1 /*
2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_Runtime1.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArray.hpp"
34 #include "ci/ciObjArrayKlass.hpp"
35 #include "ci/ciTypeArrayKlass.hpp"
36 #include "runtime/sharedRuntime.hpp"
37 #include "runtime/stubRoutines.hpp"
38 #include "vmreg_sparc.inline.hpp"
39 
40 #ifdef ASSERT
41 #define __ gen()->lir(__FILE__, __LINE__)->
42 #else
43 #define __ gen()->lir()->
44 #endif
45 
load_byte_item()46 void LIRItem::load_byte_item() {
47   // byte loads use same registers as other loads
48   load_item();
49 }
50 
51 
load_nonconstant()52 void LIRItem::load_nonconstant() {
53   LIR_Opr r = value()->operand();
54   if (_gen->can_inline_as_constant(value())) {
55     if (!r->is_constant()) {
56       r = LIR_OprFact::value_type(value()->type());
57     }
58     _result = r;
59   } else {
60     load_item();
61   }
62 }
63 
64 
65 //--------------------------------------------------------------
66 //               LIRGenerator
67 //--------------------------------------------------------------
68 
exceptionOopOpr()69 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
exceptionPcOpr()70 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
syncTempOpr()71 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
getThreadTemp()72 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_INT); }
73 
result_register_for(ValueType * type,bool callee)74 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
75   LIR_Opr opr;
76   switch (type->tag()) {
77   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
78   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
79   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
80   case floatTag:   opr = FrameMap::F0_opr;                                        break;
81   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
82 
83   case addressTag:
84   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
85   }
86 
87   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
88   return opr;
89 }
90 
rlock_callee_saved(BasicType type)91 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
92   LIR_Opr reg = new_register(type);
93   set_vreg_flag(reg, callee_saved);
94   return reg;
95 }
96 
97 
rlock_byte(BasicType type)98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
99   return new_register(T_INT);
100 }
101 
102 
103 
104 
105 
106 //--------- loading items into registers --------------------------------
107 
108 // SPARC cannot inline all constants
can_store_as_constant(Value v,BasicType type) const109 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
110   if (v->type()->as_IntConstant() != NULL) {
111     return v->type()->as_IntConstant()->value() == 0;
112   } else if (v->type()->as_LongConstant() != NULL) {
113     return v->type()->as_LongConstant()->value() == 0L;
114   } else if (v->type()->as_ObjectConstant() != NULL) {
115     return v->type()->as_ObjectConstant()->value()->is_null_object();
116   } else {
117     return false;
118   }
119 }
120 
121 
122 // only simm13 constants can be inlined
can_inline_as_constant(Value i) const123 bool LIRGenerator:: can_inline_as_constant(Value i) const {
124   if (i->type()->as_IntConstant() != NULL) {
125     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
126   } else {
127     return can_store_as_constant(i, as_BasicType(i->type()));
128   }
129 }
130 
131 
can_inline_as_constant(LIR_Const * c) const132 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
133   if (c->type() == T_INT) {
134     return Assembler::is_simm13(c->as_jint());
135   }
136   return false;
137 }
138 
139 
safepoint_poll_register()140 LIR_Opr LIRGenerator::safepoint_poll_register() {
141   return new_register(T_INT);
142 }
143 
144 
145 
generate_address(LIR_Opr base,LIR_Opr index,int shift,int disp,BasicType type)146 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
147                                             int shift, int disp, BasicType type) {
148   assert(base->is_register(), "must be");
149 
150   // accumulate fixed displacements
151   if (index->is_constant()) {
152     disp += index->as_constant_ptr()->as_jint() << shift;
153     index = LIR_OprFact::illegalOpr;
154   }
155 
156   if (index->is_register()) {
157     // apply the shift and accumulate the displacement
158     if (shift > 0) {
159       LIR_Opr tmp = new_pointer_register();
160       __ shift_left(index, shift, tmp);
161       index = tmp;
162     }
163     if (disp != 0) {
164       LIR_Opr tmp = new_pointer_register();
165       if (Assembler::is_simm13(disp)) {
166         __ add(tmp, LIR_OprFact::intptrConst(disp), tmp);
167         index = tmp;
168       } else {
169         __ move(LIR_OprFact::intptrConst(disp), tmp);
170         __ add(tmp, index, tmp);
171         index = tmp;
172       }
173       disp = 0;
174     }
175   } else if (disp != 0 && !Assembler::is_simm13(disp)) {
176     // index is illegal so replace it with the displacement loaded into a register
177     index = new_pointer_register();
178     __ move(LIR_OprFact::intptrConst(disp), index);
179     disp = 0;
180   }
181 
182   // at this point we either have base + index or base + displacement
183   if (disp == 0) {
184     return new LIR_Address(base, index, type);
185   } else {
186     assert(Assembler::is_simm13(disp), "must be");
187     return new LIR_Address(base, disp, type);
188   }
189 }
190 
191 
emit_array_address(LIR_Opr array_opr,LIR_Opr index_opr,BasicType type,bool needs_card_mark)192 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
193                                               BasicType type, bool needs_card_mark) {
194   int elem_size = type2aelembytes(type);
195   int shift = exact_log2(elem_size);
196 
197   LIR_Opr base_opr;
198   int offset = arrayOopDesc::base_offset_in_bytes(type);
199 
200   if (index_opr->is_constant()) {
201     int i = index_opr->as_constant_ptr()->as_jint();
202     int array_offset = i * elem_size;
203     if (Assembler::is_simm13(array_offset + offset)) {
204       base_opr = array_opr;
205       offset = array_offset + offset;
206     } else {
207       base_opr = new_pointer_register();
208       if (Assembler::is_simm13(array_offset)) {
209         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
210       } else {
211         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
212         __ add(base_opr, array_opr, base_opr);
213       }
214     }
215   } else {
216 #ifdef _LP64
217     if (index_opr->type() == T_INT) {
218       LIR_Opr tmp = new_register(T_LONG);
219       __ convert(Bytecodes::_i2l, index_opr, tmp);
220       index_opr = tmp;
221     }
222 #endif
223 
224     base_opr = new_pointer_register();
225     assert (index_opr->is_register(), "Must be register");
226     if (shift > 0) {
227       __ shift_left(index_opr, shift, base_opr);
228       __ add(base_opr, array_opr, base_opr);
229     } else {
230       __ add(index_opr, array_opr, base_opr);
231     }
232   }
233   if (needs_card_mark) {
234     LIR_Opr ptr = new_pointer_register();
235     __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
236     return new LIR_Address(ptr, type);
237   } else {
238     return new LIR_Address(base_opr, offset, type);
239   }
240 }
241 
load_immediate(int x,BasicType type)242 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
243   LIR_Opr r;
244   if (type == T_LONG) {
245     r = LIR_OprFact::longConst(x);
246   } else if (type == T_INT) {
247     r = LIR_OprFact::intConst(x);
248   } else {
249     ShouldNotReachHere();
250   }
251   if (!Assembler::is_simm13(x)) {
252     LIR_Opr tmp = new_register(type);
253     __ move(r, tmp);
254     return tmp;
255   }
256   return r;
257 }
258 
increment_counter(address counter,BasicType type,int step)259 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
260   LIR_Opr pointer = new_pointer_register();
261   __ move(LIR_OprFact::intptrConst(counter), pointer);
262   LIR_Address* addr = new LIR_Address(pointer, type);
263   increment_counter(addr, step);
264 }
265 
increment_counter(LIR_Address * addr,int step)266 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
267   LIR_Opr temp = new_register(addr->type());
268   __ move(addr, temp);
269   __ add(temp, load_immediate(step, addr->type()), temp);
270   __ move(temp, addr);
271 }
272 
cmp_mem_int(LIR_Condition condition,LIR_Opr base,int disp,int c,CodeEmitInfo * info)273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
274   LIR_Opr o7opr = FrameMap::O7_opr;
275   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
276   __ cmp(condition, o7opr, c);
277 }
278 
279 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Opr base,int disp,BasicType type,CodeEmitInfo * info)280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
281   LIR_Opr o7opr = FrameMap::O7_opr;
282   __ load(new LIR_Address(base, disp, type), o7opr, info);
283   __ cmp(condition, reg, o7opr);
284 }
285 
286 
cmp_reg_mem(LIR_Condition condition,LIR_Opr reg,LIR_Opr base,LIR_Opr disp,BasicType type,CodeEmitInfo * info)287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
288   LIR_Opr o7opr = FrameMap::O7_opr;
289   __ load(new LIR_Address(base, disp, type), o7opr, info);
290   __ cmp(condition, reg, o7opr);
291 }
292 
293 
strength_reduce_multiply(LIR_Opr left,int c,LIR_Opr result,LIR_Opr tmp)294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
295   assert(left != result, "should be different registers");
296   if (is_power_of_2(c + 1)) {
297     __ shift_left(left, log2_int(c + 1), result);
298     __ sub(result, left, result);
299     return true;
300   } else if (is_power_of_2(c - 1)) {
301     __ shift_left(left, log2_int(c - 1), result);
302     __ add(result, left, result);
303     return true;
304   }
305   return false;
306 }
307 
308 
store_stack_parameter(LIR_Opr item,ByteSize offset_from_sp)309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
310   BasicType t = item->type();
311   LIR_Opr sp_opr = FrameMap::SP_opr;
312   if ((t == T_LONG || t == T_DOUBLE) &&
313       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
314     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
315   } else {
316     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
317   }
318 }
319 
320 //----------------------------------------------------------------------
321 //             visitor functions
322 //----------------------------------------------------------------------
323 
324 
do_StoreIndexed(StoreIndexed * x)325 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
326   assert(x->is_pinned(),"");
327   bool needs_range_check = x->compute_needs_range_check();
328   bool use_length = x->length() != NULL;
329   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
330   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
331                                          !get_jobject_constant(x->value())->is_null_object() ||
332                                          x->should_profile());
333 
334   LIRItem array(x->array(), this);
335   LIRItem index(x->index(), this);
336   LIRItem value(x->value(), this);
337   LIRItem length(this);
338 
339   array.load_item();
340   index.load_nonconstant();
341 
342   if (use_length && needs_range_check) {
343     length.set_instruction(x->length());
344     length.load_item();
345   }
346   if (needs_store_check || x->check_boolean()) {
347     value.load_item();
348   } else {
349     value.load_for_store(x->elt_type());
350   }
351 
352   set_no_result(x);
353 
354   // the CodeEmitInfo must be duplicated for each different
355   // LIR-instruction because spilling can occur anywhere between two
356   // instructions and so the debug information must be different
357   CodeEmitInfo* range_check_info = state_for(x);
358   CodeEmitInfo* null_check_info = NULL;
359   if (x->needs_null_check()) {
360     null_check_info = new CodeEmitInfo(range_check_info);
361   }
362 
363   // emit array address setup early so it schedules better
364   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
365 
366   if (GenerateRangeChecks && needs_range_check) {
367     if (use_length) {
368       __ cmp(lir_cond_belowEqual, length.result(), index.result());
369       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
370     } else {
371       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
372       // range_check also does the null check
373       null_check_info = NULL;
374     }
375   }
376 
377   if (GenerateArrayStoreCheck && needs_store_check) {
378     LIR_Opr tmp1 = FrameMap::G1_opr;
379     LIR_Opr tmp2 = FrameMap::G3_opr;
380     LIR_Opr tmp3 = FrameMap::G5_opr;
381 
382     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
383     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
384   }
385 
386   if (obj_store) {
387     // Needs GC write barriers.
388     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
389                 true /* do_load */, false /* patch */, NULL);
390   }
391   LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
392   __ move(result, array_addr, null_check_info);
393   if (obj_store) {
394     // Precise card mark
395     post_barrier(LIR_OprFact::address(array_addr), value.result());
396   }
397 }
398 
399 
do_MonitorEnter(MonitorEnter * x)400 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
401   assert(x->is_pinned(),"");
402   LIRItem obj(x->obj(), this);
403   obj.load_item();
404 
405   set_no_result(x);
406 
407   LIR_Opr lock    = FrameMap::G1_opr;
408   LIR_Opr scratch = FrameMap::G3_opr;
409   LIR_Opr hdr     = FrameMap::G4_opr;
410 
411   CodeEmitInfo* info_for_exception = NULL;
412   if (x->needs_null_check()) {
413     info_for_exception = state_for(x);
414   }
415 
416   // this CodeEmitInfo must not have the xhandlers because here the
417   // object is already locked (xhandlers expects object to be unlocked)
418   CodeEmitInfo* info = state_for(x, x->state(), true);
419   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
420 }
421 
422 
do_MonitorExit(MonitorExit * x)423 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
424   assert(x->is_pinned(),"");
425   LIRItem obj(x->obj(), this);
426   obj.dont_load_item();
427 
428   set_no_result(x);
429   LIR_Opr lock      = FrameMap::G1_opr;
430   LIR_Opr hdr       = FrameMap::G3_opr;
431   LIR_Opr obj_temp  = FrameMap::G4_opr;
432   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
433 }
434 
435 
436 // _ineg, _lneg, _fneg, _dneg
do_NegateOp(NegateOp * x)437 void LIRGenerator::do_NegateOp(NegateOp* x) {
438   LIRItem value(x->x(), this);
439   value.load_item();
440   LIR_Opr reg = rlock_result(x);
441   __ negate(value.result(), reg);
442 }
443 
444 
445 
446 // for  _fadd, _fmul, _fsub, _fdiv, _frem
447 //      _dadd, _dmul, _dsub, _ddiv, _drem
do_ArithmeticOp_FPU(ArithmeticOp * x)448 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
449   switch (x->op()) {
450   case Bytecodes::_fadd:
451   case Bytecodes::_fmul:
452   case Bytecodes::_fsub:
453   case Bytecodes::_fdiv:
454   case Bytecodes::_dadd:
455   case Bytecodes::_dmul:
456   case Bytecodes::_dsub:
457   case Bytecodes::_ddiv: {
458     LIRItem left(x->x(), this);
459     LIRItem right(x->y(), this);
460     left.load_item();
461     right.load_item();
462     rlock_result(x);
463     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
464   }
465   break;
466 
467   case Bytecodes::_frem:
468   case Bytecodes::_drem: {
469     address entry;
470     switch (x->op()) {
471     case Bytecodes::_frem:
472       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
473       break;
474     case Bytecodes::_drem:
475       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
476       break;
477     default:
478       ShouldNotReachHere();
479     }
480     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
481     set_result(x, result);
482   }
483   break;
484 
485   default: ShouldNotReachHere();
486   }
487 }
488 
489 
490 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
do_ArithmeticOp_Long(ArithmeticOp * x)491 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
492   switch (x->op()) {
493   case Bytecodes::_lrem:
494   case Bytecodes::_lmul:
495   case Bytecodes::_ldiv: {
496 
497     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
498       LIRItem right(x->y(), this);
499       right.load_item();
500 
501       CodeEmitInfo* info = state_for(x);
502       LIR_Opr item = right.result();
503       assert(item->is_register(), "must be");
504       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
505       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
506     }
507 
508     address entry;
509     switch (x->op()) {
510     case Bytecodes::_lrem:
511       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
512       break; // check if dividend is 0 is done elsewhere
513     case Bytecodes::_ldiv:
514       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
515       break; // check if dividend is 0 is done elsewhere
516     case Bytecodes::_lmul:
517       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
518       break;
519     default:
520       ShouldNotReachHere();
521     }
522 
523     // order of arguments to runtime call is reversed.
524     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
525     set_result(x, result);
526     break;
527   }
528   case Bytecodes::_ladd:
529   case Bytecodes::_lsub: {
530     LIRItem left(x->x(), this);
531     LIRItem right(x->y(), this);
532     left.load_item();
533     right.load_item();
534     rlock_result(x);
535 
536     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
537     break;
538   }
539   default: ShouldNotReachHere();
540   }
541 }
542 
543 
544 // Returns if item is an int constant that can be represented by a simm13
is_simm13(LIR_Opr item)545 static bool is_simm13(LIR_Opr item) {
546   if (item->is_constant() && item->type() == T_INT) {
547     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
548   } else {
549     return false;
550   }
551 }
552 
553 
554 // for: _iadd, _imul, _isub, _idiv, _irem
do_ArithmeticOp_Int(ArithmeticOp * x)555 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
556   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
557   LIRItem left(x->x(), this);
558   LIRItem right(x->y(), this);
559   // missing test if instr is commutative and if we should swap
560   right.load_nonconstant();
561   assert(right.is_constant() || right.is_register(), "wrong state of right");
562   left.load_item();
563   rlock_result(x);
564   if (is_div_rem) {
565     CodeEmitInfo* info = state_for(x);
566     LIR_Opr tmp = FrameMap::G1_opr;
567     if (x->op() == Bytecodes::_irem) {
568       __ irem(left.result(), right.result(), x->operand(), tmp, info);
569     } else if (x->op() == Bytecodes::_idiv) {
570       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
571     }
572   } else {
573     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
574   }
575 }
576 
577 
do_ArithmeticOp(ArithmeticOp * x)578 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
579   ValueTag tag = x->type()->tag();
580   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
581   switch (tag) {
582     case floatTag:
583     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
584     case longTag:    do_ArithmeticOp_Long(x); return;
585     case intTag:     do_ArithmeticOp_Int(x);  return;
586   }
587   ShouldNotReachHere();
588 }
589 
590 
591 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
do_ShiftOp(ShiftOp * x)592 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
593   LIRItem value(x->x(), this);
594   LIRItem count(x->y(), this);
595   // Long shift destroys count register
596   if (value.type()->is_long()) {
597     count.set_destroys_register();
598   }
599   value.load_item();
600   // the old backend doesn't support this
601   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
602     jint c = count.get_jint_constant() & 0x1f;
603     assert(c >= 0 && c < 32, "should be small");
604     count.dont_load_item();
605   } else {
606     count.load_item();
607   }
608   LIR_Opr reg = rlock_result(x);
609   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
610 }
611 
612 
613 // _iand, _land, _ior, _lor, _ixor, _lxor
do_LogicOp(LogicOp * x)614 void LIRGenerator::do_LogicOp(LogicOp* x) {
615   LIRItem left(x->x(), this);
616   LIRItem right(x->y(), this);
617 
618   left.load_item();
619   right.load_nonconstant();
620   LIR_Opr reg = rlock_result(x);
621 
622   logic_op(x->op(), reg, left.result(), right.result());
623 }
624 
625 
626 
627 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
do_CompareOp(CompareOp * x)628 void LIRGenerator::do_CompareOp(CompareOp* x) {
629   LIRItem left(x->x(), this);
630   LIRItem right(x->y(), this);
631   left.load_item();
632   right.load_item();
633   LIR_Opr reg = rlock_result(x);
634   if (x->x()->type()->is_float_kind()) {
635     Bytecodes::Code code = x->op();
636     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
637   } else if (x->x()->type()->tag() == longTag) {
638     __ lcmp2int(left.result(), right.result(), reg);
639   } else {
640     Unimplemented();
641   }
642 }
643 
644 
do_CompareAndSwap(Intrinsic * x,ValueType * type)645 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
646   assert(x->number_of_arguments() == 4, "wrong type");
647   LIRItem obj   (x->argument_at(0), this);  // object
648   LIRItem offset(x->argument_at(1), this);  // offset of field
649   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
650   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
651 
652   // Use temps to avoid kills
653   LIR_Opr t1 = FrameMap::G1_opr;
654   LIR_Opr t2 = FrameMap::G3_opr;
655   LIR_Opr addr = new_pointer_register();
656 
657   // get address of field
658   obj.load_item();
659   offset.load_item();
660   cmp.load_item();
661   val.load_item();
662 
663   __ add(obj.result(), offset.result(), addr);
664 
665   if (type == objectType) {  // Write-barrier needed for Object fields.
666     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
667                 true /* do_load */, false /* patch */, NULL);
668   }
669 
670   if (type == objectType)
671     __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
672   else if (type == intType)
673     __ cas_int(addr, cmp.result(), val.result(), t1, t2);
674   else if (type == longType)
675     __ cas_long(addr, cmp.result(), val.result(), t1, t2);
676   else {
677     ShouldNotReachHere();
678   }
679   // generate conditional move of boolean result
680   LIR_Opr result = rlock_result(x);
681   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
682            result, as_BasicType(type));
683   if (type == objectType) {  // Write-barrier needed for Object fields.
684     // Precise card mark since could either be object or array
685     post_barrier(addr, val.result());
686   }
687 }
688 
689 
do_MathIntrinsic(Intrinsic * x)690 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
691   switch (x->id()) {
692     case vmIntrinsics::_dabs:
693     case vmIntrinsics::_dsqrt: {
694       assert(x->number_of_arguments() == 1, "wrong type");
695       LIRItem value(x->argument_at(0), this);
696       value.load_item();
697       LIR_Opr dst = rlock_result(x);
698 
699       switch (x->id()) {
700       case vmIntrinsics::_dsqrt: {
701         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
702         break;
703       }
704       case vmIntrinsics::_dabs: {
705         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
706         break;
707       }
708       }
709       break;
710     }
711     case vmIntrinsics::_dlog10: // fall through
712     case vmIntrinsics::_dlog: // fall through
713     case vmIntrinsics::_dsin: // fall through
714     case vmIntrinsics::_dtan: // fall through
715     case vmIntrinsics::_dcos: // fall through
716     case vmIntrinsics::_dexp: {
717       assert(x->number_of_arguments() == 1, "wrong type");
718 
719       address runtime_entry = NULL;
720       switch (x->id()) {
721       case vmIntrinsics::_dsin:
722         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
723         break;
724       case vmIntrinsics::_dcos:
725         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
726         break;
727       case vmIntrinsics::_dtan:
728         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
729         break;
730       case vmIntrinsics::_dlog:
731         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
732         break;
733       case vmIntrinsics::_dlog10:
734         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
735         break;
736       case vmIntrinsics::_dexp:
737         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
738         break;
739       default:
740         ShouldNotReachHere();
741       }
742 
743       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
744       set_result(x, result);
745       break;
746     }
747     case vmIntrinsics::_dpow: {
748       assert(x->number_of_arguments() == 2, "wrong type");
749       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
750       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
751       set_result(x, result);
752       break;
753     }
754   }
755 }
756 
757 
do_ArrayCopy(Intrinsic * x)758 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
759   assert(x->number_of_arguments() == 5, "wrong type");
760 
761   // Make all state_for calls early since they can emit code
762   CodeEmitInfo* info = state_for(x, x->state());
763 
764   // Note: spill caller save before setting the item
765   LIRItem src     (x->argument_at(0), this);
766   LIRItem src_pos (x->argument_at(1), this);
767   LIRItem dst     (x->argument_at(2), this);
768   LIRItem dst_pos (x->argument_at(3), this);
769   LIRItem length  (x->argument_at(4), this);
770   // load all values in callee_save_registers, as this makes the
771   // parameter passing to the fast case simpler
772   src.load_item_force     (rlock_callee_saved(T_OBJECT));
773   src_pos.load_item_force (rlock_callee_saved(T_INT));
774   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
775   dst_pos.load_item_force (rlock_callee_saved(T_INT));
776   length.load_item_force  (rlock_callee_saved(T_INT));
777 
778   int flags;
779   ciArrayKlass* expected_type;
780   arraycopy_helper(x, &flags, &expected_type);
781 
782   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
783                length.result(), rlock_callee_saved(T_INT),
784                expected_type, flags, info);
785   set_no_result(x);
786 }
787 
do_update_CRC32(Intrinsic * x)788 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
789   fatal("CRC32 intrinsic is not implemented on this platform");
790 }
791 
792 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
793 // _i2b, _i2c, _i2s
do_Convert(Convert * x)794 void LIRGenerator::do_Convert(Convert* x) {
795 
796   switch (x->op()) {
797     case Bytecodes::_f2l:
798     case Bytecodes::_d2l:
799     case Bytecodes::_d2i:
800     case Bytecodes::_l2f:
801     case Bytecodes::_l2d: {
802 
803       address entry;
804       switch (x->op()) {
805       case Bytecodes::_l2f:
806         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
807         break;
808       case Bytecodes::_l2d:
809         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
810         break;
811       case Bytecodes::_f2l:
812         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
813         break;
814       case Bytecodes::_d2l:
815         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
816         break;
817       case Bytecodes::_d2i:
818         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
819         break;
820       default:
821         ShouldNotReachHere();
822       }
823       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
824       set_result(x, result);
825       break;
826     }
827 
828     case Bytecodes::_i2f:
829     case Bytecodes::_i2d: {
830       LIRItem value(x->value(), this);
831 
832       LIR_Opr reg = rlock_result(x);
833       // To convert an int to double, we need to load the 32-bit int
834       // from memory into a single precision floating point register
835       // (even numbered). Then the sparc fitod instruction takes care
836       // of the conversion. This is a bit ugly, but is the best way to
837       // get the int value in a single precision floating point register
838       value.load_item();
839       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
840       __ convert(x->op(), tmp, reg);
841       break;
842     }
843     break;
844 
845     case Bytecodes::_i2l:
846     case Bytecodes::_i2b:
847     case Bytecodes::_i2c:
848     case Bytecodes::_i2s:
849     case Bytecodes::_l2i:
850     case Bytecodes::_f2d:
851     case Bytecodes::_d2f: { // inline code
852       LIRItem value(x->value(), this);
853 
854       value.load_item();
855       LIR_Opr reg = rlock_result(x);
856       __ convert(x->op(), value.result(), reg, false);
857     }
858     break;
859 
860     case Bytecodes::_f2i: {
861       LIRItem value (x->value(), this);
862       value.set_destroys_register();
863       value.load_item();
864       LIR_Opr reg = rlock_result(x);
865       set_vreg_flag(reg, must_start_in_memory);
866       __ convert(x->op(), value.result(), reg, false);
867     }
868     break;
869 
870     default: ShouldNotReachHere();
871   }
872 }
873 
874 
do_NewInstance(NewInstance * x)875 void LIRGenerator::do_NewInstance(NewInstance* x) {
876   print_if_not_loaded(x);
877 
878   // This instruction can be deoptimized in the slow path : use
879   // O0 as result register.
880   const LIR_Opr reg = result_register_for(x->type());
881 
882   CodeEmitInfo* info = state_for(x, x->state());
883   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
884   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
885   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
886   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
887   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
888   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
889   LIR_Opr result = rlock_result(x);
890   __ move(reg, result);
891 }
892 
893 
do_NewTypeArray(NewTypeArray * x)894 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
895   // Evaluate state_for early since it may emit code
896   CodeEmitInfo* info = state_for(x, x->state());
897 
898   LIRItem length(x->length(), this);
899   length.load_item();
900 
901   LIR_Opr reg = result_register_for(x->type());
902   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
903   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
904   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
905   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
906   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
907   LIR_Opr len = length.result();
908   BasicType elem_type = x->elt_type();
909 
910   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
911 
912   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
913   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
914 
915   LIR_Opr result = rlock_result(x);
916   __ move(reg, result);
917 }
918 
919 
do_NewObjectArray(NewObjectArray * x)920 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
921   // Evaluate state_for early since it may emit code.
922   CodeEmitInfo* info = state_for(x, x->state());
923   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
924   // and therefore provide the state before the parameters have been consumed
925   CodeEmitInfo* patching_info = NULL;
926   if (!x->klass()->is_loaded() || PatchALot) {
927     patching_info = state_for(x, x->state_before());
928   }
929 
930   LIRItem length(x->length(), this);
931   length.load_item();
932 
933   const LIR_Opr reg = result_register_for(x->type());
934   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
935   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
936   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
937   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
938   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
939   LIR_Opr len = length.result();
940 
941   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
942   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
943   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
944     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
945   }
946   klass2reg_with_patching(klass_reg, obj, patching_info);
947   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
948 
949   LIR_Opr result = rlock_result(x);
950   __ move(reg, result);
951 }
952 
953 
do_NewMultiArray(NewMultiArray * x)954 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
955   Values* dims = x->dims();
956   int i = dims->length();
957   LIRItemList* items = new LIRItemList(dims->length(), NULL);
958   while (i-- > 0) {
959     LIRItem* size = new LIRItem(dims->at(i), this);
960     items->at_put(i, size);
961   }
962 
963   // Evaluate state_for early since it may emit code.
964   CodeEmitInfo* patching_info = NULL;
965   if (!x->klass()->is_loaded() || PatchALot) {
966     patching_info = state_for(x, x->state_before());
967 
968     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
969     // clone all handlers (NOTE: Usually this is handled transparently
970     // by the CodeEmitInfo cloning logic in CodeStub constructors but
971     // is done explicitly here because a stub isn't being used).
972     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
973   }
974   CodeEmitInfo* info = state_for(x, x->state());
975 
976   i = dims->length();
977   while (i-- > 0) {
978     LIRItem* size = items->at(i);
979     size->load_item();
980     store_stack_parameter (size->result(),
981                            in_ByteSize(STACK_BIAS +
982                                        frame::memory_parameter_word_sp_offset * wordSize +
983                                        i * sizeof(jint)));
984   }
985 
986   // This instruction can be deoptimized in the slow path : use
987   // O0 as result register.
988   const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
989   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
990   LIR_Opr rank = FrameMap::O1_opr;
991   __ move(LIR_OprFact::intConst(x->rank()), rank);
992   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
993   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
994   __ add(FrameMap::SP_opr,
995          LIR_OprFact::intptrConst(offset_from_sp),
996          varargs);
997   LIR_OprList* args = new LIR_OprList(3);
998   args->append(klass_reg);
999   args->append(rank);
1000   args->append(varargs);
1001   const LIR_Opr reg = result_register_for(x->type());
1002   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1003                   LIR_OprFact::illegalOpr,
1004                   reg, args, info);
1005 
1006   LIR_Opr result = rlock_result(x);
1007   __ move(reg, result);
1008 }
1009 
1010 
do_BlockBegin(BlockBegin * x)1011 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1012 }
1013 
1014 
do_CheckCast(CheckCast * x)1015 void LIRGenerator::do_CheckCast(CheckCast* x) {
1016   LIRItem obj(x->obj(), this);
1017   CodeEmitInfo* patching_info = NULL;
1018   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1019     // must do this before locking the destination register as an oop register,
1020     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1021     patching_info = state_for(x, x->state_before());
1022   }
1023   obj.load_item();
1024   LIR_Opr out_reg = rlock_result(x);
1025   CodeStub* stub;
1026   CodeEmitInfo* info_for_exception =
1027       (x->needs_exception_state() ? state_for(x) :
1028                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1029 
1030   if (x->is_incompatible_class_change_check()) {
1031     assert(patching_info == NULL, "can't patch this");
1032     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1033   } else if (x->is_invokespecial_receiver_check()) {
1034     assert(patching_info == NULL, "can't patch this");
1035     stub = new DeoptimizeStub(info_for_exception);
1036   } else {
1037     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1038   }
1039   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1040   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1041   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1042   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1043                x->direct_compare(), info_for_exception, patching_info, stub,
1044                x->profiled_method(), x->profiled_bci());
1045 }
1046 
1047 
do_InstanceOf(InstanceOf * x)1048 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1049   LIRItem obj(x->obj(), this);
1050   CodeEmitInfo* patching_info = NULL;
1051   if (!x->klass()->is_loaded() || PatchALot) {
1052     patching_info = state_for(x, x->state_before());
1053   }
1054   // ensure the result register is not the input register because the result is initialized before the patching safepoint
1055   obj.load_item();
1056   LIR_Opr out_reg = rlock_result(x);
1057   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1058   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1059   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1060   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1061                 x->direct_compare(), patching_info,
1062                 x->profiled_method(), x->profiled_bci());
1063 }
1064 
1065 
do_If(If * x)1066 void LIRGenerator::do_If(If* x) {
1067   assert(x->number_of_sux() == 2, "inconsistency");
1068   ValueTag tag = x->x()->type()->tag();
1069   LIRItem xitem(x->x(), this);
1070   LIRItem yitem(x->y(), this);
1071   LIRItem* xin = &xitem;
1072   LIRItem* yin = &yitem;
1073   If::Condition cond = x->cond();
1074 
1075   if (tag == longTag) {
1076     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1077     // mirror for other conditions
1078     if (cond == If::gtr || cond == If::leq) {
1079       // swap inputs
1080       cond = Instruction::mirror(cond);
1081       xin = &yitem;
1082       yin = &xitem;
1083     }
1084     xin->set_destroys_register();
1085   }
1086 
1087   LIR_Opr left = LIR_OprFact::illegalOpr;
1088   LIR_Opr right = LIR_OprFact::illegalOpr;
1089 
1090   xin->load_item();
1091   left = xin->result();
1092 
1093   if (is_simm13(yin->result())) {
1094     // inline int constants which are small enough to be immediate operands
1095     right = LIR_OprFact::value_type(yin->value()->type());
1096   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1097              (cond == If::eql || cond == If::neq)) {
1098     // inline long zero
1099     right = LIR_OprFact::value_type(yin->value()->type());
1100   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1101     right = LIR_OprFact::value_type(yin->value()->type());
1102   } else {
1103     yin->load_item();
1104     right = yin->result();
1105   }
1106   set_no_result(x);
1107 
1108   // add safepoint before generating condition code so it can be recomputed
1109   if (x->is_safepoint()) {
1110     // increment backedge counter if needed
1111     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1112     __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
1113   }
1114 
1115   __ cmp(lir_cond(cond), left, right);
1116   // Generate branch profiling. Profiling code doesn't kill flags.
1117   profile_branch(x, cond);
1118   move_to_phi(x->state());
1119   if (x->x()->type()->is_float_kind()) {
1120     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1121   } else {
1122     __ branch(lir_cond(cond), right->type(), x->tsux());
1123   }
1124   assert(x->default_sux() == x->fsux(), "wrong destination above");
1125   __ jump(x->default_sux());
1126 }
1127 
1128 
getThreadPointer()1129 LIR_Opr LIRGenerator::getThreadPointer() {
1130   return FrameMap::as_pointer_opr(G2);
1131 }
1132 
1133 
trace_block_entry(BlockBegin * block)1134 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1135   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1136   LIR_OprList* args = new LIR_OprList(1);
1137   args->append(FrameMap::O0_opr);
1138   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1139   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1140 }
1141 
1142 
volatile_field_store(LIR_Opr value,LIR_Address * address,CodeEmitInfo * info)1143 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1144                                         CodeEmitInfo* info) {
1145 #ifdef _LP64
1146   __ store(value, address, info);
1147 #else
1148   __ volatile_store_mem_reg(value, address, info);
1149 #endif
1150 }
1151 
volatile_field_load(LIR_Address * address,LIR_Opr result,CodeEmitInfo * info)1152 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1153                                        CodeEmitInfo* info) {
1154 #ifdef _LP64
1155   __ load(address, result, info);
1156 #else
1157   __ volatile_load_mem_reg(address, result, info);
1158 #endif
1159 }
1160 
1161 
put_Object_unsafe(LIR_Opr src,LIR_Opr offset,LIR_Opr data,BasicType type,bool is_volatile)1162 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1163                                      BasicType type, bool is_volatile) {
1164   LIR_Opr base_op = src;
1165   LIR_Opr index_op = offset;
1166 
1167   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1168 #ifndef _LP64
1169   if (is_volatile && type == T_LONG) {
1170     __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
1171   } else
1172 #endif
1173     {
1174       if (type == T_BOOLEAN) {
1175         type = T_BYTE;
1176       }
1177       LIR_Address* addr;
1178       if (type == T_ARRAY || type == T_OBJECT) {
1179         LIR_Opr tmp = new_pointer_register();
1180         __ add(base_op, index_op, tmp);
1181         addr = new LIR_Address(tmp, type);
1182       } else {
1183         addr = new LIR_Address(base_op, index_op, type);
1184       }
1185 
1186       if (is_obj) {
1187         pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1188                     true /* do_load */, false /* patch */, NULL);
1189         // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
1190       }
1191       __ move(data, addr);
1192       if (is_obj) {
1193         // This address is precise
1194         post_barrier(LIR_OprFact::address(addr), data);
1195       }
1196     }
1197 }
1198 
1199 
get_Object_unsafe(LIR_Opr dst,LIR_Opr src,LIR_Opr offset,BasicType type,bool is_volatile)1200 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1201                                      BasicType type, bool is_volatile) {
1202 #ifndef _LP64
1203   if (is_volatile && type == T_LONG) {
1204     __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
1205   } else
1206 #endif
1207     {
1208     LIR_Address* addr = new LIR_Address(src, offset, type);
1209     __ load(addr, dst);
1210   }
1211 }
1212 
do_UnsafeGetAndSetObject(UnsafeGetAndSetObject * x)1213 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1214   BasicType type = x->basic_type();
1215   LIRItem src(x->object(), this);
1216   LIRItem off(x->offset(), this);
1217   LIRItem value(x->value(), this);
1218 
1219   src.load_item();
1220   value.load_item();
1221   off.load_nonconstant();
1222 
1223   LIR_Opr dst = rlock_result(x, type);
1224   LIR_Opr data = value.result();
1225   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1226   LIR_Opr offset = off.result();
1227 
1228   // Because we want a 2-arg form of xchg
1229   __ move(data, dst);
1230 
1231   assert (!x->is_add() && (type == T_INT || (is_obj LP64_ONLY(&& UseCompressedOops))), "unexpected type");
1232   LIR_Address* addr;
1233   if (offset->is_constant()) {
1234 
1235 #ifdef _LP64
1236     jlong l = offset->as_jlong();
1237     assert((jlong)((jint)l) == l, "offset too large for constant");
1238     jint c = (jint)l;
1239 #else
1240     jint c = offset->as_jint();
1241 #endif
1242     addr = new LIR_Address(src.result(), c, type);
1243   } else {
1244     addr = new LIR_Address(src.result(), offset, type);
1245   }
1246 
1247   LIR_Opr tmp = LIR_OprFact::illegalOpr;
1248   LIR_Opr ptr = LIR_OprFact::illegalOpr;
1249 
1250   if (is_obj) {
1251     // Do the pre-write barrier, if any.
1252     // barriers on sparc don't work with a base + index address
1253     tmp = FrameMap::G3_opr;
1254     ptr = new_pointer_register();
1255     __ add(src.result(), off.result(), ptr);
1256     pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1257                 true /* do_load */, false /* patch */, NULL);
1258   }
1259   __ xchg(LIR_OprFact::address(addr), dst, dst, tmp);
1260   if (is_obj) {
1261     // Seems to be a precise address
1262     post_barrier(ptr, data);
1263   }
1264 }
1265