1 /*
2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
27 
28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
29 #include "gc_implementation/shared/gcStats.hpp"
30 #include "gc_implementation/shared/gcUtil.hpp"
31 #include "gc_interface/gcCause.hpp"
32 
33 // This class keeps statistical information and computes the
34 // optimal free space for both the young and old generation
35 // based on current application characteristics (based on gc cost
36 // and application footprint).
37 //
38 // It also computes an optimal tenuring threshold between the young
39 // and old generations, so as to equalize the cost of collections
40 // of those generations, as well as optimial survivor space sizes
41 // for the young generation.
42 //
43 // While this class is specifically intended for a generational system
44 // consisting of a young gen (containing an Eden and two semi-spaces)
45 // and a tenured gen, as well as a perm gen for reflective data, it
46 // makes NO references to specific generations.
47 //
48 // 05/02/2003 Update
49 // The 1.5 policy makes use of data gathered for the costs of GC on
50 // specific generations.  That data does reference specific
51 // generation.  Also diagnostics specific to generations have
52 // been added.
53 
54 // Forward decls
55 class elapsedTimer;
56 
57 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
58  friend class PSGCAdaptivePolicyCounters;
59  private:
60   // These values are used to record decisions made during the
61   // policy.  For example, if the young generation was decreased
62   // to decrease the GC cost of minor collections the value
63   // decrease_young_gen_for_throughput_true is used.
64 
65   // Last calculated sizes, in bytes, and aligned
66   // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
67 
68   // Time statistics
69   AdaptivePaddedAverage* _avg_major_pause;
70 
71   // Footprint statistics
72   AdaptiveWeightedAverage* _avg_base_footprint;
73 
74   // Statistical data gathered for GC
75   GCStats _gc_stats;
76 
77   size_t _survivor_size_limit;   // Limit in bytes of survivor size
78   const double _collection_cost_margin_fraction;
79 
80   // Variable for estimating the major and minor pause times.
81   // These variables represent linear least-squares fits of
82   // the data.
83   //   major pause time vs. old gen size
84   LinearLeastSquareFit* _major_pause_old_estimator;
85   //   major pause time vs. young gen size
86   LinearLeastSquareFit* _major_pause_young_estimator;
87 
88 
89   // These record the most recent collection times.  They
90   // are available as an alternative to using the averages
91   // for making ergonomic decisions.
92   double _latest_major_mutator_interval_seconds;
93 
94   const size_t _space_alignment; // alignment for eden, survivors
95 
96   const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
97 
98   // The amount of live data in the heap at the last full GC, used
99   // as a baseline to help us determine when we need to perform the
100   // next full GC.
101   size_t _live_at_last_full_gc;
102 
103   // decrease/increase the old generation for minor pause time
104   int _change_old_gen_for_min_pauses;
105 
106   // increase/decrease the young generation for major pause time
107   int _change_young_gen_for_maj_pauses;
108 
109 
110   // Flag indicating that the adaptive policy is ready to use
111   bool _old_gen_policy_is_ready;
112 
113   // Changing the generation sizing depends on the data that is
114   // gathered about the effects of changes on the pause times and
115   // throughput.  These variable count the number of data points
116   // gathered.  The policy may use these counters as a threshhold
117   // for reliable data.
118   julong _young_gen_change_for_major_pause_count;
119 
120   // To facilitate faster growth at start up, supplement the normal
121   // growth percentage for the young gen eden and the
122   // old gen space for promotion with these value which decay
123   // with increasing collections.
124   uint _young_gen_size_increment_supplement;
125   uint _old_gen_size_increment_supplement;
126 
127   // The number of bytes absorbed from eden into the old gen by moving the
128   // boundary over live data.
129   size_t _bytes_absorbed_from_eden;
130 
131  private:
132 
133   // Accessors
avg_major_pause() const134   AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
gc_minor_pause_goal_sec() const135   double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
136 
137   // Change the young generation size to achieve a minor GC pause time goal
138   void adjust_promo_for_minor_pause_time(bool is_full_gc,
139                                    size_t* desired_promo_size_ptr,
140                                    size_t* desired_eden_size_ptr);
141   void adjust_eden_for_minor_pause_time(bool is_full_gc,
142                                    size_t* desired_eden_size_ptr);
143   // Change the generation sizes to achieve a GC pause time goal
144   // Returned sizes are not necessarily aligned.
145   void adjust_promo_for_pause_time(bool is_full_gc,
146                          size_t* desired_promo_size_ptr,
147                          size_t* desired_eden_size_ptr);
148   void adjust_eden_for_pause_time(bool is_full_gc,
149                          size_t* desired_promo_size_ptr,
150                          size_t* desired_eden_size_ptr);
151   // Change the generation sizes to achieve an application throughput goal
152   // Returned sizes are not necessarily aligned.
153   void adjust_promo_for_throughput(bool is_full_gc,
154                              size_t* desired_promo_size_ptr);
155   void adjust_eden_for_throughput(bool is_full_gc,
156                              size_t* desired_eden_size_ptr);
157   // Change the generation sizes to achieve minimum footprint
158   // Returned sizes are not aligned.
159   size_t adjust_promo_for_footprint(size_t desired_promo_size,
160                                     size_t desired_total);
161   size_t adjust_eden_for_footprint(size_t desired_promo_size,
162                                    size_t desired_total);
163 
164   // Size in bytes for an increment or decrement of eden.
165   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
166   virtual size_t eden_decrement(size_t cur_eden);
167   size_t eden_decrement_aligned_down(size_t cur_eden);
168   size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
169 
170   // Size in bytes for an increment or decrement of the promotion area
171   virtual size_t promo_increment(size_t cur_promo, uint percent_change);
172   virtual size_t promo_decrement(size_t cur_promo);
173   size_t promo_decrement_aligned_down(size_t cur_promo);
174   size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
175 
176   // Returns a change that has been scaled down.  Result
177   // is not aligned.  (If useful, move to some shared
178   // location.)
179   size_t scale_down(size_t change, double part, double total);
180 
181  protected:
182   // Time accessors
183 
184   // Footprint accessors
live_space() const185   size_t live_space() const {
186     return (size_t)(avg_base_footprint()->average() +
187                     avg_young_live()->average() +
188                     avg_old_live()->average());
189   }
free_space() const190   size_t free_space() const {
191     return _eden_size + _promo_size;
192   }
193 
set_promo_size(size_t new_size)194   void set_promo_size(size_t new_size) {
195     _promo_size = new_size;
196   }
set_survivor_size(size_t new_size)197   void set_survivor_size(size_t new_size) {
198     _survivor_size = new_size;
199   }
200 
201   // Update estimators
202   void update_minor_pause_old_estimator(double minor_pause_in_ms);
203 
kind() const204   virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
205 
206  public:
207   // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
208   size_t eden_increment_aligned_up(size_t cur_eden);
209   size_t eden_increment_aligned_down(size_t cur_eden);
210   size_t promo_increment_aligned_up(size_t cur_promo);
211   size_t promo_increment_aligned_down(size_t cur_promo);
212 
213   virtual size_t eden_increment(size_t cur_eden);
214   virtual size_t promo_increment(size_t cur_promo);
215 
216   // Accessors for use by performance counters
avg_promoted() const217   AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
218     return _gc_stats.avg_promoted();
219   }
avg_base_footprint() const220   AdaptiveWeightedAverage* avg_base_footprint() const {
221     return _avg_base_footprint;
222   }
223 
224   // Input arguments are initial free space sizes for young and old
225   // generations, the initial survivor space size, the
226   // alignment values and the pause & throughput goals.
227   //
228   // NEEDS_CLEANUP this is a singleton object
229   PSAdaptiveSizePolicy(size_t init_eden_size,
230                        size_t init_promo_size,
231                        size_t init_survivor_size,
232                        size_t space_alignment,
233                        double gc_pause_goal_sec,
234                        double gc_minor_pause_goal_sec,
235                        uint gc_time_ratio);
236 
237   // Methods indicating events of interest to the adaptive size policy,
238   // called by GC algorithms. It is the responsibility of users of this
239   // policy to call these methods at the correct times!
240   void major_collection_begin();
241   void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
242 
tenured_allocation(size_t size)243   void tenured_allocation(size_t size) {
244     _avg_pretenured->sample(size);
245   }
246 
247   // Accessors
248   // NEEDS_CLEANUP   should use sizes.hpp
249 
250   static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage);
251 
252   size_t calculated_old_free_size_in_bytes() const;
253 
average_old_live_in_bytes() const254   size_t average_old_live_in_bytes() const {
255     return (size_t) avg_old_live()->average();
256   }
257 
average_promoted_in_bytes() const258   size_t average_promoted_in_bytes() const {
259     return (size_t)avg_promoted()->average();
260   }
261 
padded_average_promoted_in_bytes() const262   size_t padded_average_promoted_in_bytes() const {
263     return (size_t)avg_promoted()->padded_average();
264   }
265 
change_young_gen_for_maj_pauses()266   int change_young_gen_for_maj_pauses() {
267     return _change_young_gen_for_maj_pauses;
268   }
set_change_young_gen_for_maj_pauses(int v)269   void set_change_young_gen_for_maj_pauses(int v) {
270     _change_young_gen_for_maj_pauses = v;
271   }
272 
change_old_gen_for_min_pauses()273   int change_old_gen_for_min_pauses() {
274     return _change_old_gen_for_min_pauses;
275   }
set_change_old_gen_for_min_pauses(int v)276   void set_change_old_gen_for_min_pauses(int v) {
277     _change_old_gen_for_min_pauses = v;
278   }
279 
280   // Return true if the old generation size was changed
281   // to try to reach a pause time goal.
old_gen_changed_for_pauses()282   bool old_gen_changed_for_pauses() {
283     bool result = _change_old_gen_for_maj_pauses != 0 ||
284                   _change_old_gen_for_min_pauses != 0;
285     return result;
286   }
287 
288   // Return true if the young generation size was changed
289   // to try to reach a pause time goal.
young_gen_changed_for_pauses()290   bool young_gen_changed_for_pauses() {
291     bool result = _change_young_gen_for_min_pauses != 0 ||
292                   _change_young_gen_for_maj_pauses != 0;
293     return result;
294   }
295   // end flags for pause goal
296 
297   // Return true if the old generation size was changed
298   // to try to reach a throughput goal.
old_gen_changed_for_throughput()299   bool old_gen_changed_for_throughput() {
300     bool result = _change_old_gen_for_throughput != 0;
301     return result;
302   }
303 
304   // Return true if the young generation size was changed
305   // to try to reach a throughput goal.
young_gen_changed_for_throughput()306   bool young_gen_changed_for_throughput() {
307     bool result = _change_young_gen_for_throughput != 0;
308     return result;
309   }
310 
decrease_for_footprint()311   int decrease_for_footprint() { return _decrease_for_footprint; }
312 
313 
314   // Accessors for estimators.  The slope of the linear fit is
315   // currently all that is used for making decisions.
316 
major_pause_old_estimator()317   LinearLeastSquareFit* major_pause_old_estimator() {
318     return _major_pause_old_estimator;
319   }
320 
major_pause_young_estimator()321   LinearLeastSquareFit* major_pause_young_estimator() {
322     return _major_pause_young_estimator;
323   }
324 
325 
326   virtual void clear_generation_free_space_flags();
327 
major_pause_old_slope()328   float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
major_pause_young_slope()329   float major_pause_young_slope() {
330     return _major_pause_young_estimator->slope();
331   }
major_collection_slope()332   float major_collection_slope() { return _major_collection_estimator->slope();}
333 
old_gen_policy_is_ready()334   bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
335 
336   // Given the amount of live data in the heap, should we
337   // perform a Full GC?
338   bool should_full_GC(size_t live_in_old_gen);
339 
340   // Calculates optimal (free) space sizes for both the young and old
341   // generations.  Stores results in _eden_size and _promo_size.
342   // Takes current used space in all generations as input, as well
343   // as an indication if a full gc has just been performed, for use
344   // in deciding if an OOM error should be thrown.
345   void compute_generations_free_space(size_t young_live,
346                                       size_t eden_live,
347                                       size_t old_live,
348                                       size_t cur_eden,  // current eden in bytes
349                                       size_t max_old_gen_size,
350                                       size_t max_eden_size,
351                                       bool   is_full_gc);
352 
353   void compute_eden_space_size(size_t young_live,
354                                size_t eden_live,
355                                size_t cur_eden,  // current eden in bytes
356                                size_t max_eden_size,
357                                bool   is_full_gc);
358 
359   void compute_old_gen_free_space(size_t old_live,
360                                              size_t cur_eden,  // current eden in bytes
361                                              size_t max_old_gen_size,
362                                              bool   is_full_gc);
363 
364   // Calculates new survivor space size;  returns a new tenuring threshold
365   // value. Stores new survivor size in _survivor_size.
366   uint compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
367                                                  uint    tenuring_threshold,
368                                                  size_t survivor_limit);
369 
370   // Return the maximum size of a survivor space if the young generation were of
371   // size gen_size.
max_survivor_size(size_t gen_size)372   size_t max_survivor_size(size_t gen_size) {
373     // Never allow the target survivor size to grow more than MinSurvivorRatio
374     // of the young generation size.  We cannot grow into a two semi-space
375     // system, with Eden zero sized.  Even if the survivor space grows, from()
376     // might grow by moving the bottom boundary "down" -- so from space will
377     // remain almost full anyway (top() will be near end(), but there will be a
378     // large filler object at the bottom).
379     const size_t sz = gen_size / MinSurvivorRatio;
380     const size_t alignment = _space_alignment;
381     return sz > alignment ? align_size_down(sz, alignment) : alignment;
382   }
383 
live_at_last_full_gc()384   size_t live_at_last_full_gc() {
385     return _live_at_last_full_gc;
386   }
387 
bytes_absorbed_from_eden() const388   size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
reset_bytes_absorbed_from_eden()389   void   reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
390 
set_bytes_absorbed_from_eden(size_t val)391   void set_bytes_absorbed_from_eden(size_t val) {
392     _bytes_absorbed_from_eden = val;
393   }
394 
395   // Update averages that are always used (even
396   // if adaptive sizing is turned off).
397   void update_averages(bool is_survivor_overflow,
398                        size_t survived,
399                        size_t promoted);
400 
401   // Printing support
402   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
403 
404   // Decay the supplemental growth additive.
405   void decay_supplemental_growth(bool is_full_gc);
406 };
407 
408 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
409