1 /*
2  * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 // output_c.cpp - Class CPP file output routines for architecture definition
26 
27 #include "adlc.hpp"
28 
29 // Utilities to characterize effect statements
is_def(int usedef)30 static bool is_def(int usedef) {
31   switch(usedef) {
32   case Component::DEF:
33   case Component::USE_DEF: return true; break;
34   }
35   return false;
36 }
37 
38 // Define  an array containing the machine register names, strings.
defineRegNames(FILE * fp,RegisterForm * registers)39 static void defineRegNames(FILE *fp, RegisterForm *registers) {
40   if (registers) {
41     fprintf(fp,"\n");
42     fprintf(fp,"// An array of character pointers to machine register names.\n");
43     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
44 
45     // Output the register name for each register in the allocation classes
46     RegDef *reg_def = NULL;
47     RegDef *next = NULL;
48     registers->reset_RegDefs();
49     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
50       next = registers->iter_RegDefs();
51       const char *comma = (next != NULL) ? "," : " // no trailing comma";
52       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
53     }
54 
55     // Finish defining enumeration
56     fprintf(fp,"};\n");
57 
58     fprintf(fp,"\n");
59     fprintf(fp,"// An array of character pointers to machine register names.\n");
60     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
61     reg_def = NULL;
62     next = NULL;
63     registers->reset_RegDefs();
64     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
65       next = registers->iter_RegDefs();
66       const char *comma = (next != NULL) ? "," : " // no trailing comma";
67       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
68     }
69     // Finish defining array
70     fprintf(fp,"\t};\n");
71     fprintf(fp,"\n");
72 
73     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
74 
75   }
76 }
77 
78 // Define an array containing the machine register encoding values
defineRegEncodes(FILE * fp,RegisterForm * registers)79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
80   if (registers) {
81     fprintf(fp,"\n");
82     fprintf(fp,"// An array of the machine register encode values\n");
83     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
84 
85     // Output the register encoding for each register in the allocation classes
86     RegDef *reg_def = NULL;
87     RegDef *next    = NULL;
88     registers->reset_RegDefs();
89     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
90       next = registers->iter_RegDefs();
91       const char* register_encode = reg_def->register_encode();
92       const char *comma = (next != NULL) ? "," : " // no trailing comma";
93       int encval;
94       if (!ADLParser::is_int_token(register_encode, encval)) {
95         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
96       } else {
97         // Output known constants in hex char format (backward compatibility).
98         assert(encval < 256, "Exceeded supported width for register encoding");
99         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
100       }
101     }
102     // Finish defining enumeration
103     fprintf(fp,"};\n");
104 
105   } // Done defining array
106 }
107 
108 // Output an enumeration of register class names
defineRegClassEnum(FILE * fp,RegisterForm * registers)109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
110   if (registers) {
111     // Output an enumeration of register class names
112     fprintf(fp,"\n");
113     fprintf(fp,"// Enumeration of register class names\n");
114     fprintf(fp, "enum machRegisterClass {\n");
115     registers->_rclasses.reset();
116     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
117       const char * class_name_to_upper = toUpper(class_name);
118       fprintf(fp,"  %s,\n", class_name_to_upper);
119       delete[] class_name_to_upper;
120     }
121     // Finish defining enumeration
122     fprintf(fp, "  _last_Mach_Reg_Class\n");
123     fprintf(fp, "};\n");
124   }
125 }
126 
127 // Declare an enumeration of user-defined register classes
128 // and a list of register masks, one for each class.
declare_register_masks(FILE * fp_hpp)129 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
130   const char  *rc_name;
131 
132   if (_register) {
133     // Build enumeration of user-defined register classes.
134     defineRegClassEnum(fp_hpp, _register);
135 
136     // Generate a list of register masks, one for each class.
137     fprintf(fp_hpp,"\n");
138     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
139     _register->_rclasses.reset();
140     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
141       RegClass *reg_class = _register->getRegClass(rc_name);
142       assert(reg_class, "Using an undefined register class");
143       reg_class->declare_register_masks(fp_hpp);
144     }
145   }
146 }
147 
148 // Generate an enumeration of user-defined register classes
149 // and a list of register masks, one for each class.
build_register_masks(FILE * fp_cpp)150 void ArchDesc::build_register_masks(FILE *fp_cpp) {
151   const char  *rc_name;
152 
153   if (_register) {
154     // Generate a list of register masks, one for each class.
155     fprintf(fp_cpp,"\n");
156     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
157     _register->_rclasses.reset();
158     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
159       RegClass *reg_class = _register->getRegClass(rc_name);
160       assert(reg_class, "Using an undefined register class");
161       reg_class->build_register_masks(fp_cpp);
162     }
163   }
164 }
165 
166 // Compute an index for an array in the pipeline_reads_NNN arrays
pipeline_reads_initializer(FILE * fp_cpp,NameList & pipeline_reads,PipeClassForm * pipeclass)167 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
168 {
169   int templen = 1;
170   int paramcount = 0;
171   const char *paramname;
172 
173   if (pipeclass->_parameters.count() == 0)
174     return -1;
175 
176   pipeclass->_parameters.reset();
177   paramname = pipeclass->_parameters.iter();
178   const PipeClassOperandForm *pipeopnd =
179     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
180   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
181     pipeclass->_parameters.reset();
182 
183   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
184     const PipeClassOperandForm *tmppipeopnd =
185         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
186 
187     if (tmppipeopnd)
188       templen += 10 + (int)strlen(tmppipeopnd->_stage);
189     else
190       templen += 19;
191 
192     paramcount++;
193   }
194 
195   // See if the count is zero
196   if (paramcount == 0) {
197     return -1;
198   }
199 
200   char *operand_stages = new char [templen];
201   operand_stages[0] = 0;
202   int i = 0;
203   templen = 0;
204 
205   pipeclass->_parameters.reset();
206   paramname = pipeclass->_parameters.iter();
207   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
208   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
209     pipeclass->_parameters.reset();
210 
211   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
212     const PipeClassOperandForm *tmppipeopnd =
213         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
214     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
215       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
216       (++i < paramcount ? ',' : ' ') );
217   }
218 
219   // See if the same string is in the table
220   int ndx = pipeline_reads.index(operand_stages);
221 
222   // No, add it to the table
223   if (ndx < 0) {
224     pipeline_reads.addName(operand_stages);
225     ndx = pipeline_reads.index(operand_stages);
226 
227     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
228       ndx+1, paramcount, operand_stages);
229   }
230   else
231     delete [] operand_stages;
232 
233   return (ndx);
234 }
235 
236 // Compute an index for an array in the pipeline_res_stages_NNN arrays
pipeline_res_stages_initializer(FILE * fp_cpp,PipelineForm * pipeline,NameList & pipeline_res_stages,PipeClassForm * pipeclass)237 static int pipeline_res_stages_initializer(
238   FILE *fp_cpp,
239   PipelineForm *pipeline,
240   NameList &pipeline_res_stages,
241   PipeClassForm *pipeclass)
242 {
243   const PipeClassResourceForm *piperesource;
244   int * res_stages = new int [pipeline->_rescount];
245   int i;
246 
247   for (i = 0; i < pipeline->_rescount; i++)
248      res_stages[i] = 0;
249 
250   for (pipeclass->_resUsage.reset();
251        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
252     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
253     for (i = 0; i < pipeline->_rescount; i++)
254       if ((1 << i) & used_mask) {
255         int stage = pipeline->_stages.index(piperesource->_stage);
256         if (res_stages[i] < stage+1)
257           res_stages[i] = stage+1;
258       }
259   }
260 
261   // Compute the length needed for the resource list
262   int commentlen = 0;
263   int max_stage = 0;
264   for (i = 0; i < pipeline->_rescount; i++) {
265     if (res_stages[i] == 0) {
266       if (max_stage < 9)
267         max_stage = 9;
268     }
269     else {
270       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
271       if (max_stage < stagelen)
272         max_stage = stagelen;
273     }
274 
275     commentlen += (int)strlen(pipeline->_reslist.name(i));
276   }
277 
278   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
279 
280   // Allocate space for the resource list
281   char * resource_stages = new char [templen];
282 
283   templen = 0;
284   for (i = 0; i < pipeline->_rescount; i++) {
285     const char * const resname =
286       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
287 
288     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
289       resname, max_stage - (int)strlen(resname) + 1,
290       (i < pipeline->_rescount-1) ? "," : "",
291       pipeline->_reslist.name(i));
292   }
293 
294   // See if the same string is in the table
295   int ndx = pipeline_res_stages.index(resource_stages);
296 
297   // No, add it to the table
298   if (ndx < 0) {
299     pipeline_res_stages.addName(resource_stages);
300     ndx = pipeline_res_stages.index(resource_stages);
301 
302     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
303       ndx+1, pipeline->_rescount, resource_stages);
304   }
305   else
306     delete [] resource_stages;
307 
308   delete [] res_stages;
309 
310   return (ndx);
311 }
312 
313 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
pipeline_res_cycles_initializer(FILE * fp_cpp,PipelineForm * pipeline,NameList & pipeline_res_cycles,PipeClassForm * pipeclass)314 static int pipeline_res_cycles_initializer(
315   FILE *fp_cpp,
316   PipelineForm *pipeline,
317   NameList &pipeline_res_cycles,
318   PipeClassForm *pipeclass)
319 {
320   const PipeClassResourceForm *piperesource;
321   int * res_cycles = new int [pipeline->_rescount];
322   int i;
323 
324   for (i = 0; i < pipeline->_rescount; i++)
325      res_cycles[i] = 0;
326 
327   for (pipeclass->_resUsage.reset();
328        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
329     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
330     for (i = 0; i < pipeline->_rescount; i++)
331       if ((1 << i) & used_mask) {
332         int cycles = piperesource->_cycles;
333         if (res_cycles[i] < cycles)
334           res_cycles[i] = cycles;
335       }
336   }
337 
338   // Pre-compute the string length
339   int templen;
340   int cyclelen = 0, commentlen = 0;
341   int max_cycles = 0;
342   char temp[32];
343 
344   for (i = 0; i < pipeline->_rescount; i++) {
345     if (max_cycles < res_cycles[i])
346       max_cycles = res_cycles[i];
347     templen = sprintf(temp, "%d", res_cycles[i]);
348     if (cyclelen < templen)
349       cyclelen = templen;
350     commentlen += (int)strlen(pipeline->_reslist.name(i));
351   }
352 
353   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
354 
355   // Allocate space for the resource list
356   char * resource_cycles = new char [templen];
357 
358   templen = 0;
359 
360   for (i = 0; i < pipeline->_rescount; i++) {
361     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
362       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
363   }
364 
365   // See if the same string is in the table
366   int ndx = pipeline_res_cycles.index(resource_cycles);
367 
368   // No, add it to the table
369   if (ndx < 0) {
370     pipeline_res_cycles.addName(resource_cycles);
371     ndx = pipeline_res_cycles.index(resource_cycles);
372 
373     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
374       ndx+1, pipeline->_rescount, resource_cycles);
375   }
376   else
377     delete [] resource_cycles;
378 
379   delete [] res_cycles;
380 
381   return (ndx);
382 }
383 
384 //typedef unsigned long long uint64_t;
385 
386 // Compute an index for an array in the pipeline_res_mask_NNN arrays
pipeline_res_mask_initializer(FILE * fp_cpp,PipelineForm * pipeline,NameList & pipeline_res_mask,NameList & pipeline_res_args,PipeClassForm * pipeclass)387 static int pipeline_res_mask_initializer(
388   FILE *fp_cpp,
389   PipelineForm *pipeline,
390   NameList &pipeline_res_mask,
391   NameList &pipeline_res_args,
392   PipeClassForm *pipeclass)
393 {
394   const PipeClassResourceForm *piperesource;
395   const uint rescount      = pipeline->_rescount;
396   const uint maxcycleused  = pipeline->_maxcycleused;
397   const uint cyclemasksize = (maxcycleused + 31) >> 5;
398 
399   int i, j;
400   int element_count = 0;
401   uint *res_mask = new uint [cyclemasksize];
402   uint resources_used             = 0;
403   uint resources_used_exclusively = 0;
404 
405   for (pipeclass->_resUsage.reset();
406        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
407     element_count++;
408   }
409 
410   // Pre-compute the string length
411   int templen;
412   int commentlen = 0;
413   int max_cycles = 0;
414 
415   int cyclelen = ((maxcycleused + 3) >> 2);
416   int masklen = (rescount + 3) >> 2;
417 
418   int cycledigit = 0;
419   for (i = maxcycleused; i > 0; i /= 10)
420     cycledigit++;
421 
422   int maskdigit = 0;
423   for (i = rescount; i > 0; i /= 10)
424     maskdigit++;
425 
426   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
427   static const char* pipeline_use_element    = "Pipeline_Use_Element";
428 
429   templen = 1 +
430     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
431      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
432 
433   // Allocate space for the resource list
434   char * resource_mask = new char [templen];
435   char * last_comma = NULL;
436 
437   templen = 0;
438 
439   for (pipeclass->_resUsage.reset();
440        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
441     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
442 
443     if (!used_mask) {
444       fprintf(stderr, "*** used_mask is 0 ***\n");
445     }
446 
447     resources_used |= used_mask;
448 
449     uint lb, ub;
450 
451     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
452     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
453 
454     if (lb == ub) {
455       resources_used_exclusively |= used_mask;
456     }
457 
458     int formatlen =
459       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
460         pipeline_use_element,
461         masklen, used_mask,
462         cycledigit, lb, cycledigit, ub,
463         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
464         pipeline_use_cycle_mask);
465 
466     templen += formatlen;
467 
468     memset(res_mask, 0, cyclemasksize * sizeof(uint));
469 
470     int cycles = piperesource->_cycles;
471     uint stage          = pipeline->_stages.index(piperesource->_stage);
472     if ((uint)NameList::Not_in_list == stage) {
473       fprintf(stderr,
474               "pipeline_res_mask_initializer: "
475               "semantic error: "
476               "pipeline stage undeclared: %s\n",
477               piperesource->_stage);
478       exit(1);
479     }
480     uint upper_limit    = stage + cycles - 1;
481     uint lower_limit    = stage - 1;
482     uint upper_idx      = upper_limit >> 5;
483     uint lower_idx      = lower_limit >> 5;
484     uint upper_position = upper_limit & 0x1f;
485     uint lower_position = lower_limit & 0x1f;
486 
487     uint mask = (((uint)1) << upper_position) - 1;
488 
489     while (upper_idx > lower_idx) {
490       res_mask[upper_idx--] |= mask;
491       mask = (uint)-1;
492     }
493 
494     mask -= (((uint)1) << lower_position) - 1;
495     res_mask[upper_idx] |= mask;
496 
497     for (j = cyclemasksize-1; j >= 0; j--) {
498       formatlen =
499         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
500       templen += formatlen;
501     }
502 
503     resource_mask[templen++] = ')';
504     resource_mask[templen++] = ')';
505     last_comma = &resource_mask[templen];
506     resource_mask[templen++] = ',';
507     resource_mask[templen++] = '\n';
508   }
509 
510   resource_mask[templen] = 0;
511   if (last_comma) {
512     last_comma[0] = ' ';
513   }
514 
515   // See if the same string is in the table
516   int ndx = pipeline_res_mask.index(resource_mask);
517 
518   // No, add it to the table
519   if (ndx < 0) {
520     pipeline_res_mask.addName(resource_mask);
521     ndx = pipeline_res_mask.index(resource_mask);
522 
523     if (strlen(resource_mask) > 0)
524       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
525         ndx+1, element_count, resource_mask);
526 
527     char* args = new char [9 + 2*masklen + maskdigit];
528 
529     sprintf(args, "0x%0*x, 0x%0*x, %*d",
530       masklen, resources_used,
531       masklen, resources_used_exclusively,
532       maskdigit, element_count);
533 
534     pipeline_res_args.addName(args);
535   }
536   else {
537     delete [] resource_mask;
538   }
539 
540   delete [] res_mask;
541 //delete [] res_masks;
542 
543   return (ndx);
544 }
545 
build_pipe_classes(FILE * fp_cpp)546 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
547   const char *classname;
548   const char *resourcename;
549   int resourcenamelen = 0;
550   NameList pipeline_reads;
551   NameList pipeline_res_stages;
552   NameList pipeline_res_cycles;
553   NameList pipeline_res_masks;
554   NameList pipeline_res_args;
555   const int default_latency = 1;
556   const int non_operand_latency = 0;
557   const int node_latency = 0;
558 
559   if (!_pipeline) {
560     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
561     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
562     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
563     fprintf(fp_cpp, "}\n");
564     return;
565   }
566 
567   fprintf(fp_cpp, "\n");
568   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
569   fprintf(fp_cpp, "#ifndef PRODUCT\n");
570   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
571   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
572   fprintf(fp_cpp, "    \"undefined\"");
573 
574   for (int s = 0; s < _pipeline->_stagecnt; s++)
575     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
576 
577   fprintf(fp_cpp, "\n  };\n\n");
578   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
579     _pipeline->_stagecnt);
580   fprintf(fp_cpp, "}\n");
581   fprintf(fp_cpp, "#endif\n\n");
582 
583   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
584   fprintf(fp_cpp, "  // See if the functional units overlap\n");
585 #if 0
586   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
587   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
588   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
589   fprintf(fp_cpp, "  }\n");
590   fprintf(fp_cpp, "#endif\n\n");
591 #endif
592   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
593   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
594 #if 0
595   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
596   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
597   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
598   fprintf(fp_cpp, "  }\n");
599   fprintf(fp_cpp, "#endif\n\n");
600 #endif
601   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
602   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
603   fprintf(fp_cpp, "    if (predUse->multiple())\n");
604   fprintf(fp_cpp, "      continue;\n\n");
605   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
606   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
607   fprintf(fp_cpp, "      if (currUse->multiple())\n");
608   fprintf(fp_cpp, "        continue;\n\n");
609   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
610   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
611   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
612   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
613   fprintf(fp_cpp, "          y <<= 1;\n");
614   fprintf(fp_cpp, "      }\n");
615   fprintf(fp_cpp, "    }\n");
616   fprintf(fp_cpp, "  }\n\n");
617   fprintf(fp_cpp, "  // There is the potential for overlap\n");
618   fprintf(fp_cpp, "  return (start);\n");
619   fprintf(fp_cpp, "}\n\n");
620   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
621   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
622   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
623   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
624   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
625   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
626   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
627   fprintf(fp_cpp, "      uint min_delay = %d;\n",
628     _pipeline->_maxcycleused+1);
629   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
630   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
631   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
632   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
633   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
634   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
635   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
636   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
637   fprintf(fp_cpp, "            y <<= 1;\n");
638   fprintf(fp_cpp, "        }\n");
639   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
640   fprintf(fp_cpp, "      }\n");
641   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
642   fprintf(fp_cpp, "    }\n");
643   fprintf(fp_cpp, "    else {\n");
644   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
645   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
646   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
647   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
648   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
649   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
650   fprintf(fp_cpp, "            y <<= 1;\n");
651   fprintf(fp_cpp, "        }\n");
652   fprintf(fp_cpp, "      }\n");
653   fprintf(fp_cpp, "    }\n");
654   fprintf(fp_cpp, "  }\n\n");
655   fprintf(fp_cpp, "  return (delay);\n");
656   fprintf(fp_cpp, "}\n\n");
657   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
658   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
659   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
660   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
661   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
662   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
663   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
664   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
665   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
666   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
667   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
668   fprintf(fp_cpp, "          break;\n");
669   fprintf(fp_cpp, "        }\n");
670   fprintf(fp_cpp, "      }\n");
671   fprintf(fp_cpp, "    }\n");
672   fprintf(fp_cpp, "    else {\n");
673   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
674   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
675   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
676   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
677   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
678   fprintf(fp_cpp, "      }\n");
679   fprintf(fp_cpp, "    }\n");
680   fprintf(fp_cpp, "  }\n");
681   fprintf(fp_cpp, "}\n\n");
682 
683   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
684   fprintf(fp_cpp, "  int const default_latency = 1;\n");
685   fprintf(fp_cpp, "\n");
686 #if 0
687   fprintf(fp_cpp, "#ifndef PRODUCT\n");
688   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
689   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
690   fprintf(fp_cpp, "  }\n");
691   fprintf(fp_cpp, "#endif\n\n");
692 #endif
693   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
694   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
695   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
696   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
697   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
698   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
699   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
700 #if 0
701   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
702   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
703   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
704   fprintf(fp_cpp, "  }\n");
705   fprintf(fp_cpp, "#endif\n\n");
706 #endif
707   fprintf(fp_cpp, "\n");
708   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
709   fprintf(fp_cpp, "    return (default_latency);\n");
710   fprintf(fp_cpp, "\n");
711   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
712   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
713 #if 0
714   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
715   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
716   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
717   fprintf(fp_cpp, "  }\n");
718   fprintf(fp_cpp, "#endif\n\n");
719 #endif
720   fprintf(fp_cpp, "  return (delta);\n");
721   fprintf(fp_cpp, "}\n\n");
722 
723   if (!_pipeline)
724     /* Do Nothing */;
725 
726   else if (_pipeline->_maxcycleused <= 32) {
727     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
728     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
729     fprintf(fp_cpp, "}\n\n");
730     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
731     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
732     fprintf(fp_cpp, "}\n\n");
733   }
734   else {
735     uint l;
736     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
737     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
738     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
739     for (l = 1; l <= masklen; l++)
740       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
741     fprintf(fp_cpp, ");\n");
742     fprintf(fp_cpp, "}\n\n");
743     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
744     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
745     for (l = 1; l <= masklen; l++)
746       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
747     fprintf(fp_cpp, ");\n");
748     fprintf(fp_cpp, "}\n\n");
749     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
750     for (l = 1; l <= masklen; l++)
751       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
752     fprintf(fp_cpp, "\n}\n\n");
753   }
754 
755   /* Get the length of all the resource names */
756   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
757        (resourcename = _pipeline->_reslist.iter()) != NULL;
758        resourcenamelen += (int)strlen(resourcename));
759 
760   // Create the pipeline class description
761 
762   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
763   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
764 
765   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
766   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
767     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
768     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
769     for (int i2 = masklen-1; i2 >= 0; i2--)
770       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
771     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
772   }
773   fprintf(fp_cpp, "};\n\n");
774 
775   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
776     _pipeline->_rescount);
777 
778   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
779     fprintf(fp_cpp, "\n");
780     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
781     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
782     int maxWriteStage = -1;
783     int maxMoreInstrs = 0;
784     int paramcount = 0;
785     int i = 0;
786     const char *paramname;
787     int resource_count = (_pipeline->_rescount + 3) >> 2;
788 
789     // Scan the operands, looking for last output stage and number of inputs
790     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
791       const PipeClassOperandForm *pipeopnd =
792           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
793       if (pipeopnd) {
794         if (pipeopnd->_iswrite) {
795            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
796            int moreinsts = pipeopnd->_more_instrs;
797           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
798             maxWriteStage = stagenum;
799             maxMoreInstrs = moreinsts;
800           }
801         }
802       }
803 
804       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
805         paramcount++;
806     }
807 
808     // Create the list of stages for the operands that are read
809     // Note that we will build a NameList to reduce the number of copies
810 
811     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
812 
813     int pipeline_res_stages_index = pipeline_res_stages_initializer(
814       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
815 
816     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
817       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
818 
819     int pipeline_res_mask_index = pipeline_res_mask_initializer(
820       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
821 
822 #if 0
823     // Process the Resources
824     const PipeClassResourceForm *piperesource;
825 
826     unsigned resources_used = 0;
827     unsigned exclusive_resources_used = 0;
828     unsigned resource_groups = 0;
829     for (pipeclass->_resUsage.reset();
830          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
831       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
832       if (used_mask)
833         resource_groups++;
834       resources_used |= used_mask;
835       if ((used_mask & (used_mask-1)) == 0)
836         exclusive_resources_used |= used_mask;
837     }
838 
839     if (resource_groups > 0) {
840       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
841         pipeclass->_num, resource_groups);
842       for (pipeclass->_resUsage.reset(), i = 1;
843            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
844            i++ ) {
845         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
846         if (used_mask) {
847           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
848         }
849       }
850       fprintf(fp_cpp, "};\n\n");
851     }
852 #endif
853 
854     // Create the pipeline class description
855     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
856       pipeclass->_num);
857     if (maxWriteStage < 0)
858       fprintf(fp_cpp, "(uint)stage_undefined");
859     else if (maxMoreInstrs == 0)
860       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
861     else
862       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
863     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
864       paramcount,
865       pipeclass->hasFixedLatency() ? "true" : "false",
866       pipeclass->fixedLatency(),
867       pipeclass->InstructionCount(),
868       pipeclass->hasBranchDelay() ? "true" : "false",
869       pipeclass->hasMultipleBundles() ? "true" : "false",
870       pipeclass->forceSerialization() ? "true" : "false",
871       pipeclass->mayHaveNoCode() ? "true" : "false" );
872     if (paramcount > 0) {
873       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
874         pipeline_reads_index+1);
875     }
876     else
877       fprintf(fp_cpp, " NULL,");
878     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
879       pipeline_res_stages_index+1);
880     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
881       pipeline_res_cycles_index+1);
882     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
883       pipeline_res_args.name(pipeline_res_mask_index));
884     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
885       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
886         pipeline_res_mask_index+1);
887     else
888       fprintf(fp_cpp, "NULL");
889     fprintf(fp_cpp, "));\n");
890   }
891 
892   // Generate the Node::latency method if _pipeline defined
893   fprintf(fp_cpp, "\n");
894   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
895   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
896   if (_pipeline) {
897 #if 0
898     fprintf(fp_cpp, "#ifndef PRODUCT\n");
899     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
900     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
901     fprintf(fp_cpp, " }\n");
902     fprintf(fp_cpp, "#endif\n");
903 #endif
904     fprintf(fp_cpp, "  uint j;\n");
905     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
906     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
907     fprintf(fp_cpp, "  // verify input is not null\n");
908     fprintf(fp_cpp, "  Node *pred = in(i);\n");
909     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
910       non_operand_latency);
911     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
912     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
913     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
914     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
915     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
916     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
917     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
918     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
919       node_latency);
920     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
921     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
922     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
923       non_operand_latency);
924     fprintf(fp_cpp, "  // determine which operand this is in\n");
925     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
926     fprintf(fp_cpp, "  int delta = %d;\n\n",
927       non_operand_latency);
928     fprintf(fp_cpp, "  uint k;\n");
929     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
930     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
931     fprintf(fp_cpp, "    if (i < j)\n");
932     fprintf(fp_cpp, "      break;\n");
933     fprintf(fp_cpp, "  }\n");
934     fprintf(fp_cpp, "  if (k < n)\n");
935     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
936     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
937   }
938   else {
939     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
940     fprintf(fp_cpp, "  return %d;\n",
941       non_operand_latency);
942   }
943   fprintf(fp_cpp, "}\n\n");
944 
945   // Output the list of nop nodes
946   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
947   const char *nop;
948   int nopcnt = 0;
949   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
950 
951   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
952   int i = 0;
953   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
954     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
955   }
956   fprintf(fp_cpp, "};\n\n");
957   fprintf(fp_cpp, "#ifndef PRODUCT\n");
958   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
959   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
960   fprintf(fp_cpp, "    \"\",\n");
961   fprintf(fp_cpp, "    \"use nop delay\",\n");
962   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
963   fprintf(fp_cpp, "    \"use conditional delay\",\n");
964   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
965   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
966   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
967   fprintf(fp_cpp, "  };\n\n");
968 
969   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
970   for (i = 0; i < _pipeline->_rescount; i++)
971     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
972   fprintf(fp_cpp, "};\n\n");
973 
974   // See if the same string is in the table
975   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
976   fprintf(fp_cpp, "  if (_flags) {\n");
977   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
978   fprintf(fp_cpp, "    needs_comma = true;\n");
979   fprintf(fp_cpp, "  };\n");
980   fprintf(fp_cpp, "  if (instr_count()) {\n");
981   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
982   fprintf(fp_cpp, "    needs_comma = true;\n");
983   fprintf(fp_cpp, "  };\n");
984   fprintf(fp_cpp, "  uint r = resources_used();\n");
985   fprintf(fp_cpp, "  if (r) {\n");
986   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
987   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
988   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
989   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
990   fprintf(fp_cpp, "    needs_comma = true;\n");
991   fprintf(fp_cpp, "  };\n");
992   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
993   fprintf(fp_cpp, "}\n");
994   fprintf(fp_cpp, "#endif\n");
995 }
996 
997 // ---------------------------------------------------------------------------
998 //------------------------------Utilities to build Instruction Classes--------
999 // ---------------------------------------------------------------------------
1000 
defineOut_RegMask(FILE * fp,const char * node,const char * regMask)1001 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1002   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1003           node, regMask);
1004 }
1005 
print_block_index(FILE * fp,int inst_position)1006 static void print_block_index(FILE *fp, int inst_position) {
1007   assert( inst_position >= 0, "Instruction number less than zero");
1008   fprintf(fp, "block_index");
1009   if( inst_position != 0 ) {
1010     fprintf(fp, " - %d", inst_position);
1011   }
1012 }
1013 
1014 // Scan the peepmatch and output a test for each instruction
check_peepmatch_instruction_sequence(FILE * fp,PeepMatch * pmatch,PeepConstraint * pconstraint)1015 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1016   int         parent        = -1;
1017   int         inst_position = 0;
1018   const char* inst_name     = NULL;
1019   int         input         = 0;
1020   fprintf(fp, "  // Check instruction sub-tree\n");
1021   pmatch->reset();
1022   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1023        inst_name != NULL;
1024        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1025     // If this is not a placeholder
1026     if( ! pmatch->is_placeholder() ) {
1027       // Define temporaries 'inst#', based on parent and parent's input index
1028       if( parent != -1 ) {                // root was initialized
1029         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1030         fprintf(fp, "  if( ");
1031         print_block_index(fp, inst_position);
1032         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1033         print_block_index(fp, inst_position);
1034         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1035         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1036       }
1037 
1038       // When not the root
1039       // Test we have the correct instruction by comparing the rule.
1040       if( parent != -1 ) {
1041         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1042                 inst_position, inst_position, inst_name);
1043       }
1044     } else {
1045       // Check that user did not try to constrain a placeholder
1046       assert( ! pconstraint->constrains_instruction(inst_position),
1047               "fatal(): Can not constrain a placeholder instruction");
1048     }
1049   }
1050 }
1051 
1052 // Build mapping for register indices, num_edges to input
build_instruction_index_mapping(FILE * fp,FormDict & globals,PeepMatch * pmatch)1053 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1054   int         parent        = -1;
1055   int         inst_position = 0;
1056   const char* inst_name     = NULL;
1057   int         input         = 0;
1058   fprintf(fp, "      // Build map to register info\n");
1059   pmatch->reset();
1060   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1061        inst_name != NULL;
1062        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1063     // If this is not a placeholder
1064     if( ! pmatch->is_placeholder() ) {
1065       // Define temporaries 'inst#', based on self's inst_position
1066       InstructForm *inst = globals[inst_name]->is_instruction();
1067       if( inst != NULL ) {
1068         char inst_prefix[]  = "instXXXX_";
1069         sprintf(inst_prefix, "inst%d_",   inst_position);
1070         char receiver[]     = "instXXXX->";
1071         sprintf(receiver,    "inst%d->", inst_position);
1072         inst->index_temps( fp, globals, inst_prefix, receiver );
1073       }
1074     }
1075   }
1076 }
1077 
1078 // Generate tests for the constraints
check_peepconstraints(FILE * fp,FormDict & globals,PeepMatch * pmatch,PeepConstraint * pconstraint)1079 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1080   fprintf(fp, "\n");
1081   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1082 
1083   // Build mapping from num_edges to local variables
1084   build_instruction_index_mapping( fp, globals, pmatch );
1085 
1086   // Build constraint tests
1087   if( pconstraint != NULL ) {
1088     fprintf(fp, "      matches = matches &&");
1089     bool   first_constraint = true;
1090     while( pconstraint != NULL ) {
1091       // indentation and connecting '&&'
1092       const char *indentation = "      ";
1093       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1094 
1095       // Only have '==' relation implemented
1096       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1097         assert( false, "Unimplemented()" );
1098       }
1099 
1100       // LEFT
1101       int left_index       = pconstraint->_left_inst;
1102       const char *left_op  = pconstraint->_left_op;
1103       // Access info on the instructions whose operands are compared
1104       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1105       assert( inst_left, "Parser should guaranty this is an instruction");
1106       int left_op_base  = inst_left->oper_input_base(globals);
1107       // Access info on the operands being compared
1108       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1109       if( left_op_index == -1 ) {
1110         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1111         if( left_op_index == -1 ) {
1112           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1113         }
1114       }
1115       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1116       ComponentList components_left = inst_left->_components;
1117       const char *left_comp_type = components_left.at(left_op_index)->_type;
1118       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1119       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1120 
1121 
1122       // RIGHT
1123       int right_op_index = -1;
1124       int right_index      = pconstraint->_right_inst;
1125       const char *right_op = pconstraint->_right_op;
1126       if( right_index != -1 ) { // Match operand
1127         // Access info on the instructions whose operands are compared
1128         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1129         assert( inst_right, "Parser should guaranty this is an instruction");
1130         int right_op_base = inst_right->oper_input_base(globals);
1131         // Access info on the operands being compared
1132         right_op_index = inst_right->operand_position(right_op, Component::USE);
1133         if( right_op_index == -1 ) {
1134           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1135           if( right_op_index == -1 ) {
1136             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1137           }
1138         }
1139         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1140         ComponentList components_right = inst_right->_components;
1141         const char *right_comp_type = components_right.at(right_op_index)->_type;
1142         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1143         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1144         assert( right_interface_type == left_interface_type, "Both must be same interface");
1145 
1146       } else {                  // Else match register
1147         // assert( false, "should be a register" );
1148       }
1149 
1150       //
1151       // Check for equivalence
1152       //
1153       // fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */ == /* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1154       //         left_index, left_op_index, left_index, left_reg_index, left_index, left_op
1155       //         right_index, right_op, right_index, right_op_index, right_index, right_reg_index);
1156       // fprintf(fp, ")");
1157       //
1158       switch( left_interface_type ) {
1159       case Form::register_interface: {
1160         // Check that they are allocated to the same register
1161         // Need parameter for index position if not result operand
1162         char left_reg_index[] = ",instXXXX_idxXXXX";
1163         if( left_op_index != 0 ) {
1164           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1165           // Must have index into operands
1166           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1167         } else {
1168           strcpy(left_reg_index, "");
1169         }
1170         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1171                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1172         fprintf(fp, " == ");
1173 
1174         if( right_index != -1 ) {
1175           char right_reg_index[18] = ",instXXXX_idxXXXX";
1176           if( right_op_index != 0 ) {
1177             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1178             // Must have index into operands
1179             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1180           } else {
1181             strcpy(right_reg_index, "");
1182           }
1183           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1184                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1185         } else {
1186           fprintf(fp, "%s_enc", right_op );
1187         }
1188         fprintf(fp,")");
1189         break;
1190       }
1191       case Form::constant_interface: {
1192         // Compare the '->constant()' values
1193         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1194                 left_index,  left_op_index,  left_index, left_op );
1195         fprintf(fp, " == ");
1196         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1197                 right_index, right_op, right_index, right_op_index );
1198         break;
1199       }
1200       case Form::memory_interface: {
1201         // Compare 'base', 'index', 'scale', and 'disp'
1202         // base
1203         fprintf(fp, "( \n");
1204         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1205           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1206         fprintf(fp, " == ");
1207         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1208                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1209         // index
1210         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1211                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1212         fprintf(fp, " == ");
1213         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1214                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1215         // scale
1216         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1217                 left_index,  left_op_index,  left_index, left_op );
1218         fprintf(fp, " == ");
1219         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1220                 right_index, right_op, right_index, right_op_index );
1221         // disp
1222         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1223                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1224         fprintf(fp, " == ");
1225         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1226                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1227         fprintf(fp, ") \n");
1228         break;
1229       }
1230       case Form::conditional_interface: {
1231         // Compare the condition code being tested
1232         assert( false, "Unimplemented()" );
1233         break;
1234       }
1235       default: {
1236         assert( false, "ShouldNotReachHere()" );
1237         break;
1238       }
1239       }
1240 
1241       // Advance to next constraint
1242       pconstraint = pconstraint->next();
1243       first_constraint = false;
1244     }
1245 
1246     fprintf(fp, ";\n");
1247   }
1248 }
1249 
1250 // // EXPERIMENTAL -- TEMPORARY code
1251 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1252 //   int op_index = instr->operand_position(op_name, Component::USE);
1253 //   if( op_index == -1 ) {
1254 //     op_index = instr->operand_position(op_name, Component::DEF);
1255 //     if( op_index == -1 ) {
1256 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1257 //     }
1258 //   }
1259 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1260 //
1261 //   ComponentList components_right = instr->_components;
1262 //   char *right_comp_type = components_right.at(op_index)->_type;
1263 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1264 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1265 //
1266 //   return;
1267 // }
1268 
1269 // Construct the new sub-tree
generate_peepreplace(FILE * fp,FormDict & globals,PeepMatch * pmatch,PeepConstraint * pconstraint,PeepReplace * preplace,int max_position)1270 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1271   fprintf(fp, "      // IF instructions and constraints matched\n");
1272   fprintf(fp, "      if( matches ) {\n");
1273   fprintf(fp, "        // generate the new sub-tree\n");
1274   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1275   if( preplace != NULL ) {
1276     // Get the root of the new sub-tree
1277     const char *root_inst = NULL;
1278     preplace->next_instruction(root_inst);
1279     InstructForm *root_form = globals[root_inst]->is_instruction();
1280     assert( root_form != NULL, "Replacement instruction was not previously defined");
1281     fprintf(fp, "        %sNode *root = new %sNode();\n", root_inst, root_inst);
1282 
1283     int         inst_num;
1284     const char *op_name;
1285     int         opnds_index = 0;            // define result operand
1286     // Then install the use-operands for the new sub-tree
1287     // preplace->reset();             // reset breaks iteration
1288     for( preplace->next_operand( inst_num, op_name );
1289          op_name != NULL;
1290          preplace->next_operand( inst_num, op_name ) ) {
1291       InstructForm *inst_form;
1292       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1293       assert( inst_form, "Parser should guaranty this is an instruction");
1294       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1295       if( inst_op_num == NameList::Not_in_list )
1296         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1297       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1298       // find the name of the OperandForm from the local name
1299       const Form *form   = inst_form->_localNames[op_name];
1300       OperandForm  *op_form = form->is_operand();
1301       if( opnds_index == 0 ) {
1302         // Initial setup of new instruction
1303         fprintf(fp, "        // ----- Initial setup -----\n");
1304         //
1305         // Add control edge for this node
1306         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1307         // Add unmatched edges from root of match tree
1308         int op_base = root_form->oper_input_base(globals);
1309         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1310           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1311                                           inst_num, unmatched_edge);
1312         }
1313         // If new instruction captures bottom type
1314         if( root_form->captures_bottom_type(globals) ) {
1315           // Get bottom type from instruction whose result we are replacing
1316           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1317         }
1318         // Define result register and result operand
1319         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1320         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1321         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1322         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1323         fprintf(fp, "        // ----- Done with initial setup -----\n");
1324       } else {
1325         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1326           // Do not have ideal edges for constants after matching
1327           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1328                   inst_op_num, inst_num, inst_op_num,
1329                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1330           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1331                   inst_num, inst_op_num );
1332         } else {
1333           fprintf(fp, "        // no ideal edge for constants after matching\n");
1334         }
1335         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1336                 opnds_index, inst_num, inst_op_num );
1337       }
1338       ++opnds_index;
1339     }
1340   }else {
1341     // Replacing subtree with empty-tree
1342     assert( false, "ShouldNotReachHere();");
1343   }
1344 
1345   // Return the new sub-tree
1346   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1347   fprintf(fp, "        return root;  // return new root;\n");
1348   fprintf(fp, "      }\n");
1349 }
1350 
1351 
1352 // Define the Peephole method for an instruction node
definePeephole(FILE * fp,InstructForm * node)1353 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1354   // Generate Peephole function header
1355   fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1356   fprintf(fp, "  bool  matches = true;\n");
1357 
1358   // Identify the maximum instruction position,
1359   // generate temporaries that hold current instruction
1360   //
1361   //   MachNode  *inst0 = NULL;
1362   //   ...
1363   //   MachNode  *instMAX = NULL;
1364   //
1365   int max_position = 0;
1366   Peephole *peep;
1367   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1368     PeepMatch *pmatch = peep->match();
1369     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1370     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1371   }
1372   for( int i = 0; i <= max_position; ++i ) {
1373     if( i == 0 ) {
1374       fprintf(fp, "  MachNode *inst0 = this;\n");
1375     } else {
1376       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1377     }
1378   }
1379 
1380   // For each peephole rule in architecture description
1381   //   Construct a test for the desired instruction sub-tree
1382   //   then check the constraints
1383   //   If these match, Generate the new subtree
1384   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1385     int         peephole_number = peep->peephole_number();
1386     PeepMatch      *pmatch      = peep->match();
1387     PeepConstraint *pconstraint = peep->constraints();
1388     PeepReplace    *preplace    = peep->replacement();
1389 
1390     // Root of this peephole is the current MachNode
1391     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1392             "root of PeepMatch does not match instruction");
1393 
1394     // Make each peephole rule individually selectable
1395     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1396     fprintf(fp, "    matches = true;\n");
1397     // Scan the peepmatch and output a test for each instruction
1398     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1399 
1400     // Check constraints and build replacement inside scope
1401     fprintf(fp, "    // If instruction subtree matches\n");
1402     fprintf(fp, "    if( matches ) {\n");
1403 
1404     // Generate tests for the constraints
1405     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1406 
1407     // Construct the new sub-tree
1408     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1409 
1410     // End of scope for this peephole's constraints
1411     fprintf(fp, "    }\n");
1412     // Closing brace '}' to make each peephole rule individually selectable
1413     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1414     fprintf(fp, "\n");
1415   }
1416 
1417   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1418   fprintf(fp, "}\n");
1419   fprintf(fp, "\n");
1420 }
1421 
1422 // Define the Expand method for an instruction node
defineExpand(FILE * fp,InstructForm * node)1423 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1424   unsigned      cnt  = 0;          // Count nodes we have expand into
1425   unsigned      i;
1426 
1427   // Generate Expand function header
1428   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1429   fprintf(fp, "  Compile* C = Compile::current();\n");
1430   // Generate expand code
1431   if( node->expands() ) {
1432     const char   *opid;
1433     int           new_pos, exp_pos;
1434     const char   *new_id   = NULL;
1435     const Form   *frm      = NULL;
1436     InstructForm *new_inst = NULL;
1437     OperandForm  *new_oper = NULL;
1438     unsigned      numo     = node->num_opnds() +
1439                                 node->_exprule->_newopers.count();
1440 
1441     // If necessary, generate any operands created in expand rule
1442     if (node->_exprule->_newopers.count()) {
1443       for(node->_exprule->_newopers.reset();
1444           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1445         frm = node->_localNames[new_id];
1446         assert(frm, "Invalid entry in new operands list of expand rule");
1447         new_oper = frm->is_operand();
1448         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1449         if (tmp == NULL) {
1450           fprintf(fp,"  MachOper *op%d = new %sOper();\n",
1451                   cnt, new_oper->_ident);
1452         }
1453         else {
1454           fprintf(fp,"  MachOper *op%d = new %sOper(%s);\n",
1455                   cnt, new_oper->_ident, tmp);
1456         }
1457       }
1458     }
1459     cnt = 0;
1460     // Generate the temps to use for DAG building
1461     for(i = 0; i < numo; i++) {
1462       if (i < node->num_opnds()) {
1463         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1464       }
1465       else {
1466         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1467       }
1468     }
1469     // Build mapping from num_edges to local variables
1470     fprintf(fp,"  unsigned num0 = 0;\n");
1471     for( i = 1; i < node->num_opnds(); i++ ) {
1472       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1473     }
1474 
1475     // Build a mapping from operand index to input edges
1476     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1477 
1478     // The order in which the memory input is added to a node is very
1479     // strange.  Store nodes get a memory input before Expand is
1480     // called and other nodes get it afterwards or before depending on
1481     // match order so oper_input_base is wrong during expansion.  This
1482     // code adjusts it so that expansion will work correctly.
1483     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1484     if (has_memory_edge) {
1485       fprintf(fp,"  if (mem == (Node*)1) {\n");
1486       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1487       fprintf(fp,"  }\n");
1488     }
1489 
1490     for( i = 0; i < node->num_opnds(); i++ ) {
1491       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1492               i+1,i,i);
1493     }
1494 
1495     // Declare variable to hold root of expansion
1496     fprintf(fp,"  MachNode *result = NULL;\n");
1497 
1498     // Iterate over the instructions 'node' expands into
1499     ExpandRule  *expand       = node->_exprule;
1500     NameAndList *expand_instr = NULL;
1501     for (expand->reset_instructions();
1502          (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1503       new_id = expand_instr->name();
1504 
1505       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1506 
1507       if (!expand_instruction) {
1508         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1509                              node->_ident, new_id);
1510         continue;
1511       }
1512 
1513       // Build the node for the instruction
1514       fprintf(fp,"\n  %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1515       // Add control edge for this node
1516       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1517       // Build the operand for the value this node defines.
1518       Form *form = (Form*)_globalNames[new_id];
1519       assert(form, "'new_id' must be a defined form name");
1520       // Grab the InstructForm for the new instruction
1521       new_inst = form->is_instruction();
1522       assert(new_inst, "'new_id' must be an instruction name");
1523       if (node->is_ideal_if() && new_inst->is_ideal_if()) {
1524         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
1525         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
1526       }
1527 
1528       if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
1529         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
1530         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
1531         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
1532       }
1533 
1534       // Fill in the bottom_type where requested
1535       if (node->captures_bottom_type(_globalNames) &&
1536           new_inst->captures_bottom_type(_globalNames)) {
1537         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1538       }
1539 
1540       const char *resultOper = new_inst->reduce_result();
1541       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1542               cnt, machOperEnum(resultOper));
1543 
1544       // get the formal operand NameList
1545       NameList *formal_lst = &new_inst->_parameters;
1546       formal_lst->reset();
1547 
1548       // Handle any memory operand
1549       int memory_operand = new_inst->memory_operand(_globalNames);
1550       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1551         int node_mem_op = node->memory_operand(_globalNames);
1552         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1553                 "expand rule member needs memory but top-level inst doesn't have any" );
1554         if (has_memory_edge) {
1555           // Copy memory edge
1556           fprintf(fp,"  if (mem != (Node*)1) {\n");
1557           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1558           fprintf(fp,"  }\n");
1559         }
1560       }
1561 
1562       // Iterate over the new instruction's operands
1563       int prev_pos = -1;
1564       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1565         // Use 'parameter' at current position in list of new instruction's formals
1566         // instead of 'opid' when looking up info internal to new_inst
1567         const char *parameter = formal_lst->iter();
1568         if (!parameter) {
1569           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1570                                " no equivalent in new instruction %s.",
1571                                opid, node->_ident, new_inst->_ident);
1572           assert(0, "Wrong expand");
1573         }
1574 
1575         // Check for an operand which is created in the expand rule
1576         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1577           new_pos = new_inst->operand_position(parameter,Component::USE);
1578           exp_pos += node->num_opnds();
1579           // If there is no use of the created operand, just skip it
1580           if (new_pos != NameList::Not_in_list) {
1581             //Copy the operand from the original made above
1582             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1583                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1584             // Check for who defines this operand & add edge if needed
1585             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1586             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1587           }
1588         }
1589         else {
1590           // Use operand name to get an index into instruction component list
1591           // ins = (InstructForm *) _globalNames[new_id];
1592           exp_pos = node->operand_position_format(opid);
1593           assert(exp_pos != -1, "Bad expand rule");
1594           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1595             // For the add_req calls below to work correctly they need
1596             // to added in the same order that a match would add them.
1597             // This means that they would need to be in the order of
1598             // the components list instead of the formal parameters.
1599             // This is a sort of hidden invariant that previously
1600             // wasn't checked and could lead to incorrectly
1601             // constructed nodes.
1602             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1603                        node->_ident, new_inst->_ident);
1604           }
1605           prev_pos = exp_pos;
1606 
1607           new_pos = new_inst->operand_position(parameter,Component::USE);
1608           if (new_pos != -1) {
1609             // Copy the operand from the ExpandNode to the new node
1610             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1611                     cnt, new_pos, exp_pos, opid);
1612             // For each operand add appropriate input edges by looking at tmp's
1613             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1614             // Grab corresponding edges from ExpandNode and insert them here
1615             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1616             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1617             fprintf(fp,"    }\n");
1618             fprintf(fp,"  }\n");
1619             // This value is generated by one of the new instructions
1620             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1621           }
1622         }
1623 
1624         // Update the DAG tmp's for values defined by this instruction
1625         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1626         Effect *eform = (Effect *)new_inst->_effects[parameter];
1627         // If this operand is a definition in either an effects rule
1628         // or a match rule
1629         if((eform) && (is_def(eform->_use_def))) {
1630           // Update the temp associated with this operand
1631           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1632         }
1633         else if( new_def_pos != -1 ) {
1634           // Instruction defines a value but user did not declare it
1635           // in the 'effect' clause
1636           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1637         }
1638       } // done iterating over a new instruction's operands
1639 
1640       // Fix number of operands, as we do not generate redundant ones.
1641       // The matcher generates some redundant operands, which are removed
1642       // in the expand function (of the node we generate here). We don't
1643       // generate the redundant operands here, so set the correct _num_opnds.
1644       if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
1645         fprintf(fp, "  n%d->_num_opnds = %d; // Only unique opnds generated.\n",
1646                 cnt, expand_instruction->num_unique_opnds());
1647       }
1648 
1649       // Invoke Expand() for the newly created instruction.
1650       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1651       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1652     } // done iterating over new instructions
1653     fprintf(fp,"\n");
1654   } // done generating expand rule
1655 
1656   // Generate projections for instruction's additional DEFs and KILLs
1657   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1658     // Get string representing the MachNode that projections point at
1659     const char *machNode = "this";
1660     // Generate the projections
1661     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1662 
1663     // Examine each component to see if it is a DEF or KILL
1664     node->_components.reset();
1665     // Skip the first component, if already handled as (SET dst (...))
1666     Component *comp = NULL;
1667     // For kills, the choice of projection numbers is arbitrary
1668     int proj_no = 1;
1669     bool declared_def  = false;
1670     bool declared_kill = false;
1671 
1672     while ((comp = node->_components.iter()) != NULL) {
1673       // Lookup register class associated with operand type
1674       Form *form = (Form*)_globalNames[comp->_type];
1675       assert(form, "component type must be a defined form");
1676       OperandForm *op = form->is_operand();
1677 
1678       if (comp->is(Component::TEMP) ||
1679           comp->is(Component::TEMP_DEF)) {
1680         fprintf(fp, "  // TEMP %s\n", comp->_name);
1681         if (!declared_def) {
1682           // Define the variable "def" to hold new MachProjNodes
1683           fprintf(fp, "  MachTempNode *def;\n");
1684           declared_def = true;
1685         }
1686         if (op && op->_interface && op->_interface->is_RegInterface()) {
1687           fprintf(fp,"  def = new MachTempNode(state->MachOperGenerator(%s));\n",
1688                   machOperEnum(op->_ident));
1689           fprintf(fp,"  add_req(def);\n");
1690           // The operand for TEMP is already constructed during
1691           // this mach node construction, see buildMachNode().
1692           //
1693           // int idx  = node->operand_position_format(comp->_name);
1694           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1695           //         idx, machOperEnum(op->_ident));
1696         } else {
1697           assert(false, "can't have temps which aren't registers");
1698         }
1699       } else if (comp->isa(Component::KILL)) {
1700         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1701 
1702         if (!declared_kill) {
1703           // Define the variable "kill" to hold new MachProjNodes
1704           fprintf(fp, "  MachProjNode *kill;\n");
1705           declared_kill = true;
1706         }
1707 
1708         assert(op, "Support additional KILLS for base operands");
1709         const char *regmask    = reg_mask(*op);
1710         const char *ideal_type = op->ideal_type(_globalNames, _register);
1711 
1712         if (!op->is_bound_register()) {
1713           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1714                      node->_ident, comp->_type, comp->_name);
1715         }
1716 
1717         fprintf(fp,"  kill = ");
1718         fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1719                 machNode, proj_no++, regmask, ideal_type);
1720         fprintf(fp,"  proj_list.push(kill);\n");
1721       }
1722     }
1723   }
1724 
1725   if( !node->expands() && node->_matrule != NULL ) {
1726     // Remove duplicated operands and inputs which use the same name.
1727     // Search through match operands for the same name usage.
1728     // The matcher generates these non-unique operands. If the node
1729     // was constructed by an expand rule, there are no unique operands.
1730     uint cur_num_opnds = node->num_opnds();
1731     if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
1732       Component *comp = NULL;
1733       fprintf(fp, "  // Remove duplicated operands and inputs which use the same name.\n");
1734       fprintf(fp, "  if (num_opnds() == %d) {\n", cur_num_opnds);
1735       // Build mapping from num_edges to local variables
1736       fprintf(fp,"    unsigned num0 = 0;\n");
1737       for (i = 1; i < cur_num_opnds; i++) {
1738         fprintf(fp,"    unsigned num%d = opnd_array(%d)->num_edges();", i, i);
1739         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1740       }
1741       // Build a mapping from operand index to input edges
1742       fprintf(fp,"    unsigned idx0 = oper_input_base();\n");
1743       for (i = 0; i < cur_num_opnds; i++) {
1744         fprintf(fp,"    unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
1745       }
1746 
1747       uint new_num_opnds = 1;
1748       node->_components.reset();
1749       // Skip first unique operands.
1750       for (i = 1; i < cur_num_opnds; i++) {
1751         comp = node->_components.iter();
1752         if (i != node->unique_opnds_idx(i)) {
1753           break;
1754         }
1755         new_num_opnds++;
1756       }
1757       // Replace not unique operands with next unique operands.
1758       for ( ; i < cur_num_opnds; i++) {
1759         comp = node->_components.iter();
1760         uint j = node->unique_opnds_idx(i);
1761         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1762         if (j != node->unique_opnds_idx(j)) {
1763           fprintf(fp,"    set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1764                   new_num_opnds, i, comp->_name);
1765           // Delete not unique edges here.
1766           fprintf(fp,"    for (unsigned i = 0; i < num%d; i++) {\n", i);
1767           fprintf(fp,"      set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1768           fprintf(fp,"    }\n");
1769           fprintf(fp,"    num%d = num%d;\n", new_num_opnds, i);
1770           fprintf(fp,"    idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1771           new_num_opnds++;
1772         }
1773       }
1774       // Delete the rest of edges.
1775       fprintf(fp,"    for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1776       fprintf(fp,"      del_req(i);\n");
1777       fprintf(fp,"    }\n");
1778       fprintf(fp,"    _num_opnds = %d;\n", new_num_opnds);
1779       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1780       fprintf(fp, "  } else {\n");
1781       fprintf(fp, "    assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
1782                   new_num_opnds, new_num_opnds, cur_num_opnds);
1783       fprintf(fp, "  }\n");
1784     }
1785   }
1786 
1787   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1788   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1789   // There are nodes that don't use $constantablebase, but still require that it
1790   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1791   if (node->is_mach_constant() || node->needs_constant_base()) {
1792     if (node->is_ideal_call() != Form::invalid_type &&
1793         node->is_ideal_call() != Form::JAVA_LEAF) {
1794       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1795       _needs_clone_jvms = true;
1796     } else {
1797       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1798     }
1799   }
1800 
1801   fprintf(fp, "\n");
1802   if (node->expands()) {
1803     fprintf(fp, "  return result;\n");
1804   } else {
1805     fprintf(fp, "  return this;\n");
1806   }
1807   fprintf(fp, "}\n");
1808   fprintf(fp, "\n");
1809 }
1810 
1811 
1812 //------------------------------Emit Routines----------------------------------
1813 // Special classes and routines for defining node emit routines which output
1814 // target specific instruction object encodings.
1815 // Define the ___Node::emit() routine
1816 //
1817 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1818 // (2)   // ...  encoding defined by user
1819 // (3)
1820 // (4) }
1821 //
1822 
1823 class DefineEmitState {
1824 private:
1825   enum reloc_format { RELOC_NONE        = -1,
1826                       RELOC_IMMEDIATE   =  0,
1827                       RELOC_DISP        =  1,
1828                       RELOC_CALL_DISP   =  2 };
1829   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1830                        LITERAL_SEEN      = 1,
1831                        LITERAL_ACCESSED  = 2,
1832                        LITERAL_OUTPUT    = 3 };
1833   // Temporaries that describe current operand
1834   bool          _cleared;
1835   OpClassForm  *_opclass;
1836   OperandForm  *_operand;
1837   int           _operand_idx;
1838   const char   *_local_name;
1839   const char   *_operand_name;
1840   bool          _doing_disp;
1841   bool          _doing_constant;
1842   Form::DataType _constant_type;
1843   DefineEmitState::literal_status _constant_status;
1844   DefineEmitState::literal_status _reg_status;
1845   bool          _doing_emit8;
1846   bool          _doing_emit_d32;
1847   bool          _doing_emit_d16;
1848   bool          _doing_emit_hi;
1849   bool          _doing_emit_lo;
1850   bool          _may_reloc;
1851   reloc_format  _reloc_form;
1852   const char *  _reloc_type;
1853   bool          _processing_noninput;
1854 
1855   NameList      _strings_to_emit;
1856 
1857   // Stable state, set by constructor
1858   ArchDesc     &_AD;
1859   FILE         *_fp;
1860   EncClass     &_encoding;
1861   InsEncode    &_ins_encode;
1862   InstructForm &_inst;
1863 
1864 public:
DefineEmitState(FILE * fp,ArchDesc & AD,EncClass & encoding,InsEncode & ins_encode,InstructForm & inst)1865   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1866                   InsEncode &ins_encode, InstructForm &inst)
1867     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1868       clear();
1869   }
1870 
clear()1871   void clear() {
1872     _cleared       = true;
1873     _opclass       = NULL;
1874     _operand       = NULL;
1875     _operand_idx   = 0;
1876     _local_name    = "";
1877     _operand_name  = "";
1878     _doing_disp    = false;
1879     _doing_constant= false;
1880     _constant_type = Form::none;
1881     _constant_status = LITERAL_NOT_SEEN;
1882     _reg_status      = LITERAL_NOT_SEEN;
1883     _doing_emit8   = false;
1884     _doing_emit_d32= false;
1885     _doing_emit_d16= false;
1886     _doing_emit_hi = false;
1887     _doing_emit_lo = false;
1888     _may_reloc     = false;
1889     _reloc_form    = RELOC_NONE;
1890     _reloc_type    = AdlcVMDeps::none_reloc_type();
1891     _strings_to_emit.clear();
1892   }
1893 
1894   // Track necessary state when identifying a replacement variable
1895   // @arg rep_var: The formal parameter of the encoding.
update_state(const char * rep_var)1896   void update_state(const char *rep_var) {
1897     // A replacement variable or one of its subfields
1898     // Obtain replacement variable from list
1899     if ( (*rep_var) != '$' ) {
1900       // A replacement variable, '$' prefix
1901       // check_rep_var( rep_var );
1902       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1903         // No state needed.
1904         assert( _opclass == NULL,
1905                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1906       }
1907       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1908                (strcmp(rep_var, "constantoffset")    == 0) ||
1909                (strcmp(rep_var, "constantaddress")   == 0)) {
1910         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1911           _AD.syntax_err(_encoding._linenum,
1912                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1913                          rep_var, _encoding._name);
1914         }
1915       }
1916       else {
1917         // Lookup its position in (formal) parameter list of encoding
1918         int   param_no  = _encoding.rep_var_index(rep_var);
1919         if ( param_no == -1 ) {
1920           _AD.syntax_err( _encoding._linenum,
1921                           "Replacement variable %s not found in enc_class %s.\n",
1922                           rep_var, _encoding._name);
1923         }
1924 
1925         // Lookup the corresponding ins_encode parameter
1926         // This is the argument (actual parameter) to the encoding.
1927         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1928         if (inst_rep_var == NULL) {
1929           _AD.syntax_err( _ins_encode._linenum,
1930                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1931                           rep_var, _encoding._name, _inst._ident);
1932           assert(false, "inst_rep_var == NULL, cannot continue.");
1933         }
1934 
1935         // Check if instruction's actual parameter is a local name in the instruction
1936         const Form  *local     = _inst._localNames[inst_rep_var];
1937         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1938         // Note: assert removed to allow constant and symbolic parameters
1939         // assert( opc, "replacement variable was not found in local names");
1940         // Lookup the index position iff the replacement variable is a localName
1941         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1942 
1943         if ( idx != -1 ) {
1944           // This is a local in the instruction
1945           // Update local state info.
1946           _opclass        = opc;
1947           _operand_idx    = idx;
1948           _local_name     = rep_var;
1949           _operand_name   = inst_rep_var;
1950 
1951           // !!!!!
1952           // Do not support consecutive operands.
1953           assert( _operand == NULL, "Unimplemented()");
1954           _operand = opc->is_operand();
1955         }
1956         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1957           // Instruction provided a constant expression
1958           // Check later that encoding specifies $$$constant to resolve as constant
1959           _constant_status   = LITERAL_SEEN;
1960         }
1961         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1962           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1963           // Check later that encoding specifies $$$constant to resolve as constant
1964           _constant_status   = LITERAL_SEEN;
1965         }
1966         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1967           // Instruction provided a literal register name for this parameter
1968           // Check that encoding specifies $$$reg to resolve.as register.
1969           _reg_status        = LITERAL_SEEN;
1970         }
1971         else {
1972           // Check for unimplemented functionality before hard failure
1973           assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
1974           assert(false, "ShouldNotReachHere()");
1975         }
1976       } // done checking which operand this is.
1977     } else {
1978       //
1979       // A subfield variable, '$$' prefix
1980       // Check for fields that may require relocation information.
1981       // Then check that literal register parameters are accessed with 'reg' or 'constant'
1982       //
1983       if ( strcmp(rep_var,"$disp") == 0 ) {
1984         _doing_disp = true;
1985         assert( _opclass, "Must use operand or operand class before '$disp'");
1986         if( _operand == NULL ) {
1987           // Only have an operand class, generate run-time check for relocation
1988           _may_reloc    = true;
1989           _reloc_form   = RELOC_DISP;
1990           _reloc_type   = AdlcVMDeps::oop_reloc_type();
1991         } else {
1992           // Do precise check on operand: is it a ConP or not
1993           //
1994           // Check interface for value of displacement
1995           assert( ( _operand->_interface != NULL ),
1996                   "$disp can only follow memory interface operand");
1997           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
1998           assert( mem_interface != NULL,
1999                   "$disp can only follow memory interface operand");
2000           const char *disp = mem_interface->_disp;
2001 
2002           if( disp != NULL && (*disp == '$') ) {
2003             // MemInterface::disp contains a replacement variable,
2004             // Check if this matches a ConP
2005             //
2006             // Lookup replacement variable, in operand's component list
2007             const char *rep_var_name = disp + 1; // Skip '$'
2008             const Component *comp = _operand->_components.search(rep_var_name);
2009             assert( comp != NULL,"Replacement variable not found in components");
2010             const char      *type = comp->_type;
2011             // Lookup operand form for replacement variable's type
2012             const Form *form = _AD.globalNames()[type];
2013             assert( form != NULL, "Replacement variable's type not found");
2014             OperandForm *op = form->is_operand();
2015             assert( op, "Attempting to emit a non-register or non-constant");
2016             // Check if this is a constant
2017             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2018               // Check which constant this name maps to: _c0, _c1, ..., _cn
2019               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2020               // assert( idx != -1, "Constant component not found in operand");
2021               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2022               if ( dtype == Form::idealP ) {
2023                 _may_reloc    = true;
2024                 // No longer true that idealP is always an oop
2025                 _reloc_form   = RELOC_DISP;
2026                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2027               }
2028             }
2029 
2030             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2031               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2032               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2033               _may_reloc   = false;
2034             } else {
2035               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2036             }
2037           }
2038         } // finished with precise check of operand for relocation.
2039       } // finished with subfield variable
2040       else if ( strcmp(rep_var,"$constant") == 0 ) {
2041         _doing_constant = true;
2042         if ( _constant_status == LITERAL_NOT_SEEN ) {
2043           // Check operand for type of constant
2044           assert( _operand, "Must use operand before '$$constant'");
2045           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2046           _constant_type = dtype;
2047           if ( dtype == Form::idealP ) {
2048             _may_reloc    = true;
2049             // No longer true that idealP is always an oop
2050             // // _must_reloc   = true;
2051             _reloc_form   = RELOC_IMMEDIATE;
2052             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2053           } else {
2054             // No relocation information needed
2055           }
2056         } else {
2057           // User-provided literals may not require relocation information !!!!!
2058           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2059         }
2060       }
2061       else if ( strcmp(rep_var,"$label") == 0 ) {
2062         // Calls containing labels require relocation
2063         if ( _inst.is_ideal_call() )  {
2064           _may_reloc    = true;
2065           // !!!!! !!!!!
2066           _reloc_type   = AdlcVMDeps::none_reloc_type();
2067         }
2068       }
2069 
2070       // literal register parameter must be accessed as a 'reg' field.
2071       if ( _reg_status != LITERAL_NOT_SEEN ) {
2072         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2073         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2074           _reg_status  = LITERAL_ACCESSED;
2075         } else {
2076           _AD.syntax_err(_encoding._linenum,
2077                          "Invalid access to literal register parameter '%s' in %s.\n",
2078                          rep_var, _encoding._name);
2079           assert( false, "invalid access to literal register parameter");
2080         }
2081       }
2082       // literal constant parameters must be accessed as a 'constant' field
2083       if (_constant_status != LITERAL_NOT_SEEN) {
2084         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2085         if (strcmp(rep_var,"$constant") == 0) {
2086           _constant_status = LITERAL_ACCESSED;
2087         } else {
2088           _AD.syntax_err(_encoding._linenum,
2089                          "Invalid access to literal constant parameter '%s' in %s.\n",
2090                          rep_var, _encoding._name);
2091         }
2092       }
2093     } // end replacement and/or subfield
2094 
2095   }
2096 
add_rep_var(const char * rep_var)2097   void add_rep_var(const char *rep_var) {
2098     // Handle subfield and replacement variables.
2099     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2100       // Check for emit prefix, '$$emit32'
2101       assert( _cleared, "Can not nest $$$emit32");
2102       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2103         _doing_emit_d32 = true;
2104       }
2105       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2106         _doing_emit_d16 = true;
2107       }
2108       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2109         _doing_emit_hi  = true;
2110       }
2111       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2112         _doing_emit_lo  = true;
2113       }
2114       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2115         _doing_emit8    = true;
2116       }
2117       else {
2118         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2119         assert( false, "fatal();");
2120       }
2121     }
2122     else {
2123       // Update state for replacement variables
2124       update_state( rep_var );
2125       _strings_to_emit.addName(rep_var);
2126     }
2127     _cleared  = false;
2128   }
2129 
emit_replacement()2130   void emit_replacement() {
2131     // A replacement variable or one of its subfields
2132     // Obtain replacement variable from list
2133     // const char *ec_rep_var = encoding->_rep_vars.iter();
2134     const char *rep_var;
2135     _strings_to_emit.reset();
2136     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2137 
2138       if ( (*rep_var) == '$' ) {
2139         // A subfield variable, '$$' prefix
2140         emit_field( rep_var );
2141       } else {
2142         if (_strings_to_emit.peek() != NULL &&
2143             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2144           fprintf(_fp, "Address::make_raw(");
2145 
2146           emit_rep_var( rep_var );
2147           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2148 
2149           _reg_status = LITERAL_ACCESSED;
2150           emit_rep_var( rep_var );
2151           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2152 
2153           _reg_status = LITERAL_ACCESSED;
2154           emit_rep_var( rep_var );
2155           fprintf(_fp,"->scale(), ");
2156 
2157           _reg_status = LITERAL_ACCESSED;
2158           emit_rep_var( rep_var );
2159           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2160           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2161             fprintf(_fp,"->disp(ra_,this,0), ");
2162           } else {
2163             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2164           }
2165 
2166           _reg_status = LITERAL_ACCESSED;
2167           emit_rep_var( rep_var );
2168           fprintf(_fp,"->disp_reloc())");
2169 
2170           // skip trailing $Address
2171           _strings_to_emit.iter();
2172         } else {
2173           // A replacement variable, '$' prefix
2174           const char* next = _strings_to_emit.peek();
2175           const char* next2 = _strings_to_emit.peek(2);
2176           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2177               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2178             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2179             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2180             fprintf(_fp, "as_Register(");
2181             // emit the operand reference
2182             emit_rep_var( rep_var );
2183             rep_var = _strings_to_emit.iter();
2184             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2185             // handle base or index
2186             emit_field(rep_var);
2187             rep_var = _strings_to_emit.iter();
2188             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2189             // close up the parens
2190             fprintf(_fp, ")");
2191           } else {
2192             emit_rep_var( rep_var );
2193           }
2194         }
2195       } // end replacement and/or subfield
2196     }
2197   }
2198 
emit_reloc_type(const char * type)2199   void emit_reloc_type(const char* type) {
2200     fprintf(_fp, "%s", type)
2201       ;
2202   }
2203 
2204 
emit()2205   void emit() {
2206     //
2207     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2208     //
2209     // Emit the function name when generating an emit function
2210     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2211       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2212       // In general, relocatable isn't known at compiler compile time.
2213       // Check results of prior scan
2214       if ( ! _may_reloc ) {
2215         // Definitely don't need relocation information
2216         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2217         emit_replacement(); fprintf(_fp, ")");
2218       }
2219       else {
2220         // Emit RUNTIME CHECK to see if value needs relocation info
2221         // If emitting a relocatable address, use 'emit_d32_reloc'
2222         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2223         assert( (_doing_disp || _doing_constant)
2224                 && !(_doing_disp && _doing_constant),
2225                 "Must be emitting either a displacement or a constant");
2226         fprintf(_fp,"\n");
2227         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2228                 _operand_idx, disp_constant);
2229         fprintf(_fp,"  ");
2230         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2231         emit_replacement();             fprintf(_fp,", ");
2232         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2233                 _operand_idx, disp_constant);
2234         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2235         fprintf(_fp,"\n");
2236         fprintf(_fp,"} else {\n");
2237         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2238         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2239       }
2240     }
2241     else if ( _doing_emit_d16 ) {
2242       // Relocation of 16-bit values is not supported
2243       fprintf(_fp,"emit_d16(cbuf, ");
2244       emit_replacement(); fprintf(_fp, ")");
2245       // No relocation done for 16-bit values
2246     }
2247     else if ( _doing_emit8 ) {
2248       // Relocation of 8-bit values is not supported
2249       fprintf(_fp,"emit_d8(cbuf, ");
2250       emit_replacement(); fprintf(_fp, ")");
2251       // No relocation done for 8-bit values
2252     }
2253     else {
2254       // Not an emit# command, just output the replacement string.
2255       emit_replacement();
2256     }
2257 
2258     // Get ready for next state collection.
2259     clear();
2260   }
2261 
2262 private:
2263 
2264   // recognizes names which represent MacroAssembler register types
2265   // and return the conversion function to build them from OptoReg
reg_conversion(const char * rep_var)2266   const char* reg_conversion(const char* rep_var) {
2267     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2268     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2269 #if defined(IA32) || defined(AMD64)
2270     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2271 #endif
2272     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2273 #if defined(PPC64)
2274     if (strcmp(rep_var,"$VectorRegister") == 0)   return "as_VectorRegister";
2275     if (strcmp(rep_var,"$VectorSRegister") == 0)  return "as_VectorSRegister";
2276 #endif
2277     return NULL;
2278   }
2279 
emit_field(const char * rep_var)2280   void emit_field(const char *rep_var) {
2281     const char* reg_convert = reg_conversion(rep_var);
2282 
2283     // A subfield variable, '$$subfield'
2284     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2285       // $reg form or the $Register MacroAssembler type conversions
2286       assert( _operand_idx != -1,
2287               "Must use this subfield after operand");
2288       if( _reg_status == LITERAL_NOT_SEEN ) {
2289         if (_processing_noninput) {
2290           const Form  *local     = _inst._localNames[_operand_name];
2291           OperandForm *oper      = local->is_operand();
2292           const RegDef* first = oper->get_RegClass()->find_first_elem();
2293           if (reg_convert != NULL) {
2294             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2295           } else {
2296             fprintf(_fp, "%s_enc", first->_regname);
2297           }
2298         } else {
2299           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2300           // Add parameter for index position, if not result operand
2301           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2302           fprintf(_fp,")");
2303           fprintf(_fp, "/* %s */", _operand_name);
2304         }
2305       } else {
2306         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2307         // Register literal has already been sent to output file, nothing more needed
2308       }
2309     }
2310     else if ( strcmp(rep_var,"$base") == 0 ) {
2311       assert( _operand_idx != -1,
2312               "Must use this subfield after operand");
2313       assert( ! _may_reloc, "UnImplemented()");
2314       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2315     }
2316     else if ( strcmp(rep_var,"$index") == 0 ) {
2317       assert( _operand_idx != -1,
2318               "Must use this subfield after operand");
2319       assert( ! _may_reloc, "UnImplemented()");
2320       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2321     }
2322     else if ( strcmp(rep_var,"$scale") == 0 ) {
2323       assert( ! _may_reloc, "UnImplemented()");
2324       fprintf(_fp,"->scale()");
2325     }
2326     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2327       assert( ! _may_reloc, "UnImplemented()");
2328       fprintf(_fp,"->ccode()");
2329     }
2330     else if ( strcmp(rep_var,"$constant") == 0 ) {
2331       if( _constant_status == LITERAL_NOT_SEEN ) {
2332         if ( _constant_type == Form::idealD ) {
2333           fprintf(_fp,"->constantD()");
2334         } else if ( _constant_type == Form::idealF ) {
2335           fprintf(_fp,"->constantF()");
2336         } else if ( _constant_type == Form::idealL ) {
2337           fprintf(_fp,"->constantL()");
2338         } else {
2339           fprintf(_fp,"->constant()");
2340         }
2341       } else {
2342         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2343         // Constant literal has already been sent to output file, nothing more needed
2344       }
2345     }
2346     else if ( strcmp(rep_var,"$disp") == 0 ) {
2347       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2348       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2349         fprintf(_fp,"->disp(ra_,this,0)");
2350       } else {
2351         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2352       }
2353     }
2354     else if ( strcmp(rep_var,"$label") == 0 ) {
2355       fprintf(_fp,"->label()");
2356     }
2357     else if ( strcmp(rep_var,"$method") == 0 ) {
2358       fprintf(_fp,"->method()");
2359     }
2360     else {
2361       printf("emit_field: %s\n",rep_var);
2362       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2363                            rep_var, _inst._ident);
2364       assert( false, "UnImplemented()");
2365     }
2366   }
2367 
2368 
emit_rep_var(const char * rep_var)2369   void emit_rep_var(const char *rep_var) {
2370     _processing_noninput = false;
2371     // A replacement variable, originally '$'
2372     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2373       if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2374         // Missing opcode
2375         _AD.syntax_err( _inst._linenum,
2376                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2377                         rep_var, _inst._ident, _encoding._name);
2378       }
2379     }
2380     else if (strcmp(rep_var, "constanttablebase") == 0) {
2381       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2382     }
2383     else if (strcmp(rep_var, "constantoffset") == 0) {
2384       fprintf(_fp, "constant_offset()");
2385     }
2386     else if (strcmp(rep_var, "constantaddress") == 0) {
2387       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2388     }
2389     else {
2390       // Lookup its position in parameter list
2391       int   param_no  = _encoding.rep_var_index(rep_var);
2392       if ( param_no == -1 ) {
2393         _AD.syntax_err( _encoding._linenum,
2394                         "Replacement variable %s not found in enc_class %s.\n",
2395                         rep_var, _encoding._name);
2396       }
2397       // Lookup the corresponding ins_encode parameter
2398       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2399 
2400       // Check if instruction's actual parameter is a local name in the instruction
2401       const Form  *local     = _inst._localNames[inst_rep_var];
2402       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2403       // Note: assert removed to allow constant and symbolic parameters
2404       // assert( opc, "replacement variable was not found in local names");
2405       // Lookup the index position iff the replacement variable is a localName
2406       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2407       if( idx != -1 ) {
2408         if (_inst.is_noninput_operand(idx)) {
2409           // This operand isn't a normal input so printing it is done
2410           // specially.
2411           _processing_noninput = true;
2412         } else {
2413           // Output the emit code for this operand
2414           fprintf(_fp,"opnd_array(%d)",idx);
2415         }
2416         assert( _operand == opc->is_operand(),
2417                 "Previous emit $operand does not match current");
2418       }
2419       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2420         // else check if it is a constant expression
2421         // Removed following assert to allow primitive C types as arguments to encodings
2422         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2423         fprintf(_fp,"(%s)", inst_rep_var);
2424         _constant_status = LITERAL_OUTPUT;
2425       }
2426       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2427         // else check if "primary", "secondary", "tertiary"
2428         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2429         if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2430           // Missing opcode
2431           _AD.syntax_err( _inst._linenum,
2432                           "Missing $%s opcode definition in %s\n",
2433                           rep_var, _inst._ident);
2434 
2435         }
2436         _constant_status = LITERAL_OUTPUT;
2437       }
2438       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2439         // Instruction provided a literal register name for this parameter
2440         // Check that encoding specifies $$$reg to resolve.as register.
2441         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2442         fprintf(_fp,"(%s_enc)", inst_rep_var);
2443         _reg_status = LITERAL_OUTPUT;
2444       }
2445       else {
2446         // Check for unimplemented functionality before hard failure
2447         assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
2448         assert(false, "ShouldNotReachHere()");
2449       }
2450       // all done
2451     }
2452   }
2453 
2454 };  // end class DefineEmitState
2455 
2456 
defineSize(FILE * fp,InstructForm & inst)2457 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2458 
2459   //(1)
2460   // Output instruction's emit prototype
2461   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2462           inst._ident);
2463 
2464   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2465 
2466   //(2)
2467   // Print the size
2468   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2469 
2470   // (3) and (4)
2471   fprintf(fp,"}\n\n");
2472 }
2473 
2474 // Emit postalloc expand function.
define_postalloc_expand(FILE * fp,InstructForm & inst)2475 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2476   InsEncode *ins_encode = inst._insencode;
2477 
2478   // Output instruction's postalloc_expand prototype.
2479   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2480           inst._ident);
2481 
2482   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2483 
2484   // Output each operand's offset into the array of registers.
2485   inst.index_temps(fp, _globalNames);
2486 
2487   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2488   // for each parameter <par_name> specified in the encoding.
2489   ins_encode->reset();
2490   const char *ec_name = ins_encode->encode_class_iter();
2491   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2492 
2493   EncClass *encoding = _encode->encClass(ec_name);
2494   if (encoding == NULL) {
2495     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2496     abort();
2497   }
2498   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2499     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2500                          inst._ident, ins_encode->current_encoding_num_args(),
2501                          ec_name, encoding->num_args());
2502   }
2503 
2504   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2505   const int buflen = 2000;
2506   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2507   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2508   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2509 
2510   encoding->_parameter_type.reset();
2511   encoding->_parameter_name.reset();
2512   const char *type = encoding->_parameter_type.iter();
2513   const char *name = encoding->_parameter_name.iter();
2514   int param_no = 0;
2515   for (; (type != NULL) && (name != NULL);
2516        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2517     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2518     int idx = inst.operand_position_format(arg_name);
2519     if (strcmp(arg_name, "constanttablebase") == 0) {
2520       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2521                     name, type, arg_name);
2522       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2523       // There is no operand for the constanttablebase.
2524     } else if (inst.is_noninput_operand(idx)) {
2525       globalAD->syntax_err(inst._linenum,
2526                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2527                            inst._ident, arg_name);
2528     } else {
2529       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2530                     name, idx, type, arg_name);
2531       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2532       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2533     }
2534     param_no++;
2535   }
2536   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2537 
2538   fprintf(fp, "%s", idxbuf);
2539   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2540   fprintf(fp, "%s%s", nbuf, opbuf);
2541   fprintf(fp, "  Compile *C = ra_->C;\n");
2542 
2543   // Output this instruction's encodings.
2544   fprintf(fp, "  {");
2545   const char *ec_code    = NULL;
2546   const char *ec_rep_var = NULL;
2547   assert(encoding == _encode->encClass(ec_name), "");
2548 
2549   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2550   encoding->_code.reset();
2551   encoding->_rep_vars.reset();
2552   // Process list of user-defined strings,
2553   // and occurrences of replacement variables.
2554   // Replacement Vars are pushed into a list and then output.
2555   while ((ec_code = encoding->_code.iter()) != NULL) {
2556     if (! encoding->_code.is_signal(ec_code)) {
2557       // Emit pending code.
2558       pending.emit();
2559       pending.clear();
2560       // Emit this code section.
2561       fprintf(fp, "%s", ec_code);
2562     } else {
2563       // A replacement variable or one of its subfields.
2564       // Obtain replacement variable from list.
2565       ec_rep_var = encoding->_rep_vars.iter();
2566       pending.add_rep_var(ec_rep_var);
2567     }
2568   }
2569   // Emit pending code.
2570   pending.emit();
2571   pending.clear();
2572   fprintf(fp, "  }\n");
2573 
2574   fprintf(fp, "}\n\n");
2575 
2576   ec_name = ins_encode->encode_class_iter();
2577   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2578 }
2579 
2580 // defineEmit -----------------------------------------------------------------
defineEmit(FILE * fp,InstructForm & inst)2581 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2582   InsEncode* encode = inst._insencode;
2583 
2584   // (1)
2585   // Output instruction's emit prototype
2586   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2587 
2588   // If user did not define an encode section,
2589   // provide stub that does not generate any machine code.
2590   if( (_encode == NULL) || (encode == NULL) ) {
2591     fprintf(fp, "  // User did not define an encode section.\n");
2592     fprintf(fp, "}\n");
2593     return;
2594   }
2595 
2596   // Save current instruction's starting address (helps with relocation).
2597   fprintf(fp, "  cbuf.set_insts_mark();\n");
2598 
2599   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2600   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2601     fprintf(fp, "  ra_->C->output()->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2602   }
2603 
2604   // Output each operand's offset into the array of registers.
2605   inst.index_temps(fp, _globalNames);
2606 
2607   // Output this instruction's encodings
2608   const char *ec_name;
2609   bool        user_defined = false;
2610   encode->reset();
2611   while ((ec_name = encode->encode_class_iter()) != NULL) {
2612     fprintf(fp, "  {\n");
2613     // Output user-defined encoding
2614     user_defined           = true;
2615 
2616     const char *ec_code    = NULL;
2617     const char *ec_rep_var = NULL;
2618     EncClass   *encoding   = _encode->encClass(ec_name);
2619     if (encoding == NULL) {
2620       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2621       abort();
2622     }
2623 
2624     if (encode->current_encoding_num_args() != encoding->num_args()) {
2625       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2626                            inst._ident, encode->current_encoding_num_args(),
2627                            ec_name, encoding->num_args());
2628     }
2629 
2630     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2631     encoding->_code.reset();
2632     encoding->_rep_vars.reset();
2633     // Process list of user-defined strings,
2634     // and occurrences of replacement variables.
2635     // Replacement Vars are pushed into a list and then output
2636     while ((ec_code = encoding->_code.iter()) != NULL) {
2637       if (!encoding->_code.is_signal(ec_code)) {
2638         // Emit pending code
2639         pending.emit();
2640         pending.clear();
2641         // Emit this code section
2642         fprintf(fp, "%s", ec_code);
2643       } else {
2644         // A replacement variable or one of its subfields
2645         // Obtain replacement variable from list
2646         ec_rep_var  = encoding->_rep_vars.iter();
2647         pending.add_rep_var(ec_rep_var);
2648       }
2649     }
2650     // Emit pending code
2651     pending.emit();
2652     pending.clear();
2653     fprintf(fp, "  }\n");
2654   } // end while instruction's encodings
2655 
2656   // Check if user stated which encoding to user
2657   if ( user_defined == false ) {
2658     fprintf(fp, "  // User did not define which encode class to use.\n");
2659   }
2660 
2661   // (3) and (4)
2662   fprintf(fp, "}\n\n");
2663 }
2664 
2665 // defineEvalConstant ---------------------------------------------------------
defineEvalConstant(FILE * fp,InstructForm & inst)2666 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2667   InsEncode* encode = inst._constant;
2668 
2669   // (1)
2670   // Output instruction's emit prototype
2671   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2672 
2673   // For ideal jump nodes, add a jump-table entry.
2674   if (inst.is_ideal_jump()) {
2675     fprintf(fp, "  _constant = C->output()->constant_table().add_jump_table(this);\n");
2676   }
2677 
2678   // If user did not define an encode section,
2679   // provide stub that does not generate any machine code.
2680   if ((_encode == NULL) || (encode == NULL)) {
2681     fprintf(fp, "  // User did not define an encode section.\n");
2682     fprintf(fp, "}\n");
2683     return;
2684   }
2685 
2686   // Output this instruction's encodings
2687   const char *ec_name;
2688   bool        user_defined = false;
2689   encode->reset();
2690   while ((ec_name = encode->encode_class_iter()) != NULL) {
2691     fprintf(fp, "  {\n");
2692     // Output user-defined encoding
2693     user_defined           = true;
2694 
2695     const char *ec_code    = NULL;
2696     const char *ec_rep_var = NULL;
2697     EncClass   *encoding   = _encode->encClass(ec_name);
2698     if (encoding == NULL) {
2699       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2700       abort();
2701     }
2702 
2703     if (encode->current_encoding_num_args() != encoding->num_args()) {
2704       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2705                            inst._ident, encode->current_encoding_num_args(),
2706                            ec_name, encoding->num_args());
2707     }
2708 
2709     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2710     encoding->_code.reset();
2711     encoding->_rep_vars.reset();
2712     // Process list of user-defined strings,
2713     // and occurrences of replacement variables.
2714     // Replacement Vars are pushed into a list and then output
2715     while ((ec_code = encoding->_code.iter()) != NULL) {
2716       if (!encoding->_code.is_signal(ec_code)) {
2717         // Emit pending code
2718         pending.emit();
2719         pending.clear();
2720         // Emit this code section
2721         fprintf(fp, "%s", ec_code);
2722       } else {
2723         // A replacement variable or one of its subfields
2724         // Obtain replacement variable from list
2725         ec_rep_var  = encoding->_rep_vars.iter();
2726         pending.add_rep_var(ec_rep_var);
2727       }
2728     }
2729     // Emit pending code
2730     pending.emit();
2731     pending.clear();
2732     fprintf(fp, "  }\n");
2733   } // end while instruction's encodings
2734 
2735   // Check if user stated which encoding to user
2736   if (user_defined == false) {
2737     fprintf(fp, "  // User did not define which encode class to use.\n");
2738   }
2739 
2740   // (3) and (4)
2741   fprintf(fp, "}\n");
2742 }
2743 
2744 // ---------------------------------------------------------------------------
2745 //--------Utilities to build MachOper and MachNode derived Classes------------
2746 // ---------------------------------------------------------------------------
2747 
2748 //------------------------------Utilities to build Operand Classes------------
defineIn_RegMask(FILE * fp,FormDict & globals,OperandForm & oper)2749 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2750   uint num_edges = oper.num_edges(globals);
2751   if( num_edges != 0 ) {
2752     // Method header
2753     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2754             oper._ident);
2755 
2756     // Assert that the index is in range.
2757     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2758             num_edges);
2759 
2760     // Figure out if all RegMasks are the same.
2761     const char* first_reg_class = oper.in_reg_class(0, globals);
2762     bool all_same = true;
2763     assert(first_reg_class != NULL, "did not find register mask");
2764 
2765     for (uint index = 1; all_same && index < num_edges; index++) {
2766       const char* some_reg_class = oper.in_reg_class(index, globals);
2767       assert(some_reg_class != NULL, "did not find register mask");
2768       if (strcmp(first_reg_class, some_reg_class) != 0) {
2769         all_same = false;
2770       }
2771     }
2772 
2773     if (all_same) {
2774       // Return the sole RegMask.
2775       if (strcmp(first_reg_class, "stack_slots") == 0) {
2776         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2777       } else if (strcmp(first_reg_class, "dynamic") == 0) {
2778         fprintf(fp,"  return &RegMask::Empty;\n");
2779       } else {
2780         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2781         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2782         delete[] first_reg_class_to_upper;
2783       }
2784     } else {
2785       // Build a switch statement to return the desired mask.
2786       fprintf(fp,"  switch (index) {\n");
2787 
2788       for (uint index = 0; index < num_edges; index++) {
2789         const char *reg_class = oper.in_reg_class(index, globals);
2790         assert(reg_class != NULL, "did not find register mask");
2791         if( !strcmp(reg_class, "stack_slots") ) {
2792           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2793         } else {
2794           const char* reg_class_to_upper = toUpper(reg_class);
2795           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2796           delete[] reg_class_to_upper;
2797         }
2798       }
2799       fprintf(fp,"  }\n");
2800       fprintf(fp,"  ShouldNotReachHere();\n");
2801       fprintf(fp,"  return NULL;\n");
2802     }
2803 
2804     // Method close
2805     fprintf(fp, "}\n\n");
2806   }
2807 }
2808 
2809 // generate code to create a clone for a class derived from MachOper
2810 //
2811 // (0)  MachOper  *MachOperXOper::clone() const {
2812 // (1)    return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2813 // (2)  }
2814 //
defineClone(FILE * fp,FormDict & globalNames,OperandForm & oper)2815 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2816   fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2817   // Check for constants that need to be copied over
2818   const int  num_consts    = oper.num_consts(globalNames);
2819   const bool is_ideal_bool = oper.is_ideal_bool();
2820   if( (num_consts > 0) ) {
2821     fprintf(fp,"  return new %sOper(", oper._ident);
2822     // generate parameters for constants
2823     int i = 0;
2824     fprintf(fp,"_c%d", i);
2825     for( i = 1; i < num_consts; ++i) {
2826       fprintf(fp,", _c%d", i);
2827     }
2828     // finish line (1)
2829     fprintf(fp,");\n");
2830   }
2831   else {
2832     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2833     fprintf(fp,"  return new %sOper();\n", oper._ident);
2834   }
2835   // finish method
2836   fprintf(fp,"}\n");
2837 }
2838 
2839 // Helper functions for bug 4796752, abstracted with minimal modification
2840 // from define_oper_interface()
rep_var_to_operand(const char * encoding,OperandForm & oper,FormDict & globals)2841 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2842   OperandForm *op = NULL;
2843   // Check for replacement variable
2844   if( *encoding == '$' ) {
2845     // Replacement variable
2846     const char *rep_var = encoding + 1;
2847     // Lookup replacement variable, rep_var, in operand's component list
2848     const Component *comp = oper._components.search(rep_var);
2849     assert( comp != NULL, "Replacement variable not found in components");
2850     // Lookup operand form for replacement variable's type
2851     const char      *type = comp->_type;
2852     Form            *form = (Form*)globals[type];
2853     assert( form != NULL, "Replacement variable's type not found");
2854     op = form->is_operand();
2855     assert( op, "Attempting to emit a non-register or non-constant");
2856   }
2857 
2858   return op;
2859 }
2860 
rep_var_to_constant_index(const char * encoding,OperandForm & oper,FormDict & globals)2861 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2862   int idx = -1;
2863   // Check for replacement variable
2864   if( *encoding == '$' ) {
2865     // Replacement variable
2866     const char *rep_var = encoding + 1;
2867     // Lookup replacement variable, rep_var, in operand's component list
2868     const Component *comp = oper._components.search(rep_var);
2869     assert( comp != NULL, "Replacement variable not found in components");
2870     // Lookup operand form for replacement variable's type
2871     const char      *type = comp->_type;
2872     Form            *form = (Form*)globals[type];
2873     assert( form != NULL, "Replacement variable's type not found");
2874     OperandForm *op = form->is_operand();
2875     assert( op, "Attempting to emit a non-register or non-constant");
2876     // Check that this is a constant and find constant's index:
2877     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2878       idx  = oper.constant_position(globals, comp);
2879     }
2880   }
2881 
2882   return idx;
2883 }
2884 
is_regI(const char * encoding,OperandForm & oper,FormDict & globals)2885 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2886   bool is_regI = false;
2887 
2888   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2889   if( op != NULL ) {
2890     // Check that this is a register
2891     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2892       // Register
2893       const char* ideal  = op->ideal_type(globals);
2894       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2895     }
2896   }
2897 
2898   return is_regI;
2899 }
2900 
is_conP(const char * encoding,OperandForm & oper,FormDict & globals)2901 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2902   bool is_conP = false;
2903 
2904   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2905   if( op != NULL ) {
2906     // Check that this is a constant pointer
2907     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2908       // Constant
2909       Form::DataType dtype = op->is_base_constant(globals);
2910       is_conP = (dtype == Form::idealP);
2911     }
2912   }
2913 
2914   return is_conP;
2915 }
2916 
2917 
2918 // Define a MachOper interface methods
define_oper_interface(FILE * fp,OperandForm & oper,FormDict & globals,const char * name,const char * encoding)2919 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2920                                      const char *name, const char *encoding) {
2921   bool emit_position = false;
2922   int position = -1;
2923 
2924   fprintf(fp,"  virtual int            %s", name);
2925   // Generate access method for base, index, scale, disp, ...
2926   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2927     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2928     emit_position = true;
2929   } else if ( (strcmp(name,"disp") == 0) ) {
2930     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2931   } else {
2932     fprintf(fp, "() const {\n");
2933   }
2934 
2935   // Check for hexadecimal value OR replacement variable
2936   if( *encoding == '$' ) {
2937     // Replacement variable
2938     const char *rep_var = encoding + 1;
2939     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2940     // Lookup replacement variable, rep_var, in operand's component list
2941     const Component *comp = oper._components.search(rep_var);
2942     assert( comp != NULL, "Replacement variable not found in components");
2943     // Lookup operand form for replacement variable's type
2944     const char      *type = comp->_type;
2945     Form            *form = (Form*)globals[type];
2946     assert( form != NULL, "Replacement variable's type not found");
2947     OperandForm *op = form->is_operand();
2948     assert( op, "Attempting to emit a non-register or non-constant");
2949     // Check that this is a register or a constant and generate code:
2950     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2951       // Register
2952       int idx_offset = oper.register_position( globals, rep_var);
2953       position = idx_offset;
2954       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2955       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2956       fprintf(fp,"));\n");
2957     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2958       // StackSlot for an sReg comes either from input node or from self, when idx==0
2959       fprintf(fp,"    if( idx != 0 ) {\n");
2960       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2961       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2962       fprintf(fp,"    }\n");
2963       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2964       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2965     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2966       // Constant
2967       // Check which constant this name maps to: _c0, _c1, ..., _cn
2968       const int idx = oper.constant_position(globals, comp);
2969       assert( idx != -1, "Constant component not found in operand");
2970       // Output code for this constant, type dependent.
2971       fprintf(fp,"    return (int)" );
2972       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2973       fprintf(fp,";\n");
2974     } else {
2975       assert( false, "Attempting to emit a non-register or non-constant");
2976     }
2977   }
2978   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2979     // Hex value
2980     fprintf(fp,"    return %s;\n", encoding);
2981   } else {
2982     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2983                          oper._ident, encoding, name);
2984     assert( false, "Do not support octal or decimal encode constants");
2985   }
2986   fprintf(fp,"  }\n");
2987 
2988   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2989     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2990     MemInterface *mem_interface = oper._interface->is_MemInterface();
2991     const char *base = mem_interface->_base;
2992     const char *disp = mem_interface->_disp;
2993     if( emit_position && (strcmp(name,"base") == 0)
2994         && base != NULL && is_regI(base, oper, globals)
2995         && disp != NULL && is_conP(disp, oper, globals) ) {
2996       // Found a memory access using a constant pointer for a displacement
2997       // and a base register containing an integer offset.
2998       // In this case the base and disp are reversed with respect to what
2999       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3000       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3001       // to correctly compute the access type for alias analysis.
3002       //
3003       // See BugId 4796752, operand indOffset32X in x86_32.ad
3004       int idx = rep_var_to_constant_index(disp, oper, globals);
3005       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3006     }
3007   }
3008 }
3009 
3010 //
3011 // Construct the method to copy _idx, inputs and operands to new node.
define_fill_new_machnode(bool used,FILE * fp_cpp)3012 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3013   fprintf(fp_cpp, "\n");
3014   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3015   fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3016   if( !used ) {
3017     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3018     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3019     fprintf(fp_cpp, "}\n");
3020   } else {
3021     // New node must use same node index for access through allocator's tables
3022     fprintf(fp_cpp, "  // New node must use same node index\n");
3023     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3024     // Copy machine-independent inputs
3025     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3026     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3027     fprintf(fp_cpp, "    node->add_req(in(j));\n");
3028     fprintf(fp_cpp, "  }\n");
3029     // Copy machine operands to new MachNode
3030     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3031     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3032     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3033     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3034     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3035     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3036     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone();\n");
3037     fprintf(fp_cpp, "  }\n");
3038     fprintf(fp_cpp, "}\n");
3039   }
3040   fprintf(fp_cpp, "\n");
3041 }
3042 
3043 //------------------------------defineClasses----------------------------------
3044 // Define members of MachNode and MachOper classes based on
3045 // operand and instruction lists
defineClasses(FILE * fp)3046 void ArchDesc::defineClasses(FILE *fp) {
3047 
3048   // Define the contents of an array containing the machine register names
3049   defineRegNames(fp, _register);
3050   // Define an array containing the machine register encoding values
3051   defineRegEncodes(fp, _register);
3052   // Generate an enumeration of user-defined register classes
3053   // and a list of register masks, one for each class.
3054   // Only define the RegMask value objects in the expand file.
3055   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3056   declare_register_masks(_HPP_file._fp);
3057   // build_register_masks(fp);
3058   build_register_masks(_CPP_EXPAND_file._fp);
3059   // Define the pipe_classes
3060   build_pipe_classes(_CPP_PIPELINE_file._fp);
3061 
3062   // Generate Machine Classes for each operand defined in AD file
3063   fprintf(fp,"\n");
3064   fprintf(fp,"\n");
3065   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3066   // Iterate through all operands
3067   _operands.reset();
3068   OperandForm *oper;
3069   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3070     // Ensure this is a machine-world instruction
3071     if ( oper->ideal_only() ) continue;
3072     // !!!!!
3073     // The declaration of labelOper is in machine-independent file: machnode
3074     if ( strcmp(oper->_ident,"label") == 0 ) {
3075       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3076 
3077       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3078       fprintf(fp,"  return  new %sOper(_label, _block_num);\n", oper->_ident);
3079       fprintf(fp,"}\n");
3080 
3081       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3082               oper->_ident, machOperEnum(oper->_ident));
3083       // // Currently all XXXOper::Hash() methods are identical (990820)
3084       // define_hash(fp, oper->_ident);
3085       // // Currently all XXXOper::Cmp() methods are identical (990820)
3086       // define_cmp(fp, oper->_ident);
3087       fprintf(fp,"\n");
3088 
3089       continue;
3090     }
3091 
3092     // The declaration of methodOper is in machine-independent file: machnode
3093     if ( strcmp(oper->_ident,"method") == 0 ) {
3094       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3095 
3096       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3097       fprintf(fp,"  return  new %sOper(_method);\n", oper->_ident);
3098       fprintf(fp,"}\n");
3099 
3100       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3101               oper->_ident, machOperEnum(oper->_ident));
3102       // // Currently all XXXOper::Hash() methods are identical (990820)
3103       // define_hash(fp, oper->_ident);
3104       // // Currently all XXXOper::Cmp() methods are identical (990820)
3105       // define_cmp(fp, oper->_ident);
3106       fprintf(fp,"\n");
3107 
3108       continue;
3109     }
3110 
3111     defineIn_RegMask(fp, _globalNames, *oper);
3112     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3113     // // Currently all XXXOper::Hash() methods are identical (990820)
3114     // define_hash(fp, oper->_ident);
3115     // // Currently all XXXOper::Cmp() methods are identical (990820)
3116     // define_cmp(fp, oper->_ident);
3117 
3118     // side-call to generate output that used to be in the header file:
3119     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3120     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3121 
3122   }
3123 
3124 
3125   // Generate Machine Classes for each instruction defined in AD file
3126   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3127   // Output the definitions for out_RegMask() // & kill_RegMask()
3128   _instructions.reset();
3129   InstructForm *instr;
3130   MachNodeForm *machnode;
3131   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3132     // Ensure this is a machine-world instruction
3133     if ( instr->ideal_only() ) continue;
3134 
3135     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3136   }
3137 
3138   bool used = false;
3139   // Output the definitions for expand rules & peephole rules
3140   _instructions.reset();
3141   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3142     // Ensure this is a machine-world instruction
3143     if ( instr->ideal_only() ) continue;
3144     // If there are multiple defs/kills, or an explicit expand rule, build rule
3145     if( instr->expands() || instr->needs_projections() ||
3146         instr->has_temps() ||
3147         instr->is_mach_constant() ||
3148         instr->needs_constant_base() ||
3149         (instr->_matrule != NULL &&
3150          instr->num_opnds() != instr->num_unique_opnds()) )
3151       defineExpand(_CPP_EXPAND_file._fp, instr);
3152     // If there is an explicit peephole rule, build it
3153     if ( instr->peepholes() )
3154       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3155 
3156     // Output code to convert to the cisc version, if applicable
3157     used |= instr->define_cisc_version(*this, fp);
3158 
3159     // Output code to convert to the short branch version, if applicable
3160     used |= instr->define_short_branch_methods(*this, fp);
3161   }
3162 
3163   // Construct the method called by cisc_version() to copy inputs and operands.
3164   define_fill_new_machnode(used, fp);
3165 
3166   // Output the definitions for labels
3167   _instructions.reset();
3168   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3169     // Ensure this is a machine-world instruction
3170     if ( instr->ideal_only() ) continue;
3171 
3172     // Access the fields for operand Label
3173     int label_position = instr->label_position();
3174     if( label_position != -1 ) {
3175       // Set the label
3176       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3177       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3178               label_position );
3179       fprintf(fp,"  oper->_label     = label;\n");
3180       fprintf(fp,"  oper->_block_num = block_num;\n");
3181       fprintf(fp,"}\n");
3182       // Save the label
3183       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3184       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3185               label_position );
3186       fprintf(fp,"  *label = oper->_label;\n");
3187       fprintf(fp,"  *block_num = oper->_block_num;\n");
3188       fprintf(fp,"}\n");
3189     }
3190   }
3191 
3192   // Output the definitions for methods
3193   _instructions.reset();
3194   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3195     // Ensure this is a machine-world instruction
3196     if ( instr->ideal_only() ) continue;
3197 
3198     // Access the fields for operand Label
3199     int method_position = instr->method_position();
3200     if( method_position != -1 ) {
3201       // Access the method's address
3202       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3203       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3204               method_position );
3205       fprintf(fp,"}\n");
3206       fprintf(fp,"\n");
3207     }
3208   }
3209 
3210   // Define this instruction's number of relocation entries, base is '0'
3211   _instructions.reset();
3212   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3213     // Output the definition for number of relocation entries
3214     uint reloc_size = instr->reloc(_globalNames);
3215     if ( reloc_size != 0 ) {
3216       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3217       fprintf(fp,"  return %d;\n", reloc_size);
3218       fprintf(fp,"}\n");
3219       fprintf(fp,"\n");
3220     }
3221   }
3222   fprintf(fp,"\n");
3223 
3224   // Output the definitions for code generation
3225   //
3226   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3227   //   // ...  encoding defined by user
3228   //   return ptr;
3229   // }
3230   //
3231   _instructions.reset();
3232   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3233     // Ensure this is a machine-world instruction
3234     if ( instr->ideal_only() ) continue;
3235 
3236     if (instr->_insencode) {
3237       if (instr->postalloc_expands()) {
3238         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3239         // from code sections in ad file that is dumped to fp.
3240         define_postalloc_expand(fp, *instr);
3241       } else {
3242         defineEmit(fp, *instr);
3243       }
3244     }
3245     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3246     if (instr->_size)              defineSize        (fp, *instr);
3247 
3248     // side-call to generate output that used to be in the header file:
3249     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3250     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3251   }
3252 
3253   // Output the definitions for alias analysis
3254   _instructions.reset();
3255   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3256     // Ensure this is a machine-world instruction
3257     if ( instr->ideal_only() ) continue;
3258 
3259     // Analyze machine instructions that either USE or DEF memory.
3260     int memory_operand = instr->memory_operand(_globalNames);
3261 
3262     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3263       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3264         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3265         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3266       } else {
3267         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3268   }
3269     }
3270   }
3271 
3272   // Get the length of the longest identifier
3273   int max_ident_len = 0;
3274   _instructions.reset();
3275 
3276   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3277     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3278       int ident_len = (int)strlen(instr->_ident);
3279       if( max_ident_len < ident_len )
3280         max_ident_len = ident_len;
3281     }
3282   }
3283 
3284   // Emit specifically for Node(s)
3285   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3286     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3287   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3288     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3289   fprintf(_CPP_PIPELINE_file._fp, "\n");
3290 
3291   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3292     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3293   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3294     max_ident_len, "MachNode");
3295   fprintf(_CPP_PIPELINE_file._fp, "\n");
3296 
3297   // Output the definitions for machine node specific pipeline data
3298   _machnodes.reset();
3299 
3300   if (_pipeline != NULL) {
3301     for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3302       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3303               machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3304     }
3305   }
3306 
3307   fprintf(_CPP_PIPELINE_file._fp, "\n");
3308 
3309   // Output the definitions for instruction pipeline static data references
3310   _instructions.reset();
3311 
3312   if (_pipeline != NULL) {
3313     for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3314       if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3315         fprintf(_CPP_PIPELINE_file._fp, "\n");
3316         fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3317                 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3318         fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3319                 max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3320       }
3321     }
3322   }
3323 }
3324 
3325 
3326 // -------------------------------- maps ------------------------------------
3327 
3328 // Information needed to generate the ReduceOp mapping for the DFA
3329 class OutputReduceOp : public OutputMap {
3330 public:
OutputReduceOp(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3331   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3332     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3333 
declaration()3334   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
definition()3335   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
closing()3336   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3337                        OutputMap::closing();
3338   }
map(OpClassForm & opc)3339   void map(OpClassForm &opc)  {
3340     const char *reduce = opc._ident;
3341     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3342     else          fprintf(_cpp, "  0");
3343   }
map(OperandForm & oper)3344   void map(OperandForm &oper) {
3345     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3346     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3347     // operand stackSlot does not have a match rule, but produces a stackSlot
3348     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3349     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3350     else          fprintf(_cpp, "  0");
3351   }
map(InstructForm & inst)3352   void map(InstructForm &inst) {
3353     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3354     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3355     else          fprintf(_cpp, "  0");
3356   }
map(char * reduce)3357   void map(char         *reduce) {
3358     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3359     else          fprintf(_cpp, "  0");
3360   }
3361 };
3362 
3363 // Information needed to generate the LeftOp mapping for the DFA
3364 class OutputLeftOp : public OutputMap {
3365 public:
OutputLeftOp(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3366   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3367     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3368 
declaration()3369   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
definition()3370   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
closing()3371   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3372                        OutputMap::closing();
3373   }
map(OpClassForm & opc)3374   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
map(OperandForm & oper)3375   void map(OperandForm &oper) {
3376     const char *reduce = oper.reduce_left(_globals);
3377     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3378     else          fprintf(_cpp, "  0");
3379   }
map(char * name)3380   void map(char        *name) {
3381     const char *reduce = _AD.reduceLeft(name);
3382     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3383     else          fprintf(_cpp, "  0");
3384   }
map(InstructForm & inst)3385   void map(InstructForm &inst) {
3386     const char *reduce = inst.reduce_left(_globals);
3387     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3388     else          fprintf(_cpp, "  0");
3389   }
3390 };
3391 
3392 
3393 // Information needed to generate the RightOp mapping for the DFA
3394 class OutputRightOp : public OutputMap {
3395 public:
OutputRightOp(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3396   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3397     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3398 
declaration()3399   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
definition()3400   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
closing()3401   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3402                        OutputMap::closing();
3403   }
map(OpClassForm & opc)3404   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
map(OperandForm & oper)3405   void map(OperandForm &oper) {
3406     const char *reduce = oper.reduce_right(_globals);
3407     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3408     else          fprintf(_cpp, "  0");
3409   }
map(char * name)3410   void map(char        *name) {
3411     const char *reduce = _AD.reduceRight(name);
3412     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3413     else          fprintf(_cpp, "  0");
3414   }
map(InstructForm & inst)3415   void map(InstructForm &inst) {
3416     const char *reduce = inst.reduce_right(_globals);
3417     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3418     else          fprintf(_cpp, "  0");
3419   }
3420 };
3421 
3422 
3423 // Information needed to generate the Rule names for the DFA
3424 class OutputRuleName : public OutputMap {
3425 public:
OutputRuleName(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3426   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3427     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3428 
declaration()3429   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
definition()3430   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
closing()3431   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3432                        OutputMap::closing();
3433   }
map(OpClassForm & opc)3434   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
map(OperandForm & oper)3435   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
map(char * name)3436   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
map(InstructForm & inst)3437   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3438 };
3439 
3440 
3441 // Information needed to generate the swallowed mapping for the DFA
3442 class OutputSwallowed : public OutputMap {
3443 public:
OutputSwallowed(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3444   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3445     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3446 
declaration()3447   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
definition()3448   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
closing()3449   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3450                        OutputMap::closing();
3451   }
map(OperandForm & oper)3452   void map(OperandForm &oper) { // Generate the entry for this opcode
3453     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3454     fprintf(_cpp, "  %s", swallowed);
3455   }
map(OpClassForm & opc)3456   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
map(char * name)3457   void map(char        *name) { fprintf(_cpp, "  false"); }
map(InstructForm & inst)3458   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3459 };
3460 
3461 
3462 // Information needed to generate the decision array for instruction chain rule
3463 class OutputInstChainRule : public OutputMap {
3464 public:
OutputInstChainRule(FILE * hpp,FILE * cpp,FormDict & globals,ArchDesc & AD)3465   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3466     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3467 
declaration()3468   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
definition()3469   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
closing()3470   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3471                        OutputMap::closing();
3472   }
map(OpClassForm & opc)3473   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
map(OperandForm & oper)3474   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
map(char * name)3475   void map(char        *name)  { fprintf(_cpp, "  false"); }
map(InstructForm & inst)3476   void map(InstructForm &inst) { // Check for simple chain rule
3477     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3478     fprintf(_cpp, "  %s", chain);
3479   }
3480 };
3481 
3482 
3483 //---------------------------build_map------------------------------------
3484 // Build  mapping from enumeration for densely packed operands
3485 // TO result and child types.
build_map(OutputMap & map)3486 void ArchDesc::build_map(OutputMap &map) {
3487   FILE         *fp_hpp = map.decl_file();
3488   FILE         *fp_cpp = map.def_file();
3489   int           idx    = 0;
3490   OperandForm  *op;
3491   OpClassForm  *opc;
3492   InstructForm *inst;
3493 
3494   // Construct this mapping
3495   map.declaration();
3496   fprintf(fp_cpp,"\n");
3497   map.definition();
3498 
3499   // Output the mapping for operands
3500   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3501   _operands.reset();
3502   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3503     // Ensure this is a machine-world instruction
3504     if ( op->ideal_only() )  continue;
3505 
3506     // Generate the entry for this opcode
3507     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3508     ++idx;
3509   };
3510   fprintf(fp_cpp, "  // last operand\n");
3511 
3512   // Place all user-defined operand classes into the mapping
3513   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3514   _opclass.reset();
3515   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3516     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3517     ++idx;
3518   };
3519   fprintf(fp_cpp, "  // last operand class\n");
3520 
3521   // Place all internally defined operands into the mapping
3522   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3523   _internalOpNames.reset();
3524   char *name = NULL;
3525   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3526     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3527     ++idx;
3528   };
3529   fprintf(fp_cpp, "  // last internally defined operand\n");
3530 
3531   // Place all user-defined instructions into the mapping
3532   if( map.do_instructions() ) {
3533     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3534     // Output all simple instruction chain rules first
3535     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3536     {
3537       _instructions.reset();
3538       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3539         // Ensure this is a machine-world instruction
3540         if ( inst->ideal_only() )  continue;
3541         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3542         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3543 
3544         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3545         ++idx;
3546       };
3547       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3548       _instructions.reset();
3549       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3550         // Ensure this is a machine-world instruction
3551         if ( inst->ideal_only() )  continue;
3552         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3553         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3554 
3555         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3556         ++idx;
3557       };
3558       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3559     }
3560     // Output all instructions that are NOT simple chain rules
3561     {
3562       _instructions.reset();
3563       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3564         // Ensure this is a machine-world instruction
3565         if ( inst->ideal_only() )  continue;
3566         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3567         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3568 
3569         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3570         ++idx;
3571       };
3572       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3573       _instructions.reset();
3574       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3575         // Ensure this is a machine-world instruction
3576         if ( inst->ideal_only() )  continue;
3577         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3578         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3579 
3580         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3581         ++idx;
3582       };
3583     }
3584     fprintf(fp_cpp, "  // last instruction\n");
3585     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3586   }
3587   // Finish defining table
3588   map.closing();
3589 };
3590 
3591 
3592 // Helper function for buildReduceMaps
reg_save_policy(const char * calling_convention)3593 char reg_save_policy(const char *calling_convention) {
3594   char callconv;
3595 
3596   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3597   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3598   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3599   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3600   else                                         callconv = 'Z';
3601 
3602   return callconv;
3603 }
3604 
generate_needs_clone_jvms(FILE * fp_cpp)3605 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3606   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3607           _needs_clone_jvms ? "true" : "false");
3608 }
3609 
3610 //---------------------------generate_assertion_checks-------------------
generate_adlc_verification(FILE * fp_cpp)3611 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3612   fprintf(fp_cpp, "\n");
3613 
3614   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3615   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3616   globalDefs().print_asserts(fp_cpp);
3617   fprintf(fp_cpp, "}\n");
3618   fprintf(fp_cpp, "#endif\n");
3619   fprintf(fp_cpp, "\n");
3620 }
3621 
3622 //---------------------------addSourceBlocks-----------------------------
addSourceBlocks(FILE * fp_cpp)3623 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3624   if (_source.count() > 0)
3625     _source.output(fp_cpp);
3626 
3627   generate_adlc_verification(fp_cpp);
3628 }
3629 //---------------------------addHeaderBlocks-----------------------------
addHeaderBlocks(FILE * fp_hpp)3630 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3631   if (_header.count() > 0)
3632     _header.output(fp_hpp);
3633 }
3634 //-------------------------addPreHeaderBlocks----------------------------
addPreHeaderBlocks(FILE * fp_hpp)3635 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3636   // Output #defines from definition block
3637   globalDefs().print_defines(fp_hpp);
3638 
3639   if (_pre_header.count() > 0)
3640     _pre_header.output(fp_hpp);
3641 }
3642 
3643 //---------------------------buildReduceMaps-----------------------------
3644 // Build  mapping from enumeration for densely packed operands
3645 // TO result and child types.
buildReduceMaps(FILE * fp_hpp,FILE * fp_cpp)3646 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3647   RegDef       *rdef;
3648   RegDef       *next;
3649 
3650   // The emit bodies currently require functions defined in the source block.
3651 
3652   // Build external declarations for mappings
3653   fprintf(fp_hpp, "\n");
3654   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3655   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3656   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3657   fprintf(fp_hpp, "\n");
3658 
3659   // Construct Save-Policy array
3660   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3661   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3662   _register->reset_RegDefs();
3663   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3664     next              = _register->iter_RegDefs();
3665     char policy       = reg_save_policy(rdef->_callconv);
3666     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3667     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3668   }
3669   fprintf(fp_cpp, "};\n\n");
3670 
3671   // Construct Native Save-Policy array
3672   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3673   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3674   _register->reset_RegDefs();
3675   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3676     next        = _register->iter_RegDefs();
3677     char policy = reg_save_policy(rdef->_c_conv);
3678     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3679     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3680   }
3681   fprintf(fp_cpp, "};\n\n");
3682 
3683   // Construct Register Save Type array
3684   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3685   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3686   _register->reset_RegDefs();
3687   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3688     next = _register->iter_RegDefs();
3689     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3690     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3691   }
3692   fprintf(fp_cpp, "};\n\n");
3693 
3694   // Construct the table for reduceOp
3695   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3696   build_map(output_reduce_op);
3697   // Construct the table for leftOp
3698   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3699   build_map(output_left_op);
3700   // Construct the table for rightOp
3701   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3702   build_map(output_right_op);
3703   // Construct the table of rule names
3704   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3705   build_map(output_rule_name);
3706   // Construct the boolean table for subsumed operands
3707   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3708   build_map(output_swallowed);
3709   // // // Preserve in case we decide to use this table instead of another
3710   //// Construct the boolean table for instruction chain rules
3711   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3712   //build_map(output_inst_chain);
3713 
3714 }
3715 
3716 
3717 //---------------------------buildMachOperGenerator---------------------------
3718 
3719 // Recurse through match tree, building path through corresponding state tree,
3720 // Until we reach the constant we are looking for.
path_to_constant(FILE * fp,FormDict & globals,MatchNode * mnode,uint idx)3721 static void path_to_constant(FILE *fp, FormDict &globals,
3722                              MatchNode *mnode, uint idx) {
3723   if ( ! mnode) return;
3724 
3725   unsigned    position = 0;
3726   const char *result   = NULL;
3727   const char *name     = NULL;
3728   const char *optype   = NULL;
3729 
3730   // Base Case: access constant in ideal node linked to current state node
3731   // Each type of constant has its own access function
3732   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3733        && mnode->base_operand(position, globals, result, name, optype) ) {
3734     if (         strcmp(optype,"ConI") == 0 ) {
3735       fprintf(fp, "_leaf->get_int()");
3736     } else if ( (strcmp(optype,"ConP") == 0) ) {
3737       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3738     } else if ( (strcmp(optype,"ConN") == 0) ) {
3739       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3740     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3741       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3742     } else if ( (strcmp(optype,"ConF") == 0) ) {
3743       fprintf(fp, "_leaf->getf()");
3744     } else if ( (strcmp(optype,"ConD") == 0) ) {
3745       fprintf(fp, "_leaf->getd()");
3746     } else if ( (strcmp(optype,"ConL") == 0) ) {
3747       fprintf(fp, "_leaf->get_long()");
3748     } else if ( (strcmp(optype,"Con")==0) ) {
3749       // !!!!! - Update if adding a machine-independent constant type
3750       fprintf(fp, "_leaf->get_int()");
3751       assert( false, "Unsupported constant type, pointer or indefinite");
3752     } else if ( (strcmp(optype,"Bool") == 0) ) {
3753       fprintf(fp, "_leaf->as_Bool()->_test._test");
3754     } else {
3755       assert( false, "Unsupported constant type");
3756     }
3757     return;
3758   }
3759 
3760   // If constant is in left child, build path and recurse
3761   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3762   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3763   if ( (mnode->_lChild) && (lConsts > idx) ) {
3764     fprintf(fp, "_kids[0]->");
3765     path_to_constant(fp, globals, mnode->_lChild, idx);
3766     return;
3767   }
3768   // If constant is in right child, build path and recurse
3769   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3770     idx = idx - lConsts;
3771     fprintf(fp, "_kids[1]->");
3772     path_to_constant(fp, globals, mnode->_rChild, idx);
3773     return;
3774   }
3775   assert( false, "ShouldNotReachHere()");
3776 }
3777 
3778 // Generate code that is executed when generating a specific Machine Operand
genMachOperCase(FILE * fp,FormDict & globalNames,ArchDesc & AD,OperandForm & op)3779 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3780                             OperandForm &op) {
3781   const char *opName         = op._ident;
3782   const char *opEnumName     = AD.machOperEnum(opName);
3783   uint        num_consts     = op.num_consts(globalNames);
3784 
3785   // Generate the case statement for this opcode
3786   fprintf(fp, "  case %s:", opEnumName);
3787   fprintf(fp, "\n    return new %sOper(", opName);
3788   // Access parameters for constructor from the stat object
3789   //
3790   // Build access to condition code value
3791   if ( (num_consts > 0) ) {
3792     uint i = 0;
3793     path_to_constant(fp, globalNames, op._matrule, i);
3794     for ( i = 1; i < num_consts; ++i ) {
3795       fprintf(fp, ", ");
3796       path_to_constant(fp, globalNames, op._matrule, i);
3797     }
3798   }
3799   fprintf(fp, " );\n");
3800 }
3801 
3802 
3803 // Build switch to invoke "new" MachNode or MachOper
buildMachOperGenerator(FILE * fp_cpp)3804 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3805   int idx = 0;
3806 
3807   // Build switch to invoke 'new' for a specific MachOper
3808   fprintf(fp_cpp, "\n");
3809   fprintf(fp_cpp, "\n");
3810   fprintf(fp_cpp,
3811           "//------------------------- MachOper Generator ---------------\n");
3812   fprintf(fp_cpp,
3813           "// A switch statement on the dense-packed user-defined type system\n"
3814           "// that invokes 'new' on the corresponding class constructor.\n");
3815   fprintf(fp_cpp, "\n");
3816   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3817   fprintf(fp_cpp, "(int opcode)");
3818   fprintf(fp_cpp, "{\n");
3819   fprintf(fp_cpp, "\n");
3820   fprintf(fp_cpp, "  switch(opcode) {\n");
3821 
3822   // Place all user-defined operands into the mapping
3823   _operands.reset();
3824   int  opIndex = 0;
3825   OperandForm *op;
3826   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3827     // Ensure this is a machine-world instruction
3828     if ( op->ideal_only() )  continue;
3829 
3830     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3831   };
3832 
3833   // Do not iterate over operand classes for the  operand generator!!!
3834 
3835   // Place all internal operands into the mapping
3836   _internalOpNames.reset();
3837   const char *iopn;
3838   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3839     const char *opEnumName = machOperEnum(iopn);
3840     // Generate the case statement for this opcode
3841     fprintf(fp_cpp, "  case %s:", opEnumName);
3842     fprintf(fp_cpp, "    return NULL;\n");
3843   };
3844 
3845   // Generate the default case for switch(opcode)
3846   fprintf(fp_cpp, "  \n");
3847   fprintf(fp_cpp, "  default:\n");
3848   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3849   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3850   fprintf(fp_cpp, "    break;\n");
3851   fprintf(fp_cpp, "  }\n");
3852 
3853   // Generate the closing for method Matcher::MachOperGenerator
3854   fprintf(fp_cpp, "  return NULL;\n");
3855   fprintf(fp_cpp, "};\n");
3856 }
3857 
3858 
3859 //---------------------------buildMachNode-------------------------------------
3860 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
buildMachNode(FILE * fp_cpp,InstructForm * inst,const char * indent)3861 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3862   const char *opType  = NULL;
3863   const char *opClass = inst->_ident;
3864 
3865   // Create the MachNode object
3866   fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3867 
3868   if ( (inst->num_post_match_opnds() != 0) ) {
3869     // Instruction that contains operands which are not in match rule.
3870     //
3871     // Check if the first post-match component may be an interesting def
3872     bool           dont_care = false;
3873     ComponentList &comp_list = inst->_components;
3874     Component     *comp      = NULL;
3875     comp_list.reset();
3876     if ( comp_list.match_iter() != NULL )    dont_care = true;
3877 
3878     // Insert operands that are not in match-rule.
3879     // Only insert a DEF if the do_care flag is set
3880     comp_list.reset();
3881     while ( (comp = comp_list.post_match_iter()) ) {
3882       // Check if we don't care about DEFs or KILLs that are not USEs
3883       if ( dont_care && (! comp->isa(Component::USE)) ) {
3884         continue;
3885       }
3886       dont_care = true;
3887       // For each operand not in the match rule, call MachOperGenerator
3888       // with the enum for the opcode that needs to be built.
3889       ComponentList clist = inst->_components;
3890       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3891       const char *opcode = machOperEnum(comp->_type);
3892       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3893       fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3894       }
3895   }
3896   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3897     // An instruction that chains from a constant!
3898     // In this case, we need to subsume the constant into the node
3899     // at operand position, oper_input_base().
3900     //
3901     // Fill in the constant
3902     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3903             inst->oper_input_base(_globalNames));
3904     // #####
3905     // Check for multiple constants and then fill them in.
3906     // Just like MachOperGenerator
3907     const char *opName = inst->_matrule->_rChild->_opType;
3908     fprintf(fp_cpp, "new %sOper(", opName);
3909     // Grab operand form
3910     OperandForm *op = (_globalNames[opName])->is_operand();
3911     // Look up the number of constants
3912     uint num_consts = op->num_consts(_globalNames);
3913     if ( (num_consts > 0) ) {
3914       uint i = 0;
3915       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3916       for ( i = 1; i < num_consts; ++i ) {
3917         fprintf(fp_cpp, ", ");
3918         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3919       }
3920     }
3921     fprintf(fp_cpp, " );\n");
3922     // #####
3923   }
3924 
3925   // Fill in the bottom_type where requested
3926   if (inst->captures_bottom_type(_globalNames)) {
3927     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3928       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3929     }
3930   }
3931   if( inst->is_ideal_if() ) {
3932     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3933     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3934   }
3935   if (inst->is_ideal_halt()) {
3936     fprintf(fp_cpp, "%s node->_halt_reason = _leaf->as_Halt()->_halt_reason;\n", indent);
3937     fprintf(fp_cpp, "%s node->_reachable   = _leaf->as_Halt()->_reachable;\n", indent);
3938   }
3939   if (inst->is_ideal_jump()) {
3940     fprintf(fp_cpp, "%s node->_probs = _leaf->as_Jump()->_probs;\n", indent);
3941   }
3942   if( inst->is_ideal_fastlock() ) {
3943     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3944     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3945     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3946   }
3947 
3948 }
3949 
3950 //---------------------------declare_cisc_version------------------------------
3951 // Build CISC version of this instruction
declare_cisc_version(ArchDesc & AD,FILE * fp_hpp)3952 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3953   if( AD.can_cisc_spill() ) {
3954     InstructForm *inst_cisc = cisc_spill_alternate();
3955     if (inst_cisc != NULL) {
3956       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3957       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset);\n");
3958       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3959       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3960     }
3961   }
3962 }
3963 
3964 //---------------------------define_cisc_version-------------------------------
3965 // Build CISC version of this instruction
define_cisc_version(ArchDesc & AD,FILE * fp_cpp)3966 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3967   InstructForm *inst_cisc = this->cisc_spill_alternate();
3968   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3969     const char   *name      = inst_cisc->_ident;
3970     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3971     OperandForm *cisc_oper = AD.cisc_spill_operand();
3972     assert( cisc_oper != NULL, "insanity check");
3973     const char *cisc_oper_name  = cisc_oper->_ident;
3974     assert( cisc_oper_name != NULL, "insanity check");
3975     //
3976     // Set the correct reg_mask_or_stack for the cisc operand
3977     fprintf(fp_cpp, "\n");
3978     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3979     // Lookup the correct reg_mask_or_stack
3980     const char *reg_mask_name = cisc_reg_mask_name();
3981     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3982     fprintf(fp_cpp, "}\n");
3983     //
3984     // Construct CISC version of this instruction
3985     fprintf(fp_cpp, "\n");
3986     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3987     fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
3988     // Create the MachNode object
3989     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
3990     // Fill in the bottom_type where requested
3991     if ( this->captures_bottom_type(AD.globalNames()) ) {
3992       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3993     }
3994 
3995     uint cur_num_opnds = num_opnds();
3996     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3997       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3998     }
3999 
4000     fprintf(fp_cpp, "\n");
4001     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4002     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4003     // Construct operand to access [stack_pointer + offset]
4004     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
4005     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
4006     fprintf(fp_cpp, "\n");
4007 
4008     // Return result and exit scope
4009     fprintf(fp_cpp, "  return node;\n");
4010     fprintf(fp_cpp, "}\n");
4011     fprintf(fp_cpp, "\n");
4012     return true;
4013   }
4014   return false;
4015 }
4016 
4017 //---------------------------declare_short_branch_methods----------------------
4018 // Build prototypes for short branch methods
declare_short_branch_methods(FILE * fp_hpp)4019 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4020   if (has_short_branch_form()) {
4021     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version();\n");
4022   }
4023 }
4024 
4025 //---------------------------define_short_branch_methods-----------------------
4026 // Build definitions for short branch methods
define_short_branch_methods(ArchDesc & AD,FILE * fp_cpp)4027 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4028   if (has_short_branch_form()) {
4029     InstructForm *short_branch = short_branch_form();
4030     const char   *name         = short_branch->_ident;
4031 
4032     // Construct short_branch_version() method.
4033     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4034     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4035     // Create the MachNode object
4036     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
4037     if( is_ideal_if() ) {
4038       fprintf(fp_cpp, "  node->_prob = _prob;\n");
4039       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4040     }
4041     // Fill in the bottom_type where requested
4042     if ( this->captures_bottom_type(AD.globalNames()) ) {
4043       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4044     }
4045 
4046     fprintf(fp_cpp, "\n");
4047     // Short branch version must use same node index for access
4048     // through allocator's tables
4049     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4050     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4051 
4052     // Return result and exit scope
4053     fprintf(fp_cpp, "  return node;\n");
4054     fprintf(fp_cpp, "}\n");
4055     fprintf(fp_cpp,"\n");
4056     return true;
4057   }
4058   return false;
4059 }
4060 
4061 
4062 //---------------------------buildMachNodeGenerator----------------------------
4063 // Build switch to invoke appropriate "new" MachNode for an opcode
buildMachNodeGenerator(FILE * fp_cpp)4064 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4065 
4066   // Build switch to invoke 'new' for a specific MachNode
4067   fprintf(fp_cpp, "\n");
4068   fprintf(fp_cpp, "\n");
4069   fprintf(fp_cpp,
4070           "//------------------------- MachNode Generator ---------------\n");
4071   fprintf(fp_cpp,
4072           "// A switch statement on the dense-packed user-defined type system\n"
4073           "// that invokes 'new' on the corresponding class constructor.\n");
4074   fprintf(fp_cpp, "\n");
4075   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4076   fprintf(fp_cpp, "(int opcode)");
4077   fprintf(fp_cpp, "{\n");
4078   fprintf(fp_cpp, "  switch(opcode) {\n");
4079 
4080   // Provide constructor for all user-defined instructions
4081   _instructions.reset();
4082   int  opIndex = operandFormCount();
4083   InstructForm *inst;
4084   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4085     // Ensure that matrule is defined.
4086     if ( inst->_matrule == NULL ) continue;
4087 
4088     int         opcode  = opIndex++;
4089     const char *opClass = inst->_ident;
4090     char       *opType  = NULL;
4091 
4092     // Generate the case statement for this instruction
4093     fprintf(fp_cpp, "  case %s_rule:", opClass);
4094 
4095     // Start local scope
4096     fprintf(fp_cpp, " {\n");
4097     // Generate code to construct the new MachNode
4098     buildMachNode(fp_cpp, inst, "     ");
4099     // Return result and exit scope
4100     fprintf(fp_cpp, "      return node;\n");
4101     fprintf(fp_cpp, "    }\n");
4102   }
4103 
4104   // Generate the default case for switch(opcode)
4105   fprintf(fp_cpp, "  \n");
4106   fprintf(fp_cpp, "  default:\n");
4107   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4108   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4109   fprintf(fp_cpp, "    break;\n");
4110   fprintf(fp_cpp, "  };\n");
4111 
4112   // Generate the closing for method Matcher::MachNodeGenerator
4113   fprintf(fp_cpp, "  return NULL;\n");
4114   fprintf(fp_cpp, "}\n");
4115 }
4116 
4117 
4118 //---------------------------buildInstructMatchCheck--------------------------
4119 // Output the method to Matcher which checks whether or not a specific
4120 // instruction has a matching rule for the host architecture.
buildInstructMatchCheck(FILE * fp_cpp) const4121 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4122   fprintf(fp_cpp, "\n\n");
4123   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4124   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4125   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4126   fprintf(fp_cpp, "}\n\n");
4127 
4128   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4129   int i;
4130   for (i = 0; i < _last_opcode - 1; i++) {
4131     fprintf(fp_cpp, "    %-5s,  // %s\n",
4132             _has_match_rule[i] ? "true" : "false",
4133             NodeClassNames[i]);
4134   }
4135   fprintf(fp_cpp, "    %-5s   // %s\n",
4136           _has_match_rule[i] ? "true" : "false",
4137           NodeClassNames[i]);
4138   fprintf(fp_cpp, "};\n");
4139 }
4140 
4141 //---------------------------buildFrameMethods---------------------------------
4142 // Output the methods to Matcher which specify frame behavior
buildFrameMethods(FILE * fp_cpp)4143 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4144   fprintf(fp_cpp,"\n\n");
4145   // Sync Stack Slots
4146   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4147           _frame->_sync_stack_slots);
4148   // Java Stack Alignment
4149   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4150           _frame->_alignment);
4151   // Java Return Address Location
4152   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4153   if (_frame->_return_addr_loc) {
4154     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4155             _frame->_return_addr);
4156   }
4157   else {
4158     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4159             _frame->_return_addr);
4160   }
4161   // varargs C out slots killed
4162   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4163   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4164   // Java Return Value Location
4165   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg) {\n");
4166   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4167   fprintf(fp_cpp,"}\n\n");
4168   // Native Return Value Location
4169   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg) {\n");
4170   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4171   fprintf(fp_cpp,"}\n\n");
4172 
4173   // Inline Cache Register, mask definition, and encoding
4174   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4175   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4176           _frame->_inline_cache_reg);
4177   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4178   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4179 
4180   // Interpreter's Frame Pointer Register
4181   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4182   if (_frame->_interpreter_frame_pointer_reg == NULL)
4183     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4184   else
4185     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4186             _frame->_interpreter_frame_pointer_reg);
4187 
4188   // Frame Pointer definition
4189   /* CNC - I can not contemplate having a different frame pointer between
4190      Java and native code; makes my head hurt to think about it.
4191   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4192   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4193           _frame->_frame_pointer);
4194   */
4195   // (Native) Frame Pointer definition
4196   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4197   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4198           _frame->_frame_pointer);
4199 
4200   // Number of callee-save + always-save registers for calling convention
4201   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4202   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4203   RegDef *rdef;
4204   int nof_saved_registers = 0;
4205   _register->reset_RegDefs();
4206   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4207     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4208       ++nof_saved_registers;
4209   }
4210   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4211   fprintf(fp_cpp, "};\n\n");
4212 }
4213 
4214 
4215 
4216 
4217 static int PrintAdlcCisc = 0;
4218 //---------------------------identify_cisc_spilling----------------------------
4219 // Get info for the CISC_oracle and MachNode::cisc_version()
identify_cisc_spill_instructions()4220 void ArchDesc::identify_cisc_spill_instructions() {
4221 
4222   if (_frame == NULL)
4223     return;
4224 
4225   // Find the user-defined operand for cisc-spilling
4226   if( _frame->_cisc_spilling_operand_name != NULL ) {
4227     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4228     OperandForm *oper = form ? form->is_operand() : NULL;
4229     // Verify the user's suggestion
4230     if( oper != NULL ) {
4231       // Ensure that match field is defined.
4232       if ( oper->_matrule != NULL )  {
4233         MatchRule &mrule = *oper->_matrule;
4234         if( strcmp(mrule._opType,"AddP") == 0 ) {
4235           MatchNode *left = mrule._lChild;
4236           MatchNode *right= mrule._rChild;
4237           if( left != NULL && right != NULL ) {
4238             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4239             const Form *right_op = _globalNames[right->_opType]->is_operand();
4240             if(  (left_op != NULL && right_op != NULL)
4241               && (left_op->interface_type(_globalNames) == Form::register_interface)
4242               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4243               // Successfully verified operand
4244               set_cisc_spill_operand( oper );
4245               if( _cisc_spill_debug ) {
4246                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4247              }
4248             }
4249           }
4250         }
4251       }
4252     }
4253   }
4254 
4255   if( cisc_spill_operand() != NULL ) {
4256     // N^2 comparison of instructions looking for a cisc-spilling version
4257     _instructions.reset();
4258     InstructForm *instr;
4259     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4260       // Ensure that match field is defined.
4261       if ( instr->_matrule == NULL )  continue;
4262 
4263       MatchRule &mrule = *instr->_matrule;
4264       Predicate *pred  =  instr->build_predicate();
4265 
4266       // Grab the machine type of the operand
4267       const char *rootOp = instr->_ident;
4268       mrule._machType    = rootOp;
4269 
4270       // Find result type for match
4271       const char *result = instr->reduce_result();
4272 
4273       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4274       bool  found_cisc_alternate = false;
4275       _instructions.reset2();
4276       InstructForm *instr2;
4277       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4278         // Ensure that match field is defined.
4279         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4280         if ( instr2->_matrule != NULL
4281             && (instr != instr2 )                // Skip self
4282             && (instr2->reduce_result() != NULL) // want same result
4283             && (strcmp(result, instr2->reduce_result()) == 0)) {
4284           MatchRule &mrule2 = *instr2->_matrule;
4285           Predicate *pred2  =  instr2->build_predicate();
4286           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4287         }
4288       }
4289     }
4290   }
4291 }
4292 
4293 //---------------------------build_cisc_spilling-------------------------------
4294 // Get info for the CISC_oracle and MachNode::cisc_version()
build_cisc_spill_instructions(FILE * fp_hpp,FILE * fp_cpp)4295 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4296   // Output the table for cisc spilling
4297   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4298   _instructions.reset();
4299   InstructForm *inst = NULL;
4300   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4301     // Ensure this is a machine-world instruction
4302     if ( inst->ideal_only() )  continue;
4303     const char *inst_name = inst->_ident;
4304     int   operand   = inst->cisc_spill_operand();
4305     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4306       InstructForm *inst2 = inst->cisc_spill_alternate();
4307       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4308     }
4309   }
4310   fprintf(fp_cpp, "\n\n");
4311 }
4312 
4313 //---------------------------identify_short_branches----------------------------
4314 // Get info for our short branch replacement oracle.
identify_short_branches()4315 void ArchDesc::identify_short_branches() {
4316   // Walk over all instructions, checking to see if they match a short
4317   // branching alternate.
4318   _instructions.reset();
4319   InstructForm *instr;
4320   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4321     // The instruction must have a match rule.
4322     if (instr->_matrule != NULL &&
4323         instr->is_short_branch()) {
4324 
4325       _instructions.reset2();
4326       InstructForm *instr2;
4327       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4328         instr2->check_branch_variant(*this, instr);
4329       }
4330     }
4331   }
4332 }
4333 
4334 
4335 //---------------------------identify_unique_operands---------------------------
4336 // Identify unique operands.
identify_unique_operands()4337 void ArchDesc::identify_unique_operands() {
4338   // Walk over all instructions.
4339   _instructions.reset();
4340   InstructForm *instr;
4341   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4342     // Ensure this is a machine-world instruction
4343     if (!instr->ideal_only()) {
4344       instr->set_unique_opnds();
4345     }
4346   }
4347 }
4348