1 /*
2  * Copyright (c) 2002, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
26 #define SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
27 
28 #include "gc/shared/adaptiveSizePolicy.hpp"
29 #include "gc/shared/gcCause.hpp"
30 #include "gc/shared/gcStats.hpp"
31 #include "gc/shared/gcUtil.hpp"
32 #include "utilities/align.hpp"
33 
34 // This class keeps statistical information and computes the
35 // optimal free space for both the young and old generation
36 // based on current application characteristics (based on gc cost
37 // and application footprint).
38 //
39 // It also computes an optimal tenuring threshold between the young
40 // and old generations, so as to equalize the cost of collections
41 // of those generations, as well as optimal survivor space sizes
42 // for the young generation.
43 //
44 // While this class is specifically intended for a generational system
45 // consisting of a young gen (containing an Eden and two semi-spaces)
46 // and a tenured gen, as well as a perm gen for reflective data, it
47 // makes NO references to specific generations.
48 //
49 // 05/02/2003 Update
50 // The 1.5 policy makes use of data gathered for the costs of GC on
51 // specific generations.  That data does reference specific
52 // generation.  Also diagnostics specific to generations have
53 // been added.
54 
55 // Forward decls
56 class elapsedTimer;
57 
58 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
59  friend class PSGCAdaptivePolicyCounters;
60  private:
61   // These values are used to record decisions made during the
62   // policy.  For example, if the young generation was decreased
63   // to decrease the GC cost of minor collections the value
64   // decrease_young_gen_for_throughput_true is used.
65 
66   // Last calculated sizes, in bytes, and aligned
67   // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
68 
69   // Time statistics
70   AdaptivePaddedAverage* _avg_major_pause;
71 
72   // Footprint statistics
73   AdaptiveWeightedAverage* _avg_base_footprint;
74 
75   // Statistical data gathered for GC
76   GCStats _gc_stats;
77 
78   const double _collection_cost_margin_fraction;
79 
80   // Variable for estimating the major and minor pause times.
81   // These variables represent linear least-squares fits of
82   // the data.
83   //   major pause time vs. old gen size
84   LinearLeastSquareFit* _major_pause_old_estimator;
85   //   major pause time vs. young gen size
86   LinearLeastSquareFit* _major_pause_young_estimator;
87 
88 
89   // These record the most recent collection times.  They
90   // are available as an alternative to using the averages
91   // for making ergonomic decisions.
92   double _latest_major_mutator_interval_seconds;
93 
94   const size_t _space_alignment; // alignment for eden, survivors
95 
96   const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
97 
98   // The amount of live data in the heap at the last full GC, used
99   // as a baseline to help us determine when we need to perform the
100   // next full GC.
101   size_t _live_at_last_full_gc;
102 
103   // decrease/increase the old generation for minor pause time
104   int _change_old_gen_for_min_pauses;
105 
106   // increase/decrease the young generation for major pause time
107   int _change_young_gen_for_maj_pauses;
108 
109   // To facilitate faster growth at start up, supplement the normal
110   // growth percentage for the young gen eden and the
111   // old gen space for promotion with these value which decay
112   // with increasing collections.
113   uint _young_gen_size_increment_supplement;
114   uint _old_gen_size_increment_supplement;
115 
116  private:
117 
118   // Accessors
avg_major_pause() const119   AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
gc_minor_pause_goal_sec() const120   double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
121 
122   void adjust_eden_for_minor_pause_time(bool is_full_gc,
123                                    size_t* desired_eden_size_ptr);
124   // Change the generation sizes to achieve a GC pause time goal
125   // Returned sizes are not necessarily aligned.
126   void adjust_promo_for_pause_time(bool is_full_gc,
127                          size_t* desired_promo_size_ptr,
128                          size_t* desired_eden_size_ptr);
129   void adjust_eden_for_pause_time(bool is_full_gc,
130                          size_t* desired_promo_size_ptr,
131                          size_t* desired_eden_size_ptr);
132   // Change the generation sizes to achieve an application throughput goal
133   // Returned sizes are not necessarily aligned.
134   void adjust_promo_for_throughput(bool is_full_gc,
135                              size_t* desired_promo_size_ptr);
136   void adjust_eden_for_throughput(bool is_full_gc,
137                              size_t* desired_eden_size_ptr);
138   // Change the generation sizes to achieve minimum footprint
139   // Returned sizes are not aligned.
140   size_t adjust_promo_for_footprint(size_t desired_promo_size,
141                                     size_t desired_total);
142   size_t adjust_eden_for_footprint(size_t desired_promo_size,
143                                    size_t desired_total);
144 
145   // Size in bytes for an increment or decrement of eden.
146   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
147   virtual size_t eden_decrement(size_t cur_eden);
148   size_t eden_decrement_aligned_down(size_t cur_eden);
149   size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
150 
151   // Size in bytes for an increment or decrement of the promotion area
152   virtual size_t promo_increment(size_t cur_promo, uint percent_change);
153   virtual size_t promo_decrement(size_t cur_promo);
154   size_t promo_decrement_aligned_down(size_t cur_promo);
155   size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
156 
157   // Returns a change that has been scaled down.  Result
158   // is not aligned.  (If useful, move to some shared
159   // location.)
160   size_t scale_down(size_t change, double part, double total);
161 
162  protected:
163   // Time accessors
164 
165   // Footprint accessors
live_space() const166   size_t live_space() const {
167     return (size_t)(avg_base_footprint()->average() +
168                     avg_young_live()->average() +
169                     avg_old_live()->average());
170   }
free_space() const171   size_t free_space() const {
172     return _eden_size + _promo_size;
173   }
174 
set_promo_size(size_t new_size)175   void set_promo_size(size_t new_size) {
176     _promo_size = new_size;
177   }
set_survivor_size(size_t new_size)178   void set_survivor_size(size_t new_size) {
179     _survivor_size = new_size;
180   }
181 
182   // Update estimators
183   void update_minor_pause_old_estimator(double minor_pause_in_ms);
184 
kind() const185   virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
186 
187  public:
188   virtual size_t eden_increment(size_t cur_eden);
189   virtual size_t promo_increment(size_t cur_promo);
190 
191   // Accessors for use by performance counters
avg_promoted() const192   AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
193     return _gc_stats.avg_promoted();
194   }
avg_base_footprint() const195   AdaptiveWeightedAverage* avg_base_footprint() const {
196     return _avg_base_footprint;
197   }
198 
199   // Input arguments are initial free space sizes for young and old
200   // generations, the initial survivor space size, the
201   // alignment values and the pause & throughput goals.
202   //
203   // NEEDS_CLEANUP this is a singleton object
204   PSAdaptiveSizePolicy(size_t init_eden_size,
205                        size_t init_promo_size,
206                        size_t init_survivor_size,
207                        size_t space_alignment,
208                        double gc_pause_goal_sec,
209                        double gc_minor_pause_goal_sec,
210                        uint gc_time_ratio);
211 
212   // Methods indicating events of interest to the adaptive size policy,
213   // called by GC algorithms. It is the responsibility of users of this
214   // policy to call these methods at the correct times!
215   void major_collection_begin();
216   void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
217 
tenured_allocation(size_t size)218   void tenured_allocation(size_t size) {
219     _avg_pretenured->sample(size);
220   }
221 
222   // Accessors
223   // NEEDS_CLEANUP   should use sizes.hpp
224 
225   static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage);
226 
227   size_t calculated_old_free_size_in_bytes() const;
228 
average_old_live_in_bytes() const229   size_t average_old_live_in_bytes() const {
230     return (size_t) avg_old_live()->average();
231   }
232 
average_promoted_in_bytes() const233   size_t average_promoted_in_bytes() const {
234     return (size_t)avg_promoted()->average();
235   }
236 
padded_average_promoted_in_bytes() const237   size_t padded_average_promoted_in_bytes() const {
238     return (size_t)avg_promoted()->padded_average();
239   }
240 
change_young_gen_for_maj_pauses()241   int change_young_gen_for_maj_pauses() {
242     return _change_young_gen_for_maj_pauses;
243   }
set_change_young_gen_for_maj_pauses(int v)244   void set_change_young_gen_for_maj_pauses(int v) {
245     _change_young_gen_for_maj_pauses = v;
246   }
247 
change_old_gen_for_min_pauses()248   int change_old_gen_for_min_pauses() {
249     return _change_old_gen_for_min_pauses;
250   }
set_change_old_gen_for_min_pauses(int v)251   void set_change_old_gen_for_min_pauses(int v) {
252     _change_old_gen_for_min_pauses = v;
253   }
254 
255   // Return true if the old generation size was changed
256   // to try to reach a pause time goal.
old_gen_changed_for_pauses()257   bool old_gen_changed_for_pauses() {
258     bool result = _change_old_gen_for_maj_pauses != 0 ||
259                   _change_old_gen_for_min_pauses != 0;
260     return result;
261   }
262 
263   // Return true if the young generation size was changed
264   // to try to reach a pause time goal.
young_gen_changed_for_pauses()265   bool young_gen_changed_for_pauses() {
266     bool result = _change_young_gen_for_min_pauses != 0 ||
267                   _change_young_gen_for_maj_pauses != 0;
268     return result;
269   }
270   // end flags for pause goal
271 
272   // Return true if the old generation size was changed
273   // to try to reach a throughput goal.
old_gen_changed_for_throughput()274   bool old_gen_changed_for_throughput() {
275     bool result = _change_old_gen_for_throughput != 0;
276     return result;
277   }
278 
279   // Return true if the young generation size was changed
280   // to try to reach a throughput goal.
young_gen_changed_for_throughput()281   bool young_gen_changed_for_throughput() {
282     bool result = _change_young_gen_for_throughput != 0;
283     return result;
284   }
285 
decrease_for_footprint()286   int decrease_for_footprint() { return _decrease_for_footprint; }
287 
288 
289   // Accessors for estimators.  The slope of the linear fit is
290   // currently all that is used for making decisions.
291 
major_pause_old_estimator()292   LinearLeastSquareFit* major_pause_old_estimator() {
293     return _major_pause_old_estimator;
294   }
295 
major_pause_young_estimator()296   LinearLeastSquareFit* major_pause_young_estimator() {
297     return _major_pause_young_estimator;
298   }
299 
300 
301   virtual void clear_generation_free_space_flags();
302 
major_pause_old_slope()303   float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
major_pause_young_slope()304   float major_pause_young_slope() {
305     return _major_pause_young_estimator->slope();
306   }
major_collection_slope()307   float major_collection_slope() { return _major_collection_estimator->slope();}
308 
309   // Given the amount of live data in the heap, should we
310   // perform a Full GC?
311   bool should_full_GC(size_t live_in_old_gen);
312 
313   // Calculates optimal (free) space sizes for both the young and old
314   // generations.  Stores results in _eden_size and _promo_size.
315   // Takes current used space in all generations as input, as well
316   // as an indication if a full gc has just been performed, for use
317   // in deciding if an OOM error should be thrown.
318   void compute_generations_free_space(size_t young_live,
319                                       size_t eden_live,
320                                       size_t old_live,
321                                       size_t cur_eden,  // current eden in bytes
322                                       size_t max_old_gen_size,
323                                       size_t max_eden_size,
324                                       bool   is_full_gc);
325 
326   void compute_eden_space_size(size_t young_live,
327                                size_t eden_live,
328                                size_t cur_eden,  // current eden in bytes
329                                size_t max_eden_size,
330                                bool   is_full_gc);
331 
332   void compute_old_gen_free_space(size_t old_live,
333                                              size_t cur_eden,  // current eden in bytes
334                                              size_t max_old_gen_size,
335                                              bool   is_full_gc);
336 
337   // Calculates new survivor space size;  returns a new tenuring threshold
338   // value. Stores new survivor size in _survivor_size.
339   uint compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
340                                                  uint    tenuring_threshold,
341                                                  size_t survivor_limit);
342 
343   // Return the maximum size of a survivor space if the young generation were of
344   // size gen_size.
max_survivor_size(size_t gen_size)345   size_t max_survivor_size(size_t gen_size) {
346     // Never allow the target survivor size to grow more than MinSurvivorRatio
347     // of the young generation size.  We cannot grow into a two semi-space
348     // system, with Eden zero sized.  Even if the survivor space grows, from()
349     // might grow by moving the bottom boundary "down" -- so from space will
350     // remain almost full anyway (top() will be near end(), but there will be a
351     // large filler object at the bottom).
352     const size_t sz = gen_size / MinSurvivorRatio;
353     const size_t alignment = _space_alignment;
354     return sz > alignment ? align_down(sz, alignment) : alignment;
355   }
356 
live_at_last_full_gc()357   size_t live_at_last_full_gc() {
358     return _live_at_last_full_gc;
359   }
360 
361   // Update averages that are always used (even
362   // if adaptive sizing is turned off).
363   void update_averages(bool is_survivor_overflow,
364                        size_t survived,
365                        size_t promoted);
366 
367   // Printing support
368   virtual bool print() const;
369 
370   // Decay the supplemental growth additive.
371   void decay_supplemental_growth(bool is_full_gc);
372 };
373 
374 #endif // SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
375