1 /*
2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "interpreter/bytecodeHistogram.hpp"
28 #include "interpreter/interpreter.hpp"
29 #include "interpreter/interpreterGenerator.hpp"
30 #include "interpreter/interpreterRuntime.hpp"
31 #include "interpreter/templateTable.hpp"
32 #include "oops/arrayOop.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/method.hpp"
35 #include "oops/oop.inline.hpp"
36 #include "prims/jvmtiExport.hpp"
37 #include "prims/jvmtiThreadState.hpp"
38 #include "runtime/arguments.hpp"
39 #include "runtime/deoptimization.hpp"
40 #include "runtime/frame.inline.hpp"
41 #include "runtime/sharedRuntime.hpp"
42 #include "runtime/stubRoutines.hpp"
43 #include "runtime/synchronizer.hpp"
44 #include "runtime/timer.hpp"
45 #include "runtime/vframeArray.hpp"
46 #include "utilities/debug.hpp"
47 #include "utilities/macros.hpp"
48 
49 #define __ _masm->
50 
51 #ifndef CC_INTERP
52 
53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
56 
57 //-----------------------------------------------------------------------------
58 
generate_StackOverflowError_handler()59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
60   address entry = __ pc();
61 
62 #ifdef ASSERT
63   {
64     Label L;
65     __ lea(rax, Address(rbp,
66                         frame::interpreter_frame_monitor_block_top_offset *
67                         wordSize));
68     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
69                          // grows negative)
70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
71     __ stop ("interpreter frame not set up");
72     __ bind(L);
73   }
74 #endif // ASSERT
75   // Restore bcp under the assumption that the current frame is still
76   // interpreted
77   __ restore_bcp();
78 
79   // expression stack must be empty before entering the VM if an
80   // exception happened
81   __ empty_expression_stack();
82   // throw exception
83   __ call_VM(noreg,
84              CAST_FROM_FN_PTR(address,
85                               InterpreterRuntime::throw_StackOverflowError));
86   return entry;
87 }
88 
generate_ArrayIndexOutOfBounds_handler(const char * name)89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
90         const char* name) {
91   address entry = __ pc();
92   // expression stack must be empty before entering the VM if an
93   // exception happened
94   __ empty_expression_stack();
95   // setup parameters
96   // ??? convention: expect aberrant index in register ebx
97   __ lea(c_rarg1, ExternalAddress((address)name));
98   __ call_VM(noreg,
99              CAST_FROM_FN_PTR(address,
100                               InterpreterRuntime::
101                               throw_ArrayIndexOutOfBoundsException),
102              c_rarg1, rbx);
103   return entry;
104 }
105 
generate_ClassCastException_handler()106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
107   address entry = __ pc();
108 
109   // object is at TOS
110   __ pop(c_rarg1);
111 
112   // expression stack must be empty before entering the VM if an
113   // exception happened
114   __ empty_expression_stack();
115 
116   __ call_VM(noreg,
117              CAST_FROM_FN_PTR(address,
118                               InterpreterRuntime::
119                               throw_ClassCastException),
120              c_rarg1);
121   return entry;
122 }
123 
generate_exception_handler_common(const char * name,const char * message,bool pass_oop)124 address TemplateInterpreterGenerator::generate_exception_handler_common(
125         const char* name, const char* message, bool pass_oop) {
126   assert(!pass_oop || message == NULL, "either oop or message but not both");
127   address entry = __ pc();
128   if (pass_oop) {
129     // object is at TOS
130     __ pop(c_rarg2);
131   }
132   // expression stack must be empty before entering the VM if an
133   // exception happened
134   __ empty_expression_stack();
135   // setup parameters
136   __ lea(c_rarg1, ExternalAddress((address)name));
137   if (pass_oop) {
138     __ call_VM(rax, CAST_FROM_FN_PTR(address,
139                                      InterpreterRuntime::
140                                      create_klass_exception),
141                c_rarg1, c_rarg2);
142   } else {
143     // kind of lame ExternalAddress can't take NULL because
144     // external_word_Relocation will assert.
145     if (message != NULL) {
146       __ lea(c_rarg2, ExternalAddress((address)message));
147     } else {
148       __ movptr(c_rarg2, NULL_WORD);
149     }
150     __ call_VM(rax,
151                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
152                c_rarg1, c_rarg2);
153   }
154   // throw exception
155   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
156   return entry;
157 }
158 
159 
generate_continuation_for(TosState state)160 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
161   address entry = __ pc();
162   // NULL last_sp until next java call
163   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
164   __ dispatch_next(state);
165   return entry;
166 }
167 
168 
generate_return_entry_for(TosState state,int step,size_t index_size)169 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
170   address entry = __ pc();
171 
172   // Restore stack bottom in case i2c adjusted stack
173   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
174   // and NULL it as marker that esp is now tos until next java call
175   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
176 
177   __ restore_bcp();
178   __ restore_locals();
179 
180   if (state == atos) {
181     Register mdp = rbx;
182     Register tmp = rcx;
183     __ profile_return_type(mdp, rax, tmp);
184   }
185 
186   const Register cache = rbx;
187   const Register index = rcx;
188   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
189 
190   const Register flags = cache;
191   __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
192   __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask);
193   __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale()));
194   __ dispatch_next(state, step);
195 
196   return entry;
197 }
198 
199 
generate_deopt_entry_for(TosState state,int step)200 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
201                                                                int step) {
202   address entry = __ pc();
203   // NULL last_sp until next java call
204   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
205   __ restore_bcp();
206   __ restore_locals();
207   // handle exceptions
208   {
209     Label L;
210     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
211     __ jcc(Assembler::zero, L);
212     __ call_VM(noreg,
213                CAST_FROM_FN_PTR(address,
214                                 InterpreterRuntime::throw_pending_exception));
215     __ should_not_reach_here();
216     __ bind(L);
217   }
218   __ dispatch_next(state, step);
219   return entry;
220 }
221 
BasicType_as_index(BasicType type)222 int AbstractInterpreter::BasicType_as_index(BasicType type) {
223   int i = 0;
224   switch (type) {
225     case T_BOOLEAN: i = 0; break;
226     case T_CHAR   : i = 1; break;
227     case T_BYTE   : i = 2; break;
228     case T_SHORT  : i = 3; break;
229     case T_INT    : i = 4; break;
230     case T_LONG   : i = 5; break;
231     case T_VOID   : i = 6; break;
232     case T_FLOAT  : i = 7; break;
233     case T_DOUBLE : i = 8; break;
234     case T_OBJECT : i = 9; break;
235     case T_ARRAY  : i = 9; break;
236     default       : ShouldNotReachHere();
237   }
238   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
239          "index out of bounds");
240   return i;
241 }
242 
243 
generate_result_handler_for(BasicType type)244 address TemplateInterpreterGenerator::generate_result_handler_for(
245         BasicType type) {
246   address entry = __ pc();
247   switch (type) {
248   case T_BOOLEAN: __ c2bool(rax);            break;
249   case T_CHAR   : __ movzwl(rax, rax);       break;
250   case T_BYTE   : __ sign_extend_byte(rax);  break;
251   case T_SHORT  : __ sign_extend_short(rax); break;
252   case T_INT    : /* nothing to do */        break;
253   case T_LONG   : /* nothing to do */        break;
254   case T_VOID   : /* nothing to do */        break;
255   case T_FLOAT  : /* nothing to do */        break;
256   case T_DOUBLE : /* nothing to do */        break;
257   case T_OBJECT :
258     // retrieve result from frame
259     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
260     // and verify it
261     __ verify_oop(rax);
262     break;
263   default       : ShouldNotReachHere();
264   }
265   __ ret(0);                                   // return from result handler
266   return entry;
267 }
268 
generate_safept_entry_for(TosState state,address runtime_entry)269 address TemplateInterpreterGenerator::generate_safept_entry_for(
270         TosState state,
271         address runtime_entry) {
272   address entry = __ pc();
273   __ push(state);
274   __ call_VM(noreg, runtime_entry);
275   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
276   return entry;
277 }
278 
279 
280 
281 // Helpers for commoning out cases in the various type of method entries.
282 //
283 
284 
285 // increment invocation count & check for overflow
286 //
287 // Note: checking for negative value instead of overflow
288 //       so we have a 'sticky' overflow test
289 //
290 // rbx: method
291 // ecx: invocation counter
292 //
generate_counter_incr(Label * overflow,Label * profile_method,Label * profile_method_continue)293 void InterpreterGenerator::generate_counter_incr(
294         Label* overflow,
295         Label* profile_method,
296         Label* profile_method_continue) {
297   Label done;
298   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
299   if (TieredCompilation) {
300     int increment = InvocationCounter::count_increment;
301     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
302     Label no_mdo;
303     if (ProfileInterpreter) {
304       // Are we profiling?
305       __ movptr(rax, Address(rbx, Method::method_data_offset()));
306       __ testptr(rax, rax);
307       __ jccb(Assembler::zero, no_mdo);
308       // Increment counter in the MDO
309       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
310                                                 in_bytes(InvocationCounter::counter_offset()));
311       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
312       __ jmp(done);
313     }
314     __ bind(no_mdo);
315     // Increment counter in MethodCounters
316     const Address invocation_counter(rax,
317                   MethodCounters::invocation_counter_offset() +
318                   InvocationCounter::counter_offset());
319     __ get_method_counters(rbx, rax, done);
320     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
321                                false, Assembler::zero, overflow);
322     __ bind(done);
323   } else {
324     const Address backedge_counter(rax,
325                   MethodCounters::backedge_counter_offset() +
326                   InvocationCounter::counter_offset());
327     const Address invocation_counter(rax,
328                   MethodCounters::invocation_counter_offset() +
329                   InvocationCounter::counter_offset());
330 
331     __ get_method_counters(rbx, rax, done);
332 
333     if (ProfileInterpreter) {
334       __ incrementl(Address(rax,
335               MethodCounters::interpreter_invocation_counter_offset()));
336     }
337     // Update standard invocation counters
338     __ movl(rcx, invocation_counter);
339     __ incrementl(rcx, InvocationCounter::count_increment);
340     __ movl(invocation_counter, rcx); // save invocation count
341 
342     __ movl(rax, backedge_counter);   // load backedge counter
343     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
344 
345     __ addl(rcx, rax);                // add both counters
346 
347     // profile_method is non-null only for interpreted method so
348     // profile_method != NULL == !native_call
349 
350     if (ProfileInterpreter && profile_method != NULL) {
351       // Test to see if we should create a method data oop
352       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
353       __ jcc(Assembler::less, *profile_method_continue);
354 
355       // if no method data exists, go to profile_method
356       __ test_method_data_pointer(rax, *profile_method);
357     }
358 
359     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
360     __ jcc(Assembler::aboveEqual, *overflow);
361     __ bind(done);
362   }
363 }
364 
generate_counter_overflow(Label * do_continue)365 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
366 
367   // Asm interpreter on entry
368   // r14 - locals
369   // r13 - bcp
370   // rbx - method
371   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
372   // rbp - interpreter frame
373 
374   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
375   // Everything as it was on entry
376   // rdx is not restored. Doesn't appear to really be set.
377 
378   // InterpreterRuntime::frequency_counter_overflow takes two
379   // arguments, the first (thread) is passed by call_VM, the second
380   // indicates if the counter overflow occurs at a backwards branch
381   // (NULL bcp).  We pass zero for it.  The call returns the address
382   // of the verified entry point for the method or NULL if the
383   // compilation did not complete (either went background or bailed
384   // out).
385   __ movl(c_rarg1, 0);
386   __ call_VM(noreg,
387              CAST_FROM_FN_PTR(address,
388                               InterpreterRuntime::frequency_counter_overflow),
389              c_rarg1);
390 
391   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
392   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
393   // and jump to the interpreted entry.
394   __ jmp(*do_continue, relocInfo::none);
395 }
396 
397 // See if we've got enough room on the stack for locals plus overhead.
398 // The expression stack grows down incrementally, so the normal guard
399 // page mechanism will work for that.
400 //
401 // NOTE: Since the additional locals are also always pushed (wasn't
402 // obvious in generate_method_entry) so the guard should work for them
403 // too.
404 //
405 // Args:
406 //      rdx: number of additional locals this frame needs (what we must check)
407 //      rbx: Method*
408 //
409 // Kills:
410 //      rax
generate_stack_overflow_check(void)411 void InterpreterGenerator::generate_stack_overflow_check(void) {
412 
413   // monitor entry size: see picture of stack set
414   // (generate_method_entry) and frame_amd64.hpp
415   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
416 
417   // total overhead size: entry_size + (saved rbp through expr stack
418   // bottom).  be sure to change this if you add/subtract anything
419   // to/from the overhead area
420   const int overhead_size =
421     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
422 
423   const int page_size = os::vm_page_size();
424 
425   Label after_frame_check;
426 
427   // see if the frame is greater than one page in size. If so,
428   // then we need to verify there is enough stack space remaining
429   // for the additional locals.
430   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
431   __ jcc(Assembler::belowEqual, after_frame_check);
432 
433   // compute rsp as if this were going to be the last frame on
434   // the stack before the red zone
435 
436   const Address stack_base(r15_thread, Thread::stack_base_offset());
437   const Address stack_size(r15_thread, Thread::stack_size_offset());
438 
439   // locals + overhead, in bytes
440   __ mov(rax, rdx);
441   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
442   __ addptr(rax, overhead_size);
443 
444 #ifdef ASSERT
445   Label stack_base_okay, stack_size_okay;
446   // verify that thread stack base is non-zero
447   __ cmpptr(stack_base, (int32_t)NULL_WORD);
448   __ jcc(Assembler::notEqual, stack_base_okay);
449   __ stop("stack base is zero");
450   __ bind(stack_base_okay);
451   // verify that thread stack size is non-zero
452   __ cmpptr(stack_size, 0);
453   __ jcc(Assembler::notEqual, stack_size_okay);
454   __ stop("stack size is zero");
455   __ bind(stack_size_okay);
456 #endif
457 
458   // Add stack base to locals and subtract stack size
459   __ addptr(rax, stack_base);
460   __ subptr(rax, stack_size);
461 
462   // Use the maximum number of pages we might bang.
463   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
464                                                                               (StackRedPages+StackYellowPages);
465 
466   // add in the red and yellow zone sizes
467   __ addptr(rax, max_pages * page_size);
468 
469   // check against the current stack bottom
470   __ cmpptr(rsp, rax);
471   __ jcc(Assembler::above, after_frame_check);
472 
473   // Restore sender's sp as SP. This is necessary if the sender's
474   // frame is an extended compiled frame (see gen_c2i_adapter())
475   // and safer anyway in case of JSR292 adaptations.
476 
477   __ pop(rax); // return address must be moved if SP is changed
478   __ mov(rsp, r13);
479   __ push(rax);
480 
481   // Note: the restored frame is not necessarily interpreted.
482   // Use the shared runtime version of the StackOverflowError.
483   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
484   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
485 
486   // all done with frame size check
487   __ bind(after_frame_check);
488 }
489 
490 // Allocate monitor and lock method (asm interpreter)
491 //
492 // Args:
493 //      rbx: Method*
494 //      r14: locals
495 //
496 // Kills:
497 //      rax
498 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
499 //      rscratch1, rscratch2 (scratch regs)
lock_method(void)500 void InterpreterGenerator::lock_method(void) {
501   // synchronize method
502   const Address access_flags(rbx, Method::access_flags_offset());
503   const Address monitor_block_top(
504         rbp,
505         frame::interpreter_frame_monitor_block_top_offset * wordSize);
506   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
507 
508 #ifdef ASSERT
509   {
510     Label L;
511     __ movl(rax, access_flags);
512     __ testl(rax, JVM_ACC_SYNCHRONIZED);
513     __ jcc(Assembler::notZero, L);
514     __ stop("method doesn't need synchronization");
515     __ bind(L);
516   }
517 #endif // ASSERT
518 
519   // get synchronization object
520   {
521     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
522     Label done;
523     __ movl(rax, access_flags);
524     __ testl(rax, JVM_ACC_STATIC);
525     // get receiver (assume this is frequent case)
526     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
527     __ jcc(Assembler::zero, done);
528     __ movptr(rax, Address(rbx, Method::const_offset()));
529     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
530     __ movptr(rax, Address(rax,
531                            ConstantPool::pool_holder_offset_in_bytes()));
532     __ movptr(rax, Address(rax, mirror_offset));
533 
534 #ifdef ASSERT
535     {
536       Label L;
537       __ testptr(rax, rax);
538       __ jcc(Assembler::notZero, L);
539       __ stop("synchronization object is NULL");
540       __ bind(L);
541     }
542 #endif // ASSERT
543 
544     __ bind(done);
545   }
546 
547   // add space for monitor & lock
548   __ subptr(rsp, entry_size); // add space for a monitor entry
549   __ movptr(monitor_block_top, rsp);  // set new monitor block top
550   // store object
551   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
552   __ movptr(c_rarg1, rsp); // object address
553   __ lock_object(c_rarg1);
554 }
555 
556 // Generate a fixed interpreter frame. This is identical setup for
557 // interpreted methods and for native methods hence the shared code.
558 //
559 // Args:
560 //      rax: return address
561 //      rbx: Method*
562 //      r14: pointer to locals
563 //      r13: sender sp
564 //      rdx: cp cache
generate_fixed_frame(bool native_call)565 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
566   // initialize fixed part of activation frame
567   __ push(rax);        // save return address
568   __ enter();          // save old & set new rbp
569   __ push(r13);        // set sender sp
570   __ push((int)NULL_WORD); // leave last_sp as null
571   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
572   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
573   __ push(rbx);        // save Method*
574   if (ProfileInterpreter) {
575     Label method_data_continue;
576     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
577     __ testptr(rdx, rdx);
578     __ jcc(Assembler::zero, method_data_continue);
579     __ addptr(rdx, in_bytes(MethodData::data_offset()));
580     __ bind(method_data_continue);
581     __ push(rdx);      // set the mdp (method data pointer)
582   } else {
583     __ push(0);
584   }
585 
586   __ movptr(rdx, Address(rbx, Method::const_offset()));
587   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
588   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
589   __ push(rdx); // set constant pool cache
590   __ push(r14); // set locals pointer
591   if (native_call) {
592     __ push(0); // no bcp
593   } else {
594     __ push(r13); // set bcp
595   }
596   __ push(0); // reserve word for pointer to expression stack bottom
597   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
598 }
599 
600 // End of helpers
601 
602 // Various method entries
603 //------------------------------------------------------------------------------------------------------------------------
604 //
605 //
606 
607 // Call an accessor method (assuming it is resolved, otherwise drop
608 // into vanilla (slow path) entry
generate_accessor_entry(void)609 address InterpreterGenerator::generate_accessor_entry(void) {
610   // rbx: Method*
611 
612   // r13: senderSP must preserver for slow path, set SP to it on fast path
613 
614   address entry_point = __ pc();
615   Label xreturn_path;
616 
617   // do fastpath for resolved accessor methods
618   if (UseFastAccessorMethods) {
619     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
620     //       thereof; parameter size = 1
621     // Note: We can only use this code if the getfield has been resolved
622     //       and if we don't have a null-pointer exception => check for
623     //       these conditions first and use slow path if necessary.
624     Label slow_path;
625     // If we need a safepoint check, generate full interpreter entry.
626     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
627              SafepointSynchronize::_not_synchronized);
628 
629     __ jcc(Assembler::notEqual, slow_path);
630     // rbx: method
631     __ movptr(rax, Address(rsp, wordSize));
632 
633     // check if local 0 != NULL and read field
634     __ testptr(rax, rax);
635     __ jcc(Assembler::zero, slow_path);
636 
637     // read first instruction word and extract bytecode @ 1 and index @ 2
638     __ movptr(rdx, Address(rbx, Method::const_offset()));
639     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
640     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
641     // Shift codes right to get the index on the right.
642     // The bytecode fetched looks like <index><0xb4><0x2a>
643     __ shrl(rdx, 2 * BitsPerByte);
644     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
645     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
646 
647     // rax: local 0
648     // rbx: method
649     // rdx: constant pool cache index
650     // rdi: constant pool cache
651 
652     // check if getfield has been resolved and read constant pool cache entry
653     // check the validity of the cache entry by testing whether _indices field
654     // contains Bytecode::_getfield in b1 byte.
655     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
656            "adjust shift below");
657     __ movl(rcx,
658             Address(rdi,
659                     rdx,
660                     Address::times_8,
661                     ConstantPoolCache::base_offset() +
662                     ConstantPoolCacheEntry::indices_offset()));
663     __ shrl(rcx, 2 * BitsPerByte);
664     __ andl(rcx, 0xFF);
665     __ cmpl(rcx, Bytecodes::_getfield);
666     __ jcc(Assembler::notEqual, slow_path);
667 
668     // Note: constant pool entry is not valid before bytecode is resolved
669     __ movptr(rcx,
670               Address(rdi,
671                       rdx,
672                       Address::times_8,
673                       ConstantPoolCache::base_offset() +
674                       ConstantPoolCacheEntry::f2_offset()));
675     // edx: flags
676     __ movl(rdx,
677             Address(rdi,
678                     rdx,
679                     Address::times_8,
680                     ConstantPoolCache::base_offset() +
681                     ConstantPoolCacheEntry::flags_offset()));
682 
683     Label notObj, notInt, notByte, notBool, notShort;
684     const Address field_address(rax, rcx, Address::times_1);
685 
686     // Need to differentiate between igetfield, agetfield, bgetfield etc.
687     // because they are different sizes.
688     // Use the type from the constant pool cache
689     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
690     // Make sure we don't need to mask edx after the above shift
691     ConstantPoolCacheEntry::verify_tos_state_shift();
692 
693     __ cmpl(rdx, atos);
694     __ jcc(Assembler::notEqual, notObj);
695     // atos
696     __ load_heap_oop(rax, field_address);
697     __ jmp(xreturn_path);
698 
699     __ bind(notObj);
700     __ cmpl(rdx, itos);
701     __ jcc(Assembler::notEqual, notInt);
702     // itos
703     __ movl(rax, field_address);
704     __ jmp(xreturn_path);
705 
706     __ bind(notInt);
707     __ cmpl(rdx, btos);
708     __ jcc(Assembler::notEqual, notByte);
709     // btos
710     __ load_signed_byte(rax, field_address);
711     __ jmp(xreturn_path);
712 
713     __ bind(notByte);
714     __ cmpl(rdx, ztos);
715     __ jcc(Assembler::notEqual, notBool);
716     // ztos
717     __ load_signed_byte(rax, field_address);
718     __ jmp(xreturn_path);
719 
720     __ bind(notBool);
721     __ cmpl(rdx, stos);
722     __ jcc(Assembler::notEqual, notShort);
723     // stos
724     __ load_signed_short(rax, field_address);
725     __ jmp(xreturn_path);
726 
727     __ bind(notShort);
728 #ifdef ASSERT
729     Label okay;
730     __ cmpl(rdx, ctos);
731     __ jcc(Assembler::equal, okay);
732     __ stop("what type is this?");
733     __ bind(okay);
734 #endif
735     // ctos
736     __ load_unsigned_short(rax, field_address);
737 
738     __ bind(xreturn_path);
739 
740     // _ireturn/_areturn
741     __ pop(rdi);
742     __ mov(rsp, r13);
743     __ jmp(rdi);
744     __ ret(0);
745 
746     // generate a vanilla interpreter entry as the slow path
747     __ bind(slow_path);
748     (void) generate_normal_entry(false);
749   } else {
750     (void) generate_normal_entry(false);
751   }
752 
753   return entry_point;
754 }
755 
756 // Method entry for java.lang.ref.Reference.get.
generate_Reference_get_entry(void)757 address InterpreterGenerator::generate_Reference_get_entry(void) {
758 #if INCLUDE_ALL_GCS
759   // Code: _aload_0, _getfield, _areturn
760   // parameter size = 1
761   //
762   // The code that gets generated by this routine is split into 2 parts:
763   //    1. The "intrinsified" code for G1 (or any SATB based GC),
764   //    2. The slow path - which is an expansion of the regular method entry.
765   //
766   // Notes:-
767   // * In the G1 code we do not check whether we need to block for
768   //   a safepoint. If G1 is enabled then we must execute the specialized
769   //   code for Reference.get (except when the Reference object is null)
770   //   so that we can log the value in the referent field with an SATB
771   //   update buffer.
772   //   If the code for the getfield template is modified so that the
773   //   G1 pre-barrier code is executed when the current method is
774   //   Reference.get() then going through the normal method entry
775   //   will be fine.
776   // * The G1 code can, however, check the receiver object (the instance
777   //   of java.lang.Reference) and jump to the slow path if null. If the
778   //   Reference object is null then we obviously cannot fetch the referent
779   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
780   //   regular method entry code to generate the NPE.
781   //
782   // This code is based on generate_accessor_enty.
783   //
784   // rbx: Method*
785 
786   // r13: senderSP must preserve for slow path, set SP to it on fast path
787 
788   address entry = __ pc();
789 
790   const int referent_offset = java_lang_ref_Reference::referent_offset;
791   guarantee(referent_offset > 0, "referent offset not initialized");
792 
793   if (UseG1GC) {
794     Label slow_path;
795     // rbx: method
796 
797     // Check if local 0 != NULL
798     // If the receiver is null then it is OK to jump to the slow path.
799     __ movptr(rax, Address(rsp, wordSize));
800 
801     __ testptr(rax, rax);
802     __ jcc(Assembler::zero, slow_path);
803 
804     // rax: local 0
805     // rbx: method (but can be used as scratch now)
806     // rdx: scratch
807     // rdi: scratch
808 
809     // Generate the G1 pre-barrier code to log the value of
810     // the referent field in an SATB buffer.
811 
812     // Load the value of the referent field.
813     const Address field_address(rax, referent_offset);
814     __ load_heap_oop(rax, field_address);
815 
816     // Generate the G1 pre-barrier code to log the value of
817     // the referent field in an SATB buffer.
818     __ g1_write_barrier_pre(noreg /* obj */,
819                             rax /* pre_val */,
820                             r15_thread /* thread */,
821                             rbx /* tmp */,
822                             true /* tosca_live */,
823                             true /* expand_call */);
824 
825     // _areturn
826     __ pop(rdi);                // get return address
827     __ mov(rsp, r13);           // set sp to sender sp
828     __ jmp(rdi);
829     __ ret(0);
830 
831     // generate a vanilla interpreter entry as the slow path
832     __ bind(slow_path);
833     (void) generate_normal_entry(false);
834 
835     return entry;
836   }
837 #endif // INCLUDE_ALL_GCS
838 
839   // If G1 is not enabled then attempt to go through the accessor entry point
840   // Reference.get is an accessor
841   return generate_accessor_entry();
842 }
843 
844 /**
845  * Method entry for static native methods:
846  *   int java.util.zip.CRC32.update(int crc, int b)
847  */
generate_CRC32_update_entry()848 address InterpreterGenerator::generate_CRC32_update_entry() {
849   if (UseCRC32Intrinsics) {
850     address entry = __ pc();
851 
852     // rbx,: Method*
853     // r13: senderSP must preserved for slow path, set SP to it on fast path
854     // c_rarg0: scratch (rdi on non-Win64, rcx on Win64)
855     // c_rarg1: scratch (rsi on non-Win64, rdx on Win64)
856 
857     Label slow_path;
858     // If we need a safepoint check, generate full interpreter entry.
859     ExternalAddress state(SafepointSynchronize::address_of_state());
860     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
861              SafepointSynchronize::_not_synchronized);
862     __ jcc(Assembler::notEqual, slow_path);
863 
864     // We don't generate local frame and don't align stack because
865     // we call stub code and there is no safepoint on this path.
866 
867     // Load parameters
868     const Register crc = rax;  // crc
869     const Register val = c_rarg0;  // source java byte value
870     const Register tbl = c_rarg1;  // scratch
871 
872     // Arguments are reversed on java expression stack
873     __ movl(val, Address(rsp,   wordSize)); // byte value
874     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
875 
876     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
877     __ notl(crc); // ~crc
878     __ update_byte_crc32(crc, val, tbl);
879     __ notl(crc); // ~crc
880     // result in rax
881 
882     // _areturn
883     __ pop(rdi);                // get return address
884     __ mov(rsp, r13);           // set sp to sender sp
885     __ jmp(rdi);
886 
887     // generate a vanilla native entry as the slow path
888     __ bind(slow_path);
889 
890     (void) generate_native_entry(false);
891 
892     return entry;
893   }
894   return generate_native_entry(false);
895 }
896 
897 /**
898  * Method entry for static native methods:
899  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
900  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
901  */
generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind)902 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
903   if (UseCRC32Intrinsics) {
904     address entry = __ pc();
905 
906     // rbx,: Method*
907     // r13: senderSP must preserved for slow path, set SP to it on fast path
908 
909     Label slow_path;
910     // If we need a safepoint check, generate full interpreter entry.
911     ExternalAddress state(SafepointSynchronize::address_of_state());
912     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
913              SafepointSynchronize::_not_synchronized);
914     __ jcc(Assembler::notEqual, slow_path);
915 
916     // We don't generate local frame and don't align stack because
917     // we call stub code and there is no safepoint on this path.
918 
919     // Load parameters
920     const Register crc = c_rarg0;  // crc
921     const Register buf = c_rarg1;  // source java byte array address
922     const Register len = c_rarg2;  // length
923     const Register off = len;      // offset (never overlaps with 'len')
924 
925     // Arguments are reversed on java expression stack
926     // Calculate address of start element
927     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
928       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
929       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
930       __ addq(buf, off); // + offset
931       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
932     } else {
933       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
934       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
935       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
936       __ addq(buf, off); // + offset
937       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
938     }
939     // Can now load 'len' since we're finished with 'off'
940     __ movl(len, Address(rsp, wordSize)); // Length
941 
942     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
943     // result in rax
944 
945     // _areturn
946     __ pop(rdi);                // get return address
947     __ mov(rsp, r13);           // set sp to sender sp
948     __ jmp(rdi);
949 
950     // generate a vanilla native entry as the slow path
951     __ bind(slow_path);
952 
953     (void) generate_native_entry(false);
954 
955     return entry;
956   }
957   return generate_native_entry(false);
958 }
959 
960 // Interpreter stub for calling a native method. (asm interpreter)
961 // This sets up a somewhat different looking stack for calling the
962 // native method than the typical interpreter frame setup.
generate_native_entry(bool synchronized)963 address InterpreterGenerator::generate_native_entry(bool synchronized) {
964   // determine code generation flags
965   bool inc_counter  = UseCompiler || CountCompiledCalls;
966 
967   // rbx: Method*
968   // r13: sender sp
969 
970   address entry_point = __ pc();
971 
972   const Address constMethod       (rbx, Method::const_offset());
973   const Address access_flags      (rbx, Method::access_flags_offset());
974   const Address size_of_parameters(rcx, ConstMethod::
975                                         size_of_parameters_offset());
976 
977 
978   // get parameter size (always needed)
979   __ movptr(rcx, constMethod);
980   __ load_unsigned_short(rcx, size_of_parameters);
981 
982   // native calls don't need the stack size check since they have no
983   // expression stack and the arguments are already on the stack and
984   // we only add a handful of words to the stack
985 
986   // rbx: Method*
987   // rcx: size of parameters
988   // r13: sender sp
989   __ pop(rax);                                       // get return address
990 
991   // for natives the size of locals is zero
992 
993   // compute beginning of parameters (r14)
994   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
995 
996   // add 2 zero-initialized slots for native calls
997   // initialize result_handler slot
998   __ push((int) NULL_WORD);
999   // slot for oop temp
1000   // (static native method holder mirror/jni oop result)
1001   __ push((int) NULL_WORD);
1002 
1003   // initialize fixed part of activation frame
1004   generate_fixed_frame(true);
1005 
1006   // make sure method is native & not abstract
1007 #ifdef ASSERT
1008   __ movl(rax, access_flags);
1009   {
1010     Label L;
1011     __ testl(rax, JVM_ACC_NATIVE);
1012     __ jcc(Assembler::notZero, L);
1013     __ stop("tried to execute non-native method as native");
1014     __ bind(L);
1015   }
1016   {
1017     Label L;
1018     __ testl(rax, JVM_ACC_ABSTRACT);
1019     __ jcc(Assembler::zero, L);
1020     __ stop("tried to execute abstract method in interpreter");
1021     __ bind(L);
1022   }
1023 #endif
1024 
1025   // Since at this point in the method invocation the exception handler
1026   // would try to exit the monitor of synchronized methods which hasn't
1027   // been entered yet, we set the thread local variable
1028   // _do_not_unlock_if_synchronized to true. The remove_activation will
1029   // check this flag.
1030 
1031   const Address do_not_unlock_if_synchronized(r15_thread,
1032         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1033   __ movbool(do_not_unlock_if_synchronized, true);
1034 
1035   // increment invocation count & check for overflow
1036   Label invocation_counter_overflow;
1037   if (inc_counter) {
1038     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1039   }
1040 
1041   Label continue_after_compile;
1042   __ bind(continue_after_compile);
1043 
1044   bang_stack_shadow_pages(true);
1045 
1046   // reset the _do_not_unlock_if_synchronized flag
1047   __ movbool(do_not_unlock_if_synchronized, false);
1048 
1049   // check for synchronized methods
1050   // Must happen AFTER invocation_counter check and stack overflow check,
1051   // so method is not locked if overflows.
1052   if (synchronized) {
1053     lock_method();
1054   } else {
1055     // no synchronization necessary
1056 #ifdef ASSERT
1057     {
1058       Label L;
1059       __ movl(rax, access_flags);
1060       __ testl(rax, JVM_ACC_SYNCHRONIZED);
1061       __ jcc(Assembler::zero, L);
1062       __ stop("method needs synchronization");
1063       __ bind(L);
1064     }
1065 #endif
1066   }
1067 
1068   // start execution
1069 #ifdef ASSERT
1070   {
1071     Label L;
1072     const Address monitor_block_top(rbp,
1073                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1074     __ movptr(rax, monitor_block_top);
1075     __ cmpptr(rax, rsp);
1076     __ jcc(Assembler::equal, L);
1077     __ stop("broken stack frame setup in interpreter");
1078     __ bind(L);
1079   }
1080 #endif
1081 
1082   // jvmti support
1083   __ notify_method_entry();
1084 
1085   // work registers
1086   const Register method = rbx;
1087   const Register t      = r11;
1088 
1089   // allocate space for parameters
1090   __ get_method(method);
1091   __ movptr(t, Address(method, Method::const_offset()));
1092   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1093   __ shll(t, Interpreter::logStackElementSize);
1094 
1095   __ subptr(rsp, t);
1096   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1097   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1098 
1099   // get signature handler
1100   {
1101     Label L;
1102     __ movptr(t, Address(method, Method::signature_handler_offset()));
1103     __ testptr(t, t);
1104     __ jcc(Assembler::notZero, L);
1105     __ call_VM(noreg,
1106                CAST_FROM_FN_PTR(address,
1107                                 InterpreterRuntime::prepare_native_call),
1108                method);
1109     __ get_method(method);
1110     __ movptr(t, Address(method, Method::signature_handler_offset()));
1111     __ bind(L);
1112   }
1113 
1114   // call signature handler
1115   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
1116          "adjust this code");
1117   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
1118          "adjust this code");
1119   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1120           "adjust this code");
1121 
1122   // The generated handlers do not touch RBX (the method oop).
1123   // However, large signatures cannot be cached and are generated
1124   // each time here.  The slow-path generator can do a GC on return,
1125   // so we must reload it after the call.
1126   __ call(t);
1127   __ get_method(method);        // slow path can do a GC, reload RBX
1128 
1129 
1130   // result handler is in rax
1131   // set result handler
1132   __ movptr(Address(rbp,
1133                     (frame::interpreter_frame_result_handler_offset) * wordSize),
1134             rax);
1135 
1136   // pass mirror handle if static call
1137   {
1138     Label L;
1139     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1140     __ movl(t, Address(method, Method::access_flags_offset()));
1141     __ testl(t, JVM_ACC_STATIC);
1142     __ jcc(Assembler::zero, L);
1143     // get mirror
1144     __ movptr(t, Address(method, Method::const_offset()));
1145     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1146     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1147     __ movptr(t, Address(t, mirror_offset));
1148     // copy mirror into activation frame
1149     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
1150             t);
1151     // pass handle to mirror
1152     __ lea(c_rarg1,
1153            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
1154     __ bind(L);
1155   }
1156 
1157   // get native function entry point
1158   {
1159     Label L;
1160     __ movptr(rax, Address(method, Method::native_function_offset()));
1161     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1162     __ movptr(rscratch2, unsatisfied.addr());
1163     __ cmpptr(rax, rscratch2);
1164     __ jcc(Assembler::notEqual, L);
1165     __ call_VM(noreg,
1166                CAST_FROM_FN_PTR(address,
1167                                 InterpreterRuntime::prepare_native_call),
1168                method);
1169     __ get_method(method);
1170     __ movptr(rax, Address(method, Method::native_function_offset()));
1171     __ bind(L);
1172   }
1173 
1174   // pass JNIEnv
1175   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
1176 
1177   // It is enough that the pc() points into the right code
1178   // segment. It does not have to be the correct return pc.
1179   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
1180 
1181   // change thread state
1182 #ifdef ASSERT
1183   {
1184     Label L;
1185     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
1186     __ cmpl(t, _thread_in_Java);
1187     __ jcc(Assembler::equal, L);
1188     __ stop("Wrong thread state in native stub");
1189     __ bind(L);
1190   }
1191 #endif
1192 
1193   // Change state to native
1194 
1195   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1196           _thread_in_native);
1197 
1198   // Call the native method.
1199   __ call(rax);
1200   // result potentially in rax or xmm0
1201 
1202   // Verify or restore cpu control state after JNI call
1203   __ restore_cpu_control_state_after_jni();
1204 
1205   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1206   // in order to extract the result of a method call. If the order of these
1207   // pushes change or anything else is added to the stack then the code in
1208   // interpreter_frame_result must also change.
1209 
1210   __ push(dtos);
1211   __ push(ltos);
1212 
1213   // change thread state
1214   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
1215           _thread_in_native_trans);
1216 
1217   if (os::is_MP()) {
1218     if (UseMembar) {
1219       // Force this write out before the read below
1220       __ membar(Assembler::Membar_mask_bits(
1221            Assembler::LoadLoad | Assembler::LoadStore |
1222            Assembler::StoreLoad | Assembler::StoreStore));
1223     } else {
1224       // Write serialization page so VM thread can do a pseudo remote membar.
1225       // We use the current thread pointer to calculate a thread specific
1226       // offset to write to within the page. This minimizes bus traffic
1227       // due to cache line collision.
1228       __ serialize_memory(r15_thread, rscratch2);
1229     }
1230   }
1231 
1232   // check for safepoint operation in progress and/or pending suspend requests
1233   {
1234     Label Continue;
1235     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1236              SafepointSynchronize::_not_synchronized);
1237 
1238     Label L;
1239     __ jcc(Assembler::notEqual, L);
1240     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1241     __ jcc(Assembler::equal, Continue);
1242     __ bind(L);
1243 
1244     // Don't use call_VM as it will see a possible pending exception
1245     // and forward it and never return here preventing us from
1246     // clearing _last_native_pc down below.  Also can't use
1247     // call_VM_leaf either as it will check to see if r13 & r14 are
1248     // preserved and correspond to the bcp/locals pointers. So we do a
1249     // runtime call by hand.
1250     //
1251     __ mov(c_rarg0, r15_thread);
1252     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1253     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1254     __ andptr(rsp, -16); // align stack as required by ABI
1255     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1256     __ mov(rsp, r12); // restore sp
1257     __ reinit_heapbase();
1258     __ bind(Continue);
1259   }
1260 
1261   // change thread state
1262   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1263 
1264   // reset_last_Java_frame
1265   __ reset_last_Java_frame(r15_thread, true);
1266 
1267   // reset handle block
1268   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
1269   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1270 
1271   // If result is an oop unbox and store it in frame where gc will see it
1272   // and result handler will pick it up
1273 
1274   {
1275     Label no_oop;
1276     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1277     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
1278     __ jcc(Assembler::notEqual, no_oop);
1279     // retrieve result
1280     __ pop(ltos);
1281     // Unbox oop result, e.g. JNIHandles::resolve value.
1282     __ resolve_jobject(rax /* value */,
1283                        r15_thread /* thread */,
1284                        t /* tmp */);
1285     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
1286     // keep stack depth as expected by pushing oop which will eventually be discarde
1287     __ push(ltos);
1288     __ bind(no_oop);
1289   }
1290 
1291 
1292   {
1293     Label no_reguard;
1294     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
1295             JavaThread::stack_guard_yellow_disabled);
1296     __ jcc(Assembler::notEqual, no_reguard);
1297 
1298     __ pusha(); // XXX only save smashed registers
1299     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
1300     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1301     __ andptr(rsp, -16); // align stack as required by ABI
1302     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1303     __ mov(rsp, r12); // restore sp
1304     __ popa(); // XXX only restore smashed registers
1305     __ reinit_heapbase();
1306 
1307     __ bind(no_reguard);
1308   }
1309 
1310 
1311   // The method register is junk from after the thread_in_native transition
1312   // until here.  Also can't call_VM until the bcp has been
1313   // restored.  Need bcp for throwing exception below so get it now.
1314   __ get_method(method);
1315 
1316   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
1317   // r13 == code_base()
1318   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
1319   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
1320   // handle exceptions (exception handling will handle unlocking!)
1321   {
1322     Label L;
1323     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
1324     __ jcc(Assembler::zero, L);
1325     // Note: At some point we may want to unify this with the code
1326     // used in call_VM_base(); i.e., we should use the
1327     // StubRoutines::forward_exception code. For now this doesn't work
1328     // here because the rsp is not correctly set at this point.
1329     __ MacroAssembler::call_VM(noreg,
1330                                CAST_FROM_FN_PTR(address,
1331                                InterpreterRuntime::throw_pending_exception));
1332     __ should_not_reach_here();
1333     __ bind(L);
1334   }
1335 
1336   // do unlocking if necessary
1337   {
1338     Label L;
1339     __ movl(t, Address(method, Method::access_flags_offset()));
1340     __ testl(t, JVM_ACC_SYNCHRONIZED);
1341     __ jcc(Assembler::zero, L);
1342     // the code below should be shared with interpreter macro
1343     // assembler implementation
1344     {
1345       Label unlock;
1346       // BasicObjectLock will be first in list, since this is a
1347       // synchronized method. However, need to check that the object
1348       // has not been unlocked by an explicit monitorexit bytecode.
1349       const Address monitor(rbp,
1350                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1351                                        wordSize - sizeof(BasicObjectLock)));
1352 
1353       // monitor expect in c_rarg1 for slow unlock path
1354       __ lea(c_rarg1, monitor); // address of first monitor
1355 
1356       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1357       __ testptr(t, t);
1358       __ jcc(Assembler::notZero, unlock);
1359 
1360       // Entry already unlocked, need to throw exception
1361       __ MacroAssembler::call_VM(noreg,
1362                                  CAST_FROM_FN_PTR(address,
1363                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1364       __ should_not_reach_here();
1365 
1366       __ bind(unlock);
1367       __ unlock_object(c_rarg1);
1368     }
1369     __ bind(L);
1370   }
1371 
1372   // jvmti support
1373   // Note: This must happen _after_ handling/throwing any exceptions since
1374   //       the exception handler code notifies the runtime of method exits
1375   //       too. If this happens before, method entry/exit notifications are
1376   //       not properly paired (was bug - gri 11/22/99).
1377   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1378 
1379   // restore potential result in edx:eax, call result handler to
1380   // restore potential result in ST0 & handle result
1381 
1382   __ pop(ltos);
1383   __ pop(dtos);
1384 
1385   __ movptr(t, Address(rbp,
1386                        (frame::interpreter_frame_result_handler_offset) * wordSize));
1387   __ call(t);
1388 
1389   // remove activation
1390   __ movptr(t, Address(rbp,
1391                        frame::interpreter_frame_sender_sp_offset *
1392                        wordSize)); // get sender sp
1393   __ leave();                                // remove frame anchor
1394   __ pop(rdi);                               // get return address
1395   __ mov(rsp, t);                            // set sp to sender sp
1396   __ jmp(rdi);
1397 
1398   if (inc_counter) {
1399     // Handle overflow of counter and compile method
1400     __ bind(invocation_counter_overflow);
1401     generate_counter_overflow(&continue_after_compile);
1402   }
1403 
1404   return entry_point;
1405 }
1406 
1407 //
1408 // Generic interpreted method entry to (asm) interpreter
1409 //
generate_normal_entry(bool synchronized)1410 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1411   // determine code generation flags
1412   bool inc_counter  = UseCompiler || CountCompiledCalls;
1413 
1414   // ebx: Method*
1415   // r13: sender sp
1416   address entry_point = __ pc();
1417 
1418   const Address constMethod(rbx, Method::const_offset());
1419   const Address access_flags(rbx, Method::access_flags_offset());
1420   const Address size_of_parameters(rdx,
1421                                    ConstMethod::size_of_parameters_offset());
1422   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
1423 
1424 
1425   // get parameter size (always needed)
1426   __ movptr(rdx, constMethod);
1427   __ load_unsigned_short(rcx, size_of_parameters);
1428 
1429   // rbx: Method*
1430   // rcx: size of parameters
1431   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
1432 
1433   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
1434   __ subl(rdx, rcx); // rdx = no. of additional locals
1435 
1436   // YYY
1437 //   __ incrementl(rdx);
1438 //   __ andl(rdx, -2);
1439 
1440   // see if we've got enough room on the stack for locals plus overhead.
1441   generate_stack_overflow_check();
1442 
1443   // get return address
1444   __ pop(rax);
1445 
1446   // compute beginning of parameters (r14)
1447   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
1448 
1449   // rdx - # of additional locals
1450   // allocate space for locals
1451   // explicitly initialize locals
1452   {
1453     Label exit, loop;
1454     __ testl(rdx, rdx);
1455     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
1456     __ bind(loop);
1457     __ push((int) NULL_WORD); // initialize local variables
1458     __ decrementl(rdx); // until everything initialized
1459     __ jcc(Assembler::greater, loop);
1460     __ bind(exit);
1461   }
1462 
1463   // initialize fixed part of activation frame
1464   generate_fixed_frame(false);
1465 
1466   // make sure method is not native & not abstract
1467 #ifdef ASSERT
1468   __ movl(rax, access_flags);
1469   {
1470     Label L;
1471     __ testl(rax, JVM_ACC_NATIVE);
1472     __ jcc(Assembler::zero, L);
1473     __ stop("tried to execute native method as non-native");
1474     __ bind(L);
1475   }
1476   {
1477     Label L;
1478     __ testl(rax, JVM_ACC_ABSTRACT);
1479     __ jcc(Assembler::zero, L);
1480     __ stop("tried to execute abstract method in interpreter");
1481     __ bind(L);
1482   }
1483 #endif
1484 
1485   // Since at this point in the method invocation the exception
1486   // handler would try to exit the monitor of synchronized methods
1487   // which hasn't been entered yet, we set the thread local variable
1488   // _do_not_unlock_if_synchronized to true. The remove_activation
1489   // will check this flag.
1490 
1491   const Address do_not_unlock_if_synchronized(r15_thread,
1492         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1493   __ movbool(do_not_unlock_if_synchronized, true);
1494 
1495   __ profile_parameters_type(rax, rcx, rdx);
1496   // increment invocation count & check for overflow
1497   Label invocation_counter_overflow;
1498   Label profile_method;
1499   Label profile_method_continue;
1500   if (inc_counter) {
1501     generate_counter_incr(&invocation_counter_overflow,
1502                           &profile_method,
1503                           &profile_method_continue);
1504     if (ProfileInterpreter) {
1505       __ bind(profile_method_continue);
1506     }
1507   }
1508 
1509   Label continue_after_compile;
1510   __ bind(continue_after_compile);
1511 
1512   // check for synchronized interpreted methods
1513   bang_stack_shadow_pages(false);
1514 
1515   // reset the _do_not_unlock_if_synchronized flag
1516   __ movbool(do_not_unlock_if_synchronized, false);
1517 
1518   // check for synchronized methods
1519   // Must happen AFTER invocation_counter check and stack overflow check,
1520   // so method is not locked if overflows.
1521   if (synchronized) {
1522     // Allocate monitor and lock method
1523     lock_method();
1524   } else {
1525     // no synchronization necessary
1526 #ifdef ASSERT
1527     {
1528       Label L;
1529       __ movl(rax, access_flags);
1530       __ testl(rax, JVM_ACC_SYNCHRONIZED);
1531       __ jcc(Assembler::zero, L);
1532       __ stop("method needs synchronization");
1533       __ bind(L);
1534     }
1535 #endif
1536   }
1537 
1538   // start execution
1539 #ifdef ASSERT
1540   {
1541     Label L;
1542      const Address monitor_block_top (rbp,
1543                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1544     __ movptr(rax, monitor_block_top);
1545     __ cmpptr(rax, rsp);
1546     __ jcc(Assembler::equal, L);
1547     __ stop("broken stack frame setup in interpreter");
1548     __ bind(L);
1549   }
1550 #endif
1551 
1552   // jvmti support
1553   __ notify_method_entry();
1554 
1555   __ dispatch_next(vtos);
1556 
1557   // invocation counter overflow
1558   if (inc_counter) {
1559     if (ProfileInterpreter) {
1560       // We have decided to profile this method in the interpreter
1561       __ bind(profile_method);
1562       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1563       __ set_method_data_pointer_for_bcp();
1564       __ get_method(rbx);
1565       __ jmp(profile_method_continue);
1566     }
1567     // Handle overflow of counter and compile method
1568     __ bind(invocation_counter_overflow);
1569     generate_counter_overflow(&continue_after_compile);
1570   }
1571 
1572   return entry_point;
1573 }
1574 
1575 // Entry points
1576 //
1577 // Here we generate the various kind of entries into the interpreter.
1578 // The two main entry type are generic bytecode methods and native
1579 // call method.  These both come in synchronized and non-synchronized
1580 // versions but the frame layout they create is very similar. The
1581 // other method entry types are really just special purpose entries
1582 // that are really entry and interpretation all in one. These are for
1583 // trivial methods like accessor, empty, or special math methods.
1584 //
1585 // When control flow reaches any of the entry types for the interpreter
1586 // the following holds ->
1587 //
1588 // Arguments:
1589 //
1590 // rbx: Method*
1591 //
1592 // Stack layout immediately at entry
1593 //
1594 // [ return address     ] <--- rsp
1595 // [ parameter n        ]
1596 //   ...
1597 // [ parameter 1        ]
1598 // [ expression stack   ] (caller's java expression stack)
1599 
1600 // Assuming that we don't go to one of the trivial specialized entries
1601 // the stack will look like below when we are ready to execute the
1602 // first bytecode (or call the native routine). The register usage
1603 // will be as the template based interpreter expects (see
1604 // interpreter_amd64.hpp).
1605 //
1606 // local variables follow incoming parameters immediately; i.e.
1607 // the return address is moved to the end of the locals).
1608 //
1609 // [ monitor entry      ] <--- rsp
1610 //   ...
1611 // [ monitor entry      ]
1612 // [ expr. stack bottom ]
1613 // [ saved r13          ]
1614 // [ current r14        ]
1615 // [ Method*            ]
1616 // [ saved ebp          ] <--- rbp
1617 // [ return address     ]
1618 // [ local variable m   ]
1619 //   ...
1620 // [ local variable 1   ]
1621 // [ parameter n        ]
1622 //   ...
1623 // [ parameter 1        ] <--- r14
1624 
generate_method_entry(AbstractInterpreter::MethodKind kind)1625 address AbstractInterpreterGenerator::generate_method_entry(
1626                                         AbstractInterpreter::MethodKind kind) {
1627   // determine code generation flags
1628   bool synchronized = false;
1629   address entry_point = NULL;
1630   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
1631 
1632   switch (kind) {
1633   case Interpreter::zerolocals             :                                                      break;
1634   case Interpreter::zerolocals_synchronized: synchronized = true;                                 break;
1635   case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false); break;
1636   case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);  break;
1637   case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();       break;
1638   case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();    break;
1639   case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();    break;
1640 
1641   case Interpreter::java_lang_math_sin     : // fall thru
1642   case Interpreter::java_lang_math_cos     : // fall thru
1643   case Interpreter::java_lang_math_tan     : // fall thru
1644   case Interpreter::java_lang_math_abs     : // fall thru
1645   case Interpreter::java_lang_math_log     : // fall thru
1646   case Interpreter::java_lang_math_log10   : // fall thru
1647   case Interpreter::java_lang_math_sqrt    : // fall thru
1648   case Interpreter::java_lang_math_pow     : // fall thru
1649   case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
1650   case Interpreter::java_lang_ref_reference_get
1651                                            : entry_point = ig_this->generate_Reference_get_entry(); break;
1652   case Interpreter::java_util_zip_CRC32_update
1653                                            : entry_point = ig_this->generate_CRC32_update_entry();  break;
1654   case Interpreter::java_util_zip_CRC32_updateBytes
1655                                            : // fall thru
1656   case Interpreter::java_util_zip_CRC32_updateByteBuffer
1657                                            : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
1658   default:
1659     fatal(err_msg("unexpected method kind: %d", kind));
1660     break;
1661   }
1662 
1663   if (entry_point) {
1664     return entry_point;
1665   }
1666 
1667   return ig_this->generate_normal_entry(synchronized);
1668 }
1669 
1670 // These should never be compiled since the interpreter will prefer
1671 // the compiled version to the intrinsic version.
can_be_compiled(methodHandle m)1672 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1673   switch (method_kind(m)) {
1674     case Interpreter::java_lang_math_sin     : // fall thru
1675     case Interpreter::java_lang_math_cos     : // fall thru
1676     case Interpreter::java_lang_math_tan     : // fall thru
1677     case Interpreter::java_lang_math_abs     : // fall thru
1678     case Interpreter::java_lang_math_log     : // fall thru
1679     case Interpreter::java_lang_math_log10   : // fall thru
1680     case Interpreter::java_lang_math_sqrt    : // fall thru
1681     case Interpreter::java_lang_math_pow     : // fall thru
1682     case Interpreter::java_lang_math_exp     :
1683       return false;
1684     default:
1685       return true;
1686   }
1687 }
1688 
1689 // How much stack a method activation needs in words.
size_top_interpreter_activation(Method * method)1690 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1691   const int entry_size = frame::interpreter_frame_monitor_size();
1692 
1693   // total overhead size: entry_size + (saved rbp thru expr stack
1694   // bottom).  be sure to change this if you add/subtract anything
1695   // to/from the overhead area
1696   const int overhead_size =
1697     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
1698 
1699   const int stub_code = frame::entry_frame_after_call_words;
1700   const int method_stack = (method->max_locals() + method->max_stack()) *
1701                            Interpreter::stackElementWords;
1702   return (overhead_size + method_stack + stub_code);
1703 }
1704 
1705 //-----------------------------------------------------------------------------
1706 // Exceptions
1707 
generate_throw_exception()1708 void TemplateInterpreterGenerator::generate_throw_exception() {
1709   // Entry point in previous activation (i.e., if the caller was
1710   // interpreted)
1711   Interpreter::_rethrow_exception_entry = __ pc();
1712   // Restore sp to interpreter_frame_last_sp even though we are going
1713   // to empty the expression stack for the exception processing.
1714   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1715   // rax: exception
1716   // rdx: return address/pc that threw exception
1717   __ restore_bcp();    // r13 points to call/send
1718   __ restore_locals();
1719   __ reinit_heapbase();  // restore r12 as heapbase.
1720   // Entry point for exceptions thrown within interpreter code
1721   Interpreter::_throw_exception_entry = __ pc();
1722   // expression stack is undefined here
1723   // rax: exception
1724   // r13: exception bcp
1725   __ verify_oop(rax);
1726   __ mov(c_rarg1, rax);
1727 
1728   // expression stack must be empty before entering the VM in case of
1729   // an exception
1730   __ empty_expression_stack();
1731   // find exception handler address and preserve exception oop
1732   __ call_VM(rdx,
1733              CAST_FROM_FN_PTR(address,
1734                           InterpreterRuntime::exception_handler_for_exception),
1735              c_rarg1);
1736   // rax: exception handler entry point
1737   // rdx: preserved exception oop
1738   // r13: bcp for exception handler
1739   __ push_ptr(rdx); // push exception which is now the only value on the stack
1740   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
1741 
1742   // If the exception is not handled in the current frame the frame is
1743   // removed and the exception is rethrown (i.e. exception
1744   // continuation is _rethrow_exception).
1745   //
1746   // Note: At this point the bci is still the bxi for the instruction
1747   // which caused the exception and the expression stack is
1748   // empty. Thus, for any VM calls at this point, GC will find a legal
1749   // oop map (with empty expression stack).
1750 
1751   // In current activation
1752   // tos: exception
1753   // esi: exception bcp
1754 
1755   //
1756   // JVMTI PopFrame support
1757   //
1758 
1759   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1760   __ empty_expression_stack();
1761   // Set the popframe_processing bit in pending_popframe_condition
1762   // indicating that we are currently handling popframe, so that
1763   // call_VMs that may happen later do not trigger new popframe
1764   // handling cycles.
1765   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
1766   __ orl(rdx, JavaThread::popframe_processing_bit);
1767   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
1768 
1769   {
1770     // Check to see whether we are returning to a deoptimized frame.
1771     // (The PopFrame call ensures that the caller of the popped frame is
1772     // either interpreted or compiled and deoptimizes it if compiled.)
1773     // In this case, we can't call dispatch_next() after the frame is
1774     // popped, but instead must save the incoming arguments and restore
1775     // them after deoptimization has occurred.
1776     //
1777     // Note that we don't compare the return PC against the
1778     // deoptimization blob's unpack entry because of the presence of
1779     // adapter frames in C2.
1780     Label caller_not_deoptimized;
1781     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
1782     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1783                                InterpreterRuntime::interpreter_contains), c_rarg1);
1784     __ testl(rax, rax);
1785     __ jcc(Assembler::notZero, caller_not_deoptimized);
1786 
1787     // Compute size of arguments for saving when returning to
1788     // deoptimized caller
1789     __ get_method(rax);
1790     __ movptr(rax, Address(rax, Method::const_offset()));
1791     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
1792                                                 size_of_parameters_offset())));
1793     __ shll(rax, Interpreter::logStackElementSize);
1794     __ restore_locals(); // XXX do we need this?
1795     __ subptr(r14, rax);
1796     __ addptr(r14, wordSize);
1797     // Save these arguments
1798     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1799                                            Deoptimization::
1800                                            popframe_preserve_args),
1801                           r15_thread, rax, r14);
1802 
1803     __ remove_activation(vtos, rdx,
1804                          /* throw_monitor_exception */ false,
1805                          /* install_monitor_exception */ false,
1806                          /* notify_jvmdi */ false);
1807 
1808     // Inform deoptimization that it is responsible for restoring
1809     // these arguments
1810     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1811             JavaThread::popframe_force_deopt_reexecution_bit);
1812 
1813     // Continue in deoptimization handler
1814     __ jmp(rdx);
1815 
1816     __ bind(caller_not_deoptimized);
1817   }
1818 
1819   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
1820                        /* throw_monitor_exception */ false,
1821                        /* install_monitor_exception */ false,
1822                        /* notify_jvmdi */ false);
1823 
1824   // Finish with popframe handling
1825   // A previous I2C followed by a deoptimization might have moved the
1826   // outgoing arguments further up the stack. PopFrame expects the
1827   // mutations to those outgoing arguments to be preserved and other
1828   // constraints basically require this frame to look exactly as
1829   // though it had previously invoked an interpreted activation with
1830   // no space between the top of the expression stack (current
1831   // last_sp) and the top of stack. Rather than force deopt to
1832   // maintain this kind of invariant all the time we call a small
1833   // fixup routine to move the mutated arguments onto the top of our
1834   // expression stack if necessary.
1835   __ mov(c_rarg1, rsp);
1836   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1837   // PC must point into interpreter here
1838   __ set_last_Java_frame(noreg, rbp, __ pc());
1839   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
1840   __ reset_last_Java_frame(r15_thread, true);
1841   // Restore the last_sp and null it out
1842   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
1843   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
1844 
1845   __ restore_bcp();  // XXX do we need this?
1846   __ restore_locals(); // XXX do we need this?
1847   // The method data pointer was incremented already during
1848   // call profiling. We have to restore the mdp for the current bcp.
1849   if (ProfileInterpreter) {
1850     __ set_method_data_pointer_for_bcp();
1851   }
1852 
1853   // Clear the popframe condition flag
1854   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
1855           JavaThread::popframe_inactive);
1856 
1857 #if INCLUDE_JVMTI
1858   if (EnableInvokeDynamic) {
1859     Label L_done;
1860     const Register local0 = r14;
1861 
1862     __ cmpb(Address(r13, 0), Bytecodes::_invokestatic);
1863     __ jcc(Assembler::notEqual, L_done);
1864 
1865     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1866     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1867 
1868     __ get_method(rdx);
1869     __ movptr(rax, Address(local0, 0));
1870     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, r13);
1871 
1872     __ testptr(rax, rax);
1873     __ jcc(Assembler::zero, L_done);
1874 
1875     __ movptr(Address(rbx, 0), rax);
1876     __ bind(L_done);
1877   }
1878 #endif // INCLUDE_JVMTI
1879 
1880   __ dispatch_next(vtos);
1881   // end of PopFrame support
1882 
1883   Interpreter::_remove_activation_entry = __ pc();
1884 
1885   // preserve exception over this code sequence
1886   __ pop_ptr(rax);
1887   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
1888   // remove the activation (without doing throws on illegalMonitorExceptions)
1889   __ remove_activation(vtos, rdx, false, true, false);
1890   // restore exception
1891   __ get_vm_result(rax, r15_thread);
1892 
1893   // In between activations - previous activation type unknown yet
1894   // compute continuation point - the continuation point expects the
1895   // following registers set up:
1896   //
1897   // rax: exception
1898   // rdx: return address/pc that threw exception
1899   // rsp: expression stack of caller
1900   // rbp: ebp of caller
1901   __ push(rax);                                  // save exception
1902   __ push(rdx);                                  // save return address
1903   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1904                           SharedRuntime::exception_handler_for_return_address),
1905                         r15_thread, rdx);
1906   __ mov(rbx, rax);                              // save exception handler
1907   __ pop(rdx);                                   // restore return address
1908   __ pop(rax);                                   // restore exception
1909   // Note that an "issuing PC" is actually the next PC after the call
1910   __ jmp(rbx);                                   // jump to exception
1911                                                  // handler of caller
1912 }
1913 
1914 
1915 //
1916 // JVMTI ForceEarlyReturn support
1917 //
generate_earlyret_entry_for(TosState state)1918 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1919   address entry = __ pc();
1920 
1921   __ restore_bcp();
1922   __ restore_locals();
1923   __ empty_expression_stack();
1924   __ load_earlyret_value(state);
1925 
1926   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
1927   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
1928 
1929   // Clear the earlyret state
1930   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
1931 
1932   __ remove_activation(state, rsi,
1933                        false, /* throw_monitor_exception */
1934                        false, /* install_monitor_exception */
1935                        true); /* notify_jvmdi */
1936   __ jmp(rsi);
1937 
1938   return entry;
1939 } // end of ForceEarlyReturn support
1940 
1941 
1942 //-----------------------------------------------------------------------------
1943 // Helper for vtos entry point generation
1944 
set_vtos_entry_points(Template * t,address & bep,address & cep,address & sep,address & aep,address & iep,address & lep,address & fep,address & dep,address & vep)1945 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1946                                                          address& bep,
1947                                                          address& cep,
1948                                                          address& sep,
1949                                                          address& aep,
1950                                                          address& iep,
1951                                                          address& lep,
1952                                                          address& fep,
1953                                                          address& dep,
1954                                                          address& vep) {
1955   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1956   Label L;
1957   aep = __ pc();  __ push_ptr();  __ jmp(L);
1958   fep = __ pc();  __ push_f();    __ jmp(L);
1959   dep = __ pc();  __ push_d();    __ jmp(L);
1960   lep = __ pc();  __ push_l();    __ jmp(L);
1961   bep = cep = sep =
1962   iep = __ pc();  __ push_i();
1963   vep = __ pc();
1964   __ bind(L);
1965   generate_and_dispatch(t);
1966 }
1967 
1968 
1969 //-----------------------------------------------------------------------------
1970 // Generation of individual instructions
1971 
1972 // helpers for generate_and_dispatch
1973 
1974 
InterpreterGenerator(StubQueue * code)1975 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1976   : TemplateInterpreterGenerator(code) {
1977    generate_all(); // down here so it can be "virtual"
1978 }
1979 
1980 //-----------------------------------------------------------------------------
1981 
1982 // Non-product code
1983 #ifndef PRODUCT
generate_trace_code(TosState state)1984 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1985   address entry = __ pc();
1986 
1987   __ push(state);
1988   __ push(c_rarg0);
1989   __ push(c_rarg1);
1990   __ push(c_rarg2);
1991   __ push(c_rarg3);
1992   __ mov(c_rarg2, rax);  // Pass itos
1993 #ifdef _WIN64
1994   __ movflt(xmm3, xmm0); // Pass ftos
1995 #endif
1996   __ call_VM(noreg,
1997              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
1998              c_rarg1, c_rarg2, c_rarg3);
1999   __ pop(c_rarg3);
2000   __ pop(c_rarg2);
2001   __ pop(c_rarg1);
2002   __ pop(c_rarg0);
2003   __ pop(state);
2004   __ ret(0);                                   // return from result handler
2005 
2006   return entry;
2007 }
2008 
count_bytecode()2009 void TemplateInterpreterGenerator::count_bytecode() {
2010   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
2011 }
2012 
histogram_bytecode(Template * t)2013 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2014   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
2015 }
2016 
histogram_bytecode_pair(Template * t)2017 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2018   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
2019   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
2020   __ orl(rbx,
2021          ((int) t->bytecode()) <<
2022          BytecodePairHistogram::log2_number_of_codes);
2023   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
2024   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
2025   __ incrementl(Address(rscratch1, rbx, Address::times_4));
2026 }
2027 
2028 
trace_bytecode(Template * t)2029 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2030   // Call a little run-time stub to avoid blow-up for each bytecode.
2031   // The run-time runtime saves the right registers, depending on
2032   // the tosca in-state for the given template.
2033 
2034   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2035          "entry must have been generated");
2036   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
2037   __ andptr(rsp, -16); // align stack as required by ABI
2038   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
2039   __ mov(rsp, r12); // restore sp
2040   __ reinit_heapbase();
2041 }
2042 
2043 
stop_interpreter_at()2044 void TemplateInterpreterGenerator::stop_interpreter_at() {
2045   Label L;
2046   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
2047            StopInterpreterAt);
2048   __ jcc(Assembler::notEqual, L);
2049   __ int3();
2050   __ bind(L);
2051 }
2052 #endif // !PRODUCT
2053 #endif // ! CC_INTERP
2054