1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 
27 /*
28  *  DESCRIPTION
29  *    Calculates cliping boundary for Affine functions.
30  *
31  */
32 
33 #include "mlib_image.h"
34 #include "mlib_SysMath.h"
35 #include "mlib_ImageAffine.h"
36 #include "safe_math.h"
37 
38 
39 /***************************************************************/
mlib_AffineEdges(mlib_affine_param * param,const mlib_image * dst,const mlib_image * src,void * buff_lcl,mlib_s32 buff_size,mlib_s32 kw,mlib_s32 kh,mlib_s32 kw1,mlib_s32 kh1,mlib_edge edge,const mlib_d64 * mtx,mlib_s32 shiftx,mlib_s32 shifty)40 mlib_status mlib_AffineEdges(mlib_affine_param *param,
41                              const mlib_image  *dst,
42                              const mlib_image  *src,
43                              void              *buff_lcl,
44                              mlib_s32          buff_size,
45                              mlib_s32          kw,
46                              mlib_s32          kh,
47                              mlib_s32          kw1,
48                              mlib_s32          kh1,
49                              mlib_edge         edge,
50                              const mlib_d64    *mtx,
51                              mlib_s32          shiftx,
52                              mlib_s32          shifty)
53 {
54   mlib_u8 *buff = buff_lcl;
55   mlib_u8 **lineAddr = param->lineAddr;
56   mlib_s32 srcWidth, dstWidth, srcHeight, dstHeight, srcYStride, dstYStride;
57   mlib_s32 *leftEdges, *rightEdges, *xStarts, *yStarts, bsize0, bsize1 = 0;
58   mlib_u8 *srcData, *dstData;
59   mlib_u8 *paddings;
60   void *warp_tbl = NULL;
61   mlib_s32 yStart = 0, yFinish = -1, dX, dY;
62 
63   mlib_d64 xClip, yClip, wClip, hClip;
64   mlib_d64 delta = 0.;
65   mlib_d64 minX, minY, maxX, maxY;
66 
67   mlib_d64 coords[4][2];
68   mlib_d64 a = mtx[0], b = mtx[1], tx = mtx[2], c = mtx[3], d = mtx[4], ty = mtx[5];
69   mlib_d64 a2, b2, tx2, c2, d2, ty2;
70   mlib_d64 dx, dy, div;
71   mlib_s32 sdx, sdy;
72   mlib_d64 dTop;
73   mlib_d64 val0;
74   mlib_s32 top, bot;
75   mlib_s32 topIdx, max_xsize = 0;
76   mlib_s32 i, j, t;
77 
78   srcData = mlib_ImageGetData(src);
79   dstData = mlib_ImageGetData(dst);
80   srcWidth = mlib_ImageGetWidth(src);
81   srcHeight = mlib_ImageGetHeight(src);
82   dstWidth = mlib_ImageGetWidth(dst);
83   dstHeight = mlib_ImageGetHeight(dst);
84   srcYStride = mlib_ImageGetStride(src);
85   dstYStride = mlib_ImageGetStride(dst);
86   paddings = mlib_ImageGetPaddings(src);
87 
88   /* All the transformation matrix parameters should be finite. if not, return failure */
89   if (!(IS_FINITE(a) && IS_FINITE(b) && IS_FINITE(c) && IS_FINITE(d) &&
90         IS_FINITE(tx) && IS_FINITE(ty))) {
91     return MLIB_FAILURE;
92   }
93 
94   if (srcWidth >= (1 << 15) || srcHeight >= (1 << 15)) {
95     return MLIB_FAILURE;
96   }
97 
98   div = a * d - b * c;
99 
100   if (div == 0.0) {
101     return MLIB_FAILURE;
102   }
103 
104   bsize0 = (dstHeight * sizeof(mlib_s32) + 7) & ~7;
105 
106   if (lineAddr == NULL) {
107     bsize1 = ((srcHeight + 4 * kh) * sizeof(mlib_u8 *) + 7) & ~7;
108   }
109 
110   param->buff_malloc = NULL;
111 
112   if ((4 * bsize0 + bsize1) > buff_size) {
113     buff = param->buff_malloc = mlib_malloc(4 * bsize0 + bsize1);
114 
115     if (buff == NULL)
116       return MLIB_FAILURE;
117   }
118 
119   leftEdges = (mlib_s32 *) (buff);
120   rightEdges = (mlib_s32 *) (buff += bsize0);
121   xStarts = (mlib_s32 *) (buff += bsize0);
122   yStarts = (mlib_s32 *) (buff += bsize0);
123 
124   if (lineAddr == NULL) {
125     mlib_u8 *srcLinePtr = srcData;
126     lineAddr = (mlib_u8 **) (buff += bsize0);
127     for (i = 0; i < 2 * kh; i++)
128       lineAddr[i] = srcLinePtr;
129     lineAddr += 2 * kh;
130     for (i = 0; i < srcHeight - 1; i++) {
131       lineAddr[i] = srcLinePtr;
132       srcLinePtr += srcYStride;
133     }
134 
135     for (i = srcHeight - 1; i < srcHeight + 2 * kh; i++)
136       lineAddr[i] = srcLinePtr;
137   }
138 
139   if ((mlib_s32) edge < 0) {                               /* process edges */
140     minX = 0;
141     minY = 0;
142     maxX = srcWidth;
143     maxY = srcHeight;
144   }
145   else {
146 
147     if (kw > 1)
148       delta = -0.5;                                        /* for MLIB_NEAREST filter delta = 0. */
149 
150     minX = (kw1 - delta);
151     minY = (kh1 - delta);
152     maxX = srcWidth - ((kw - 1) - (kw1 - delta));
153     maxY = srcHeight - ((kh - 1) - (kh1 - delta));
154 
155     if (edge == MLIB_EDGE_SRC_PADDED) {
156       if (minX < paddings[0])
157         minX = paddings[0];
158 
159       if (minY < paddings[1])
160         minY = paddings[1];
161 
162       if (maxX > (srcWidth - paddings[2]))
163         maxX = srcWidth - paddings[2];
164 
165       if (maxY > (srcHeight - paddings[3]))
166         maxY = srcHeight - paddings[3];
167     }
168   }
169 
170   xClip = minX;
171   yClip = minY;
172   wClip = maxX;
173   hClip = maxY;
174 
175 /*
176  *   STORE_PARAM(param, src);
177  *   STORE_PARAM(param, dst);
178  */
179   param->src = (void *)src;
180   param->dst = (void *)dst;
181   STORE_PARAM(param, lineAddr);
182   STORE_PARAM(param, dstData);
183   STORE_PARAM(param, srcYStride);
184   STORE_PARAM(param, dstYStride);
185   STORE_PARAM(param, leftEdges);
186   STORE_PARAM(param, rightEdges);
187   STORE_PARAM(param, xStarts);
188   STORE_PARAM(param, yStarts);
189   STORE_PARAM(param, max_xsize);
190   STORE_PARAM(param, yStart);
191   STORE_PARAM(param, yFinish);
192   STORE_PARAM(param, warp_tbl);
193 
194   if ((xClip >= wClip) || (yClip >= hClip)) {
195     return MLIB_SUCCESS;
196   }
197 
198   a2 = d;
199   b2 = -b;
200   tx2 = (-d * tx + b * ty);
201   c2 = -c;
202   d2 = a;
203   ty2 = (c * tx - a * ty);
204 
205   dx = a2;
206   dy = c2;
207 
208   tx -= 0.5;
209   ty -= 0.5;
210 
211   coords[0][0] = xClip * a + yClip * b + tx;
212   coords[0][1] = xClip * c + yClip * d + ty;
213 
214   coords[2][0] = wClip * a + hClip * b + tx;
215   coords[2][1] = wClip * c + hClip * d + ty;
216 
217   if (div > 0) {
218     coords[1][0] = wClip * a + yClip * b + tx;
219     coords[1][1] = wClip * c + yClip * d + ty;
220 
221     coords[3][0] = xClip * a + hClip * b + tx;
222     coords[3][1] = xClip * c + hClip * d + ty;
223   }
224   else {
225     coords[3][0] = wClip * a + yClip * b + tx;
226     coords[3][1] = wClip * c + yClip * d + ty;
227 
228     coords[1][0] = xClip * a + hClip * b + tx;
229     coords[1][1] = xClip * c + hClip * d + ty;
230   }
231 
232   topIdx = 0;
233   for (i = 1; i < 4; i++) {
234 
235     if (coords[i][1] < coords[topIdx][1])
236       topIdx = i;
237   }
238 
239   dTop = coords[topIdx][1];
240   val0 = dTop;
241   SAT32(top);
242   bot = -1;
243 
244   if (top >= dstHeight) {
245     return MLIB_SUCCESS;
246   }
247 
248   if (dTop >= 0.0) {
249     mlib_d64 xLeft, xRight, x;
250     mlib_s32 nextIdx;
251 
252     if (dTop == top) {
253       xLeft = coords[topIdx][0];
254       xRight = coords[topIdx][0];
255       nextIdx = (topIdx + 1) & 0x3;
256 
257       if (dTop == coords[nextIdx][1]) {
258         x = coords[nextIdx][0];
259         xLeft = (xLeft <= x) ? xLeft : x;
260         xRight = (xRight >= x) ? xRight : x;
261       }
262 
263       nextIdx = (topIdx - 1) & 0x3;
264 
265       if (dTop == coords[nextIdx][1]) {
266         x = coords[nextIdx][0];
267         xLeft = (xLeft <= x) ? xLeft : x;
268         xRight = (xRight >= x) ? xRight : x;
269       }
270 
271       val0 = xLeft;
272       SAT32(t);
273       leftEdges[top] = (t >= xLeft) ? t : ++t;
274 
275       if (xLeft >= MLIB_S32_MAX)
276         leftEdges[top] = MLIB_S32_MAX;
277 
278       val0 = xRight;
279       SAT32(rightEdges[top]);
280     }
281     else
282       top++;
283   }
284   else
285     top = 0;
286 
287   for (i = 0; i < 2; i++) {
288     mlib_d64 dY1 = coords[(topIdx - i) & 0x3][1];
289     mlib_d64 dX1 = coords[(topIdx - i) & 0x3][0];
290     mlib_d64 dY2 = coords[(topIdx - i - 1) & 0x3][1];
291     mlib_d64 dX2 = coords[(topIdx - i - 1) & 0x3][0];
292     mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1);
293     mlib_s32 y1;
294     mlib_s32 y2;
295 
296     if (dY1 == dY2)
297       continue;
298 
299     if (!(IS_FINITE(slope))) {
300       continue;
301     }
302 
303     if (dY1 < 0.0)
304       y1 = 0;
305     else {
306       val0 = dY1 + 1;
307       SAT32(y1);
308     }
309 
310     val0 = dY2;
311     SAT32(y2);
312 
313     if (y2 >= dstHeight)
314       y2 = (mlib_s32) (dstHeight - 1);
315 
316     x += slope * (y1 - dY1);
317     for (j = y1; j <= y2; j++) {
318       val0 = x;
319       SAT32(t);
320       leftEdges[j] = (t >= x) ? t : ++t;
321 
322       if (x >= MLIB_S32_MAX)
323         leftEdges[j] = MLIB_S32_MAX;
324       x += slope;
325     }
326   }
327 
328   for (i = 0; i < 2; i++) {
329     mlib_d64 dY1 = coords[(topIdx + i) & 0x3][1];
330     mlib_d64 dX1 = coords[(topIdx + i) & 0x3][0];
331     mlib_d64 dY2 = coords[(topIdx + i + 1) & 0x3][1];
332     mlib_d64 dX2 = coords[(topIdx + i + 1) & 0x3][0];
333     mlib_d64 x = dX1, slope = (dX2 - dX1) / (dY2 - dY1);
334     mlib_s32 y1;
335     mlib_s32 y2;
336 
337     if (dY1 == dY2)
338       continue;
339 
340     if (!(IS_FINITE(slope))) {
341       continue;
342     }
343 
344     if (dY1 < 0.0)
345       y1 = 0;
346     else {
347       val0 = dY1 + 1;
348       SAT32(y1);
349     }
350 
351     val0 = dY2;
352     SAT32(y2);
353 
354     if (y2 >= dstHeight)
355       y2 = (mlib_s32) (dstHeight - 1);
356 
357     x += slope * (y1 - dY1);
358     for (j = y1; j <= y2; j++) {
359       val0 = x;
360       SAT32(rightEdges[j]);
361       x += slope;
362     }
363 
364     bot = y2;
365   }
366 
367   {
368     mlib_d64 dxCl = xClip * div;
369     mlib_d64 dyCl = yClip * div;
370     mlib_d64 dwCl = wClip * div;
371     mlib_d64 dhCl = hClip * div;
372 
373     mlib_s32 xCl = (mlib_s32) (xClip + delta);
374     mlib_s32 yCl = (mlib_s32) (yClip + delta);
375     mlib_s32 wCl = (mlib_s32) (wClip + delta);
376     mlib_s32 hCl = (mlib_s32) (hClip + delta);
377 
378     /*
379      * mlib_s32 xCl = (mlib_s32)(xClip + delta);
380      * mlib_s32 yCl = (mlib_s32)(yClip + delta);
381      * mlib_s32 wCl = (mlib_s32)(wClip);
382      * mlib_s32 hCl = (mlib_s32)(hClip);
383      */
384 
385     if (edge == MLIB_EDGE_SRC_PADDED) {
386       xCl = kw1;
387       yCl = kh1;
388       wCl = (mlib_s32) (srcWidth - ((kw - 1) - kw1));
389       hCl = (mlib_s32) (srcHeight - ((kh - 1) - kh1));
390     }
391 
392     div = 1.0 / div;
393 
394     sdx = (mlib_s32) (a2 * div * (1 << shiftx));
395     sdy = (mlib_s32) (c2 * div * (1 << shifty));
396 
397     if (div > 0) {
398 
399       for (i = top; i <= bot; i++) {
400         mlib_s32 xLeft = leftEdges[i];
401         mlib_s32 xRight = rightEdges[i];
402         mlib_s32 xs, ys, x_e, y_e, x_s, y_s;
403         mlib_d64 dxs, dys, dxe, dye;
404         mlib_d64 xl, ii, xr;
405 
406         xLeft = (xLeft < 0) ? 0 : xLeft;
407         xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight;
408 
409         xl = xLeft + 0.5;
410         ii = i + 0.5;
411         xr = xRight + 0.5;
412         dxs = xl * a2 + ii * b2 + tx2;
413         dys = xl * c2 + ii * d2 + ty2;
414 
415         if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl)) {
416           dxs += dx;
417           dys += dy;
418           if (xLeft < MLIB_S32_MAX) {
419               xLeft++;
420           }
421 
422           if ((dxs < dxCl) || (dxs >= dwCl) || (dys < dyCl) || (dys >= dhCl))
423             xRight = -1;
424         }
425 
426         dxe = xr * a2 + ii * b2 + tx2;
427         dye = xr * c2 + ii * d2 + ty2;
428 
429         if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl)) {
430           dxe -= dx;
431           dye -= dy;
432           if (xRight > MLIB_S32_MIN) {
433               xRight--;
434           }
435 
436           if ((dxe < dxCl) || (dxe >= dwCl) || (dye < dyCl) || (dye >= dhCl))
437             xRight = -1;
438         }
439 
440         xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx));
441         x_s = xs >> shiftx;
442 
443         ys = (mlib_s32) ((dys * div + delta) * (1 << shifty));
444         y_s = ys >> shifty;
445 
446         if (x_s < xCl)
447           xs = (xCl << shiftx);
448         else if (x_s >= wCl)
449           xs = ((wCl << shiftx) - 1);
450 
451         if (y_s < yCl)
452           ys = (yCl << shifty);
453         else if (y_s >= hCl)
454           ys = ((hCl << shifty) - 1);
455 
456         if (xRight >= xLeft) {
457           x_e = ((xRight - xLeft) * sdx + xs) >> shiftx;
458           y_e = ((xRight - xLeft) * sdy + ys) >> shifty;
459 
460           if ((x_e < xCl) || (x_e >= wCl)) {
461             if (sdx > 0)
462               sdx -= 1;
463             else
464               sdx += 1;
465           }
466 
467           if ((y_e < yCl) || (y_e >= hCl)) {
468             if (sdy > 0)
469               sdy -= 1;
470             else
471               sdy += 1;
472           }
473         }
474 
475         leftEdges[i] = xLeft;
476         rightEdges[i] = xRight;
477         xStarts[i] = xs;
478         yStarts[i] = ys;
479 
480         if ((xRight - xLeft + 1) > max_xsize)
481           max_xsize = (xRight - xLeft + 1);
482       }
483     }
484     else {
485 
486       for (i = top; i <= bot; i++) {
487         mlib_s32 xLeft = leftEdges[i];
488         mlib_s32 xRight = rightEdges[i];
489         mlib_s32 xs, ys, x_e, y_e, x_s, y_s;
490         mlib_d64 dxs, dys, dxe, dye;
491         mlib_d64 xl, ii, xr;
492 
493         xLeft = (xLeft < 0) ? 0 : xLeft;
494         xRight = (xRight >= dstWidth) ? (mlib_s32) (dstWidth - 1) : xRight;
495 
496         xl = xLeft + 0.5;
497         ii = i + 0.5;
498         xr = xRight + 0.5;
499         dxs = xl * a2 + ii * b2 + tx2;
500         dys = xl * c2 + ii * d2 + ty2;
501 
502         if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl)) {
503           dxs += dx;
504           dys += dy;
505           if (xLeft < MLIB_S32_MAX) {
506               xLeft++;
507           }
508 
509           if ((dxs > dxCl) || (dxs <= dwCl) || (dys > dyCl) || (dys <= dhCl))
510             xRight = -1;
511         }
512 
513         dxe = xr * a2 + ii * b2 + tx2;
514         dye = xr * c2 + ii * d2 + ty2;
515 
516         if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl)) {
517           dxe -= dx;
518           dye -= dy;
519           if (xRight > MLIB_S32_MIN) {
520               xRight--;
521           }
522 
523           if ((dxe > dxCl) || (dxe <= dwCl) || (dye > dyCl) || (dye <= dhCl))
524             xRight = -1;
525         }
526 
527         xs = (mlib_s32) ((dxs * div + delta) * (1 << shiftx));
528         x_s = xs >> shiftx;
529 
530         if (x_s < xCl)
531           xs = (xCl << shiftx);
532         else if (x_s >= wCl)
533           xs = ((wCl << shiftx) - 1);
534 
535         ys = (mlib_s32) ((dys * div + delta) * (1 << shifty));
536         y_s = ys >> shifty;
537 
538         if (y_s < yCl)
539           ys = (yCl << shifty);
540         else if (y_s >= hCl)
541           ys = ((hCl << shifty) - 1);
542 
543         if (xRight >= xLeft) {
544           x_e = ((xRight - xLeft) * sdx + xs) >> shiftx;
545           y_e = ((xRight - xLeft) * sdy + ys) >> shifty;
546 
547           if ((x_e < xCl) || (x_e >= wCl)) {
548             if (sdx > 0)
549               sdx -= 1;
550             else
551               sdx += 1;
552           }
553 
554           if ((y_e < yCl) || (y_e >= hCl)) {
555             if (sdy > 0)
556               sdy -= 1;
557             else
558               sdy += 1;
559           }
560         }
561 
562         leftEdges[i] = xLeft;
563         rightEdges[i] = xRight;
564         xStarts[i] = xs;
565         yStarts[i] = ys;
566 
567         if ((xRight - xLeft + 1) > max_xsize)
568           max_xsize = (xRight - xLeft + 1);
569       }
570     }
571   }
572 
573   while (leftEdges[top] > rightEdges[top] && top <= bot)
574     top++;
575 
576   if (top < bot)
577     while (leftEdges[bot] > rightEdges[bot])
578       bot--;
579 
580   yStart = top;
581   yFinish = bot;
582   dX = sdx;
583   dY = sdy;
584 
585   dstData += (yStart - 1) * dstYStride;
586 
587   STORE_PARAM(param, dstData);
588   STORE_PARAM(param, yStart);
589   STORE_PARAM(param, yFinish);
590   STORE_PARAM(param, max_xsize);
591   STORE_PARAM(param, dX);
592   STORE_PARAM(param, dY);
593 
594   return MLIB_SUCCESS;
595 }
596 
597 /***************************************************************/
598