1 /*
2  * Copyright (c) 2017, 2020, Red Hat, Inc. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/epsilon/epsilonHeap.hpp"
27 #include "gc/epsilon/epsilonInitLogger.hpp"
28 #include "gc/epsilon/epsilonMemoryPool.hpp"
29 #include "gc/epsilon/epsilonThreadLocalData.hpp"
30 #include "gc/shared/gcArguments.hpp"
31 #include "gc/shared/locationPrinter.inline.hpp"
32 #include "memory/allocation.hpp"
33 #include "memory/allocation.inline.hpp"
34 #include "memory/resourceArea.hpp"
35 #include "memory/universe.hpp"
36 #include "runtime/atomic.hpp"
37 #include "runtime/globals.hpp"
38 
initialize()39 jint EpsilonHeap::initialize() {
40   size_t align = HeapAlignment;
41   size_t init_byte_size = align_up(InitialHeapSize, align);
42   size_t max_byte_size  = align_up(MaxHeapSize, align);
43 
44   // Initialize backing storage
45   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, align);
46   _virtual_space.initialize(heap_rs, init_byte_size);
47 
48   MemRegion committed_region((HeapWord*)_virtual_space.low(),          (HeapWord*)_virtual_space.high());
49 
50   initialize_reserved_region(heap_rs);
51 
52   _space = new ContiguousSpace();
53   _space->initialize(committed_region, /* clear_space = */ true, /* mangle_space = */ true);
54 
55   // Precompute hot fields
56   _max_tlab_size = MIN2(CollectedHeap::max_tlab_size(), align_object_size(EpsilonMaxTLABSize / HeapWordSize));
57   _step_counter_update = MIN2<size_t>(max_byte_size / 16, EpsilonUpdateCountersStep);
58   _step_heap_print = (EpsilonPrintHeapSteps == 0) ? SIZE_MAX : (max_byte_size / EpsilonPrintHeapSteps);
59   _decay_time_ns = (int64_t) EpsilonTLABDecayTime * NANOSECS_PER_MILLISEC;
60 
61   // Enable monitoring
62   _monitoring_support = new EpsilonMonitoringSupport(this);
63   _last_counter_update = 0;
64   _last_heap_print = 0;
65 
66   // Install barrier set
67   BarrierSet::set_barrier_set(new EpsilonBarrierSet());
68 
69   // All done, print out the configuration
70   EpsilonInitLogger::print();
71 
72   return JNI_OK;
73 }
74 
post_initialize()75 void EpsilonHeap::post_initialize() {
76   CollectedHeap::post_initialize();
77 }
78 
initialize_serviceability()79 void EpsilonHeap::initialize_serviceability() {
80   _pool = new EpsilonMemoryPool(this);
81   _memory_manager.add_pool(_pool);
82 }
83 
memory_managers()84 GrowableArray<GCMemoryManager*> EpsilonHeap::memory_managers() {
85   GrowableArray<GCMemoryManager*> memory_managers(1);
86   memory_managers.append(&_memory_manager);
87   return memory_managers;
88 }
89 
memory_pools()90 GrowableArray<MemoryPool*> EpsilonHeap::memory_pools() {
91   GrowableArray<MemoryPool*> memory_pools(1);
92   memory_pools.append(_pool);
93   return memory_pools;
94 }
95 
unsafe_max_tlab_alloc(Thread * thr) const96 size_t EpsilonHeap::unsafe_max_tlab_alloc(Thread* thr) const {
97   // Return max allocatable TLAB size, and let allocation path figure out
98   // the actual allocation size. Note: result should be in bytes.
99   return _max_tlab_size * HeapWordSize;
100 }
101 
heap()102 EpsilonHeap* EpsilonHeap::heap() {
103   return named_heap<EpsilonHeap>(CollectedHeap::Epsilon);
104 }
105 
allocate_work(size_t size)106 HeapWord* EpsilonHeap::allocate_work(size_t size) {
107   assert(is_object_aligned(size), "Allocation size should be aligned: " SIZE_FORMAT, size);
108 
109   HeapWord* res = NULL;
110   while (true) {
111     // Try to allocate, assume space is available
112     res = _space->par_allocate(size);
113     if (res != NULL) {
114       break;
115     }
116 
117     // Allocation failed, attempt expansion, and retry:
118     {
119       MutexLocker ml(Heap_lock);
120 
121       // Try to allocate under the lock, assume another thread was able to expand
122       res = _space->par_allocate(size);
123       if (res != NULL) {
124         break;
125       }
126 
127       // Expand and loop back if space is available
128       size_t space_left = max_capacity() - capacity();
129       size_t want_space = MAX2(size, EpsilonMinHeapExpand);
130 
131       if (want_space < space_left) {
132         // Enough space to expand in bulk:
133         bool expand = _virtual_space.expand_by(want_space);
134         assert(expand, "Should be able to expand");
135       } else if (size < space_left) {
136         // No space to expand in bulk, and this allocation is still possible,
137         // take all the remaining space:
138         bool expand = _virtual_space.expand_by(space_left);
139         assert(expand, "Should be able to expand");
140       } else {
141         // No space left:
142         return NULL;
143       }
144 
145       _space->set_end((HeapWord *) _virtual_space.high());
146     }
147   }
148 
149   size_t used = _space->used();
150 
151   // Allocation successful, update counters
152   {
153     size_t last = _last_counter_update;
154     if ((used - last >= _step_counter_update) && Atomic::cmpxchg(&_last_counter_update, last, used) == last) {
155       _monitoring_support->update_counters();
156     }
157   }
158 
159   // ...and print the occupancy line, if needed
160   {
161     size_t last = _last_heap_print;
162     if ((used - last >= _step_heap_print) && Atomic::cmpxchg(&_last_heap_print, last, used) == last) {
163       print_heap_info(used);
164       print_metaspace_info();
165     }
166   }
167 
168   assert(is_object_aligned(res), "Object should be aligned: " PTR_FORMAT, p2i(res));
169   return res;
170 }
171 
allocate_new_tlab(size_t min_size,size_t requested_size,size_t * actual_size)172 HeapWord* EpsilonHeap::allocate_new_tlab(size_t min_size,
173                                          size_t requested_size,
174                                          size_t* actual_size) {
175   Thread* thread = Thread::current();
176 
177   // Defaults in case elastic paths are not taken
178   bool fits = true;
179   size_t size = requested_size;
180   size_t ergo_tlab = requested_size;
181   int64_t time = 0;
182 
183   if (EpsilonElasticTLAB) {
184     ergo_tlab = EpsilonThreadLocalData::ergo_tlab_size(thread);
185 
186     if (EpsilonElasticTLABDecay) {
187       int64_t last_time = EpsilonThreadLocalData::last_tlab_time(thread);
188       time = (int64_t) os::javaTimeNanos();
189 
190       assert(last_time <= time, "time should be monotonic");
191 
192       // If the thread had not allocated recently, retract the ergonomic size.
193       // This conserves memory when the thread had initial burst of allocations,
194       // and then started allocating only sporadically.
195       if (last_time != 0 && (time - last_time > _decay_time_ns)) {
196         ergo_tlab = 0;
197         EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
198       }
199     }
200 
201     // If we can fit the allocation under current TLAB size, do so.
202     // Otherwise, we want to elastically increase the TLAB size.
203     fits = (requested_size <= ergo_tlab);
204     if (!fits) {
205       size = (size_t) (ergo_tlab * EpsilonTLABElasticity);
206     }
207   }
208 
209   // Always honor boundaries
210   size = clamp(size, min_size, _max_tlab_size);
211 
212   // Always honor alignment
213   size = align_up(size, MinObjAlignment);
214 
215   // Check that adjustments did not break local and global invariants
216   assert(is_object_aligned(size),
217          "Size honors object alignment: " SIZE_FORMAT, size);
218   assert(min_size <= size,
219          "Size honors min size: "  SIZE_FORMAT " <= " SIZE_FORMAT, min_size, size);
220   assert(size <= _max_tlab_size,
221          "Size honors max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, _max_tlab_size);
222   assert(size <= CollectedHeap::max_tlab_size(),
223          "Size honors global max size: "  SIZE_FORMAT " <= " SIZE_FORMAT, size, CollectedHeap::max_tlab_size());
224 
225   if (log_is_enabled(Trace, gc)) {
226     ResourceMark rm;
227     log_trace(gc)("TLAB size for \"%s\" (Requested: " SIZE_FORMAT "K, Min: " SIZE_FORMAT
228                           "K, Max: " SIZE_FORMAT "K, Ergo: " SIZE_FORMAT "K) -> " SIZE_FORMAT "K",
229                   thread->name(),
230                   requested_size * HeapWordSize / K,
231                   min_size * HeapWordSize / K,
232                   _max_tlab_size * HeapWordSize / K,
233                   ergo_tlab * HeapWordSize / K,
234                   size * HeapWordSize / K);
235   }
236 
237   // All prepared, let's do it!
238   HeapWord* res = allocate_work(size);
239 
240   if (res != NULL) {
241     // Allocation successful
242     *actual_size = size;
243     if (EpsilonElasticTLABDecay) {
244       EpsilonThreadLocalData::set_last_tlab_time(thread, time);
245     }
246     if (EpsilonElasticTLAB && !fits) {
247       // If we requested expansion, this is our new ergonomic TLAB size
248       EpsilonThreadLocalData::set_ergo_tlab_size(thread, size);
249     }
250   } else {
251     // Allocation failed, reset ergonomics to try and fit smaller TLABs
252     if (EpsilonElasticTLAB) {
253       EpsilonThreadLocalData::set_ergo_tlab_size(thread, 0);
254     }
255   }
256 
257   return res;
258 }
259 
mem_allocate(size_t size,bool * gc_overhead_limit_was_exceeded)260 HeapWord* EpsilonHeap::mem_allocate(size_t size, bool *gc_overhead_limit_was_exceeded) {
261   *gc_overhead_limit_was_exceeded = false;
262   return allocate_work(size);
263 }
264 
collect(GCCause::Cause cause)265 void EpsilonHeap::collect(GCCause::Cause cause) {
266   switch (cause) {
267     case GCCause::_metadata_GC_threshold:
268     case GCCause::_metadata_GC_clear_soft_refs:
269       // Receiving these causes means the VM itself entered the safepoint for metadata collection.
270       // While Epsilon does not do GC, it has to perform sizing adjustments, otherwise we would
271       // re-enter the safepoint again very soon.
272 
273       assert(SafepointSynchronize::is_at_safepoint(), "Expected at safepoint");
274       log_info(gc)("GC request for \"%s\" is handled", GCCause::to_string(cause));
275       MetaspaceGC::compute_new_size();
276       print_metaspace_info();
277       break;
278     default:
279       log_info(gc)("GC request for \"%s\" is ignored", GCCause::to_string(cause));
280   }
281   _monitoring_support->update_counters();
282 }
283 
do_full_collection(bool clear_all_soft_refs)284 void EpsilonHeap::do_full_collection(bool clear_all_soft_refs) {
285   collect(gc_cause());
286 }
287 
object_iterate(ObjectClosure * cl)288 void EpsilonHeap::object_iterate(ObjectClosure *cl) {
289   _space->object_iterate(cl);
290 }
291 
print_on(outputStream * st) const292 void EpsilonHeap::print_on(outputStream *st) const {
293   st->print_cr("Epsilon Heap");
294 
295   // Cast away constness:
296   ((VirtualSpace)_virtual_space).print_on(st);
297 
298   if (_space != NULL) {
299     st->print_cr("Allocation space:");
300     _space->print_on(st);
301   }
302 
303   MetaspaceUtils::print_on(st);
304 }
305 
print_location(outputStream * st,void * addr) const306 bool EpsilonHeap::print_location(outputStream* st, void* addr) const {
307   return BlockLocationPrinter<EpsilonHeap>::print_location(st, addr);
308 }
309 
print_tracing_info() const310 void EpsilonHeap::print_tracing_info() const {
311   print_heap_info(used());
312   print_metaspace_info();
313 }
314 
print_heap_info(size_t used) const315 void EpsilonHeap::print_heap_info(size_t used) const {
316   size_t reserved  = max_capacity();
317   size_t committed = capacity();
318 
319   if (reserved != 0) {
320     log_info(gc)("Heap: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
321                  SIZE_FORMAT "%s (%.2f%%) used",
322             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
323             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
324             committed * 100.0 / reserved,
325             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
326             used * 100.0 / reserved);
327   } else {
328     log_info(gc)("Heap: no reliable data");
329   }
330 }
331 
print_metaspace_info() const332 void EpsilonHeap::print_metaspace_info() const {
333   size_t reserved  = MetaspaceUtils::reserved_bytes();
334   size_t committed = MetaspaceUtils::committed_bytes();
335   size_t used      = MetaspaceUtils::used_bytes();
336 
337   if (reserved != 0) {
338     log_info(gc, metaspace)("Metaspace: " SIZE_FORMAT "%s reserved, " SIZE_FORMAT "%s (%.2f%%) committed, "
339                             SIZE_FORMAT "%s (%.2f%%) used",
340             byte_size_in_proper_unit(reserved),  proper_unit_for_byte_size(reserved),
341             byte_size_in_proper_unit(committed), proper_unit_for_byte_size(committed),
342             committed * 100.0 / reserved,
343             byte_size_in_proper_unit(used),      proper_unit_for_byte_size(used),
344             used * 100.0 / reserved);
345   } else {
346     log_info(gc, metaspace)("Metaspace: no reliable data");
347   }
348 }
349