1 /*
2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "opto/addnode.hpp"
27 #include "opto/callnode.hpp"
28 #include "opto/castnode.hpp"
29 #include "opto/connode.hpp"
30 #include "opto/matcher.hpp"
31 #include "opto/phaseX.hpp"
32 #include "opto/subnode.hpp"
33 #include "opto/type.hpp"
34 
35 //=============================================================================
36 // If input is already higher or equal to cast type, then this is an identity.
Identity(PhaseGVN * phase)37 Node* ConstraintCastNode::Identity(PhaseGVN* phase) {
38   Node* dom = dominating_cast(phase, phase);
39   if (dom != NULL) {
40     return dom;
41   }
42   if (_dependency != RegularDependency) {
43     return this;
44   }
45   return phase->type(in(1))->higher_equal_speculative(_type) ? in(1) : this;
46 }
47 
48 //------------------------------Value------------------------------------------
49 // Take 'join' of input and cast-up type
Value(PhaseGVN * phase) const50 const Type* ConstraintCastNode::Value(PhaseGVN* phase) const {
51   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
52   const Type* ft = phase->type(in(1))->filter_speculative(_type);
53 
54 #ifdef ASSERT
55   // Previous versions of this function had some special case logic,
56   // which is no longer necessary.  Make sure of the required effects.
57   switch (Opcode()) {
58     case Op_CastII:
59     {
60       const Type* t1 = phase->type(in(1));
61       if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
62       const Type* rt = t1->join_speculative(_type);
63       if (rt->empty())       assert(ft == Type::TOP, "special case #2");
64       break;
65     }
66     case Op_CastPP:
67     if (phase->type(in(1)) == TypePtr::NULL_PTR &&
68         _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
69     assert(ft == Type::TOP, "special case #3");
70     break;
71   }
72 #endif //ASSERT
73 
74   return ft;
75 }
76 
77 //------------------------------Ideal------------------------------------------
78 // Return a node which is more "ideal" than the current node.  Strip out
79 // control copies
Ideal(PhaseGVN * phase,bool can_reshape)80 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape) {
81   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
82 }
83 
cmp(const Node & n) const84 bool ConstraintCastNode::cmp(const Node &n) const {
85   return TypeNode::cmp(n) && ((ConstraintCastNode&)n)._dependency == _dependency;
86 }
87 
size_of() const88 uint ConstraintCastNode::size_of() const {
89   return sizeof(*this);
90 }
91 
make_cast(int opcode,Node * c,Node * n,const Type * t,DependencyType dependency)92 Node* ConstraintCastNode::make_cast(int opcode, Node* c, Node *n, const Type *t, DependencyType dependency) {
93   switch(opcode) {
94   case Op_CastII: {
95     Node* cast = new CastIINode(n, t, dependency);
96     cast->set_req(0, c);
97     return cast;
98   }
99   case Op_CastLL: {
100     Node* cast = new CastLLNode(n, t, dependency);
101     cast->set_req(0, c);
102     return cast;
103   }
104   case Op_CastPP: {
105     Node* cast = new CastPPNode(n, t, dependency);
106     cast->set_req(0, c);
107     return cast;
108   }
109   case Op_CastFF: {
110     Node* cast = new CastFFNode(n, t, dependency);
111     cast->set_req(0, c);
112     return cast;
113   }
114   case Op_CastDD: {
115     Node* cast = new CastDDNode(n, t, dependency);
116     cast->set_req(0, c);
117     return cast;
118   }
119   case Op_CastVV: {
120     Node* cast = new CastVVNode(n, t, dependency);
121     cast->set_req(0, c);
122     return cast;
123   }
124   case Op_CheckCastPP: return new CheckCastPPNode(c, n, t, dependency);
125   default:
126     fatal("Bad opcode %d", opcode);
127   }
128   return NULL;
129 }
130 
make(Node * c,Node * n,const Type * t,BasicType bt)131 Node* ConstraintCastNode::make(Node* c, Node *n, const Type *t, BasicType bt) {
132   switch(bt) {
133   case T_INT: {
134     return make_cast(Op_CastII, c, n, t, RegularDependency);
135   }
136   case T_LONG: {
137     return make_cast(Op_CastLL, c, n, t, RegularDependency);
138   }
139   default:
140     fatal("Bad basic type %s", type2name(bt));
141   }
142   return NULL;
143 }
144 
dominating_cast(PhaseGVN * gvn,PhaseTransform * pt) const145 TypeNode* ConstraintCastNode::dominating_cast(PhaseGVN* gvn, PhaseTransform* pt) const {
146   if (_dependency == UnconditionalDependency) {
147     return NULL;
148   }
149   Node* val = in(1);
150   Node* ctl = in(0);
151   int opc = Opcode();
152   if (ctl == NULL) {
153     return NULL;
154   }
155   // Range check CastIIs may all end up under a single range check and
156   // in that case only the narrower CastII would be kept by the code
157   // below which would be incorrect.
158   if (is_CastII() && as_CastII()->has_range_check()) {
159     return NULL;
160   }
161   if (type()->isa_rawptr() && (gvn->type_or_null(val) == NULL || gvn->type(val)->isa_oopptr())) {
162     return NULL;
163   }
164   for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
165     Node* u = val->fast_out(i);
166     if (u != this &&
167         u->outcnt() > 0 &&
168         u->Opcode() == opc &&
169         u->in(0) != NULL &&
170         u->bottom_type()->higher_equal(type())) {
171       if (pt->is_dominator(u->in(0), ctl)) {
172         return u->as_Type();
173       }
174       if (is_CheckCastPP() && u->in(1)->is_Proj() && u->in(1)->in(0)->is_Allocate() &&
175           u->in(0)->is_Proj() && u->in(0)->in(0)->is_Initialize() &&
176           u->in(1)->in(0)->as_Allocate()->initialization() == u->in(0)->in(0)) {
177         // CheckCastPP following an allocation always dominates all
178         // use of the allocation result
179         return u->as_Type();
180       }
181     }
182   }
183   return NULL;
184 }
185 
186 #ifndef PRODUCT
dump_spec(outputStream * st) const187 void ConstraintCastNode::dump_spec(outputStream *st) const {
188   TypeNode::dump_spec(st);
189   if (_dependency != RegularDependency) {
190     st->print(" %s dependency", _dependency == StrongDependency ? "strong" : "unconditional");
191   }
192 }
193 #endif
194 
Value(PhaseGVN * phase) const195 const Type* CastIINode::Value(PhaseGVN* phase) const {
196   const Type *res = ConstraintCastNode::Value(phase);
197 
198   // Try to improve the type of the CastII if we recognize a CmpI/If
199   // pattern.
200   if (_dependency != RegularDependency) {
201     if (in(0) != NULL && in(0)->in(0) != NULL && in(0)->in(0)->is_If()) {
202       assert(in(0)->is_IfFalse() || in(0)->is_IfTrue(), "should be If proj");
203       Node* proj = in(0);
204       if (proj->in(0)->in(1)->is_Bool()) {
205         Node* b = proj->in(0)->in(1);
206         if (b->in(1)->Opcode() == Op_CmpI) {
207           Node* cmp = b->in(1);
208           if (cmp->in(1) == in(1) && phase->type(cmp->in(2))->isa_int()) {
209             const TypeInt* in2_t = phase->type(cmp->in(2))->is_int();
210             const Type* t = TypeInt::INT;
211             BoolTest test = b->as_Bool()->_test;
212             if (proj->is_IfFalse()) {
213               test = test.negate();
214             }
215             BoolTest::mask m = test._test;
216             jlong lo_long = min_jint;
217             jlong hi_long = max_jint;
218             if (m == BoolTest::le || m == BoolTest::lt) {
219               hi_long = in2_t->_hi;
220               if (m == BoolTest::lt) {
221                 hi_long -= 1;
222               }
223             } else if (m == BoolTest::ge || m == BoolTest::gt) {
224               lo_long = in2_t->_lo;
225               if (m == BoolTest::gt) {
226                 lo_long += 1;
227               }
228             } else if (m == BoolTest::eq) {
229               lo_long = in2_t->_lo;
230               hi_long = in2_t->_hi;
231             } else if (m == BoolTest::ne) {
232               // can't do any better
233             } else {
234               stringStream ss;
235               test.dump_on(&ss);
236               fatal("unexpected comparison %s", ss.as_string());
237             }
238             int lo_int = (int)lo_long;
239             int hi_int = (int)hi_long;
240 
241             if (lo_long != (jlong)lo_int) {
242               lo_int = min_jint;
243             }
244             if (hi_long != (jlong)hi_int) {
245               hi_int = max_jint;
246             }
247 
248             t = TypeInt::make(lo_int, hi_int, Type::WidenMax);
249 
250             res = res->filter_speculative(t);
251 
252             return res;
253           }
254         }
255       }
256     }
257   }
258   return res;
259 }
260 
find_or_make_CastII(PhaseIterGVN * igvn,Node * parent,Node * control,const TypeInt * type,ConstraintCastNode::DependencyType dependency)261 static Node* find_or_make_CastII(PhaseIterGVN* igvn, Node* parent, Node* control, const TypeInt* type, ConstraintCastNode::DependencyType dependency) {
262   Node* n = new CastIINode(parent, type, dependency);
263   n->set_req(0, control);
264   Node* existing = igvn->hash_find_insert(n);
265   if (existing != NULL) {
266     n->destruct(igvn);
267     return existing;
268   }
269   return igvn->register_new_node_with_optimizer(n);
270 }
271 
Ideal(PhaseGVN * phase,bool can_reshape)272 Node *CastIINode::Ideal(PhaseGVN *phase, bool can_reshape) {
273   Node* progress = ConstraintCastNode::Ideal(phase, can_reshape);
274   if (progress != NULL) {
275     return progress;
276   }
277 
278   PhaseIterGVN *igvn = phase->is_IterGVN();
279   const TypeInt* this_type = this->type()->is_int();
280   Node* z = in(1);
281   const TypeInteger* rx = NULL;
282   const TypeInteger* ry = NULL;
283   // Similar to ConvI2LNode::Ideal() for the same reasons
284   if (!_range_check_dependency && Compile::push_thru_add(phase, z, this_type, rx, ry, T_INT)) {
285     if (igvn == NULL) {
286       // Postpone this optimization to iterative GVN, where we can handle deep
287       // AddI chains without an exponential number of recursive Ideal() calls.
288       phase->record_for_igvn(this);
289       return NULL;
290     }
291     int op = z->Opcode();
292     Node* x = z->in(1);
293     Node* y = z->in(2);
294 
295     Node* cx = find_or_make_CastII(igvn, x, in(0), rx->is_int(), _dependency);
296     Node* cy = find_or_make_CastII(igvn, y, in(0), ry->is_int(), _dependency);
297     switch (op) {
298       case Op_AddI:  return new AddINode(cx, cy);
299       case Op_SubI:  return new SubINode(cx, cy);
300       default:       ShouldNotReachHere();
301     }
302   }
303 
304   // Similar to ConvI2LNode::Ideal() for the same reasons
305   // Do not narrow the type of range check dependent CastIINodes to
306   // avoid corruption of the graph if a CastII is replaced by TOP but
307   // the corresponding range check is not removed.
308   if (can_reshape && !_range_check_dependency) {
309     if (phase->C->post_loop_opts_phase()) {
310       const TypeInt* this_type = this->type()->is_int();
311       const TypeInt* in_type = phase->type(in(1))->isa_int();
312       if (in_type != NULL && this_type != NULL &&
313           (in_type->_lo != this_type->_lo ||
314            in_type->_hi != this_type->_hi)) {
315         jint lo1 = this_type->_lo;
316         jint hi1 = this_type->_hi;
317         int w1  = this_type->_widen;
318 
319         if (lo1 >= 0) {
320           // Keep a range assertion of >=0.
321           lo1 = 0;        hi1 = max_jint;
322         } else if (hi1 < 0) {
323           // Keep a range assertion of <0.
324           lo1 = min_jint; hi1 = -1;
325         } else {
326           lo1 = min_jint; hi1 = max_jint;
327         }
328         const TypeInt* wtype = TypeInt::make(MAX2(in_type->_lo, lo1),
329                                              MIN2(in_type->_hi, hi1),
330                                              MAX2((int)in_type->_widen, w1));
331         if (wtype != type()) {
332           set_type(wtype);
333           return this;
334         }
335       }
336     } else {
337       phase->C->record_for_post_loop_opts_igvn(this);
338     }
339   }
340   return NULL;
341 }
342 
Identity(PhaseGVN * phase)343 Node* CastIINode::Identity(PhaseGVN* phase) {
344   Node* progress = ConstraintCastNode::Identity(phase);
345   if (progress != this) {
346     return progress;
347   }
348   if (_range_check_dependency) {
349     if (phase->C->post_loop_opts_phase()) {
350       return this->in(1);
351     } else {
352       phase->C->record_for_post_loop_opts_igvn(this);
353     }
354   }
355   return this;
356 }
357 
cmp(const Node & n) const358 bool CastIINode::cmp(const Node &n) const {
359   return ConstraintCastNode::cmp(n) && ((CastIINode&)n)._range_check_dependency == _range_check_dependency;
360 }
361 
size_of() const362 uint CastIINode::size_of() const {
363   return sizeof(*this);
364 }
365 
366 #ifndef PRODUCT
dump_spec(outputStream * st) const367 void CastIINode::dump_spec(outputStream* st) const {
368   ConstraintCastNode::dump_spec(st);
369   if (_range_check_dependency) {
370     st->print(" range check dependency");
371   }
372 }
373 #endif
374 
375 //=============================================================================
376 //------------------------------Identity---------------------------------------
377 // If input is already higher or equal to cast type, then this is an identity.
Identity(PhaseGVN * phase)378 Node* CheckCastPPNode::Identity(PhaseGVN* phase) {
379   Node* dom = dominating_cast(phase, phase);
380   if (dom != NULL) {
381     return dom;
382   }
383   if (_dependency != RegularDependency) {
384     return this;
385   }
386   const Type* t = phase->type(in(1));
387   if (EnableVectorReboxing && in(1)->Opcode() == Op_VectorBox) {
388     if (t->higher_equal_speculative(phase->type(this))) {
389       return in(1);
390     }
391   } else if (t == phase->type(this)) {
392     // Toned down to rescue meeting at a Phi 3 different oops all implementing
393     // the same interface.
394     return in(1);
395   }
396   return this;
397 }
398 
399 //------------------------------Value------------------------------------------
400 // Take 'join' of input and cast-up type, unless working with an Interface
Value(PhaseGVN * phase) const401 const Type* CheckCastPPNode::Value(PhaseGVN* phase) const {
402   if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
403 
404   const Type *inn = phase->type(in(1));
405   if( inn == Type::TOP ) return Type::TOP;  // No information yet
406 
407   const TypePtr *in_type   = inn->isa_ptr();
408   const TypePtr *my_type   = _type->isa_ptr();
409   const Type *result = _type;
410   if( in_type != NULL && my_type != NULL ) {
411     TypePtr::PTR   in_ptr    = in_type->ptr();
412     if (in_ptr == TypePtr::Null) {
413       result = in_type;
414     } else if (in_ptr == TypePtr::Constant) {
415       if (my_type->isa_rawptr()) {
416         result = my_type;
417       } else {
418         const TypeOopPtr *jptr = my_type->isa_oopptr();
419         assert(jptr, "");
420         result = !in_type->higher_equal(_type)
421           ? my_type->cast_to_ptr_type(TypePtr::NotNull)
422           : in_type;
423       }
424     } else {
425       result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
426     }
427   }
428 
429   // This is the code from TypePtr::xmeet() that prevents us from
430   // having 2 ways to represent the same type. We have to replicate it
431   // here because we don't go through meet/join.
432   if (result->remove_speculative() == result->speculative()) {
433     result = result->remove_speculative();
434   }
435 
436   // Same as above: because we don't go through meet/join, remove the
437   // speculative type if we know we won't use it.
438   return result->cleanup_speculative();
439 
440   // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
441   // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
442 
443   //
444   // Remove this code after overnight run indicates no performance
445   // loss from not performing JOIN at CheckCastPPNode
446   //
447   // const TypeInstPtr *in_oop = in->isa_instptr();
448   // const TypeInstPtr *my_oop = _type->isa_instptr();
449   // // If either input is an 'interface', return destination type
450   // assert (in_oop == NULL || in_oop->klass() != NULL, "");
451   // assert (my_oop == NULL || my_oop->klass() != NULL, "");
452   // if( (in_oop && in_oop->klass()->is_interface())
453   //   ||(my_oop && my_oop->klass()->is_interface()) ) {
454   //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
455   //   // Preserve cast away nullness for interfaces
456   //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
457   //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
458   //   }
459   //   return _type;
460   // }
461   //
462   // // Neither the input nor the destination type is an interface,
463   //
464   // // history: JOIN used to cause weird corner case bugs
465   // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
466   // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
467   // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
468   // const Type *join = in->join(_type);
469   // // Check if join preserved NotNull'ness for pointers
470   // if( join->isa_ptr() && _type->isa_ptr() ) {
471   //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
472   //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
473   //   // If there isn't any NotNull'ness to preserve
474   //   // OR if join preserved NotNull'ness then return it
475   //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
476   //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
477   //     return join;
478   //   }
479   //   // ELSE return same old type as before
480   //   return _type;
481   // }
482   // // Not joining two pointers
483   // return join;
484 }
485 
486 //=============================================================================
487 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const488 const Type* CastX2PNode::Value(PhaseGVN* phase) const {
489   const Type* t = phase->type(in(1));
490   if (t == Type::TOP) return Type::TOP;
491   if (t->base() == Type_X && t->singleton()) {
492     uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
493     if (bits == 0)   return TypePtr::NULL_PTR;
494     return TypeRawPtr::make((address) bits);
495   }
496   return CastX2PNode::bottom_type();
497 }
498 
499 //------------------------------Idealize---------------------------------------
fits_in_int(const Type * t,bool but_not_min_int=false)500 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
501   if (t == Type::TOP)  return false;
502   const TypeX* tl = t->is_intptr_t();
503   jint lo = min_jint;
504   jint hi = max_jint;
505   if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
506   return (tl->_lo >= lo) && (tl->_hi <= hi);
507 }
508 
addP_of_X2P(PhaseGVN * phase,Node * base,Node * dispX,bool negate=false)509 static inline Node* addP_of_X2P(PhaseGVN *phase,
510                                 Node* base,
511                                 Node* dispX,
512                                 bool negate = false) {
513   if (negate) {
514     dispX = phase->transform(new SubXNode(phase->MakeConX(0), dispX));
515   }
516   return new AddPNode(phase->C->top(),
517                       phase->transform(new CastX2PNode(base)),
518                       dispX);
519 }
520 
Ideal(PhaseGVN * phase,bool can_reshape)521 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
522   // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
523   int op = in(1)->Opcode();
524   Node* x;
525   Node* y;
526   switch (op) {
527     case Op_SubX:
528     x = in(1)->in(1);
529     // Avoid ideal transformations ping-pong between this and AddP for raw pointers.
530     if (phase->find_intptr_t_con(x, -1) == 0)
531     break;
532     y = in(1)->in(2);
533     if (fits_in_int(phase->type(y), true)) {
534       return addP_of_X2P(phase, x, y, true);
535     }
536     break;
537     case Op_AddX:
538     x = in(1)->in(1);
539     y = in(1)->in(2);
540     if (fits_in_int(phase->type(y))) {
541       return addP_of_X2P(phase, x, y);
542     }
543     if (fits_in_int(phase->type(x))) {
544       return addP_of_X2P(phase, y, x);
545     }
546     break;
547   }
548   return NULL;
549 }
550 
551 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)552 Node* CastX2PNode::Identity(PhaseGVN* phase) {
553   if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
554   return this;
555 }
556 
557 //=============================================================================
558 //------------------------------Value------------------------------------------
Value(PhaseGVN * phase) const559 const Type* CastP2XNode::Value(PhaseGVN* phase) const {
560   const Type* t = phase->type(in(1));
561   if (t == Type::TOP) return Type::TOP;
562   if (t->base() == Type::RawPtr && t->singleton()) {
563     uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
564     return TypeX::make(bits);
565   }
566   return CastP2XNode::bottom_type();
567 }
568 
Ideal(PhaseGVN * phase,bool can_reshape)569 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
570   return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
571 }
572 
573 //------------------------------Identity---------------------------------------
Identity(PhaseGVN * phase)574 Node* CastP2XNode::Identity(PhaseGVN* phase) {
575   if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
576   return this;
577 }
578 
make_cast_for_type(Node * c,Node * in,const Type * type,DependencyType dependency)579 Node* ConstraintCastNode::make_cast_for_type(Node* c, Node* in, const Type* type, DependencyType dependency) {
580   Node* cast= NULL;
581   if (type->isa_int()) {
582     cast = make_cast(Op_CastII, c, in, type, dependency);
583   } else if (type->isa_long()) {
584     cast = make_cast(Op_CastLL, c, in, type, dependency);
585   } else if (type->isa_float()) {
586     cast = make_cast(Op_CastFF, c, in, type, dependency);
587   } else if (type->isa_double()) {
588     cast = make_cast(Op_CastDD, c, in, type, dependency);
589   } else if (type->isa_vect()) {
590     cast = make_cast(Op_CastVV, c, in, type, dependency);
591   } else if (type->isa_ptr()) {
592     cast = make_cast(Op_CastPP, c, in, type, dependency);
593   }
594   return cast;
595 }
596