1 /*
2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "interpreter/bytecodeHistogram.hpp"
28 #include "interpreter/interpreter.hpp"
29 #include "interpreter/interpreterGenerator.hpp"
30 #include "interpreter/interpreterRuntime.hpp"
31 #include "interpreter/templateTable.hpp"
32 #include "oops/arrayOop.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/method.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/jvmtiExport.hpp"
37 #include "prims/jvmtiThreadState.hpp"
38 #include "runtime/arguments.hpp"
39 #include "runtime/deoptimization.hpp"
40 #include "runtime/frame.inline.hpp"
41 #include "runtime/sharedRuntime.hpp"
42 #include "runtime/stubRoutines.hpp"
43 #include "runtime/synchronizer.hpp"
44 #include "runtime/timer.hpp"
45 #include "runtime/vframeArray.hpp"
46 #include "utilities/debug.hpp"
47 #include "utilities/macros.hpp"
48 
49 #define __ _masm->
50 
51 
52 #ifndef CC_INTERP
53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
56 
57 //------------------------------------------------------------------------------------------------------------------------
58 
generate_StackOverflowError_handler()59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
60   address entry = __ pc();
61 
62   // Note: There should be a minimal interpreter frame set up when stack
63   // overflow occurs since we check explicitly for it now.
64   //
65 #ifdef ASSERT
66   { Label L;
67     __ lea(rax, Address(rbp,
68                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
69     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
70                         //  (stack grows negative)
71     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
72     __ stop ("interpreter frame not set up");
73     __ bind(L);
74   }
75 #endif // ASSERT
76   // Restore bcp under the assumption that the current frame is still
77   // interpreted
78   __ restore_bcp();
79 
80   // expression stack must be empty before entering the VM if an exception
81   // happened
82   __ empty_expression_stack();
83   __ empty_FPU_stack();
84   // throw exception
85   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
86   return entry;
87 }
88 
generate_ArrayIndexOutOfBounds_handler(const char * name)89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
90   address entry = __ pc();
91   // expression stack must be empty before entering the VM if an exception happened
92   __ empty_expression_stack();
93   __ empty_FPU_stack();
94   // setup parameters
95   // ??? convention: expect aberrant index in register rbx,
96   __ lea(rax, ExternalAddress((address)name));
97   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
98   return entry;
99 }
100 
generate_ClassCastException_handler()101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
102   address entry = __ pc();
103   // object is at TOS
104   __ pop(rax);
105   // expression stack must be empty before entering the VM if an exception
106   // happened
107   __ empty_expression_stack();
108   __ empty_FPU_stack();
109   __ call_VM(noreg,
110              CAST_FROM_FN_PTR(address,
111                               InterpreterRuntime::throw_ClassCastException),
112              rax);
113   return entry;
114 }
115 
generate_exception_handler_common(const char * name,const char * message,bool pass_oop)116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
117   assert(!pass_oop || message == NULL, "either oop or message but not both");
118   address entry = __ pc();
119   if (pass_oop) {
120     // object is at TOS
121     __ pop(rbx);
122   }
123   // expression stack must be empty before entering the VM if an exception happened
124   __ empty_expression_stack();
125   __ empty_FPU_stack();
126   // setup parameters
127   __ lea(rax, ExternalAddress((address)name));
128   if (pass_oop) {
129     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
130   } else {
131     if (message != NULL) {
132       __ lea(rbx, ExternalAddress((address)message));
133     } else {
134       __ movptr(rbx, NULL_WORD);
135     }
136     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
137   }
138   // throw exception
139   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
140   return entry;
141 }
142 
143 
generate_continuation_for(TosState state)144 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
145   address entry = __ pc();
146   // NULL last_sp until next java call
147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
148   __ dispatch_next(state);
149   return entry;
150 }
151 
152 
generate_return_entry_for(TosState state,int step,size_t index_size)153 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
154   address entry = __ pc();
155 
156 #ifdef COMPILER2
157   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
158   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
159     for (int i = 1; i < 8; i++) {
160         __ ffree(i);
161     }
162   } else if (UseSSE < 2) {
163     __ empty_FPU_stack();
164   }
165 #endif
166   if ((state == ftos && UseSSE < 1) || (state == dtos && UseSSE < 2)) {
167     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
168   } else {
169     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
170   }
171 
172   // In SSE mode, interpreter returns FP results in xmm0 but they need
173   // to end up back on the FPU so it can operate on them.
174   if (state == ftos && UseSSE >= 1) {
175     __ subptr(rsp, wordSize);
176     __ movflt(Address(rsp, 0), xmm0);
177     __ fld_s(Address(rsp, 0));
178     __ addptr(rsp, wordSize);
179   } else if (state == dtos && UseSSE >= 2) {
180     __ subptr(rsp, 2*wordSize);
181     __ movdbl(Address(rsp, 0), xmm0);
182     __ fld_d(Address(rsp, 0));
183     __ addptr(rsp, 2*wordSize);
184   }
185 
186   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
187 
188   // Restore stack bottom in case i2c adjusted stack
189   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
190   // and NULL it as marker that rsp is now tos until next java call
191   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
192 
193   __ restore_bcp();
194   __ restore_locals();
195 
196   if (state == atos) {
197     Register mdp = rbx;
198     Register tmp = rcx;
199     __ profile_return_type(mdp, rax, tmp);
200   }
201 
202   const Register cache = rbx;
203   const Register index = rcx;
204   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
205 
206   const Register flags = cache;
207   __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
208   __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask);
209   __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale()));
210   __ dispatch_next(state, step);
211 
212   return entry;
213 }
214 
215 
generate_deopt_entry_for(TosState state,int step)216 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
217   address entry = __ pc();
218 
219   // In SSE mode, FP results are in xmm0
220   if (state == ftos && UseSSE > 0) {
221     __ subptr(rsp, wordSize);
222     __ movflt(Address(rsp, 0), xmm0);
223     __ fld_s(Address(rsp, 0));
224     __ addptr(rsp, wordSize);
225   } else if (state == dtos && UseSSE >= 2) {
226     __ subptr(rsp, 2*wordSize);
227     __ movdbl(Address(rsp, 0), xmm0);
228     __ fld_d(Address(rsp, 0));
229     __ addptr(rsp, 2*wordSize);
230   }
231 
232   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
233 
234   // The stack is not extended by deopt but we must NULL last_sp as this
235   // entry is like a "return".
236   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
237   __ restore_bcp();
238   __ restore_locals();
239   // handle exceptions
240   { Label L;
241     const Register thread = rcx;
242     __ get_thread(thread);
243     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
244     __ jcc(Assembler::zero, L);
245     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
246     __ should_not_reach_here();
247     __ bind(L);
248   }
249   __ dispatch_next(state, step);
250   return entry;
251 }
252 
253 
BasicType_as_index(BasicType type)254 int AbstractInterpreter::BasicType_as_index(BasicType type) {
255   int i = 0;
256   switch (type) {
257     case T_BOOLEAN: i = 0; break;
258     case T_CHAR   : i = 1; break;
259     case T_BYTE   : i = 2; break;
260     case T_SHORT  : i = 3; break;
261     case T_INT    : // fall through
262     case T_LONG   : // fall through
263     case T_VOID   : i = 4; break;
264     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
265     case T_DOUBLE : i = 6; break;
266     case T_OBJECT : // fall through
267     case T_ARRAY  : i = 7; break;
268     default       : ShouldNotReachHere();
269   }
270   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
271   return i;
272 }
273 
274 
generate_result_handler_for(BasicType type)275 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
276   address entry = __ pc();
277   switch (type) {
278     case T_BOOLEAN: __ c2bool(rax);            break;
279     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
280     case T_BYTE   : __ sign_extend_byte (rax); break;
281     case T_SHORT  : __ sign_extend_short(rax); break;
282     case T_INT    : /* nothing to do */        break;
283     case T_DOUBLE :
284     case T_FLOAT  :
285       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
286         __ pop(t);                            // remove return address first
287         // Must return a result for interpreter or compiler. In SSE
288         // mode, results are returned in xmm0 and the FPU stack must
289         // be empty.
290         if (type == T_FLOAT && UseSSE >= 1) {
291           // Load ST0
292           __ fld_d(Address(rsp, 0));
293           // Store as float and empty fpu stack
294           __ fstp_s(Address(rsp, 0));
295           // and reload
296           __ movflt(xmm0, Address(rsp, 0));
297         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
298           __ movdbl(xmm0, Address(rsp, 0));
299         } else {
300           // restore ST0
301           __ fld_d(Address(rsp, 0));
302         }
303         // and pop the temp
304         __ addptr(rsp, 2 * wordSize);
305         __ push(t);                           // restore return address
306       }
307       break;
308     case T_OBJECT :
309       // retrieve result from frame
310       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
311       // and verify it
312       __ verify_oop(rax);
313       break;
314     default       : ShouldNotReachHere();
315   }
316   __ ret(0);                                   // return from result handler
317   return entry;
318 }
319 
generate_safept_entry_for(TosState state,address runtime_entry)320 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
321   address entry = __ pc();
322   __ push(state);
323   __ call_VM(noreg, runtime_entry);
324   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
325   return entry;
326 }
327 
328 
329 // Helpers for commoning out cases in the various type of method entries.
330 //
331 
332 // increment invocation count & check for overflow
333 //
334 // Note: checking for negative value instead of overflow
335 //       so we have a 'sticky' overflow test
336 //
337 // rbx,: method
338 // rcx: invocation counter
339 //
generate_counter_incr(Label * overflow,Label * profile_method,Label * profile_method_continue)340 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
341   Label done;
342   // Note: In tiered we increment either counters in MethodCounters* or in MDO
343   // depending if we're profiling or not.
344   if (TieredCompilation) {
345     int increment = InvocationCounter::count_increment;
346     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
347     Label no_mdo;
348     if (ProfileInterpreter) {
349       // Are we profiling?
350       __ movptr(rax, Address(rbx, Method::method_data_offset()));
351       __ testptr(rax, rax);
352       __ jccb(Assembler::zero, no_mdo);
353       // Increment counter in the MDO
354       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
355                                                 in_bytes(InvocationCounter::counter_offset()));
356       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
357       __ jmp(done);
358     }
359     __ bind(no_mdo);
360     // Increment counter in MethodCounters
361     const Address invocation_counter(rax,
362                   MethodCounters::invocation_counter_offset() +
363                   InvocationCounter::counter_offset());
364 
365     __ get_method_counters(rbx, rax, done);
366     __ increment_mask_and_jump(invocation_counter, increment, mask,
367                                rcx, false, Assembler::zero, overflow);
368     __ bind(done);
369   } else {
370     const Address backedge_counter  (rax,
371                   MethodCounters::backedge_counter_offset() +
372                   InvocationCounter::counter_offset());
373     const Address invocation_counter(rax,
374                   MethodCounters::invocation_counter_offset() +
375                   InvocationCounter::counter_offset());
376 
377     __ get_method_counters(rbx, rax, done);
378 
379     if (ProfileInterpreter) {
380       __ incrementl(Address(rax,
381               MethodCounters::interpreter_invocation_counter_offset()));
382     }
383 
384     // Update standard invocation counters
385     __ movl(rcx, invocation_counter);
386     __ incrementl(rcx, InvocationCounter::count_increment);
387     __ movl(invocation_counter, rcx);             // save invocation count
388 
389     __ movl(rax, backedge_counter);               // load backedge counter
390     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
391 
392     __ addl(rcx, rax);                            // add both counters
393 
394     // profile_method is non-null only for interpreted method so
395     // profile_method != NULL == !native_call
396     // BytecodeInterpreter only calls for native so code is elided.
397 
398     if (ProfileInterpreter && profile_method != NULL) {
399       // Test to see if we should create a method data oop
400       __ cmp32(rcx,
401                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
402       __ jcc(Assembler::less, *profile_method_continue);
403 
404       // if no method data exists, go to profile_method
405       __ test_method_data_pointer(rax, *profile_method);
406     }
407 
408     __ cmp32(rcx,
409              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
410     __ jcc(Assembler::aboveEqual, *overflow);
411     __ bind(done);
412   }
413 }
414 
generate_counter_overflow(Label * do_continue)415 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
416 
417   // Asm interpreter on entry
418   // rdi - locals
419   // rsi - bcp
420   // rbx, - method
421   // rdx - cpool
422   // rbp, - interpreter frame
423 
424   // C++ interpreter on entry
425   // rsi - new interpreter state pointer
426   // rbp - interpreter frame pointer
427   // rbx - method
428 
429   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
430   // rbx, - method
431   // rcx - rcvr (assuming there is one)
432   // top of stack return address of interpreter caller
433   // rsp - sender_sp
434 
435   // C++ interpreter only
436   // rsi - previous interpreter state pointer
437 
438   // InterpreterRuntime::frequency_counter_overflow takes one argument
439   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
440   // The call returns the address of the verified entry point for the method or NULL
441   // if the compilation did not complete (either went background or bailed out).
442   __ movptr(rax, (intptr_t)false);
443   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
444 
445   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
446 
447   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
448   // and jump to the interpreted entry.
449   __ jmp(*do_continue, relocInfo::none);
450 
451 }
452 
generate_stack_overflow_check(void)453 void InterpreterGenerator::generate_stack_overflow_check(void) {
454   // see if we've got enough room on the stack for locals plus overhead.
455   // the expression stack grows down incrementally, so the normal guard
456   // page mechanism will work for that.
457   //
458   // Registers live on entry:
459   //
460   // Asm interpreter
461   // rdx: number of additional locals this frame needs (what we must check)
462   // rbx,: Method*
463 
464   // destroyed on exit
465   // rax,
466 
467   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
468   // generate_method_entry) so the guard should work for them too.
469   //
470 
471   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
472   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
473 
474   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
475   // be sure to change this if you add/subtract anything to/from the overhead area
476   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
477 
478   const int page_size = os::vm_page_size();
479 
480   Label after_frame_check;
481 
482   // see if the frame is greater than one page in size. If so,
483   // then we need to verify there is enough stack space remaining
484   // for the additional locals.
485   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
486   __ jcc(Assembler::belowEqual, after_frame_check);
487 
488   // compute rsp as if this were going to be the last frame on
489   // the stack before the red zone
490 
491   Label after_frame_check_pop;
492 
493   __ push(rsi);
494 
495   const Register thread = rsi;
496 
497   __ get_thread(thread);
498 
499   const Address stack_base(thread, Thread::stack_base_offset());
500   const Address stack_size(thread, Thread::stack_size_offset());
501 
502   // locals + overhead, in bytes
503   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
504 
505 #ifdef ASSERT
506   Label stack_base_okay, stack_size_okay;
507   // verify that thread stack base is non-zero
508   __ cmpptr(stack_base, (int32_t)NULL_WORD);
509   __ jcc(Assembler::notEqual, stack_base_okay);
510   __ stop("stack base is zero");
511   __ bind(stack_base_okay);
512   // verify that thread stack size is non-zero
513   __ cmpptr(stack_size, 0);
514   __ jcc(Assembler::notEqual, stack_size_okay);
515   __ stop("stack size is zero");
516   __ bind(stack_size_okay);
517 #endif
518 
519   // Add stack base to locals and subtract stack size
520   __ addptr(rax, stack_base);
521   __ subptr(rax, stack_size);
522 
523   // Use the maximum number of pages we might bang.
524   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
525                                                                               (StackRedPages+StackYellowPages);
526   __ addptr(rax, max_pages * page_size);
527 
528   // check against the current stack bottom
529   __ cmpptr(rsp, rax);
530   __ jcc(Assembler::above, after_frame_check_pop);
531 
532   __ pop(rsi);  // get saved bcp / (c++ prev state ).
533 
534   // Restore sender's sp as SP. This is necessary if the sender's
535   // frame is an extended compiled frame (see gen_c2i_adapter())
536   // and safer anyway in case of JSR292 adaptations.
537 
538   __ pop(rax); // return address must be moved if SP is changed
539   __ mov(rsp, rsi);
540   __ push(rax);
541 
542   // Note: the restored frame is not necessarily interpreted.
543   // Use the shared runtime version of the StackOverflowError.
544   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
545   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
546   // all done with frame size check
547   __ bind(after_frame_check_pop);
548   __ pop(rsi);
549 
550   __ bind(after_frame_check);
551 }
552 
553 // Allocate monitor and lock method (asm interpreter)
554 // rbx, - Method*
555 //
lock_method(void)556 void InterpreterGenerator::lock_method(void) {
557   // synchronize method
558   const Address access_flags      (rbx, Method::access_flags_offset());
559   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
560   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
561 
562   #ifdef ASSERT
563     { Label L;
564       __ movl(rax, access_flags);
565       __ testl(rax, JVM_ACC_SYNCHRONIZED);
566       __ jcc(Assembler::notZero, L);
567       __ stop("method doesn't need synchronization");
568       __ bind(L);
569     }
570   #endif // ASSERT
571   // get synchronization object
572   { Label done;
573     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
574     __ movl(rax, access_flags);
575     __ testl(rax, JVM_ACC_STATIC);
576     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
577     __ jcc(Assembler::zero, done);
578     __ movptr(rax, Address(rbx, Method::const_offset()));
579     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
580     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
581     __ movptr(rax, Address(rax, mirror_offset));
582     __ bind(done);
583   }
584   // add space for monitor & lock
585   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
586   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
587   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
588   __ mov(rdx, rsp);                                                    // object address
589   __ lock_object(rdx);
590 }
591 
592 //
593 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
594 // and for native methods hence the shared code.
595 
generate_fixed_frame(bool native_call)596 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
597   // initialize fixed part of activation frame
598   __ push(rax);                                       // save return address
599   __ enter();                                         // save old & set new rbp,
600 
601 
602   __ push(rsi);                                       // set sender sp
603   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
604   __ movptr(rsi, Address(rbx,Method::const_offset())); // get ConstMethod*
605   __ lea(rsi, Address(rsi,ConstMethod::codes_offset())); // get codebase
606   __ push(rbx);                                      // save Method*
607   if (ProfileInterpreter) {
608     Label method_data_continue;
609     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
610     __ testptr(rdx, rdx);
611     __ jcc(Assembler::zero, method_data_continue);
612     __ addptr(rdx, in_bytes(MethodData::data_offset()));
613     __ bind(method_data_continue);
614     __ push(rdx);                                       // set the mdp (method data pointer)
615   } else {
616     __ push(0);
617   }
618 
619   __ movptr(rdx, Address(rbx, Method::const_offset()));
620   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
621   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
622   __ push(rdx);                                       // set constant pool cache
623   __ push(rdi);                                       // set locals pointer
624   if (native_call) {
625     __ push(0);                                       // no bcp
626   } else {
627     __ push(rsi);                                     // set bcp
628     }
629   __ push(0);                                         // reserve word for pointer to expression stack bottom
630   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
631 }
632 
633 // End of helpers
634 
635 //
636 // Various method entries
637 //------------------------------------------------------------------------------------------------------------------------
638 //
639 //
640 
641 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
642 
generate_accessor_entry(void)643 address InterpreterGenerator::generate_accessor_entry(void) {
644 
645   // rbx,: Method*
646   // rcx: receiver (preserve for slow entry into asm interpreter)
647 
648   // rsi: senderSP must preserved for slow path, set SP to it on fast path
649 
650   address entry_point = __ pc();
651   Label xreturn_path;
652 
653   // do fastpath for resolved accessor methods
654   if (UseFastAccessorMethods) {
655     Label slow_path;
656     // If we need a safepoint check, generate full interpreter entry.
657     ExternalAddress state(SafepointSynchronize::address_of_state());
658     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
659              SafepointSynchronize::_not_synchronized);
660 
661     __ jcc(Assembler::notEqual, slow_path);
662     // ASM/C++ Interpreter
663     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
664     // Note: We can only use this code if the getfield has been resolved
665     //       and if we don't have a null-pointer exception => check for
666     //       these conditions first and use slow path if necessary.
667     // rbx,: method
668     // rcx: receiver
669     __ movptr(rax, Address(rsp, wordSize));
670 
671     // check if local 0 != NULL and read field
672     __ testptr(rax, rax);
673     __ jcc(Assembler::zero, slow_path);
674 
675     // read first instruction word and extract bytecode @ 1 and index @ 2
676     __ movptr(rdx, Address(rbx, Method::const_offset()));
677     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
678     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
679     // Shift codes right to get the index on the right.
680     // The bytecode fetched looks like <index><0xb4><0x2a>
681     __ shrl(rdx, 2*BitsPerByte);
682     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
683     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
684 
685     // rax,: local 0
686     // rbx,: method
687     // rcx: receiver - do not destroy since it is needed for slow path!
688     // rcx: scratch
689     // rdx: constant pool cache index
690     // rdi: constant pool cache
691     // rsi: sender sp
692 
693     // check if getfield has been resolved and read constant pool cache entry
694     // check the validity of the cache entry by testing whether _indices field
695     // contains Bytecode::_getfield in b1 byte.
696     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
697     __ movl(rcx,
698             Address(rdi,
699                     rdx,
700                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
701     __ shrl(rcx, 2*BitsPerByte);
702     __ andl(rcx, 0xFF);
703     __ cmpl(rcx, Bytecodes::_getfield);
704     __ jcc(Assembler::notEqual, slow_path);
705 
706     // Note: constant pool entry is not valid before bytecode is resolved
707     __ movptr(rcx,
708               Address(rdi,
709                       rdx,
710                       Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
711     __ movl(rdx,
712             Address(rdi,
713                     rdx,
714                     Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
715 
716     Label notByte, notBool, notShort, notChar;
717     const Address field_address (rax, rcx, Address::times_1);
718 
719     // Need to differentiate between igetfield, agetfield, bgetfield etc.
720     // because they are different sizes.
721     // Use the type from the constant pool cache
722     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
723     // Make sure we don't need to mask rdx after the above shift
724     ConstantPoolCacheEntry::verify_tos_state_shift();
725     __ cmpl(rdx, btos);
726     __ jcc(Assembler::notEqual, notByte);
727     __ load_signed_byte(rax, field_address);
728     __ jmp(xreturn_path);
729 
730     __ bind(notByte);
731     __ cmpl(rdx, ztos);
732     __ jcc(Assembler::notEqual, notBool);
733     __ load_signed_byte(rax, field_address);
734     __ jmp(xreturn_path);
735 
736     __ bind(notBool);
737     __ cmpl(rdx, stos);
738     __ jcc(Assembler::notEqual, notShort);
739     __ load_signed_short(rax, field_address);
740     __ jmp(xreturn_path);
741 
742     __ bind(notShort);
743     __ cmpl(rdx, ctos);
744     __ jcc(Assembler::notEqual, notChar);
745     __ load_unsigned_short(rax, field_address);
746     __ jmp(xreturn_path);
747 
748     __ bind(notChar);
749 #ifdef ASSERT
750     Label okay;
751     __ cmpl(rdx, atos);
752     __ jcc(Assembler::equal, okay);
753     __ cmpl(rdx, itos);
754     __ jcc(Assembler::equal, okay);
755     __ stop("what type is this?");
756     __ bind(okay);
757 #endif // ASSERT
758     // All the rest are a 32 bit wordsize
759     // This is ok for now. Since fast accessors should be going away
760     __ movptr(rax, field_address);
761 
762     __ bind(xreturn_path);
763 
764     // _ireturn/_areturn
765     __ pop(rdi);                               // get return address
766     __ mov(rsp, rsi);                          // set sp to sender sp
767     __ jmp(rdi);
768 
769     // generate a vanilla interpreter entry as the slow path
770     __ bind(slow_path);
771 
772     (void) generate_normal_entry(false);
773     return entry_point;
774   }
775   return NULL;
776 
777 }
778 
779 // Method entry for java.lang.ref.Reference.get.
generate_Reference_get_entry(void)780 address InterpreterGenerator::generate_Reference_get_entry(void) {
781 #if INCLUDE_ALL_GCS
782   // Code: _aload_0, _getfield, _areturn
783   // parameter size = 1
784   //
785   // The code that gets generated by this routine is split into 2 parts:
786   //    1. The "intrinsified" code for G1 (or any SATB based GC),
787   //    2. The slow path - which is an expansion of the regular method entry.
788   //
789   // Notes:-
790   // * In the G1 code we do not check whether we need to block for
791   //   a safepoint. If G1 is enabled then we must execute the specialized
792   //   code for Reference.get (except when the Reference object is null)
793   //   so that we can log the value in the referent field with an SATB
794   //   update buffer.
795   //   If the code for the getfield template is modified so that the
796   //   G1 pre-barrier code is executed when the current method is
797   //   Reference.get() then going through the normal method entry
798   //   will be fine.
799   // * The G1 code below can, however, check the receiver object (the instance
800   //   of java.lang.Reference) and jump to the slow path if null. If the
801   //   Reference object is null then we obviously cannot fetch the referent
802   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
803   //   regular method entry code to generate the NPE.
804   //
805   // This code is based on generate_accessor_enty.
806 
807   // rbx,: Method*
808   // rcx: receiver (preserve for slow entry into asm interpreter)
809 
810   // rsi: senderSP must preserved for slow path, set SP to it on fast path
811 
812   address entry = __ pc();
813 
814   const int referent_offset = java_lang_ref_Reference::referent_offset;
815   guarantee(referent_offset > 0, "referent offset not initialized");
816 
817   if (UseG1GC) {
818     Label slow_path;
819 
820     // Check if local 0 != NULL
821     // If the receiver is null then it is OK to jump to the slow path.
822     __ movptr(rax, Address(rsp, wordSize));
823     __ testptr(rax, rax);
824     __ jcc(Assembler::zero, slow_path);
825 
826     // rax: local 0 (must be preserved across the G1 barrier call)
827     //
828     // rbx: method (at this point it's scratch)
829     // rcx: receiver (at this point it's scratch)
830     // rdx: scratch
831     // rdi: scratch
832     //
833     // rsi: sender sp
834 
835     // Preserve the sender sp in case the pre-barrier
836     // calls the runtime
837     __ push(rsi);
838 
839     // Load the value of the referent field.
840     const Address field_address(rax, referent_offset);
841     __ movptr(rax, field_address);
842 
843     // Generate the G1 pre-barrier code to log the value of
844     // the referent field in an SATB buffer.
845     __ get_thread(rcx);
846     __ g1_write_barrier_pre(noreg /* obj */,
847                             rax /* pre_val */,
848                             rcx /* thread */,
849                             rbx /* tmp */,
850                             true /* tosca_save */,
851                             true /* expand_call */);
852 
853     // _areturn
854     __ pop(rsi);                // get sender sp
855     __ pop(rdi);                // get return address
856     __ mov(rsp, rsi);           // set sp to sender sp
857     __ jmp(rdi);
858 
859     __ bind(slow_path);
860     (void) generate_normal_entry(false);
861 
862     return entry;
863   }
864 #endif // INCLUDE_ALL_GCS
865 
866   // If G1 is not enabled then attempt to go through the accessor entry point
867   // Reference.get is an accessor
868   return generate_accessor_entry();
869 }
870 
871 /**
872  * Method entry for static native methods:
873  *   int java.util.zip.CRC32.update(int crc, int b)
874  */
generate_CRC32_update_entry()875 address InterpreterGenerator::generate_CRC32_update_entry() {
876   if (UseCRC32Intrinsics) {
877     address entry = __ pc();
878 
879     // rbx,: Method*
880     // rsi: senderSP must preserved for slow path, set SP to it on fast path
881     // rdx: scratch
882     // rdi: scratch
883 
884     Label slow_path;
885     // If we need a safepoint check, generate full interpreter entry.
886     ExternalAddress state(SafepointSynchronize::address_of_state());
887     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
888              SafepointSynchronize::_not_synchronized);
889     __ jcc(Assembler::notEqual, slow_path);
890 
891     // We don't generate local frame and don't align stack because
892     // we call stub code and there is no safepoint on this path.
893 
894     // Load parameters
895     const Register crc = rax;  // crc
896     const Register val = rdx;  // source java byte value
897     const Register tbl = rdi;  // scratch
898 
899     // Arguments are reversed on java expression stack
900     __ movl(val, Address(rsp,   wordSize)); // byte value
901     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
902 
903     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
904     __ notl(crc); // ~crc
905     __ update_byte_crc32(crc, val, tbl);
906     __ notl(crc); // ~crc
907     // result in rax
908 
909     // _areturn
910     __ pop(rdi);                // get return address
911     __ mov(rsp, rsi);           // set sp to sender sp
912     __ jmp(rdi);
913 
914     // generate a vanilla native entry as the slow path
915     __ bind(slow_path);
916 
917     (void) generate_native_entry(false);
918 
919     return entry;
920   }
921   return generate_native_entry(false);
922 }
923 
924 /**
925  * Method entry for static native methods:
926  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
927  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
928  */
generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind)929 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
930   if (UseCRC32Intrinsics) {
931     address entry = __ pc();
932 
933     // rbx,: Method*
934     // rsi: senderSP must preserved for slow path, set SP to it on fast path
935     // rdx: scratch
936     // rdi: scratch
937 
938     Label slow_path;
939     // If we need a safepoint check, generate full interpreter entry.
940     ExternalAddress state(SafepointSynchronize::address_of_state());
941     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
942              SafepointSynchronize::_not_synchronized);
943     __ jcc(Assembler::notEqual, slow_path);
944 
945     // We don't generate local frame and don't align stack because
946     // we call stub code and there is no safepoint on this path.
947 
948     // Load parameters
949     const Register crc = rax;  // crc
950     const Register buf = rdx;  // source java byte array address
951     const Register len = rdi;  // length
952 
953     // Arguments are reversed on java expression stack
954     __ movl(len,   Address(rsp,   wordSize)); // Length
955     // Calculate address of start element
956     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
957       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
958       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
959       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
960     } else {
961       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
962       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
963       __ addptr(buf, Address(rsp, 2*wordSize)); // + offset
964       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
965     }
966 
967     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
968     // result in rax
969 
970     // _areturn
971     __ pop(rdi);                // get return address
972     __ mov(rsp, rsi);           // set sp to sender sp
973     __ jmp(rdi);
974 
975     // generate a vanilla native entry as the slow path
976     __ bind(slow_path);
977 
978     (void) generate_native_entry(false);
979 
980     return entry;
981   }
982   return generate_native_entry(false);
983 }
984 
985 //
986 // Interpreter stub for calling a native method. (asm interpreter)
987 // This sets up a somewhat different looking stack for calling the native method
988 // than the typical interpreter frame setup.
989 //
990 
generate_native_entry(bool synchronized)991 address InterpreterGenerator::generate_native_entry(bool synchronized) {
992   // determine code generation flags
993   bool inc_counter  = UseCompiler || CountCompiledCalls;
994 
995   // rbx,: Method*
996   // rsi: sender sp
997   // rsi: previous interpreter state (C++ interpreter) must preserve
998   address entry_point = __ pc();
999 
1000   const Address constMethod       (rbx, Method::const_offset());
1001   const Address access_flags      (rbx, Method::access_flags_offset());
1002   const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
1003 
1004   // get parameter size (always needed)
1005   __ movptr(rcx, constMethod);
1006   __ load_unsigned_short(rcx, size_of_parameters);
1007 
1008   // native calls don't need the stack size check since they have no expression stack
1009   // and the arguments are already on the stack and we only add a handful of words
1010   // to the stack
1011 
1012   // rbx,: Method*
1013   // rcx: size of parameters
1014   // rsi: sender sp
1015 
1016   __ pop(rax);                                       // get return address
1017   // for natives the size of locals is zero
1018 
1019   // compute beginning of parameters (rdi)
1020   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
1021 
1022 
1023   // add 2 zero-initialized slots for native calls
1024   // NULL result handler
1025   __ push((int32_t)NULL_WORD);
1026   // NULL oop temp (mirror or jni oop result)
1027   __ push((int32_t)NULL_WORD);
1028 
1029   // initialize fixed part of activation frame
1030   generate_fixed_frame(true);
1031 
1032   // make sure method is native & not abstract
1033 #ifdef ASSERT
1034   __ movl(rax, access_flags);
1035   {
1036     Label L;
1037     __ testl(rax, JVM_ACC_NATIVE);
1038     __ jcc(Assembler::notZero, L);
1039     __ stop("tried to execute non-native method as native");
1040     __ bind(L);
1041   }
1042   { Label L;
1043     __ testl(rax, JVM_ACC_ABSTRACT);
1044     __ jcc(Assembler::zero, L);
1045     __ stop("tried to execute abstract method in interpreter");
1046     __ bind(L);
1047   }
1048 #endif
1049 
1050   // Since at this point in the method invocation the exception handler
1051   // would try to exit the monitor of synchronized methods which hasn't
1052   // been entered yet, we set the thread local variable
1053   // _do_not_unlock_if_synchronized to true. The remove_activation will
1054   // check this flag.
1055 
1056   __ get_thread(rax);
1057   const Address do_not_unlock_if_synchronized(rax,
1058         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1059   __ movbool(do_not_unlock_if_synchronized, true);
1060 
1061   // increment invocation count & check for overflow
1062   Label invocation_counter_overflow;
1063   if (inc_counter) {
1064     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1065   }
1066 
1067   Label continue_after_compile;
1068   __ bind(continue_after_compile);
1069 
1070   bang_stack_shadow_pages(true);
1071 
1072   // reset the _do_not_unlock_if_synchronized flag
1073   __ get_thread(rax);
1074   __ movbool(do_not_unlock_if_synchronized, false);
1075 
1076   // check for synchronized methods
1077   // Must happen AFTER invocation_counter check and stack overflow check,
1078   // so method is not locked if overflows.
1079   //
1080   if (synchronized) {
1081     lock_method();
1082   } else {
1083     // no synchronization necessary
1084 #ifdef ASSERT
1085       { Label L;
1086         __ movl(rax, access_flags);
1087         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1088         __ jcc(Assembler::zero, L);
1089         __ stop("method needs synchronization");
1090         __ bind(L);
1091       }
1092 #endif
1093   }
1094 
1095   // start execution
1096 #ifdef ASSERT
1097   { Label L;
1098     const Address monitor_block_top (rbp,
1099                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1100     __ movptr(rax, monitor_block_top);
1101     __ cmpptr(rax, rsp);
1102     __ jcc(Assembler::equal, L);
1103     __ stop("broken stack frame setup in interpreter");
1104     __ bind(L);
1105   }
1106 #endif
1107 
1108   // jvmti/dtrace support
1109   __ notify_method_entry();
1110 
1111   // work registers
1112   const Register method = rbx;
1113   const Register thread = rdi;
1114   const Register t      = rcx;
1115 
1116   // allocate space for parameters
1117   __ get_method(method);
1118   __ movptr(t, Address(method, Method::const_offset()));
1119   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1120 
1121   __ shlptr(t, Interpreter::logStackElementSize);
1122   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
1123   __ subptr(rsp, t);
1124   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1125 
1126   // get signature handler
1127   { Label L;
1128     __ movptr(t, Address(method, Method::signature_handler_offset()));
1129     __ testptr(t, t);
1130     __ jcc(Assembler::notZero, L);
1131     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1132     __ get_method(method);
1133     __ movptr(t, Address(method, Method::signature_handler_offset()));
1134     __ bind(L);
1135   }
1136 
1137   // call signature handler
1138   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
1139   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1140   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
1141   // The generated handlers do not touch RBX (the method oop).
1142   // However, large signatures cannot be cached and are generated
1143   // each time here.  The slow-path generator will blow RBX
1144   // sometime, so we must reload it after the call.
1145   __ call(t);
1146   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
1147 
1148   // result handler is in rax,
1149   // set result handler
1150   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
1151 
1152   // pass mirror handle if static call
1153   { Label L;
1154     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1155     __ movl(t, Address(method, Method::access_flags_offset()));
1156     __ testl(t, JVM_ACC_STATIC);
1157     __ jcc(Assembler::zero, L);
1158     // get mirror
1159     __ movptr(t, Address(method, Method:: const_offset()));
1160     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1161     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1162     __ movptr(t, Address(t, mirror_offset));
1163     // copy mirror into activation frame
1164     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
1165     // pass handle to mirror
1166     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1167     __ movptr(Address(rsp, wordSize), t);
1168     __ bind(L);
1169   }
1170 
1171   // get native function entry point
1172   { Label L;
1173     __ movptr(rax, Address(method, Method::native_function_offset()));
1174     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1175     __ cmpptr(rax, unsatisfied.addr());
1176     __ jcc(Assembler::notEqual, L);
1177     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1178     __ get_method(method);
1179     __ movptr(rax, Address(method, Method::native_function_offset()));
1180     __ bind(L);
1181   }
1182 
1183   // pass JNIEnv
1184   __ get_thread(thread);
1185   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1186   __ movptr(Address(rsp, 0), t);
1187 
1188   // set_last_Java_frame_before_call
1189   // It is enough that the pc()
1190   // points into the right code segment. It does not have to be the correct return pc.
1191   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1192 
1193   // change thread state
1194 #ifdef ASSERT
1195   { Label L;
1196     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1197     __ cmpl(t, _thread_in_Java);
1198     __ jcc(Assembler::equal, L);
1199     __ stop("Wrong thread state in native stub");
1200     __ bind(L);
1201   }
1202 #endif
1203 
1204   // Change state to native
1205   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1206   __ call(rax);
1207 
1208   // result potentially in rdx:rax or ST0
1209 
1210   // Verify or restore cpu control state after JNI call
1211   __ restore_cpu_control_state_after_jni();
1212 
1213   // save potential result in ST(0) & rdx:rax
1214   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
1215   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
1216   // It is safe to do this push because state is _thread_in_native and return address will be found
1217   // via _last_native_pc and not via _last_jave_sp
1218 
1219   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
1220   // If the order changes or anything else is added to the stack the code in
1221   // interpreter_frame_result will have to be changed.
1222 
1223   { Label L;
1224     Label push_double;
1225     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1226     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1227     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1228               float_handler.addr());
1229     __ jcc(Assembler::equal, push_double);
1230     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
1231               double_handler.addr());
1232     __ jcc(Assembler::notEqual, L);
1233     __ bind(push_double);
1234     __ push(dtos);
1235     __ bind(L);
1236   }
1237   __ push(ltos);
1238 
1239   // change thread state
1240   __ get_thread(thread);
1241   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1242   if(os::is_MP()) {
1243     if (UseMembar) {
1244       // Force this write out before the read below
1245       __ membar(Assembler::Membar_mask_bits(
1246            Assembler::LoadLoad | Assembler::LoadStore |
1247            Assembler::StoreLoad | Assembler::StoreStore));
1248     } else {
1249       // Write serialization page so VM thread can do a pseudo remote membar.
1250       // We use the current thread pointer to calculate a thread specific
1251       // offset to write to within the page. This minimizes bus traffic
1252       // due to cache line collision.
1253       __ serialize_memory(thread, rcx);
1254     }
1255   }
1256 
1257   if (AlwaysRestoreFPU) {
1258     //  Make sure the control word is correct.
1259     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1260   }
1261 
1262   // check for safepoint operation in progress and/or pending suspend requests
1263   { Label Continue;
1264 
1265     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1266              SafepointSynchronize::_not_synchronized);
1267 
1268     Label L;
1269     __ jcc(Assembler::notEqual, L);
1270     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1271     __ jcc(Assembler::equal, Continue);
1272     __ bind(L);
1273 
1274     // Don't use call_VM as it will see a possible pending exception and forward it
1275     // and never return here preventing us from clearing _last_native_pc down below.
1276     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1277     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1278     // by hand.
1279     //
1280     __ push(thread);
1281     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1282                                             JavaThread::check_special_condition_for_native_trans)));
1283     __ increment(rsp, wordSize);
1284     __ get_thread(thread);
1285 
1286     __ bind(Continue);
1287   }
1288 
1289   // change thread state
1290   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1291 
1292   __ reset_last_Java_frame(thread, true);
1293 
1294   // reset handle block
1295   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1296   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1297 
1298   // If result was an oop then unbox and save it in the frame
1299   {
1300     Label no_oop;
1301     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
1302     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
1303               handler.addr());
1304     __ jcc(Assembler::notEqual, no_oop);
1305     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
1306     __ pop(ltos);
1307     // Unbox oop result, e.g. JNIHandles::resolve value.
1308     __ resolve_jobject(rax /* value */,
1309                        thread /* thread */,
1310                        t /* tmp */);
1311     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
1312     // keep stack depth as expected by pushing oop which will eventually be discarded
1313     __ push(ltos);
1314     __ bind(no_oop);
1315   }
1316 
1317   {
1318      Label no_reguard;
1319      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1320      __ jcc(Assembler::notEqual, no_reguard);
1321 
1322      __ pusha();
1323      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1324      __ popa();
1325 
1326      __ bind(no_reguard);
1327    }
1328 
1329   // restore rsi to have legal interpreter frame,
1330   // i.e., bci == 0 <=> rsi == code_base()
1331   // Can't call_VM until bcp is within reasonable.
1332   __ get_method(method);      // method is junk from thread_in_native to now.
1333   __ movptr(rsi, Address(method,Method::const_offset()));   // get ConstMethod*
1334   __ lea(rsi, Address(rsi,ConstMethod::codes_offset()));    // get codebase
1335 
1336   // handle exceptions (exception handling will handle unlocking!)
1337   { Label L;
1338     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1339     __ jcc(Assembler::zero, L);
1340     // Note: At some point we may want to unify this with the code used in call_VM_base();
1341     //       i.e., we should use the StubRoutines::forward_exception code. For now this
1342     //       doesn't work here because the rsp is not correctly set at this point.
1343     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1344     __ should_not_reach_here();
1345     __ bind(L);
1346   }
1347 
1348   // do unlocking if necessary
1349   { Label L;
1350     __ movl(t, Address(method, Method::access_flags_offset()));
1351     __ testl(t, JVM_ACC_SYNCHRONIZED);
1352     __ jcc(Assembler::zero, L);
1353     // the code below should be shared with interpreter macro assembler implementation
1354     { Label unlock;
1355       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1356       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1357       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1358 
1359       __ lea(rdx, monitor);                   // address of first monitor
1360 
1361       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
1362       __ testptr(t, t);
1363       __ jcc(Assembler::notZero, unlock);
1364 
1365       // Entry already unlocked, need to throw exception
1366       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1367       __ should_not_reach_here();
1368 
1369       __ bind(unlock);
1370       __ unlock_object(rdx);
1371     }
1372     __ bind(L);
1373   }
1374 
1375   // jvmti/dtrace support
1376   // Note: This must happen _after_ handling/throwing any exceptions since
1377   //       the exception handler code notifies the runtime of method exits
1378   //       too. If this happens before, method entry/exit notifications are
1379   //       not properly paired (was bug - gri 11/22/99).
1380   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1381 
1382   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1383   __ pop(ltos);
1384   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1385   __ call(t);
1386 
1387   // remove activation
1388   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1389   __ leave();                                // remove frame anchor
1390   __ pop(rdi);                               // get return address
1391   __ mov(rsp, t);                            // set sp to sender sp
1392   __ jmp(rdi);
1393 
1394   if (inc_counter) {
1395     // Handle overflow of counter and compile method
1396     __ bind(invocation_counter_overflow);
1397     generate_counter_overflow(&continue_after_compile);
1398   }
1399 
1400   return entry_point;
1401 }
1402 
1403 //
1404 // Generic interpreted method entry to (asm) interpreter
1405 //
generate_normal_entry(bool synchronized)1406 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1407   // determine code generation flags
1408   bool inc_counter  = UseCompiler || CountCompiledCalls;
1409 
1410   // rbx,: Method*
1411   // rsi: sender sp
1412   address entry_point = __ pc();
1413 
1414   const Address constMethod       (rbx, Method::const_offset());
1415   const Address access_flags      (rbx, Method::access_flags_offset());
1416   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
1417   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
1418 
1419   // get parameter size (always needed)
1420   __ movptr(rdx, constMethod);
1421   __ load_unsigned_short(rcx, size_of_parameters);
1422 
1423   // rbx,: Method*
1424   // rcx: size of parameters
1425 
1426   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
1427 
1428   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
1429   __ subl(rdx, rcx);                                // rdx = no. of additional locals
1430 
1431   // see if we've got enough room on the stack for locals plus overhead.
1432   generate_stack_overflow_check();
1433 
1434   // get return address
1435   __ pop(rax);
1436 
1437   // compute beginning of parameters (rdi)
1438   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
1439 
1440   // rdx - # of additional locals
1441   // allocate space for locals
1442   // explicitly initialize locals
1443   {
1444     Label exit, loop;
1445     __ testl(rdx, rdx);
1446     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1447     __ bind(loop);
1448     __ push((int32_t)NULL_WORD);                      // initialize local variables
1449     __ decrement(rdx);                                // until everything initialized
1450     __ jcc(Assembler::greater, loop);
1451     __ bind(exit);
1452   }
1453 
1454   // initialize fixed part of activation frame
1455   generate_fixed_frame(false);
1456 
1457   // make sure method is not native & not abstract
1458 #ifdef ASSERT
1459   __ movl(rax, access_flags);
1460   {
1461     Label L;
1462     __ testl(rax, JVM_ACC_NATIVE);
1463     __ jcc(Assembler::zero, L);
1464     __ stop("tried to execute native method as non-native");
1465     __ bind(L);
1466   }
1467   { Label L;
1468     __ testl(rax, JVM_ACC_ABSTRACT);
1469     __ jcc(Assembler::zero, L);
1470     __ stop("tried to execute abstract method in interpreter");
1471     __ bind(L);
1472   }
1473 #endif
1474 
1475   // Since at this point in the method invocation the exception handler
1476   // would try to exit the monitor of synchronized methods which hasn't
1477   // been entered yet, we set the thread local variable
1478   // _do_not_unlock_if_synchronized to true. The remove_activation will
1479   // check this flag.
1480 
1481   __ get_thread(rax);
1482   const Address do_not_unlock_if_synchronized(rax,
1483         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1484   __ movbool(do_not_unlock_if_synchronized, true);
1485 
1486   __ profile_parameters_type(rax, rcx, rdx);
1487   // increment invocation count & check for overflow
1488   Label invocation_counter_overflow;
1489   Label profile_method;
1490   Label profile_method_continue;
1491   if (inc_counter) {
1492     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1493     if (ProfileInterpreter) {
1494       __ bind(profile_method_continue);
1495     }
1496   }
1497   Label continue_after_compile;
1498   __ bind(continue_after_compile);
1499 
1500   bang_stack_shadow_pages(false);
1501 
1502   // reset the _do_not_unlock_if_synchronized flag
1503   __ get_thread(rax);
1504   __ movbool(do_not_unlock_if_synchronized, false);
1505 
1506   // check for synchronized methods
1507   // Must happen AFTER invocation_counter check and stack overflow check,
1508   // so method is not locked if overflows.
1509   //
1510   if (synchronized) {
1511     // Allocate monitor and lock method
1512     lock_method();
1513   } else {
1514     // no synchronization necessary
1515 #ifdef ASSERT
1516       { Label L;
1517         __ movl(rax, access_flags);
1518         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1519         __ jcc(Assembler::zero, L);
1520         __ stop("method needs synchronization");
1521         __ bind(L);
1522       }
1523 #endif
1524   }
1525 
1526   // start execution
1527 #ifdef ASSERT
1528   { Label L;
1529      const Address monitor_block_top (rbp,
1530                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1531     __ movptr(rax, monitor_block_top);
1532     __ cmpptr(rax, rsp);
1533     __ jcc(Assembler::equal, L);
1534     __ stop("broken stack frame setup in interpreter");
1535     __ bind(L);
1536   }
1537 #endif
1538 
1539   // jvmti support
1540   __ notify_method_entry();
1541 
1542   __ dispatch_next(vtos);
1543 
1544   // invocation counter overflow
1545   if (inc_counter) {
1546     if (ProfileInterpreter) {
1547       // We have decided to profile this method in the interpreter
1548       __ bind(profile_method);
1549       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1550       __ set_method_data_pointer_for_bcp();
1551       __ get_method(rbx);
1552       __ jmp(profile_method_continue);
1553     }
1554     // Handle overflow of counter and compile method
1555     __ bind(invocation_counter_overflow);
1556     generate_counter_overflow(&continue_after_compile);
1557   }
1558 
1559   return entry_point;
1560 }
1561 
1562 //------------------------------------------------------------------------------------------------------------------------
1563 // Entry points
1564 //
1565 // Here we generate the various kind of entries into the interpreter.
1566 // The two main entry type are generic bytecode methods and native call method.
1567 // These both come in synchronized and non-synchronized versions but the
1568 // frame layout they create is very similar. The other method entry
1569 // types are really just special purpose entries that are really entry
1570 // and interpretation all in one. These are for trivial methods like
1571 // accessor, empty, or special math methods.
1572 //
1573 // When control flow reaches any of the entry types for the interpreter
1574 // the following holds ->
1575 //
1576 // Arguments:
1577 //
1578 // rbx,: Method*
1579 // rcx: receiver
1580 //
1581 //
1582 // Stack layout immediately at entry
1583 //
1584 // [ return address     ] <--- rsp
1585 // [ parameter n        ]
1586 //   ...
1587 // [ parameter 1        ]
1588 // [ expression stack   ] (caller's java expression stack)
1589 
1590 // Assuming that we don't go to one of the trivial specialized
1591 // entries the stack will look like below when we are ready to execute
1592 // the first bytecode (or call the native routine). The register usage
1593 // will be as the template based interpreter expects (see interpreter_x86.hpp).
1594 //
1595 // local variables follow incoming parameters immediately; i.e.
1596 // the return address is moved to the end of the locals).
1597 //
1598 // [ monitor entry      ] <--- rsp
1599 //   ...
1600 // [ monitor entry      ]
1601 // [ expr. stack bottom ]
1602 // [ saved rsi          ]
1603 // [ current rdi        ]
1604 // [ Method*            ]
1605 // [ saved rbp,          ] <--- rbp,
1606 // [ return address     ]
1607 // [ local variable m   ]
1608 //   ...
1609 // [ local variable 1   ]
1610 // [ parameter n        ]
1611 //   ...
1612 // [ parameter 1        ] <--- rdi
1613 
generate_method_entry(AbstractInterpreter::MethodKind kind)1614 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
1615   // determine code generation flags
1616   bool synchronized = false;
1617   address entry_point = NULL;
1618   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
1619 
1620   switch (kind) {
1621     case Interpreter::zerolocals             :                                                       break;
1622     case Interpreter::zerolocals_synchronized: synchronized = true;                                  break;
1623     case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false);  break;
1624     case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);   break;
1625     case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();        break;
1626     case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();     break;
1627     case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();     break;
1628 
1629     case Interpreter::java_lang_math_sin     : // fall thru
1630     case Interpreter::java_lang_math_cos     : // fall thru
1631     case Interpreter::java_lang_math_tan     : // fall thru
1632     case Interpreter::java_lang_math_abs     : // fall thru
1633     case Interpreter::java_lang_math_log     : // fall thru
1634     case Interpreter::java_lang_math_log10   : // fall thru
1635     case Interpreter::java_lang_math_sqrt    : // fall thru
1636     case Interpreter::java_lang_math_pow     : // fall thru
1637     case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
1638     case Interpreter::java_lang_ref_reference_get
1639                                              : entry_point = ig_this->generate_Reference_get_entry(); break;
1640     case Interpreter::java_util_zip_CRC32_update
1641                                              : entry_point = ig_this->generate_CRC32_update_entry();  break;
1642     case Interpreter::java_util_zip_CRC32_updateBytes
1643                                              : // fall thru
1644     case Interpreter::java_util_zip_CRC32_updateByteBuffer
1645                                              : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
1646     default:
1647       fatal(err_msg("unexpected method kind: %d", kind));
1648       break;
1649   }
1650 
1651   if (entry_point) return entry_point;
1652 
1653   return ig_this->generate_normal_entry(synchronized);
1654 
1655 }
1656 
1657 // These should never be compiled since the interpreter will prefer
1658 // the compiled version to the intrinsic version.
can_be_compiled(methodHandle m)1659 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1660   switch (method_kind(m)) {
1661     case Interpreter::java_lang_math_sin     : // fall thru
1662     case Interpreter::java_lang_math_cos     : // fall thru
1663     case Interpreter::java_lang_math_tan     : // fall thru
1664     case Interpreter::java_lang_math_abs     : // fall thru
1665     case Interpreter::java_lang_math_log     : // fall thru
1666     case Interpreter::java_lang_math_log10   : // fall thru
1667     case Interpreter::java_lang_math_sqrt    : // fall thru
1668     case Interpreter::java_lang_math_pow     : // fall thru
1669     case Interpreter::java_lang_math_exp     :
1670       return false;
1671     default:
1672       return true;
1673   }
1674 }
1675 
1676 // How much stack a method activation needs in words.
size_top_interpreter_activation(Method * method)1677 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1678 
1679   const int stub_code = 4;  // see generate_call_stub
1680   // Save space for one monitor to get into the interpreted method in case
1681   // the method is synchronized
1682   int monitor_size    = method->is_synchronized() ?
1683                                 1*frame::interpreter_frame_monitor_size() : 0;
1684 
1685   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
1686   // be sure to change this if you add/subtract anything to/from the overhead area
1687   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
1688 
1689   const int method_stack = (method->max_locals() + method->max_stack()) *
1690                            Interpreter::stackElementWords;
1691   return overhead_size + method_stack + stub_code;
1692 }
1693 
1694 //------------------------------------------------------------------------------------------------------------------------
1695 // Exceptions
1696 
generate_throw_exception()1697 void TemplateInterpreterGenerator::generate_throw_exception() {
1698   // Entry point in previous activation (i.e., if the caller was interpreted)
1699   Interpreter::_rethrow_exception_entry = __ pc();
1700   const Register thread = rcx;
1701 
1702   // Restore sp to interpreter_frame_last_sp even though we are going
1703   // to empty the expression stack for the exception processing.
1704   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1705   // rax,: exception
1706   // rdx: return address/pc that threw exception
1707   __ restore_bcp();                              // rsi points to call/send
1708   __ restore_locals();
1709 
1710   // Entry point for exceptions thrown within interpreter code
1711   Interpreter::_throw_exception_entry = __ pc();
1712   // expression stack is undefined here
1713   // rax,: exception
1714   // rsi: exception bcp
1715   __ verify_oop(rax);
1716 
1717   // expression stack must be empty before entering the VM in case of an exception
1718   __ empty_expression_stack();
1719   __ empty_FPU_stack();
1720   // find exception handler address and preserve exception oop
1721   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
1722   // rax,: exception handler entry point
1723   // rdx: preserved exception oop
1724   // rsi: bcp for exception handler
1725   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
1726   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
1727 
1728   // If the exception is not handled in the current frame the frame is removed and
1729   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
1730   //
1731   // Note: At this point the bci is still the bxi for the instruction which caused
1732   //       the exception and the expression stack is empty. Thus, for any VM calls
1733   //       at this point, GC will find a legal oop map (with empty expression stack).
1734 
1735   // In current activation
1736   // tos: exception
1737   // rsi: exception bcp
1738 
1739   //
1740   // JVMTI PopFrame support
1741   //
1742 
1743    Interpreter::_remove_activation_preserving_args_entry = __ pc();
1744   __ empty_expression_stack();
1745   __ empty_FPU_stack();
1746   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
1747   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1748   // popframe handling cycles.
1749   __ get_thread(thread);
1750   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
1751   __ orl(rdx, JavaThread::popframe_processing_bit);
1752   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
1753 
1754   {
1755     // Check to see whether we are returning to a deoptimized frame.
1756     // (The PopFrame call ensures that the caller of the popped frame is
1757     // either interpreted or compiled and deoptimizes it if compiled.)
1758     // In this case, we can't call dispatch_next() after the frame is
1759     // popped, but instead must save the incoming arguments and restore
1760     // them after deoptimization has occurred.
1761     //
1762     // Note that we don't compare the return PC against the
1763     // deoptimization blob's unpack entry because of the presence of
1764     // adapter frames in C2.
1765     Label caller_not_deoptimized;
1766     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
1767     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
1768     __ testl(rax, rax);
1769     __ jcc(Assembler::notZero, caller_not_deoptimized);
1770 
1771     // Compute size of arguments for saving when returning to deoptimized caller
1772     __ get_method(rax);
1773     __ movptr(rax, Address(rax, Method::const_offset()));
1774     __ load_unsigned_short(rax, Address(rax, ConstMethod::size_of_parameters_offset()));
1775     __ shlptr(rax, Interpreter::logStackElementSize);
1776     __ restore_locals();
1777     __ subptr(rdi, rax);
1778     __ addptr(rdi, wordSize);
1779     // Save these arguments
1780     __ get_thread(thread);
1781     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
1782 
1783     __ remove_activation(vtos, rdx,
1784                          /* throw_monitor_exception */ false,
1785                          /* install_monitor_exception */ false,
1786                          /* notify_jvmdi */ false);
1787 
1788     // Inform deoptimization that it is responsible for restoring these arguments
1789     __ get_thread(thread);
1790     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
1791 
1792     // Continue in deoptimization handler
1793     __ jmp(rdx);
1794 
1795     __ bind(caller_not_deoptimized);
1796   }
1797 
1798   __ remove_activation(vtos, rdx,
1799                        /* throw_monitor_exception */ false,
1800                        /* install_monitor_exception */ false,
1801                        /* notify_jvmdi */ false);
1802 
1803   // Finish with popframe handling
1804   // A previous I2C followed by a deoptimization might have moved the
1805   // outgoing arguments further up the stack. PopFrame expects the
1806   // mutations to those outgoing arguments to be preserved and other
1807   // constraints basically require this frame to look exactly as
1808   // though it had previously invoked an interpreted activation with
1809   // no space between the top of the expression stack (current
1810   // last_sp) and the top of stack. Rather than force deopt to
1811   // maintain this kind of invariant all the time we call a small
1812   // fixup routine to move the mutated arguments onto the top of our
1813   // expression stack if necessary.
1814   __ mov(rax, rsp);
1815   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1816   __ get_thread(thread);
1817   // PC must point into interpreter here
1818   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1819   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
1820   __ get_thread(thread);
1821   __ reset_last_Java_frame(thread, true);
1822   // Restore the last_sp and null it out
1823   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1824   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
1825 
1826   __ restore_bcp();
1827   __ restore_locals();
1828   // The method data pointer was incremented already during
1829   // call profiling. We have to restore the mdp for the current bcp.
1830   if (ProfileInterpreter) {
1831     __ set_method_data_pointer_for_bcp();
1832   }
1833 
1834   // Clear the popframe condition flag
1835   __ get_thread(thread);
1836   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
1837 
1838 #if INCLUDE_JVMTI
1839   if (EnableInvokeDynamic) {
1840     Label L_done;
1841     const Register local0 = rdi;
1842 
1843     __ cmpb(Address(rsi, 0), Bytecodes::_invokestatic);
1844     __ jcc(Assembler::notEqual, L_done);
1845 
1846     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1847     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1848 
1849     __ get_method(rdx);
1850     __ movptr(rax, Address(local0, 0));
1851     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, rsi);
1852 
1853     __ testptr(rax, rax);
1854     __ jcc(Assembler::zero, L_done);
1855 
1856     __ movptr(Address(rbx, 0), rax);
1857     __ bind(L_done);
1858   }
1859 #endif // INCLUDE_JVMTI
1860 
1861   __ dispatch_next(vtos);
1862   // end of PopFrame support
1863 
1864   Interpreter::_remove_activation_entry = __ pc();
1865 
1866   // preserve exception over this code sequence
1867   __ pop_ptr(rax);
1868   __ get_thread(thread);
1869   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
1870   // remove the activation (without doing throws on illegalMonitorExceptions)
1871   __ remove_activation(vtos, rdx, false, true, false);
1872   // restore exception
1873   __ get_thread(thread);
1874   __ get_vm_result(rax, thread);
1875 
1876   // Inbetween activations - previous activation type unknown yet
1877   // compute continuation point - the continuation point expects
1878   // the following registers set up:
1879   //
1880   // rax: exception
1881   // rdx: return address/pc that threw exception
1882   // rsp: expression stack of caller
1883   // rbp: rbp, of caller
1884   __ push(rax);                                  // save exception
1885   __ push(rdx);                                  // save return address
1886   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
1887   __ mov(rbx, rax);                              // save exception handler
1888   __ pop(rdx);                                   // restore return address
1889   __ pop(rax);                                   // restore exception
1890   // Note that an "issuing PC" is actually the next PC after the call
1891   __ jmp(rbx);                                   // jump to exception handler of caller
1892 }
1893 
1894 
1895 //
1896 // JVMTI ForceEarlyReturn support
1897 //
generate_earlyret_entry_for(TosState state)1898 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1899   address entry = __ pc();
1900   const Register thread = rcx;
1901 
1902   __ restore_bcp();
1903   __ restore_locals();
1904   __ empty_expression_stack();
1905   __ empty_FPU_stack();
1906   __ load_earlyret_value(state);
1907 
1908   __ get_thread(thread);
1909   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
1910   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
1911 
1912   // Clear the earlyret state
1913   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1914 
1915   __ remove_activation(state, rsi,
1916                        false, /* throw_monitor_exception */
1917                        false, /* install_monitor_exception */
1918                        true); /* notify_jvmdi */
1919   __ jmp(rsi);
1920   return entry;
1921 } // end of ForceEarlyReturn support
1922 
1923 
1924 //------------------------------------------------------------------------------------------------------------------------
1925 // Helper for vtos entry point generation
1926 
set_vtos_entry_points(Template * t,address & bep,address & cep,address & sep,address & aep,address & iep,address & lep,address & fep,address & dep,address & vep)1927 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1928   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1929   Label L;
1930   fep = __ pc(); __ push(ftos); __ jmp(L);
1931   dep = __ pc(); __ push(dtos); __ jmp(L);
1932   lep = __ pc(); __ push(ltos); __ jmp(L);
1933   aep = __ pc(); __ push(atos); __ jmp(L);
1934   bep = cep = sep =             // fall through
1935   iep = __ pc(); __ push(itos); // fall through
1936   vep = __ pc(); __ bind(L);    // fall through
1937   generate_and_dispatch(t);
1938 }
1939 
1940 //------------------------------------------------------------------------------------------------------------------------
1941 // Generation of individual instructions
1942 
1943 // helpers for generate_and_dispatch
1944 
1945 
1946 
InterpreterGenerator(StubQueue * code)1947 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1948  : TemplateInterpreterGenerator(code) {
1949    generate_all(); // down here so it can be "virtual"
1950 }
1951 
1952 //------------------------------------------------------------------------------------------------------------------------
1953 
1954 // Non-product code
1955 #ifndef PRODUCT
generate_trace_code(TosState state)1956 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1957   address entry = __ pc();
1958 
1959   // prepare expression stack
1960   __ pop(rcx);          // pop return address so expression stack is 'pure'
1961   __ push(state);       // save tosca
1962 
1963   // pass tosca registers as arguments & call tracer
1964   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
1965   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
1966   __ pop(state);        // restore tosca
1967 
1968   // return
1969   __ jmp(rcx);
1970 
1971   return entry;
1972 }
1973 
1974 
count_bytecode()1975 void TemplateInterpreterGenerator::count_bytecode() {
1976   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
1977 }
1978 
1979 
histogram_bytecode(Template * t)1980 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1981   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
1982 }
1983 
1984 
histogram_bytecode_pair(Template * t)1985 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1986   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
1987   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
1988   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1989   ExternalAddress table((address) BytecodePairHistogram::_counters);
1990   Address index(noreg, rbx, Address::times_4);
1991   __ incrementl(ArrayAddress(table, index));
1992 }
1993 
1994 
trace_bytecode(Template * t)1995 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1996   // Call a little run-time stub to avoid blow-up for each bytecode.
1997   // The run-time runtime saves the right registers, depending on
1998   // the tosca in-state for the given template.
1999   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2000          "entry must have been generated");
2001   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
2002 }
2003 
2004 
stop_interpreter_at()2005 void TemplateInterpreterGenerator::stop_interpreter_at() {
2006   Label L;
2007   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
2008            StopInterpreterAt);
2009   __ jcc(Assembler::notEqual, L);
2010   __ int3();
2011   __ bind(L);
2012 }
2013 #endif // !PRODUCT
2014 #endif // CC_INTERP
2015