodData::profile_return(), "either profile call args or call ret");
161       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
162     }
163 
164     // mdp points right after the end of the
165     // CallTypeData/VirtualCallTypeData, right after the cells for the
166     // return value type if there's one
167 
168     bind(profile_continue);
169   }
170 }
171 
profile_return_type(Register mdp,Register ret,Register tmp)172 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
173   assert_different_registers(mdp, ret, tmp, _bcp_register);
174   if (ProfileInterpreter && MethodData::profile_return()) {
175     Label profile_continue;
176 
177     test_method_data_pointer(mdp, profile_continue);
178 
179     if (MethodData::profile_return_jsr292_only()) {
180       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
181 
182       // If we don't profile all invoke bytecodes we must make sure
183       // it's a bytecode we indeed profile. We can't go back to the
184       // begining of the ProfileData we intend to update to check its
185       // type because we're right after it and we don't known its
186       // length
187       Label do_profile;
188       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
189       jcc(Assembler::equal, do_profile);
190       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
191       jcc(Assembler::equal, do_profile);
192       get_method(tmp);
193       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
194       jcc(Assembler::notEqual, profile_continue);
195 
196       bind(do_profile);
197     }
198 
199     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
200     mov(tmp, ret);
201     profile_obj_type(tmp, mdo_ret_addr);
202 
203     bind(profile_continue);
204   }
205 }
206 
profile_parameters_type(Register mdp,Register tmp1,Register tmp2)207 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
208   if (ProfileInterpreter && MethodData::profile_parameters()) {
209     Label profile_continue;
210 
211     test_method_data_pointer(mdp, profile_continue);
212 
213     // Load the offset of the area within the MDO used for
214     // parameters. If it's negative we're not profiling any parameters
215     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
216     testl(tmp1, tmp1);
217     jcc(Assembler::negative, profile_continue);
218 
219     // Compute a pointer to the area for parameters from the offset
220     // and move the pointer to the slot for the last
221     // parameters. Collect profiling from last parameter down.
222     // mdo start + parameters offset + array length - 1
223     addptr(mdp, tmp1);
224     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
225     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
226 
227     Label loop;
228     bind(loop);
229 
230     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
231     int type_base = in_bytes(ParametersTypeData::type_offset(0));
232     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
233     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
234     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
235 
236     // load offset on the stack from the slot for this parameter
237     movptr(tmp2, arg_off);
238     negptr(tmp2);
239     // read the parameter from the local area
240     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
241 
242     // profile the parameter
243     profile_obj_type(tmp2, arg_type);
244 
245     // go to next parameter
246     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
247     jcc(Assembler::positive, loop);
248 
249     bind(profile_continue);
250   }
251 }
252 
call_VM_leaf_base(address entry_point,int number_of_arguments)253 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
254                                                   int number_of_arguments) {
255   // interpreter specific
256   //
257   // Note: No need to save/restore bcp & locals registers
258   //       since these are callee saved registers and no blocking/
259   //       GC can happen in leaf calls.
260   // Further Note: DO NOT save/restore bcp/locals. If a caller has
261   // already saved them so that it can use rsi/rdi as temporaries
262   // then a save/restore here will DESTROY the copy the caller
263   // saved! There used to be a save_bcp() that only happened in
264   // the ASSERT path (no restore_bcp). Which caused bizarre failures
265   // when jvm built with ASSERTs.
266 #ifdef ASSERT
267   {
268     Label L;
269     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
270     jcc(Assembler::equal, L);
271     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
272          " last_sp != NULL");
273     bind(L);
274   }
275 #endif
276   // super call
277   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
278   // interpreter specific
279   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
280   // but since they may not have been saved (and we don't want to
281   // save them here (see note above) the assert is invalid.
282 }
283 
call_VM_base(Register oop_result,Register java_thread,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)284 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
285                                              Register java_thread,
286                                              Register last_java_sp,
287                                              address  entry_point,
288                                              int      number_of_arguments,
289                                              bool     check_exceptions) {
290   // interpreter specific
291   //
292   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
293   //       really make a difference for these runtime calls, since they are
294   //       slow anyway. Btw., bcp must be saved/restored since it may change
295   //       due to GC.
296   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
297   save_bcp();
298 #ifdef ASSERT
299   {
300     Label L;
301     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
302     jcc(Assembler::equal, L);
303     stop("InterpreterMacroAssembler::call_VM_base:"
304          " last_sp != NULL");
305     bind(L);
306   }
307 #endif /* ASSERT */
308   // super call
309   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
310                                entry_point, number_of_arguments,
311                                check_exceptions);
312   // interpreter specific
313   restore_bcp();
314   restore_locals();
315 }
316 
check_and_handle_popframe(Register java_thread)317 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
318   if (JvmtiExport::can_pop_frame()) {
319     Label L;
320     // Initiate popframe handling only if it is not already being
321     // processed.  If the flag has the popframe_processing bit set, it
322     // means that this code is called *during* popframe handling - we
323     // don't want to reenter.
324     // This method is only called just after the call into the vm in
325     // call_VM_base, so the arg registers are available.
326     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
327                         LP64_ONLY(c_rarg0);
328     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
329     testl(pop_cond, JavaThread::popframe_pending_bit);
330     jcc(Assembler::zero, L);
331     testl(pop_cond, JavaThread::popframe_processing_bit);
332     jcc(Assembler::notZero, L);
333     // Call Interpreter::remove_activation_preserving_args_entry() to get the
334     // address of the same-named entrypoint in the generated interpreter code.
335     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
336     jmp(rax);
337     bind(L);
338     NOT_LP64(get_thread(java_thread);)
339   }
340 }
341 
load_earlyret_value(TosState state)342 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
343   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
344   NOT_LP64(get_thread(thread);)
345   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
346   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
347   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
348   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
349 #ifdef _LP64
350   switch (state) {
351     case atos: movptr(rax, oop_addr);
352                movptr(oop_addr, (int32_t)NULL_WORD);
353                interp_verify_oop(rax, state);         break;
354     case ltos: movptr(rax, val_addr);                 break;
355     case btos:                                   // fall through
356     case ztos:                                   // fall through
357     case ctos:                                   // fall through
358     case stos:                                   // fall through
359     case itos: movl(rax, val_addr);                 break;
360     case ftos: load_float(val_addr);                break;
361     case dtos: load_double(val_addr);               break;
362     case vtos: /* nothing to do */                  break;
363     default  : ShouldNotReachHere();
364   }
365   // Clean up tos value in the thread object
366   movl(tos_addr,  (int) ilgl);
367   movl(val_addr,  (int32_t) NULL_WORD);
368 #else
369   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
370                              + in_ByteSize(wordSize));
371   switch (state) {
372     case atos: movptr(rax, oop_addr);
373                movptr(oop_addr, NULL_WORD);
374                interp_verify_oop(rax, state);         break;
375     case ltos:
376                movl(rdx, val_addr1);               // fall through
377     case btos:                                     // fall through
378     case ztos:                                     // fall through
379     case ctos:                                     // fall through
380     case stos:                                     // fall through
381     case itos: movl(rax, val_addr);                   break;
382     case ftos: load_float(val_addr);                  break;
383     case dtos: load_double(val_addr);                 break;
384     case vtos: /* nothing to do */                    break;
385     default  : ShouldNotReachHere();
386   }
387 #endif // _LP64
388   // Clean up tos value in the thread object
389   movl(tos_addr,  (int32_t) ilgl);
390   movptr(val_addr,  NULL_WORD);
391   NOT_LP64(movptr(val_addr1, NULL_WORD);)
392 }
393 
394 
check_and_handle_earlyret(Register java_thread)395 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
396   if (JvmtiExport::can_force_early_return()) {
397     Label L;
398     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
399     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
400 
401     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
402     testptr(tmp, tmp);
403     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
404 
405     // Initiate earlyret handling only if it is not already being processed.
406     // If the flag has the earlyret_processing bit set, it means that this code
407     // is called *during* earlyret handling - we don't want to reenter.
408     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
409     cmpl(tmp, JvmtiThreadState::earlyret_pending);
410     jcc(Assembler::notEqual, L);
411 
412     // Call Interpreter::remove_activation_early_entry() to get the address of the
413     // same-named entrypoint in the generated interpreter code.
414     NOT_LP64(get_thread(java_thread);)
415     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
416 #ifdef _LP64
417     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
418     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
419 #else
420     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
421     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
422 #endif // _LP64
423     jmp(rax);
424     bind(L);
425     NOT_LP64(get_thread(java_thread);)
426   }
427 }
428 
get_unsigned_2_byte_index_at_bcp(Register reg,int bcp_offset)429 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
430   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
431   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
432   bswapl(reg);
433   shrl(reg, 16);
434 }
435 
get_cache_index_at_bcp(Register index,int bcp_offset,size_t index_size)436 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
437                                                        int bcp_offset,
438                                                        size_t index_size) {
439   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
440   if (index_size == sizeof(u2)) {
441     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
442   } else if (index_size == sizeof(u4)) {
443     movl(index, Address(_bcp_register, bcp_offset));
444     // Check if the secondary index definition is still ~x, otherwise
445     // we have to change the following assembler code to calculate the
446     // plain index.
447     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
448     notl(index);  // convert to plain index
449   } else if (index_size == sizeof(u1)) {
450     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
451   } else {
452     ShouldNotReachHere();
453   }
454 }
455 
get_cache_and_index_at_bcp(Register cache,Register index,int bcp_offset,size_t index_size)456 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
457                                                            Register index,
458                                                            int bcp_offset,
459                                                            size_t index_size) {
460   assert_different_registers(cache, index);
461   get_cache_index_at_bcp(index, bcp_offset, index_size);
462   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
463   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
464   // convert from field index to ConstantPoolCacheEntry index
465   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
466   shll(index, 2);
467 }
468 
get_cache_and_index_and_bytecode_at_bcp(Register cache,Register index,Register bytecode,int byte_no,int bcp_offset,size_t index_size)469 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
470                                                                         Register index,
471                                                                         Register bytecode,
472                                                                         int byte_no,
473                                                                         int bcp_offset,
474                                                                         size_t index_size) {
475   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
476   // We use a 32-bit load here since the layout of 64-bit words on
477   // little-endian machines allow us that.
478   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
479   const int shift_count = (1 + byte_no) * BitsPerByte;
480   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
481          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
482          "correct shift count");
483   shrl(bytecode, shift_count);
484   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
485   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
486 }
487 
get_cache_entry_pointer_at_bcp(Register cache,Register tmp,int bcp_offset,size_t index_size)488 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
489                                                                Register tmp,
490                                                                int bcp_offset,
491                                                                size_t index_size) {
492   assert_different_registers(cache, tmp);
493 
494   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
495   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
496   // convert from field index to ConstantPoolCacheEntry index
497   // and from word offset to byte offset
498   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
499   shll(tmp, 2 + LogBytesPerWord);
500   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
501   // skip past the header
502   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
503   addptr(cache, tmp);  // construct pointer to cache entry
504 }
505 
506 // Load object from cpool->resolved_references(index)
load_resolved_reference_at_index(Register result,Register index,Register tmp)507 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
508                                                                  Register index,
509                                                                  Register tmp) {
510   assert_different_registers(result, index);
511 
512   get_constant_pool(result);
513   // load pointer for resolved_references[] objArray
514   movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
515   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
516   resolve_oop_handle(result, tmp);
517   load_heap_oop(result, Address(result, index,
518                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
519                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
520 }
521 
522 // load cpool->resolved_klass_at(index)
load_resolved_klass_at_index(Register klass,Register cpool,Register index)523 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
524                                                              Register cpool,
525                                                              Register index) {
526   assert_different_registers(cpool, index);
527 
528   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
529   Register resolved_klasses = cpool;
530   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
531   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
532 }
533 
load_resolved_method_at_index(int byte_no,Register method,Register cache,Register index)534 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
535                                                               Register method,
536                                                               Register cache,
537                                                               Register index) {
538   assert_different_registers(cache, index);
539 
540   const int method_offset = in_bytes(
541     ConstantPoolCache::base_offset() +
542       ((byte_no == TemplateTable::f2_byte)
543        ? ConstantPoolCacheEntry::f2_offset()
544        : ConstantPoolCacheEntry::f1_offset()));
545 
546   movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method*
547 }
548 
549 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
550 // subtype of super_klass.
551 //
552 // Args:
553 //      rax: superklass
554 //      Rsub_klass: subklass
555 //
556 // Kills:
557 //      rcx, rdi
gen_subtype_check(Register Rsub_klass,Label & ok_is_subtype)558 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
559                                                   Label& ok_is_subtype) {
560   assert(Rsub_klass != rax, "rax holds superklass");
561   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
562   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
563   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
564   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
565 
566   // Profile the not-null value's klass.
567   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
568 
569   // Do the check.
570   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
571 
572   // Profile the failure of the check.
573   profile_typecheck_failed(rcx); // blows rcx
574 }
575 
576 
577 #ifndef _LP64
f2ieee()578 void InterpreterMacroAssembler::f2ieee() {
579   if (IEEEPrecision) {
580     fstp_s(Address(rsp, 0));
581     fld_s(Address(rsp, 0));
582   }
583 }
584 
585 
d2ieee()586 void InterpreterMacroAssembler::d2ieee() {
587   if (IEEEPrecision) {
588     fstp_d(Address(rsp, 0));
589     fld_d(Address(rsp, 0));
590   }
591 }
592 #endif // _LP64
593 
594 // Java Expression Stack
595 
pop_ptr(Register r)596 void InterpreterMacroAssembler::pop_ptr(Register r) {
597   pop(r);
598 }
599 
push_ptr(Register r)600 void InterpreterMacroAssembler::push_ptr(Register r) {
601   push(r);
602 }
603 
push_i(Register r)604 void InterpreterMacroAssembler::push_i(Register r) {
605   push(r);
606 }
607 
push_i_or_ptr(Register r)608 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
609   push(r);
610 }
611 
push_f(XMMRegister r)612 void InterpreterMacroAssembler::push_f(XMMRegister r) {
613   subptr(rsp, wordSize);
614   movflt(Address(rsp, 0), r);
615 }
616 
pop_f(XMMRegister r)617 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
618   movflt(r, Address(rsp, 0));
619   addptr(rsp, wordSize);
620 }
621 
push_d(XMMRegister r)622 void InterpreterMacroAssembler::push_d(XMMRegister r) {
623   subptr(rsp, 2 * wordSize);
624   movdbl(Address(rsp, 0), r);
625 }
626 
pop_d(XMMRegister r)627 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
628   movdbl(r, Address(rsp, 0));
629   addptr(rsp, 2 * Interpreter::stackElementSize);
630 }
631 
632 #ifdef _LP64
pop_i(Register r)633 void InterpreterMacroAssembler::pop_i(Register r) {
634   // XXX can't use pop currently, upper half non clean
635   movl(r, Address(rsp, 0));
636   addptr(rsp, wordSize);
637 }
638 
pop_l(Register r)639 void InterpreterMacroAssembler::pop_l(Register r) {
640   movq(r, Address(rsp, 0));
641   addptr(rsp, 2 * Interpreter::stackElementSize);
642 }
643 
push_l(Register r)644 void InterpreterMacroAssembler::push_l(Register r) {
645   subptr(rsp, 2 * wordSize);
646   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
647   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
648 }
649 
pop(TosState state)650 void InterpreterMacroAssembler::pop(TosState state) {
651   switch (state) {
652   case atos: pop_ptr();                 break;
653   case btos:
654   case ztos:
655   case ctos:
656   case stos:
657   case itos: pop_i();                   break;
658   case ltos: pop_l();                   break;
659   case ftos: pop_f(xmm0);               break;
660   case dtos: pop_d(xmm0);               break;
661   case vtos: /* nothing to do */        break;
662   default:   ShouldNotReachHere();
663   }
664   interp_verify_oop(rax, state);
665 }
666 
push(TosState state)667 void InterpreterMacroAssembler::push(TosState state) {
668   interp_verify_oop(rax, state);
669   switch (state) {
670   case atos: push_ptr();                break;
671   case btos:
672   case ztos:
673   case ctos:
674   case stos:
675   case itos: push_i();                  break;
676   case ltos: push_l();                  break;
677   case ftos: push_f(xmm0);              break;
678   case dtos: push_d(xmm0);              break;
679   case vtos: /* nothing to do */        break;
680   default  : ShouldNotReachHere();
681   }
682 }
683 #else
pop_i(Register r)684 void InterpreterMacroAssembler::pop_i(Register r) {
685   pop(r);
686 }
687 
pop_l(Register lo,Register hi)688 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
689   pop(lo);
690   pop(hi);
691 }
692 
pop_f()693 void InterpreterMacroAssembler::pop_f() {
694   fld_s(Address(rsp, 0));
695   addptr(rsp, 1 * wordSize);
696 }
697 
pop_d()698 void InterpreterMacroAssembler::pop_d() {
699   fld_d(Address(rsp, 0));
700   addptr(rsp, 2 * wordSize);
701 }
702 
703 
pop(TosState state)704 void InterpreterMacroAssembler::pop(TosState state) {
705   switch (state) {
706     case atos: pop_ptr(rax);                                 break;
707     case btos:                                               // fall through
708     case ztos:                                               // fall through
709     case ctos:                                               // fall through
710     case stos:                                               // fall through
711     case itos: pop_i(rax);                                   break;
712     case ltos: pop_l(rax, rdx);                              break;
713     case ftos:
714       if (UseSSE >= 1) {
715         pop_f(xmm0);
716       } else {
717         pop_f();
718       }
719       break;
720     case dtos:
721       if (UseSSE >= 2) {
722         pop_d(xmm0);
723       } else {
724         pop_d();
725       }
726       break;
727     case vtos: /* nothing to do */                           break;
728     default  : ShouldNotReachHere();
729   }
730   interp_verify_oop(rax, state);
731 }
732 
733 
push_l(Register lo,Register hi)734 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
735   push(hi);
736   push(lo);
737 }
738 
push_f()739 void InterpreterMacroAssembler::push_f() {
740   // Do not schedule for no AGI! Never write beyond rsp!
741   subptr(rsp, 1 * wordSize);
742   fstp_s(Address(rsp, 0));
743 }
744 
push_d()745 void InterpreterMacroAssembler::push_d() {
746   // Do not schedule for no AGI! Never write beyond rsp!
747   subptr(rsp, 2 * wordSize);
748   fstp_d(Address(rsp, 0));
749 }
750 
751 
push(TosState state)752 void InterpreterMacroAssembler::push(TosState state) {
753   interp_verify_oop(rax, state);
754   switch (state) {
755     case atos: push_ptr(rax); break;
756     case btos:                                               // fall through
757     case ztos:                                               // fall through
758     case ctos:                                               // fall through
759     case stos:                                               // fall through
760     case itos: push_i(rax);                                    break;
761     case ltos: push_l(rax, rdx);                               break;
762     case ftos:
763       if (UseSSE >= 1) {
764         push_f(xmm0);
765       } else {
766         push_f();
767       }
768       break;
769     case dtos:
770       if (UseSSE >= 2) {
771         push_d(xmm0);
772       } else {
773         push_d();
774       }
775       break;
776     case vtos: /* nothing to do */                             break;
777     default  : ShouldNotReachHere();
778   }
779 }
780 #endif // _LP64
781 
782 
783 // Helpers for swap and dup
load_ptr(int n,Register val)784 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
785   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
786 }
787 
store_ptr(int n,Register val)788 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
789   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
790 }
791 
792 
prepare_to_jump_from_interpreted()793 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
794   // set sender sp
795   lea(_bcp_register, Address(rsp, wordSize));
796   // record last_sp
797   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
798 }
799 
800 
801 // Jump to from_interpreted entry of a call unless single stepping is possible
802 // in this thread in which case we must call the i2i entry
jump_from_interpreted(Register method,Register temp)803 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
804   prepare_to_jump_from_interpreted();
805 
806   if (JvmtiExport::can_post_interpreter_events()) {
807     Label run_compiled_code;
808     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
809     // compiled code in threads for which the event is enabled.  Check here for
810     // interp_only_mode if these events CAN be enabled.
811     // interp_only is an int, on little endian it is sufficient to test the byte only
812     // Is a cmpl faster?
813     LP64_ONLY(temp = r15_thread;)
814     NOT_LP64(get_thread(temp);)
815     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
816     jccb(Assembler::zero, run_compiled_code);
817     jmp(Address(method, Method::interpreter_entry_offset()));
818     bind(run_compiled_code);
819   }
820 
821   jmp(Address(method, Method::from_interpreted_offset()));
822 }
823 
824 // The following two routines provide a hook so that an implementation
825 // can schedule the dispatch in two parts.  x86 does not do this.
dispatch_prolog(TosState state,int step)826 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
827   // Nothing x86 specific to be done here
828 }
829 
dispatch_epilog(TosState state,int step)830 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
831   dispatch_next(state, step);
832 }
833 
dispatch_base(TosState state,address * table,bool verifyoop,bool generate_poll)834 void InterpreterMacroAssembler::dispatch_base(TosState state,
835                                               address* table,
836                                               bool verifyoop,
837                                               bool generate_poll) {
838   verify_FPU(1, state);
839   if (VerifyActivationFrameSize) {
840     Label L;
841     mov(rcx, rbp);
842     subptr(rcx, rsp);
843     int32_t min_frame_size =
844       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
845       wordSize;
846     cmpptr(rcx, (int32_t)min_frame_size);
847     jcc(Assembler::greaterEqual, L);
848     stop("broken stack frame");
849     bind(L);
850   }
851   if (verifyoop) {
852     interp_verify_oop(rax, state);
853   }
854 
855   address* const safepoint_table = Interpreter::safept_table(state);
856 #ifdef _LP64
857   Label no_safepoint, dispatch;
858   if (table != safepoint_table && generate_poll) {
859     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
860     testb(Address(r15_thread, Thread::polling_word_offset()), SafepointMechanism::poll_bit());
861 
862     jccb(Assembler::zero, no_safepoint);
863     lea(rscratch1, ExternalAddress((address)safepoint_table));
864     jmpb(dispatch);
865   }
866 
867   bind(no_safepoint);
868   lea(rscratch1, ExternalAddress((address)table));
869   bind(dispatch);
870   jmp(Address(rscratch1, rbx, Address::times_8));
871 
872 #else
873   Address index(noreg, rbx, Address::times_ptr);
874   if (table != safepoint_table && generate_poll) {
875     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
876     Label no_safepoint;
877     const Register thread = rcx;
878     get_thread(thread);
879     testb(Address(thread, Thread::polling_word_offset()), SafepointMechanism::poll_bit());
880 
881     jccb(Assembler::zero, no_safepoint);
882     ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
883     jump(dispatch_addr);
884     bind(no_safepoint);
885   }
886 
887   {
888     ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
889     jump(dispatch_addr);
890   }
891 #endif // _LP64
892 }
893 
dispatch_only(TosState state,bool generate_poll)894 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
895   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
896 }
897 
dispatch_only_normal(TosState state)898 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
899   dispatch_base(state, Interpreter::normal_table(state));
900 }
901 
dispatch_only_noverify(TosState state)902 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
903   dispatch_base(state, Interpreter::normal_table(state), false);
904 }
905 
906 
dispatch_next(TosState state,int step,bool generate_poll)907 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
908   // load next bytecode (load before advancing _bcp_register to prevent AGI)
909   load_unsigned_byte(rbx, Address(_bcp_register, step));
910   // advance _bcp_register
911   increment(_bcp_register, step);
912   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
913 }
914 
dispatch_via(TosState state,address * table)915 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
916   // load current bytecode
917   load_unsigned_byte(rbx, Address(_bcp_register, 0));
918   dispatch_base(state, table);
919 }
920 
narrow(Register result)921 void InterpreterMacroAssembler::narrow(Register result) {
922 
923   // Get method->_constMethod->_result_type
924   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
925   movptr(rcx, Address(rcx, Method::const_offset()));
926   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
927 
928   Label done, notBool, notByte, notChar;
929 
930   // common case first
931   cmpl(rcx, T_INT);
932   jcc(Assembler::equal, done);
933 
934   // mask integer result to narrower return type.
935   cmpl(rcx, T_BOOLEAN);
936   jcc(Assembler::notEqual, notBool);
937   andl(result, 0x1);
938   jmp(done);
939 
940   bind(notBool);
941   cmpl(rcx, T_BYTE);
942   jcc(Assembler::notEqual, notByte);
943   LP64_ONLY(movsbl(result, result);)
944   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
945   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
946   jmp(done);
947 
948   bind(notByte);
949   cmpl(rcx, T_CHAR);
950   jcc(Assembler::notEqual, notChar);
951   LP64_ONLY(movzwl(result, result);)
952   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
953   jmp(done);
954 
955   bind(notChar);
956   // cmpl(rcx, T_SHORT);  // all that's left
957   // jcc(Assembler::notEqual, done);
958   LP64_ONLY(movswl(result, result);)
959   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
960   NOT_LP64(sarl(result, 16);)      // and sign-extend short
961 
962   // Nothing to do for T_INT
963   bind(done);
964 }
965 
966 // remove activation
967 //
968 // Apply stack watermark barrier.
969 // Unlock the receiver if this is a synchronized method.
970 // Unlock any Java monitors from syncronized blocks.
971 // Remove the activation from the stack.
972 //
973 // If there are locked Java monitors
974 //    If throw_monitor_exception
975 //       throws IllegalMonitorStateException
976 //    Else if install_monitor_exception
977 //       installs IllegalMonitorStateException
978 //    Else
979 //       no error processing
remove_activation(TosState state,Register ret_addr,bool throw_monitor_exception,bool install_monitor_exception,bool notify_jvmdi)980 void InterpreterMacroAssembler::remove_activation(
981         TosState state,
982         Register ret_addr,
983         bool throw_monitor_exception,
984         bool install_monitor_exception,
985         bool notify_jvmdi) {
986   // Note: Registers rdx xmm0 may be in use for the
987   // result check if synchronized method
988   Label unlocked, unlock, no_unlock;
989 
990   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
991   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
992   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
993                               // monitor pointers need different register
994                               // because rdx may have the result in it
995   NOT_LP64(get_thread(rthread);)
996 
997   // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
998   // that would normally not be safe to use. Such bad returns into unsafe territory of
999   // the stack, will call InterpreterRuntime::at_unwind.
1000   Label slow_path;
1001   Label fast_path;
1002   safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */);
1003   jmp(fast_path);
1004   bind(slow_path);
1005   push(state);
1006   set_last_Java_frame(rthread, noreg, rbp, (address)pc());
1007   super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
1008   NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore
1009   reset_last_Java_frame(rthread, true);
1010   pop(state);
1011   bind(fast_path);
1012 
1013   // get the value of _do_not_unlock_if_synchronized into rdx
1014   const Address do_not_unlock_if_synchronized(rthread,
1015     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1016   movbool(rbx, do_not_unlock_if_synchronized);
1017   movbool(do_not_unlock_if_synchronized, false); // reset the flag
1018 
1019  // get method access flags
1020   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
1021   movl(rcx, Address(rcx, Method::access_flags_offset()));
1022   testl(rcx, JVM_ACC_SYNCHRONIZED);
1023   jcc(Assembler::zero, unlocked);
1024 
1025   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1026   // is set.
1027   testbool(rbx);
1028   jcc(Assembler::notZero, no_unlock);
1029 
1030   // unlock monitor
1031   push(state); // save result
1032 
1033   // BasicObjectLock will be first in list, since this is a
1034   // synchronized method. However, need to check that the object has
1035   // not been unlocked by an explicit monitorexit bytecode.
1036   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
1037                         wordSize - (int) sizeof(BasicObjectLock));
1038   // We use c_rarg1/rdx so that if we go slow path it will be the correct
1039   // register for unlock_object to pass to VM directly
1040   lea(robj, monitor); // address of first monitor
1041 
1042   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
1043   testptr(rax, rax);
1044   jcc(Assembler::notZero, unlock);
1045 
1046   pop(state);
1047   if (throw_monitor_exception) {
1048     // Entry already unlocked, need to throw exception
1049     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
1050     call_VM(noreg, CAST_FROM_FN_PTR(address,
1051                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1052     should_not_reach_here();
1053   } else {
1054     // Monitor already unlocked during a stack unroll. If requested,
1055     // install an illegal_monitor_state_exception.  Continue with
1056     // stack unrolling.
1057     if (install_monitor_exception) {
1058       NOT_LP64(empty_FPU_stack();)
1059       call_VM(noreg, CAST_FROM_FN_PTR(address,
1060                      InterpreterRuntime::new_illegal_monitor_state_exception));
1061     }
1062     jmp(unlocked);
1063   }
1064 
1065   bind(unlock);
1066   unlock_object(robj);
1067   pop(state);
1068 
1069   // Check that for block-structured locking (i.e., that all locked
1070   // objects has been unlocked)
1071   bind(unlocked);
1072 
1073   // rax, rdx: Might contain return value
1074 
1075   // Check that all monitors are unlocked
1076   {
1077     Label loop, exception, entry, restart;
1078     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1079     const Address monitor_block_top(
1080         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1081     const Address monitor_block_bot(
1082         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1083 
1084     bind(restart);
1085     // We use c_rarg1 so that if we go slow path it will be the correct
1086     // register for unlock_object to pass to VM directly
1087     movptr(rmon, monitor_block_top); // points to current entry, starting
1088                                   // with top-most entry
1089     lea(rbx, monitor_block_bot);  // points to word before bottom of
1090                                   // monitor block
1091     jmp(entry);
1092 
1093     // Entry already locked, need to throw exception
1094     bind(exception);
1095 
1096     if (throw_monitor_exception) {
1097       // Throw exception
1098       NOT_LP64(empty_FPU_stack();)
1099       MacroAssembler::call_VM(noreg,
1100                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1101                                    throw_illegal_monitor_state_exception));
1102       should_not_reach_here();
1103     } else {
1104       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1105       // Unlock does not block, so don't have to worry about the frame.
1106       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1107 
1108       push(state);
1109       mov(robj, rmon);   // nop if robj and rmon are the same
1110       unlock_object(robj);
1111       pop(state);
1112 
1113       if (install_monitor_exception) {
1114         NOT_LP64(empty_FPU_stack();)
1115         call_VM(noreg, CAST_FROM_FN_PTR(address,
1116                                         InterpreterRuntime::
1117                                         new_illegal_monitor_state_exception));
1118       }
1119 
1120       jmp(restart);
1121     }
1122 
1123     bind(loop);
1124     // check if current entry is used
1125     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) 0);
1126     jcc(Assembler::notEqual, exception);
1127 
1128     addptr(rmon, entry_size); // otherwise advance to next entry
1129     bind(entry);
1130     cmpptr(rmon, rbx); // check if bottom reached
1131     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1132   }
1133 
1134   bind(no_unlock);
1135 
1136   // jvmti support
1137   if (notify_jvmdi) {
1138     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1139   } else {
1140     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1141   }
1142 
1143   // remove activation
1144   // get sender sp
1145   movptr(rbx,
1146          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1147   if (StackReservedPages > 0) {
1148     // testing if reserved zone needs to be re-enabled
1149     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1150     Label no_reserved_zone_enabling;
1151 
1152     NOT_LP64(get_thread(rthread);)
1153 
1154     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1155     jcc(Assembler::equal, no_reserved_zone_enabling);
1156 
1157     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1158     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1159 
1160     call_VM_leaf(
1161       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1162     call_VM(noreg, CAST_FROM_FN_PTR(address,
1163                    InterpreterRuntime::throw_delayed_StackOverflowError));
1164     should_not_reach_here();
1165 
1166     bind(no_reserved_zone_enabling);
1167   }
1168   leave();                           // remove frame anchor
1169   pop(ret_addr);                     // get return address
1170   mov(rsp, rbx);                     // set sp to sender sp
1171 }
1172 
get_method_counters(Register method,Register mcs,Label & skip)1173 void InterpreterMacroAssembler::get_method_counters(Register method,
1174                                                     Register mcs, Label& skip) {
1175   Label has_counters;
1176   movptr(mcs, Address(method, Method::method_counters_offset()));
1177   testptr(mcs, mcs);
1178   jcc(Assembler::notZero, has_counters);
1179   call_VM(noreg, CAST_FROM_FN_PTR(address,
1180           InterpreterRuntime::build_method_counters), method);
1181   movptr(mcs, Address(method,Method::method_counters_offset()));
1182   testptr(mcs, mcs);
1183   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1184   bind(has_counters);
1185 }
1186 
1187 
1188 // Lock object
1189 //
1190 // Args:
1191 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1192 //
1193 // Kills:
1194 //      rax, rbx
lock_object(Register lock_reg)1195 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1196   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1197          "The argument is only for looks. It must be c_rarg1");
1198 
1199   if (UseHeavyMonitors) {
1200     call_VM(noreg,
1201             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1202             lock_reg);
1203   } else {
1204     Label done;
1205 
1206     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1207     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1208                                   // problematic case where tmp_reg = no_reg.
1209     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1210     const Register rklass_decode_tmp = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1211 
1212     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1213     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1214     const int mark_offset = lock_offset +
1215                             BasicLock::displaced_header_offset_in_bytes();
1216 
1217     Label slow_case;
1218 
1219     // Load object pointer into obj_reg
1220     movptr(obj_reg, Address(lock_reg, obj_offset));
1221 
1222     if (DiagnoseSyncOnValueBasedClasses != 0) {
1223       load_klass(tmp_reg, obj_reg, rklass_decode_tmp);
1224       movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset()));
1225       testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS);
1226       jcc(Assembler::notZero, slow_case);
1227     }
1228 
1229     if (UseBiasedLocking) {
1230       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, rklass_decode_tmp, false, done, &slow_case);
1231     }
1232 
1233     // Load immediate 1 into swap_reg %rax
1234     movl(swap_reg, (int32_t)1);
1235 
1236     // Load (object->mark() | 1) into swap_reg %rax
1237     orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1238 
1239     // Save (object->mark() | 1) into BasicLock's displaced header
1240     movptr(Address(lock_reg, mark_offset), swap_reg);
1241 
1242     assert(lock_offset == 0,
1243            "displaced header must be first word in BasicObjectLock");
1244 
1245     lock();
1246     cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1247     if (PrintBiasedLockingStatistics) {
1248       cond_inc32(Assembler::zero,
1249                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1250     }
1251     jcc(Assembler::zero, done);
1252 
1253     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1254 
1255     // Fast check for recursive lock.
1256     //
1257     // Can apply the optimization only if this is a stack lock
1258     // allocated in this thread. For efficiency, we can focus on
1259     // recently allocated stack locks (instead of reading the stack
1260     // base and checking whether 'mark' points inside the current
1261     // thread stack):
1262     //  1) (mark & zero_bits) == 0, and
1263     //  2) rsp <= mark < mark + os::pagesize()
1264     //
1265     // Warning: rsp + os::pagesize can overflow the stack base. We must
1266     // neither apply the optimization for an inflated lock allocated
1267     // just above the thread stack (this is why condition 1 matters)
1268     // nor apply the optimization if the stack lock is inside the stack
1269     // of another thread. The latter is avoided even in case of overflow
1270     // because we have guard pages at the end of all stacks. Hence, if
1271     // we go over the stack base and hit the stack of another thread,
1272     // this should not be in a writeable area that could contain a
1273     // stack lock allocated by that thread. As a consequence, a stack
1274     // lock less than page size away from rsp is guaranteed to be
1275     // owned by the current thread.
1276     //
1277     // These 3 tests can be done by evaluating the following
1278     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1279     // assuming both stack pointer and pagesize have their
1280     // least significant bits clear.
1281     // NOTE: the mark is in swap_reg %rax as the result of cmpxchg
1282     subptr(swap_reg, rsp);
1283     andptr(swap_reg, zero_bits - os::vm_page_size());
1284 
1285     // Save the test result, for recursive case, the result is zero
1286     movptr(Address(lock_reg, mark_offset), swap_reg);
1287 
1288     if (PrintBiasedLockingStatistics) {
1289       cond_inc32(Assembler::zero,
1290                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1291     }
1292     jcc(Assembler::zero, done);
1293 
1294     bind(slow_case);
1295 
1296     // Call the runtime routine for slow case
1297     call_VM(noreg,
1298             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1299             lock_reg);
1300 
1301     bind(done);
1302   }
1303 }
1304 
1305 
1306 // Unlocks an object. Used in monitorexit bytecode and
1307 // remove_activation.  Throws an IllegalMonitorException if object is
1308 // not locked by current thread.
1309 //
1310 // Args:
1311 //      rdx, c_rarg1: BasicObjectLock for lock
1312 //
1313 // Kills:
1314 //      rax
1315 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1316 //      rscratch1 (scratch reg)
1317 // rax, rbx, rcx, rdx
unlock_object(Register lock_reg)1318 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1319   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1320          "The argument is only for looks. It must be c_rarg1");
1321 
1322   if (UseHeavyMonitors) {
1323     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1324   } else {
1325     Label done;
1326 
1327     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1328     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1329     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1330 
1331     save_bcp(); // Save in case of exception
1332 
1333     // Convert from BasicObjectLock structure to object and BasicLock
1334     // structure Store the BasicLock address into %rax
1335     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1336 
1337     // Load oop into obj_reg(%c_rarg3)
1338     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1339 
1340     // Free entry
1341     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), LP64_ONLY((int32_t))NULL_WORD);
1342 
1343     if (UseBiasedLocking) {
1344       biased_locking_exit(obj_reg, header_reg, done);
1345     }
1346 
1347     // Load the old header from BasicLock structure
1348     movptr(header_reg, Address(swap_reg,
1349                                BasicLock::displaced_header_offset_in_bytes()));
1350 
1351     // Test for recursion
1352     testptr(header_reg, header_reg);
1353 
1354     // zero for recursive case
1355     jcc(Assembler::zero, done);
1356 
1357     // Atomic swap back the old header
1358     lock();
1359     cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1360 
1361     // zero for simple unlock of a stack-lock case
1362     jcc(Assembler::zero, done);
1363 
1364 
1365     // Call the runtime routine for slow case.
1366     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
1367     call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1368 
1369     bind(done);
1370 
1371     restore_bcp();
1372   }
1373 }
1374 
test_method_data_pointer(Register mdp,Label & zero_continue)1375 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1376                                                          Label& zero_continue) {
1377   assert(ProfileInterpreter, "must be profiling interpreter");
1378   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1379   testptr(mdp, mdp);
1380   jcc(Assembler::zero, zero_continue);
1381 }
1382 
1383 
1384 // Set the method data pointer for the current bcp.
set_method_data_pointer_for_bcp()1385 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1386   assert(ProfileInterpreter, "must be profiling interpreter");
1387   Label set_mdp;
1388   push(rax);
1389   push(rbx);
1390 
1391   get_method(rbx);
1392   // Test MDO to avoid the call if it is NULL.
1393   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1394   testptr(rax, rax);
1395   jcc(Assembler::zero, set_mdp);
1396   // rbx: method
1397   // _bcp_register: bcp
1398   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1399   // rax: mdi
1400   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1401   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1402   addptr(rbx, in_bytes(MethodData::data_offset()));
1403   addptr(rax, rbx);
1404   bind(set_mdp);
1405   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1406   pop(rbx);
1407   pop(rax);
1408 }
1409 
verify_method_data_pointer()1410 void InterpreterMacroAssembler::verify_method_data_pointer() {
1411   assert(ProfileInterpreter, "must be profiling interpreter");
1412 #ifdef ASSERT
1413   Label verify_continue;
1414   push(rax);
1415   push(rbx);
1416   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1417   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1418   push(arg3_reg);
1419   push(arg2_reg);
1420   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1421   get_method(rbx);
1422 
1423   // If the mdp is valid, it will point to a DataLayout header which is
1424   // consistent with the bcp.  The converse is highly probable also.
1425   load_unsigned_short(arg2_reg,
1426                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1427   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1428   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1429   cmpptr(arg2_reg, _bcp_register);
1430   jcc(Assembler::equal, verify_continue);
1431   // rbx: method
1432   // _bcp_register: bcp
1433   // c_rarg3: mdp
1434   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1435                rbx, _bcp_register, arg3_reg);
1436   bind(verify_continue);
1437   pop(arg2_reg);
1438   pop(arg3_reg);
1439   pop(rbx);
1440   pop(rax);
1441 #endif // ASSERT
1442 }
1443 
1444 
set_mdp_data_at(Register mdp_in,int constant,Register value)1445 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1446                                                 int constant,
1447                                                 Register value) {
1448   assert(ProfileInterpreter, "must be profiling interpreter");
1449   Address data(mdp_in, constant);
1450   movptr(data, value);
1451 }
1452 
1453 
increment_mdp_data_at(Register mdp_in,int constant,bool decrement)1454 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1455                                                       int constant,
1456                                                       bool decrement) {
1457   // Counter address
1458   Address data(mdp_in, constant);
1459 
1460   increment_mdp_data_at(data, decrement);
1461 }
1462 
increment_mdp_data_at(Address data,bool decrement)1463 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1464                                                       bool decrement) {
1465   assert(ProfileInterpreter, "must be profiling interpreter");
1466   // %%% this does 64bit counters at best it is wasting space
1467   // at worst it is a rare bug when counters overflow
1468 
1469   if (decrement) {
1470     // Decrement the register.  Set condition codes.
1471     addptr(data, (int32_t) -DataLayout::counter_increment);
1472     // If the decrement causes the counter to overflow, stay negative
1473     Label L;
1474     jcc(Assembler::negative, L);
1475     addptr(data, (int32_t) DataLayout::counter_increment);
1476     bind(L);
1477   } else {
1478     assert(DataLayout::counter_increment == 1,
1479            "flow-free idiom only works with 1");
1480     // Increment the register.  Set carry flag.
1481     addptr(data, DataLayout::counter_increment);
1482     // If the increment causes the counter to overflow, pull back by 1.
1483     sbbptr(data, (int32_t)0);
1484   }
1485 }
1486 
1487 
increment_mdp_data_at(Register mdp_in,Register reg,int constant,bool decrement)1488 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1489                                                       Register reg,
1490                                                       int constant,
1491                                                       bool decrement) {
1492   Address data(mdp_in, reg, Address::times_1, constant);
1493 
1494   increment_mdp_data_at(data, decrement);
1495 }
1496 
set_mdp_flag_at(Register mdp_in,int flag_byte_constant)1497 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1498                                                 int flag_byte_constant) {
1499   assert(ProfileInterpreter, "must be profiling interpreter");
1500   int header_offset = in_bytes(DataLayout::flags_offset());
1501   int header_bits = flag_byte_constant;
1502   // Set the flag
1503   orb(Address(mdp_in, header_offset), header_bits);
1504 }
1505 
1506 
1507 
test_mdp_data_at(Register mdp_in,int offset,Register value,Register test_value_out,Label & not_equal_continue)1508 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1509                                                  int offset,
1510                                                  Register value,
1511                                                  Register test_value_out,
1512                                                  Label& not_equal_continue) {
1513   assert(ProfileInterpreter, "must be profiling interpreter");
1514   if (test_value_out == noreg) {
1515     cmpptr(value, Address(mdp_in, offset));
1516   } else {
1517     // Put the test value into a register, so caller can use it:
1518     movptr(test_value_out, Address(mdp_in, offset));
1519     cmpptr(test_value_out, value);
1520   }
1521   jcc(Assembler::notEqual, not_equal_continue);
1522 }
1523 
1524 
update_mdp_by_offset(Register mdp_in,int offset_of_disp)1525 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1526                                                      int offset_of_disp) {
1527   assert(ProfileInterpreter, "must be profiling interpreter");
1528   Address disp_address(mdp_in, offset_of_disp);
1529   addptr(mdp_in, disp_address);
1530   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1531 }
1532 
1533 
update_mdp_by_offset(Register mdp_in,Register reg,int offset_of_disp)1534 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1535                                                      Register reg,
1536                                                      int offset_of_disp) {
1537   assert(ProfileInterpreter, "must be profiling interpreter");
1538   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1539   addptr(mdp_in, disp_address);
1540   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1541 }
1542 
1543 
update_mdp_by_constant(Register mdp_in,int constant)1544 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1545                                                        int constant) {
1546   assert(ProfileInterpreter, "must be profiling interpreter");
1547   addptr(mdp_in, constant);
1548   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1549 }
1550 
1551 
update_mdp_for_ret(Register return_bci)1552 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1553   assert(ProfileInterpreter, "must be profiling interpreter");
1554   push(return_bci); // save/restore across call_VM
1555   call_VM(noreg,
1556           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1557           return_bci);
1558   pop(return_bci);
1559 }
1560 
1561 
profile_taken_branch(Register mdp,Register bumped_count)1562 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1563                                                      Register bumped_count) {
1564   if (ProfileInterpreter) {
1565     Label profile_continue;
1566 
1567     // If no method data exists, go to profile_continue.
1568     // Otherwise, assign to mdp
1569     test_method_data_pointer(mdp, profile_continue);
1570 
1571     // We are taking a branch.  Increment the taken count.
1572     // We inline increment_mdp_data_at to return bumped_count in a register
1573     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1574     Address data(mdp, in_bytes(JumpData::taken_offset()));
1575     movptr(bumped_count, data);
1576     assert(DataLayout::counter_increment == 1,
1577             "flow-free idiom only works with 1");
1578     addptr(bumped_count, DataLayout::counter_increment);
1579     sbbptr(bumped_count, 0);
1580     movptr(data, bumped_count); // Store back out
1581 
1582     // The method data pointer needs to be updated to reflect the new target.
1583     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1584     bind(profile_continue);
1585   }
1586 }
1587 
1588 
profile_not_taken_branch(Register mdp)1589 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1590   if (ProfileInterpreter) {
1591     Label profile_continue;
1592 
1593     // If no method data exists, go to profile_continue.
1594     test_method_data_pointer(mdp, profile_continue);
1595 
1596     // We are taking a branch.  Increment the not taken count.
1597     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1598 
1599     // The method data pointer needs to be updated to correspond to
1600     // the next bytecode
1601     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1602     bind(profile_continue);
1603   }
1604 }
1605 
profile_call(Register mdp)1606 void InterpreterMacroAssembler::profile_call(Register mdp) {
1607   if (ProfileInterpreter) {
1608     Label profile_continue;
1609 
1610     // If no method data exists, go to profile_continue.
1611     test_method_data_pointer(mdp, profile_continue);
1612 
1613     // We are making a call.  Increment the count.
1614     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1615 
1616     // The method data pointer needs to be updated to reflect the new target.
1617     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1618     bind(profile_continue);
1619   }
1620 }
1621 
1622 
profile_final_call(Register mdp)1623 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1624   if (ProfileInterpreter) {
1625     Label profile_continue;
1626 
1627     // If no method data exists, go to profile_continue.
1628     test_method_data_pointer(mdp, profile_continue);
1629 
1630     // We are making a call.  Increment the count.
1631     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1632 
1633     // The method data pointer needs to be updated to reflect the new target.
1634     update_mdp_by_constant(mdp,
1635                            in_bytes(VirtualCallData::
1636                                     virtual_call_data_size()));
1637     bind(profile_continue);
1638   }
1639 }
1640 
1641 
profile_virtual_call(Register receiver,Register mdp,Register reg2,bool receiver_can_be_null)1642 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1643                                                      Register mdp,
1644                                                      Register reg2,
1645                                                      bool receiver_can_be_null) {
1646   if (ProfileInterpreter) {
1647     Label profile_continue;
1648 
1649     // If no method data exists, go to profile_continue.
1650     test_method_data_pointer(mdp, profile_continue);
1651 
1652     Label skip_receiver_profile;
1653     if (receiver_can_be_null) {
1654       Label not_null;
1655       testptr(receiver, receiver);
1656       jccb(Assembler::notZero, not_null);
1657       // We are making a call.  Increment the count for null receiver.
1658       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1659       jmp(skip_receiver_profile);
1660       bind(not_null);
1661     }
1662 
1663     // Record the receiver type.
1664     record_klass_in_profile(receiver, mdp, reg2, true);
1665     bind(skip_receiver_profile);
1666 
1667     // The method data pointer needs to be updated to reflect the new target.
1668     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1669     bind(profile_continue);
1670   }
1671 }
1672 
1673 // This routine creates a state machine for updating the multi-row
1674 // type profile at a virtual call site (or other type-sensitive bytecode).
1675 // The machine visits each row (of receiver/count) until the receiver type
1676 // is found, or until it runs out of rows.  At the same time, it remembers
1677 // the location of the first empty row.  (An empty row records null for its
1678 // receiver, and can be allocated for a newly-observed receiver type.)
1679 // Because there are two degrees of freedom in the state, a simple linear
1680 // search will not work; it must be a decision tree.  Hence this helper
1681 // function is recursive, to generate the required tree structured code.
1682 // It's the interpreter, so we are trading off code space for speed.
1683 // See below for example code.
record_klass_in_profile_helper(Register receiver,Register mdp,Register reg2,int start_row,Label & done,bool is_virtual_call)1684 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1685                                         Register receiver, Register mdp,
1686                                         Register reg2, int start_row,
1687                                         Label& done, bool is_virtual_call) {
1688   if (TypeProfileWidth == 0) {
1689     if (is_virtual_call) {
1690       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1691     }
1692 #if INCLUDE_JVMCI
1693     else if (EnableJVMCI) {
1694       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1695     }
1696 #endif // INCLUDE_JVMCI
1697   } else {
1698     int non_profiled_offset = -1;
1699     if (is_virtual_call) {
1700       non_profiled_offset = in_bytes(CounterData::count_offset());
1701     }
1702 #if INCLUDE_JVMCI
1703     else if (EnableJVMCI) {
1704       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1705     }
1706 #endif // INCLUDE_JVMCI
1707 
1708     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1709         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1710   }
1711 }
1712 
record_item_in_profile_helper(Register item,Register mdp,Register reg2,int start_row,Label & done,int total_rows,OffsetFunction item_offset_fn,OffsetFunction item_count_offset_fn,int non_profiled_offset)1713 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1714                                         Register reg2, int start_row, Label& done, int total_rows,
1715                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1716                                         int non_profiled_offset) {
1717   int last_row = total_rows - 1;
1718   assert(start_row <= last_row, "must be work left to do");
1719   // Test this row for both the item and for null.
1720   // Take any of three different outcomes:
1721   //   1. found item => increment count and goto done
1722   //   2. found null => keep looking for case 1, maybe allocate this cell
1723   //   3. found something else => keep looking for cases 1 and 2
1724   // Case 3 is handled by a recursive call.
1725   for (int row = start_row; row <= last_row; row++) {
1726     Label next_test;
1727     bool test_for_null_also = (row == start_row);
1728 
1729     // See if the item is item[n].
1730     int item_offset = in_bytes(item_offset_fn(row));
1731     test_mdp_data_at(mdp, item_offset, item,
1732                      (test_for_null_also ? reg2 : noreg),
1733                      next_test);
1734     // (Reg2 now contains the item from the CallData.)
1735 
1736     // The item is item[n].  Increment count[n].
1737     int count_offset = in_bytes(item_count_offset_fn(row));
1738     increment_mdp_data_at(mdp, count_offset);
1739     jmp(done);
1740     bind(next_test);
1741 
1742     if (test_for_null_also) {
1743       // Failed the equality check on item[n]...  Test for null.
1744       testptr(reg2, reg2);
1745       if (start_row == last_row) {
1746         // The only thing left to do is handle the null case.
1747         if (non_profiled_offset >= 0) {
1748           Label found_null;
1749           jccb(Assembler::zero, found_null);
1750           // Item did not match any saved item and there is no empty row for it.
1751           // Increment total counter to indicate polymorphic case.
1752           increment_mdp_data_at(mdp, non_profiled_offset);
1753           jmp(done);
1754           bind(found_null);
1755         } else {
1756           jcc(Assembler::notZero, done);
1757         }
1758         break;
1759       }
1760       Label found_null;
1761       // Since null is rare, make it be the branch-taken case.
1762       jcc(Assembler::zero, found_null);
1763 
1764       // Put all the "Case 3" tests here.
1765       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1766         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1767 
1768       // Found a null.  Keep searching for a matching item,
1769       // but remember that this is an empty (unused) slot.
1770       bind(found_null);
1771     }
1772   }
1773 
1774   // In the fall-through case, we found no matching item, but we
1775   // observed the item[start_row] is NULL.
1776 
1777   // Fill in the item field and increment the count.
1778   int item_offset = in_bytes(item_offset_fn(start_row));
1779   set_mdp_data_at(mdp, item_offset, item);
1780   int count_offset = in_bytes(item_count_offset_fn(start_row));
1781   movl(reg2, DataLayout::counter_increment);
1782   set_mdp_data_at(mdp, count_offset, reg2);
1783   if (start_row > 0) {
1784     jmp(done);
1785   }
1786 }
1787 
1788 // Example state machine code for three profile rows:
1789 //   // main copy of decision tree, rooted at row[1]
1790 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1791 //   if (row[0].rec != NULL) {
1792 //     // inner copy of decision tree, rooted at row[1]
1793 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1794 //     if (row[1].rec != NULL) {
1795 //       // degenerate decision tree, rooted at row[2]
1796 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1797 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1798 //       row[2].init(rec); goto done;
1799 //     } else {
1800 //       // remember row[1] is empty
1801 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1802 //       row[1].init(rec); goto done;
1803 //     }
1804 //   } else {
1805 //     // remember row[0] is empty
1806 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1807 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1808 //     row[0].init(rec); goto done;
1809 //   }
1810 //   done:
1811 
record_klass_in_profile(Register receiver,Register mdp,Register reg2,bool is_virtual_call)1812 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1813                                                         Register mdp, Register reg2,
1814                                                         bool is_virtual_call) {
1815   assert(ProfileInterpreter, "must be profiling");
1816   Label done;
1817 
1818   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1819 
1820   bind (done);
1821 }
1822 
profile_ret(Register return_bci,Register mdp)1823 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1824                                             Register mdp) {
1825   if (ProfileInterpreter) {
1826     Label profile_continue;
1827     uint row;
1828 
1829     // If no method data exists, go to profile_continue.
1830     test_method_data_pointer(mdp, profile_continue);
1831 
1832     // Update the total ret count.
1833     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1834 
1835     for (row = 0; row < RetData::row_limit(); row++) {
1836       Label next_test;
1837 
1838       // See if return_bci is equal to bci[n]:
1839       test_mdp_data_at(mdp,
1840                        in_bytes(RetData::bci_offset(row)),
1841                        return_bci, noreg,
1842                        next_test);
1843 
1844       // return_bci is equal to bci[n].  Increment the count.
1845       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1846 
1847       // The method data pointer needs to be updated to reflect the new target.
1848       update_mdp_by_offset(mdp,
1849                            in_bytes(RetData::bci_displacement_offset(row)));
1850       jmp(profile_continue);
1851       bind(next_test);
1852     }
1853 
1854     update_mdp_for_ret(return_bci);
1855 
1856     bind(profile_continue);
1857   }
1858 }
1859 
1860 
profile_null_seen(Register mdp)1861 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1862   if (ProfileInterpreter) {
1863     Label profile_continue;
1864 
1865     // If no method data exists, go to profile_continue.
1866     test_method_data_pointer(mdp, profile_continue);
1867 
1868     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1869 
1870     // The method data pointer needs to be updated.
1871     int mdp_delta = in_bytes(BitData::bit_data_size());
1872     if (TypeProfileCasts) {
1873       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1874     }
1875     update_mdp_by_constant(mdp, mdp_delta);
1876 
1877     bind(profile_continue);
1878   }
1879 }
1880 
1881 
profile_typecheck_failed(Register mdp)1882 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1883   if (ProfileInterpreter && TypeProfileCasts) {
1884     Label profile_continue;
1885 
1886     // If no method data exists, go to profile_continue.
1887     test_method_data_pointer(mdp, profile_continue);
1888 
1889     int count_offset = in_bytes(CounterData::count_offset());
1890     // Back up the address, since we have already bumped the mdp.
1891     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1892 
1893     // *Decrement* the counter.  We expect to see zero or small negatives.
1894     increment_mdp_data_at(mdp, count_offset, true);
1895 
1896     bind (profile_continue);
1897   }
1898 }
1899 
1900 
profile_typecheck(Register mdp,Register klass,Register reg2)1901 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1902   if (ProfileInterpreter) {
1903     Label profile_continue;
1904 
1905     // If no method data exists, go to profile_continue.
1906     test_method_data_pointer(mdp, profile_continue);
1907 
1908     // The method data pointer needs to be updated.
1909     int mdp_delta = in_bytes(BitData::bit_data_size());
1910     if (TypeProfileCasts) {
1911       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1912 
1913       // Record the object type.
1914       record_klass_in_profile(klass, mdp, reg2, false);
1915       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1916       NOT_LP64(restore_locals();)         // Restore EDI
1917     }
1918     update_mdp_by_constant(mdp, mdp_delta);
1919 
1920     bind(profile_continue);
1921   }
1922 }
1923 
1924 
profile_switch_default(Register mdp)1925 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1926   if (ProfileInterpreter) {
1927     Label profile_continue;
1928 
1929     // If no method data exists, go to profile_continue.
1930     test_method_data_pointer(mdp, profile_continue);
1931 
1932     // Update the default case count
1933     increment_mdp_data_at(mdp,
1934                           in_bytes(MultiBranchData::default_count_offset()));
1935 
1936     // The method data pointer needs to be updated.
1937     update_mdp_by_offset(mdp,
1938                          in_bytes(MultiBranchData::
1939                                   default_displacement_offset()));
1940 
1941     bind(profile_continue);
1942   }
1943 }
1944 
1945 
profile_switch_case(Register index,Register mdp,Register reg2)1946 void InterpreterMacroAssembler::profile_switch_case(Register index,
1947                                                     Register mdp,
1948                                                     Register reg2) {
1949   if (ProfileInterpreter) {
1950     Label profile_continue;
1951 
1952     // If no method data exists, go to profile_continue.
1953     test_method_data_pointer(mdp, profile_continue);
1954 
1955     // Build the base (index * per_case_size_in_bytes()) +
1956     // case_array_offset_in_bytes()
1957     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1958     imulptr(index, reg2); // XXX l ?
1959     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1960 
1961     // Update the case count
1962     increment_mdp_data_at(mdp,
1963                           index,
1964                           in_bytes(MultiBranchData::relative_count_offset()));
1965 
1966     // The method data pointer needs to be updated.
1967     update_mdp_by_offset(mdp,
1968                          index,
1969                          in_bytes(MultiBranchData::
1970                                   relative_displacement_offset()));
1971 
1972     bind(profile_continue);
1973   }
1974 }
1975 
1976 
1977 
_interp_verify_oop(Register reg,TosState state,const char * file,int line)1978 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1979   if (state == atos) {
1980     MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1981   }
1982 }
1983 
verify_FPU(int stack_depth,TosState state)1984 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1985 #ifndef _LP64
1986   if ((state == ftos && UseSSE < 1) ||
1987       (state == dtos && UseSSE < 2)) {
1988     MacroAssembler::verify_FPU(stack_depth);
1989   }
1990 #endif
1991 }
1992 
1993 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
increment_mask_and_jump(Address counter_addr,int increment,Address mask,Register scratch,bool preloaded,Condition cond,Label * where)1994 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1995                                                         int increment, Address mask,
1996                                                         Register scratch, bool preloaded,
1997                                                         Condition cond, Label* where) {
1998   if (!preloaded) {
1999     movl(scratch, counter_addr);
2000   }
2001   incrementl(scratch, increment);
2002   movl(counter_addr, scratch);
2003   andl(scratch, mask);
2004   if (where != NULL) {
2005     jcc(cond, *where);
2006   }
2007 }
2008 
notify_method_entry()2009 void InterpreterMacroAssembler::notify_method_entry() {
2010   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2011   // track stack depth.  If it is possible to enter interp_only_mode we add
2012   // the code to check if the event should be sent.
2013   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2014   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2015   if (JvmtiExport::can_post_interpreter_events()) {
2016     Label L;
2017     NOT_LP64(get_thread(rthread);)
2018     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2019     testl(rdx, rdx);
2020     jcc(Assembler::zero, L);
2021     call_VM(noreg, CAST_FROM_FN_PTR(address,
2022                                     InterpreterRuntime::post_method_entry));
2023     bind(L);
2024   }
2025 
2026   {
2027     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2028     NOT_LP64(get_thread(rthread);)
2029     get_method(rarg);
2030     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2031                  rthread, rarg);
2032   }
2033 
2034   // RedefineClasses() tracing support for obsolete method entry
2035   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2036     NOT_LP64(get_thread(rthread);)
2037     get_method(rarg);
2038     call_VM_leaf(
2039       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2040       rthread, rarg);
2041   }
2042 }
2043 
2044 
notify_method_exit(TosState state,NotifyMethodExitMode mode)2045 void InterpreterMacroAssembler::notify_method_exit(
2046     TosState state, NotifyMethodExitMode mode) {
2047   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2048   // track stack depth.  If it is possible to enter interp_only_mode we add
2049   // the code to check if the event should be sent.
2050   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2051   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2052   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2053     Label L;
2054     // Note: frame::interpreter_frame_result has a dependency on how the
2055     // method result is saved across the call to post_method_exit. If this
2056     // is changed then the interpreter_frame_result implementation will
2057     // need to be updated too.
2058 
2059     // template interpreter will leave the result on the top of the stack.
2060     push(state);
2061     NOT_LP64(get_thread(rthread);)
2062     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2063     testl(rdx, rdx);
2064     jcc(Assembler::zero, L);
2065     call_VM(noreg,
2066             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2067     bind(L);
2068     pop(state);
2069   }
2070 
2071   {
2072     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2073     push(state);
2074     NOT_LP64(get_thread(rthread);)
2075     get_method(rarg);
2076     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2077                  rthread, rarg);
2078     pop(state);
2079   }
2080 }
2081